
Multi-Dimensional Data Structures

Projects: Implementation and Experimental Evaluation of Multidimensional
Data Structures

Professors: S. Sioutas, K. Tsichlas, G. Vonitsanos (Postdoc Researcher@CEID)

Goal: The major task is the implementation and experimental evaluation of a variety

of multi-dimensional data structures in a programming language of your preference

(we suggest Python, C++ or Java). You could use artificial synthetic-data sets or real-

data sets to evaluate the performance of the following fundamental operations: Build,

Insert, Delete, Update, Searching (Similarity, kNN) Queries.

You can download real datasets from the following URLs:

Find Open Datasets and Machine Learning Projects | Kaggle

20 Free Datasets for Data Science Projects | Built In

https://freegisdata.rtwilson.com/

https://paperswithcode.com/datasets?task=trajectory-forecasting

https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

***Choose one of the following two (2) projects:

Project-1: Multi-dimensional Data Indexing and Similarity Query Processing:
Develop Multidimensional Access Methods based on k-d trees, quad trees, Range

Trees and R-trees respectively to support k-dimensional queries. Consider the
case where k<=4 (indexing on 4 at most attributes). Then, after the 1st phase of

indexing, in a 2nd phase, perform similarity queries according to a specific textual
attribute (f.e. review comments, etc) based on LSH technique. The final task is an

exhausted evaluation performance comparison among the 4 proposed schemes: k-d
+ LSH, Quad + LSH, Range + LSH, R-trees + LSH.

Example: Consider the Coffee Reviews Dataset (Coffee Reviews Dataset) from Kaggle. This

dataset organizes global reviews of coffee between 2017 and 2022 based on factors like blend

name, type of roast, price and geographical origin of coffee beans. It is pre-processed and cleaned,

and can be used for pandas, data engineering, analysis and feature engineering practice. The

original version of the dataset comes with 12 features, while the simplified version has 9 features.

f.e. we would like to detect the N-top most similar Reviews (documents) conducted during 2019 up

to 2021, took review-rating more than 94, it’s price per 100g (100g_USD) is between 4$ and 10$,

and the country origin (loc country) is USA, where N is a user defined parameter (f.e. N=3).

Project-2: Develop the following geometric data structures. We suggest the following

real data set:
• https://paperswithcode.com/datasets?task=trajectory-forecasting

• https://freegisdata.rtwilson.com/

1. 3D R-trees for Spatio-Temporal Query Processing in a dataset of planar
trajectories: Implement 3-dimensional R-trees to index trajectories of moving
object on the plane. Each trajectory is a set of 3-dimensional points of the

format (x,y,t), representing the spatial position (x,y) of mobile object at time

https://www.kaggle.com/datasets
https://builtin.com/data-science/free-datasets
https://freegisdata.rtwilson.com/
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://www.kaggle.com/datasets/schmoyote/coffee-reviews-dataset
https://builtin.com/data-science/pandas
https://builtin.com/articles/feature-engineering
https://freegisdata.rtwilson.com/

Multi-Dimensional Data Structures

instant t. Evaluate experimentally the time performance of 3-dimensional range

queries. For example, queries that select moving objects passed from a specific
spatial terrain during a specific time interval [t1, t2]. f.e. “Find the number of

vehicles passed from Olgas’ Square with spatial coordinates [x1, x2] x [y1, y2]
from 12:00 am up to 14:00 am”.

2. Interval trees and Segment trees. Evaluate the time performance of the

basic operations, interval and stabbing Queries respectively and prove

experimentally that time responses follow the theoretical complexity.

3. Convex Hull: Develop CH algorithms for 2 and 3 dimensions. Evaluate the
time and space performance of your proposed method and prove
experimentally that the response time follows the theoretical complexity.

4. Line Segment Intersection: Develop Line Segment Intersection Algorithms

using the basic sweep line technique. Evaluate the time and space performance
of your proposed method and prove experimentally that the response time
follows the theoretical complexity.

Background Knowledge: Data Structures, Algorithms and Complexity, Databases,
Object Oriented Programming (C++, JAVA), Functional Programming (Python, Scala).

References:

1. Book (“advanced data structures”, A.K. Tsakalidis)

2. https://en.wikipedia.org/wiki/Range_tree

3. https://en.wikipedia.org/wiki/K-d_tree

4. https://en.wikipedia.org/wiki/Quadtree

5. https://en.wikipedia.org/wiki/Interval_tree

6. https://en.wikipedia.org/wiki/Segment_tree

7. https://en.wikipedia.org/wiki/Priority_search_tree

8. https://en.wikipedia.org/wiki/Bloom_filter

9. https://en.wikipedia.org/wiki/MinHash

10.https://en.wikipedia.org/wiki/R-tree

11. https://en.wikipedia.org/wiki/Convex_hull

12. https://en.wikipedia.org/wiki/Voronoi_diagram

13. https://en.wikipedia.org/wiki/Sweep_line_algorithm

14. https://en.wikipedia.org/wiki/Line_segment_intersection

(***) Deliverables: Zip or Rar file with executable files. Deadline: ~ 1st WEEK of February, 2024.

https://en.wikipedia.org/wiki/Range_tree
https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/Quadtree
https://en.wikipedia.org/wiki/Interval_tree
https://en.wikipedia.org/wiki/Segment_tree
https://en.wikipedia.org/wiki/Priority_search_tree
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/MinHash
https://en.wikipedia.org/wiki/R-tree
https://en.wikipedia.org/wiki/Convex_hull
https://en.wikipedia.org/wiki/Voronoi_diagram
https://en.wikipedia.org/wiki/Sweep_line_algorithm
https://en.wikipedia.org/wiki/Line_segment_intersection

