
intelligent Digital Systems Lab

Deploying DNNs in the Embedded Space:
Challenges and Opportunities
Christos-Savvas Bouganis

intelligent Digital Systems Lab

About myself

1993

Joined CEID Patras

1998

MSc Communications and Signal Processing

1999

PhD Computer Vision

2003

Post-doc: Reverse Engineering the Human Visual System

2007

Lecturer at Imperial College London

2021

…still there

intelligent Digital Systems Lab

Aditya Rajagopal
Machine Learning

Alexandros Kouris
Machine Learning,
Robotics

Diederik Vink
Machine Learning

Alexander Montgomerie
Hardware Acceleration
for Machine Learning

Mudhar Bin Rabieah
Machine Learning

Giorog Zampokas
Computer Vision,
Machine Learning

The team

Zhewen Yu
Machine Learning

Petros Toupas
Machine Learning

intelligent Digital Systems Lab

Our vision

To research and develop intelligent autonomous systems

“see”

+

“understand” “process”

+

intelligent Digital Systems Lab

Some of our work
Autonomous Navigation

Traffic Detection

Hunan Pose Estimation

Localisation and Mapping

fpgaConvNet Multi-CNN
Deployment

Time-
constrained

LSTM
Inference

Data-Driven
CNN

Inference

A bit of history: Artificial Intelligence - Machine Learning – Deep Neural Networks

Artificial Intelligence

Machine Learning

Deep Neural
Networks

CNNs

Time

<1950s Statistical Model

1950s The term “Machine Learning” was used

1990s Shift from a knowledge-driven to data-driven approach

2000s Supervised ML methods (SVM, Kernel Methods)

2009 Power of many and real-world examples - ImageNet is created

2010s Deep Neural Networks – Performance improvement with data

Convolutional Neural Networks

convolutional
+ nonlinearity

pooling convolutional
+ nonlinearity

pooling

Models – Where we are today

• Number of models trading-off
complexity vs accuracy

• Top-1 accuracy 82% (increase of 30 pp)

• 20x higher computational complexity

intelligent Digital Systems Lab
DNNs in the Embedded Space – Variability in Performance Requirements

surveillance

Smart homes/cities

Aerial Monitoring

Scene Understanding

Autonomous Driving

intelligent Digital Systems Lab
DNNs in the Embedded Space – Variability in Performance Requirements

High-Throughput Applications
Low-Latency Applications

Multiobjective Applications

?

surveillance

Smart homes/cities

Aerial Monitoring

Scene Understanding

Autonomous Driving

10

Performance

Power
Consumption

intelligent Digital Systems Lab
Challenge: Performance vs Power

Performance Power
Consumption

Performance

Efficient utilisation of the resources
- Compute resources
- Memory resources

Power
Consumption

Have the Right Data in the Right Place at the Right Time

14 • 2014 IEEE International Solid-State Circuits Conference 978-1-4799-0920-9/14/$31.00 ©2014 IEEE

ISSCC 2014 / SESSION 1 / PLENARY / 1.1

Figure 1.1.7: Power breakdown of an 8 core server chip. Figure 1.1.8: Energy efficiency of specialized processing, from [10].

Figure 1.1.9: Rough energy costs for various operations in 45nm 0.9V.

88�cores
L1/reg/TLB
L2
L3L3

Chip Year Paper Description

1 2009 3.8 Dunnington

2 2010 5.7 MSGͲPassing

Chip Year Paper Description

10 2012 10.6 3D�Proc.

11 2013 9.3 H.264
2 2010 5.7 MSG Passing

3 2010 5.5 WireͲspeed

4 2011 4.4 GodsonͲ3B

5 2013 3.5 GodsonͲ3B1500

12 2012 28.8 Razor�SIMD

13 2011 7.1 3DTV

14 2011 7.3 Multimedia

15 2011 19.1 ECG/EEG
6 2011 15.1 Sandy�Bridge

7 2012 3.1 Ivy�Bridge

8 2011 15.4 Zacate

9 2013 9.4 ARMͲv7A

16 2010 18.4 Obj.�Recog.

17 2012 12.4 Obj.�Recog.

18 2013 9.8 Obj.�Recog.

19 2011 7 4 N l N k19 2011 7.4 Neural�Network

20 2013 28.2 Visual.�Recog.

Dedicated
10000

W
)

Chip�type:
Microprocessor
Microprocessor + GPU

GP�DSPs
100

1000

y�
(M

OP
S/
m
W

Microprocessor�+�GPU
General�purpose�DSP
Dedicated�design CPUs

1

10

gy
�Ef

fic
ie
nc
y CPUs+GPU

s ~1000x

D. Markovic / Slide1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.1

1

En
er
g

,QWHJHU
$GG

)3
)$GG

0HPRU\
&DFKH ���ELW�$GG

��ELW ����S-
���ELW ���S-

)$GG
���ELW ���S-
���ELW ���S-

&DFKH ���ELW�
�.% ��S-
��.% ��S-

0XOW
��ELW ���S-
���ELW ���S-

)0XOW
���ELW ���S-
���ELW ���S-

�0% ���S-
'5$0 �������Q-

Instruction Energy Breakdown

70�pJ25pJ 6pJ Control

I-Cache Access Register File
Access

Add

Authorized licensed use limited to: Imperial College London. Downloaded on September 16,2020 at 10:27:48 UTC from IEEE Xplore. Restrictions apply.

M. Horowitz, "1.1 Computing's energy problem (and what we can do about it)," 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), San Francisco, CA, 2014, pp. 10-14,

intelligent Digital Systems Lab
Efficiency comes from customisation

12

FPGAs
Custom datapath

Custom memory subsystem

GPUs
Tegra K1, X1 and X2

Customisation

Generic Application Specific

DSPs
Qualcomm Hexagon,
Apple Neural Engine,

ASICs
TPU

Platform Layer

Algorithm Implementation
(GEMM, Winograd) Approximations

Algorithmic Layer

intelligent Digital Systems Lab
Putting things in perspective – What customization buys you

Input Image

Impact on LSTM-based Image Captioning – Computations tailored to the architecture

A. Kouris, S. Venieris, M. Rizakis and C.S. Bouganis, "Approximate LSTMs for Time-Constrained Inference: Enabling Fast Reaction in Self-Driving Cars",
B. in IEEE Consumer Electronics Magazine, 2019

40%

intelligent Digital Systems Lab
Algorithm-Hardware Co-design

Application metrics
(accuracy, …)

Latency Throughput

Development Tools
Layer

Algorithmic Layer

Hardware Layer
Optimisation Objectives

Efficient and Automated Mapping
of Algorithm to Processing Platform

A
lg

or
it

hm
-H

ar
dw

ar
e

Co
-D

es
ig

n

Power

intelligent Digital Systems Lab

CNN acceleration through an FPGA

Characteristics
• Custom datapath
• Custom memory

subsystem
• Programmable

interconnections

• Reconfigurability
• Heterogeneous
• Difficult to program

FPGA

Look-Up Tables

Flip Flops

DSP Blocks

On-chip RAM

External Memory (DRAM)

intelligent Digital Systems Lab
The Challenge of the Mapping Problem

Parameters Value
LC 2M

BRAMS (36kbits) 1,880

DSPs 3,360

Architecture
(P1,P2,…,PN)

Specifications
- Latency
- Throughput
- Power consumption

Challenges:
- Diversity of operations in modern NN
- Diversity and resources of modern FPGAs
- Competition (or need for performance)
- Large number of parameters in the target

architecture

intelligent Digital Systems Lab

Network Description FPGA Target Platform
Specifications

Automated Design
Space Exploration

Network Hardware
Mapping

Supplied by
Deep Learning Expert

Performance
Requirements

fpgaConvNet

Challenge #1: Automated CNN-to-FPGA Toolflow

Under the hood: Convolutional Neural Networks (ConvNets)

21

convolution
+ nonlinearity

pooling convolution
+ nonlinearity

pooling

• ConvNet Inference
– Tailored to images and data with spatial patterns

– Built as a sequence of layers (Convolutional, Nonlinearity and Pooling Layer)

– Feedforward operation

– Inherently streaming

Multiple dot
products

Nonlinear
Operator

Max or average
in a vector

fpgaConvNet – Streaming Architecture for CNNs

Src Sliding
Window Fork

Conv Unit

Conv Unit

Conv Unit

Conv Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Sliding
Window

Sliding
Window

Sliding
Window

Sliding
Window

Pool Unit

Pool Unit

Pool Unit

Pool Unit

Memory
Interface

Convolutional Layer with 4 filters Nonlin
Layer

Pooling Layer

Sliding
Window

Sliding
Window

Sliding
Window

Sliding
Window

Fork

Fork

Fork

Fork

Convolutional Layer

fpgaConvNet – Streaming Architecture for CNNs

Src
Sliding

Window Fork

Conv
Unit

Conv
Unit

Conv
Unit

Conv
Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Sliding
Window

Sliding
Window

Sliding
Window

Sliding
Window

Pool Unit

Pool Unit

Pool Unit

Pool Unit

Sliding
Window

Sliding
Window

Sliding
Window

Sliding
Window

Fork

Fork

Fork

Fork

CNN Hardware SDF Graph

0
1
2
3
4
5
6

0 5 10

Th
ro

ug
hp

ut

Resources

Design Space

Current Design
PointFPGA 2

FPGA 1Complex Modelè Bottlenecks:
− Limited compute resources
− Limited on-chip memory capacity for model parameters
− Limited off-chip memory bandwidth

Define a set of graph transformations to traverse the
design space in fast and principled way

Transformations 1 & 2: Coarse- and fine-grained Folding

Src Sliding
Window Fork

Conv Unit

Conv Unit

Nonlin
Unit

Nonlin
Unit

Sliding
Window

Sliding
Window

Pool Unit

Pool Unit

Sliding
Window

Sliding
Window

Fork

Fork

2 Convolutions/cycle

Compute Resources

Required Bandwidth
Transformation 2

Fine-grained Folding

Transformation 3: Graph Partitioning with Reconfiguration

7x7 Conv, 16

5x5 Conv, 64

3x3 Conv, 256

ReLU

ReLU

ReLU

2x2 Max Pool

2x2 Max Pool

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

1) Exceeding the available
compute resources

2) Not enough on-chip
memory capacity FPGA Reconfiguration

Transformation 4: Weights Reloading

Workload 1

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Workload 2

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

Workload 3

Convolution
Bank
max K: 7x7

Nonlinear
Bank
Type: ReLU

Pooling
Bank
max P: 2x2

Generated Reference Architecture

Input
Data

7x7 Conv, 16

5x5 Conv, 64

3x3 Conv, 256

ReLU

ReLU

ReLU

2x2 Max Pool

2x2 Max Pool

Input Data

fpgaConvNet – Design Space Exploration and Optimisation

• Synchronous Dataflow Modelling

− Capture hardware mappings as matrices

− Transformations as algebraic operations

− Analytical performance model

− Cast design space exploration
as a mathematical optimisation problem

Design 1

Design 2

Hardware Stages Interconnections

duce the feature maps matrix, Fmap, and the data matrix,
P , and form the work matrix, W as shown below.

W = Fmap � P

To find the initiation interval of each block, it su�ces to
divide W by �, element by element.

II = W ↵ �
where II is the initiation interval matrix. Each element
of II gives the number of cycles required by each hardware
block along the pipeline to consume its workload. The block
with the longest initiation interval determines the initiation
interval of the whole SDFG and can be found as the maxi-
mum element of II, denoted by IImax. The execution time
for a batch of B inputs can be estimated by Eq. (4).

t(B,�) =
1

clock rate
· (D + IImax · (B � 1)) (4)

where D is the maximum between the size of the input, e.g.
the size of an image, and the pipeline depth of the SDFG.
In the case where graph partitioning with reconfiguration
is introduced and the SDFG is partitioned into subgraphs
that are executed sequentially after FPGA reconfiguration,
the overall execution time can be estimated by summing the
execution times of all the subgraphs. For this case, we ex-
tend the notation of Eq. (4) with ti to denote the execution
time of the ith partition. Between consecutive subgraphs,
the overhead for the ith reconfiguration, ti,reconfig., has to
be included. Eq. (5) gives the total execution time for NP

partitions.

ttotal(B,NP ,�) =
NPX

i=1

ti(B,�i) +
NP�1X

i=1

ti,reconfig. (5)

where �i is the topology matrix of the ith partition. By
assuming full reconfiguration of the FPGA, ti,reconfig. can
be considered constant for all i. In this case, Eq. (5) can be
simplified as:

ttotal(B,NP ,�) =
NPX

i=1

ti(B,�i) + (NP � 1) · treconfig. (6)

Eq. (6) shows that the reconfiguration overhead is indepen-
dent of the batch size, B. Therefore, by either increasing
the batch size or the size of the inputs, the first term dom-
inates the execution time and the cost of reconfiguration is
amortised. In practice, the upper bound of B is limited by
the capacity, Cmem, of the o↵-chip memory and we cap its
maximum value to this bound.

For low-latency applications, weights reloading is utilised
in place of graph partitioning with reconfiguration. In this
case, we have a single �ref matrix representing the de-
rived reference design and di↵erent workloads for each of
the NP subgraphs which are scheduled sequentially. When-
ever the data have to enter the ith subgraph, the overhead,
ti,weights, of the transfer of the subgraph’s weights from the
o↵-chip memory has to be included and is calculated using
the amount of subgraph’s weights and the memory band-
width. Eq. (7) gives the overall execution time in the case
of a low-latency design with weights reloading.

ttotal(M,NP ,�ref) =
NPX

i=1

ti(M,�ref) +
NPX

i=1

ti,weights (7)

Finally, the throughput of an implementation of a particu-
lar ConvNet in GOp/s which requires WConvNet GOp/input
can be estimated as in Eq. (8) and its latency in s/input as
in Eq. (9).

Algorithm 1 Workload Alignment for Weights Reloading
Inputs:
1: Dimensions (M ⇥N) of the reference �ref

2: Index i of the subgraph to be aligned
3: Workload matrix W i 2 RK⇥L

4: Shift vector si 2 ZL with the alignment shifts for each column
5: Identity matrices Ir

N⇥N
and Il

M⇥M

6: Lower shift matrices Sr

N⇥N
and Sl

M⇥M

Steps:

1: W aligned =
h

W i

0(M�K)⇥L
,0M⇥(N�L)

i

2: for all col in the ith subgraph that need alignment do
3: - - - Align along the pipeline, (right shift) - - -
4: - Form right alignment matrix Ar 2 RN⇥N -

5: Ar =


Ir

1:col�1,S
r

col:col+si
col

, Ir

col+si
col

+1:N

�

6: - Update the overall right alignment matrix -
7: Ar

o = Ar ·Ar · ... ·Ar

| {z }
si
col

8: W aligned = W aligned ·Ar>
o

9: - - - Align the interconnections (down shift) - - -
10: - Form left alignment matrix Al 2 RM⇥M -

11: Al =


Il

1:col�2,S
l

col�1:col+si
col

�1
, Il

col+si
col

:M

�

12: - Update the overall left alignment matrix -
13: Al

o = Al ·Al · ... ·Al

| {z }
si
col

14: W aligned

col:col+si
col

= Al
o ·W aligned

col:col+si
col

15: end for

Note: The subscript start:end denotes a range of columns.

T (B,NP ,�) =
WConvNet

ttotal(B,NP ,�)/B
(8)

L(B = 1, NP ,�) = ttotal(1, NP ,�) (9)

5.5 Workload Alignment
In the weights reloading transformation, when a subgraph

is mapped to the reference architecture, the execution of
its layers is scheduled on the instantiated building blocks.
For a reference design and a subgraph with N and L build-
ing blocks respectively, we have a topology matrix �ref 2
RM⇥N and a workload matrix W i 2 RK⇥L for the ith
subgraph, where K  M and L  N . In order to calcu-
late the execution time ti(B,�ref) of the ith subgraph on
the reference architecture, the columns of W i have to be
aligned so that they map on the correct column of �ref .
To achieve this, a new matrix W aligned 2 RM⇥N is con-
structed which contains the rows and columns of W i with
the correct alignment. After W aligned has been created,
the ith initiation interval matrix can be computed correctly
as IIi = W aligned ↵ �ref and used for the calculation of
ti(B,�ref) as described in Section 5.4.
Our adoption of the SDF paradigm enables us to express

the workload alignment algebraically as described by algo-
rithm (1). In this way, the weights reloading transformation
can be applied analytically and is smoothly integrated with
the rest of the defined transformations over the SDFG.

5.6 Optimisation
The developed optimiser of our framework aims to deter-

mine a design point that optimises the performance metric
of interest for the target application given a ConvNet work-
load and the available resources. In this context, we pose
two combinatorial optimisation problems, aiming for high-

27

intelligent Digital Systems Lab
Meeting the performance requirements

intelligent Digital Systems Lab
Challenge #2: Multi-CNN Systems – Autonomous Drones

Camera

Object Detection
Semantic

Segmentation
Navigation Monitoring Domain Task

Se
t o

f C
NN

s

FPGA GPU DSPTa
rg

et

Pl
at

fo
rm

Mapping?

30

intelligent Digital Systems Lab
Challenge #2: Multi-DNN System

Challenges:
• Resource allocation among CNNs
• Design automation
• Models with different performance constraints,

e.g. required throughput and latency
• Competing for the same pool of resources
• High-dimensional design space

Set of CNNs
Target Platform
Specifications

Per-CNN
Performance
Requirements

Supplied by
Deep Learning Expert

Optimised
Mapping

F-CNNx

intelligent Digital Systems Lab

Key characteristics
• Latency is relevant: Reconfiguration is not an option
• One hardware engine per CNN – highly customisable
• Hardware scheduler to control memory access schedule

Multi-CNN Hardware Architecture

Conv
Layer

Pool
Layer

Conv
Layer

Pool
Layer

Conv
Layer

Conv
Layer

Pool
Layer

CNN Engine1

CNN Engine 2

Conv
Layer

Pool
Layer

Conv
Layer

Pool
Layer

CNN Engine N

…

Multi-CNN Hardware
Scheduler FPGA

Off-chip Memory

32

Compute Engines

Memory Interface

intelligent Digital Systems Lab

S

Multi-CNN Hardware Architecture

Key characteristics
• One hardware engine per CNN – highly customisable
• Hardware scheduler to control memory access schedule

33

Pipeline structure Γ!

Parameter Symbol

No. of PEs in each

stage
NPE,i,j

No of MAC operators

within each PE
Nop,i,j

Schedule

C-PE

Weights Mem.

C-PE

Weights Mem.

C-PE

Weights Mem.
PE Folding

Weights Mem.

Dot-product Unit
Folding

Conv
Layer

Pool
Layer

Conv
Layer

Pool
Layer

Conv
Layer

Conv
Layer

Pool
Layer

CNN Engine1

CNN Engine 2

Conv
Layer

Pool
Layer

Conv
Layer

Pool
Layer

CNN Engine N

…

Multi-CNN Hardware
Scheduler FPGA

Off-chip Memory

…

Proposed Design Space Exploration Method

• Memory contention
• Problem 1: Performance model != Actual performance

(scheduler)
• Problem 2: Not full utilization of the memory bandwidth

• CNN inference over a stream of inputs

− Cast to a cyclic scheduling problem
− Search for a periodic solution

• Optimal ILP scheduler has very high runtimes for large-sized
problems

• Develop a heuristic Resource Constrained List Scheduler (RCLS).

• Key points:

• Scheduler exposed in the engine design optimization process
• Introduce slow-down => fine control over bandwidth

The effect of slow-downs

23

2

time

2
3

1

CONV7
x7

ReLU MAX POOL

CONV5
x5

ReLU MAX POOL

CONV
5x5 ReLU

CNN1 - Subgraph 1

CNN2 - Subgraph 1

CNN3 - Subgraph 1

Bandwidth Requirement: 1.5 GB/s

Bandwidth Requirement: 0.25 GB/s

Bandwidth Requirement: 0.75 GB/s

CONV7
x7 ReLU MAX POOL

CONV5
x5

ReLU MAX POOL

CONV
5x5 ReLU

CNN1 - Subgraph 1

CNN2 - Subgraph 1

CNN3 - Subgraph 1

Bandwidth Requirement: 1.2 GB/s

Bandwidth Requirement: 0.2 GB/s

Bandwidth Requirement: 0.56 GB/s

Slowdown1_1:
0.8x

Slowdown3_1:
0.75x

Slowdown2_1:
0.8x

Exec Time: 0.05 ms Exec Time: 0.062 ms

Exec Time: 0.031 msExec Time: 0.025 ms

Exec Time: 0.02 ms Exec Time: 0.026 ms

1

2 GB/s

time

2 GB/s

0.07 ms 0.0625 ms

Available Memory Bandwidth: 2 GB/s

Scheduler Scheduler + slow downs

Comparison with Embedded GPUs

36

• Latency-driven scenario à batch size of 1

• Up to 19.09× speedup with an average of
6.85× (geo. mean)

0 5 10 15 20

ZFNet

PilotNet

SceneLabelCNN

VGG-16

Performance-per-Watt: f-CNNx vs. TX1 at 5W

f-CNNx (ZC706) (GOp/s/W) GPU TX1 (GOp/s/W) (5W)

• Latency-driven scenario à batch size of 1

• Up to 9.61× speedup with an average of
2.76× (geo. mean)

0 5 10 15 20 25 30

ZFNet

PilotNet

SceneLabelCNN

VGG-16

Performance-per-Watt: f-CNNx vs. TX1

f-CNNx (ZC706) (GOp/s/W) GPU TX1 (GOp/s/W)

intelligent Digital Systems Lab
Summary

• Customisation is key, but also a challenge in the design of
DNN systems

• We need toolflows to support deployment of DNN on
the embedded space
• Many choices, high-dimensional space

• Exposing the hardware capabilities to the algorithm can
lead to performance gains

- Challenging task
- Rethink current approaches to fully utilise the

underlying hardware

customisation

intelligent Digital Systems Lab
What we are looking into…

Under review as a conference paper at ICLR 2020

FP32 training performed by them. The reported results demonstrate that their methods achieve
similar accuracy results to our method by lying close to the respective FP32 training accuracy. As
Wang et al. (2018) do not provide any results in terms of gains in wall-clock times and since they
use custom FP8 hardware, their work could not be directly compared to our method.

FP32
(Baseline)

Mixed Prec
(Micikevicius et al., 2018)

MuPPET
(Current Impl.)

MuPPET
(Ideal)

AlexNet 30:13 (1⇥) 29.20 (1.03⇥) 23:52 (1.27⇥) 20:25 (1.48⇥)
ResNet18 132:46 (1⇥) 97:25 (1.36⇥) 100:19 (1.32⇥) 92:43 (1.43⇥)
GoogLeNet 152:28 (1⇥) 122:51 (1.24⇥) 122:13 (1.25⇥) 82:38 (1.84⇥)

Table 2: Wall-clock time (GPU hours:mins) & relative acceleration for networks targeting ImageNet

4.4 PRECISION SWITCHING

Figure 3: Accuracy vs time trade-off for ResNet20
MuPPET runs on CIFAR-100.

To evaluate the ability of MuPPET to
effectively choose an epoch to switch
precision at, AlexNet and ResNet20
were first trained using MuPPET on
the CIFAR-100 dataset. The hyper-
parameters for MuPPET were kept
the same across all runs. From the
results it was noted that training at
reduced precision and not switch-
ing at all causes a drop in vali-
dation accuracy of 1.4% and 1.3%
for AlexNet and ResNet20 respec-
tively, hence demonstrating the need
to switch precisions when training at
bit-widths as low as 8-bit fixed-point.

To demonstrate the benefits of a pre-
cision switching methodology, two further sets of experiments were conducted on ResNet20 using
CIFAR100 as depicted in Fig. 3. First, 34 training runs were performed (34 red dots in Fig. 3),
where for each training four epochs along the standard training duration were randomly selected
and used as the switching points. Second, the switching strategy MuPPET generated for AlexNet
and GoogLeNet was applied to ResNet20 (2 blue dots in Fig. 3). Fig. 3 shows the best test accuracy
achieved by each of the runs and the training time as estimated by our performance model described
in Sec. 4.3. It shows that for a given time-budget, MuPPET runs (6 green dots) outperform on
average all other experiment sets, demonstrating the need for a precision switching policy that is
real-time and agnostic to network and dataset in order to achieve a good accuracy-to-training-time
trade-off.

5 CONCLUSION

This paper proposes MuPPET, a novel low-precision CNN training scheme that combines the use
of fixed-point and floating-point representations to produce a network trained for FP32 inference.
By introducing a precision-switching mechanism that decides at run time an appropriate transi-
tion point between different precision regimes, the proposed framework achieves Top-1 validation
accuracies comparable to that achieved by state-of-the-art FP32 training regimes while delivering
significant speedup in terms of training time. Quantitative evaluation demonstrates that MuPPET’s
training strategy generalises across CNN architectures and datasets by adapting the training process
to the target CNN-dataset pair during run time. Overall, MuPPET enables the utilisation of the low-
precision hardware units available on modern specialised processors, such as next-generation GPUs,
FPGAs and TPUs, to yield improvements in training time and energy efficiency without impacting
the resulting accuracy. Future work will focus on applying the proposed framework to the training
of LSTMs, where the training process is more sensitive to gradient quantisation, as well as on the
extension of MuPPET to include batch size and learning rate as part of its hyperparameters. Fur-
thermore, we will explore improved quantisation techniques that could enable training convergence
for bitwidths even lower than 8-bit fixed-point.

8

modules appear to have a consistent offset from the actual
power reading. This systematic error may be due to platform-
level components that were not taken into account. It is diffi-
cult to isolate whether errors are coming from the static power
model or dynamic power model, as the power measurement
technique cannot give these separately.

A final observation is the existence of power efficient
designs in the design space. It can be seen that with more
parallelism within the convolution modules, designs can be
achieved with greater throughput yet similar power con-
sumption to designs with less parallelism. This suggests that
fine-grain parallelism within modules is more power-efficient
than parallelism between modules, with regards to increasing
throughput. This shows that high throughput designs are
achievable in a power efficient manner. It can be seen that
the model is also able to highlight this trade-off, although in
a much more exaggerated fashion.

Overall, it can bee seen that the model is able to predict
power within 100 mW of error, across a range of valid designs
within the resource constraints of the board.

D. Design Space Exploration
Having demonstrated the accuracy of the power modelling

framework as well as the existence of power-efficient designs
within the design space, the optimiser is now evaluated on it’s
performance in identifying power efficient designs. Initially,
the throughput-power design space is explored in Fig. 4 by
exploring an unconstrained throughput objective. This design
exploration is done for the ZC706 platform.

Fig. 4. DSE with a throughput objective for AlexNet.

A clear pareto-optimal front can be seen, where average
power has a linear relationship with the throughput of the
design. What is also interesting is the occurrence of design
points on the same throughput plane, yet with larger aver-
age power consumption. This shows the existence of power-
efficient designs which achieve high throughput at a reduced
power consumption to other designs of the same throughput.

For example, the highest throughput can be achieved through
a range of designs, however the most power-efficient sees a
20.1% power reduction over the the most power-consuming
design.

Knowing the existence of power-efficient designs, the sim-
ulated annealing optimiser is now evaluated on it’s ability to
discover these designs, and results are shown in Fig. 5. In
this figure, each step of an unconstrained, throughput driven
design space for AlexNet on the ZC706 board is given. The
red vertical lines indicate the constraint on the point left of it.

Fig. 5. Power-constrained DSE with a throughput objective for AlexNet.

It can be seen that the optimiser is able to identify points
on the same pareto-optimal front as a purely throughput-driven
objective.

VI. CONCLUSION

This paper presents a method of modelling the power
consumption of an FPGA-based CNN accelerator system from
a high-level description. This power model is then integrated
within a DSE-based optimiser to expose power-efficient de-
signs within a CNN-to-FPGA mapping framework.

The outcomes of the power modelling and design explo-
ration work shows that power can be introduced into the design
space in an effective way. This is the greatest contribution
of this work and is what sets it apart from other high-level
power modelling techniques, as most design space exploration
methods for mapping CNNs to FPGAs, or FPGA design
spaces in general, struggle to include power consumption as
an objective. By including power consumption as an aspect
of the design from a high-level set of parameters, it means
that power consumption is not just of consequence from
other performance metrics, but a targetable objective for an
optimiser. In this way, power optimisations are not limited
to standard domain-agnostic techniques, and more fine-grain
optimisations can be realised.

Overall, this work brings power consumption to the fore-
front of the fgpaConvNet framework, and promotes methods

DNN Training -
MuPPET

Power-aware
CNN mapping

Object
Detection to

FPGA
mapping

Homomorphic
Encryption ML

loads

On-device
adaptation

intelligent Digital Systems Lab
What we are looking into…

Co-optimise topology and hardware architecture

Model
(accuracy)

HW architecture
(latency, throughput, resources)

intelligent Digital Systems Lab
What we are looking into…

Adversarial attacks to DNNs and how to prevent them

Tesla “sees” 85

McAfee Advanced Threat Research (ATR). Feb 2020

intelligent Digital Systems Lab
Opportunities at Imperial

• MSc Programmes
• Analogue and Digital Integrated Circuit Design

• Applied Machine Learning

• Communications and Signal Processing

• Control and Optimisations

• Future Power Networks

• PhD Programme
• Scholarships available for top students

intelligent Digital Systems Lab
Questions

