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A Taxonomy of Trees 

General Trees – any number of children / node 

 

Binary Trees – max 2 children / node 

 

Heaps – parent < (>) children  

 

Binary Search Trees 

 

 

 



Binary Trees 

Binary search tree 

Every element has a unique key. 

The keys in a nonempty left subtree (right subtree) 
are smaller (larger) than the key in the root of 
subtree. 

The left and right subtrees are also binary search 
trees. 



Binary Search Trees (BST) are a type of 
Binary Trees with a special  organization of 
data.  

 

This data organization leads to O(log n) 
complexity for searches, insertions and 
deletions in certain types of the BST 
(balanced trees). 

O(h) in general 

 

 

Binary Search Trees 
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Binary Search algorithm of an array of sorted  items 

reduces the search space by one half after each comparison  

Binary Search Algorithm 
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• the values in all nodes in the left subtree of a node are less than           

  the node value 

• the values in all nodes in the right subtree of a node are greater  

  than the node values 

Organization Rule for BST 



Binary Tree 

typedef struct tnode *ptnode; 

typedef struct node { 

             short int  key; 

             ptnode right, left;  

    } ; 

 



Searching in the BST   

function search(key) 

• implements the binary search based on comparison of the  items 

 in the tree 

• the items in the BST must be comparable (e.g integers, string, 

etc.) 

 
The search starts at the root. It probes down, comparing the  

values in each node with the target, till it finds the first item equal  

to the target. Returns this item or null if there is none.  

BST Operations: Search 



if the tree is empty 

    return NULL 

 

else if  the item in the node equals the target 

 return the node value 
 

else if  the item in the node is greater than the target 

 return the result of searching the left subtree 

 

else if  the item in the node is smaller than the target 

 return the result of searching the right subtree 

Search in BST - Pseudocode 



Search in a BST: C code 

Ptnode search(ptnode root, 
      int key) 

{ 

/* return a pointer to the node that  

   contains key. If there is no such  
 node, return NULL */ 

 

  if (!root) return NULL; 

  if (key == root->key) return root; 

  if (key < root->key)  

      return search(root->left,key); 

  return search(root->right,key); 

} 



function insert(key) 

 places a new item near the frontier of the BST while retaining its 

organization of data: 

starting at the root it probes down the tree till it finds a node 

whose left or right pointer is empty and is a logical place for 

the new value 

uses a binary search to locate the insertion point 

is based on comparisons of the new item and values of nodes 

in the BST  

Elements in nodes must be comparable! 

BST Operations: Insertion 
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Case 1: The Tree is Empty 

Set the root to a new node containing the item 

Case 2: The Tree is Not Empty 

Call a recursive helper method to insert the 
item 

10 
10 > 7 

 

 

10 > 9 

 
10 



if  tree is empty 

 create a root node with the new key 

else  

 compare key with the top node  

 if key =  node key 

  replace the node with the new value 

 else if  key >  node key 

  compare key with the right subtree: 

    if  subtree is empty create a leaf node 

    else add key  in right subtree 

  else  key <  node key 

   compare key with the left subtree: 

    if the subtree is empty create a leaf node 

    else add key to the left subtree 

Insertion in BST - Pseudocode 



Insertion into a BST: C code 

void insert (ptnode *node, int key) 

{ 

  ptnode ptr,  

      temp = search(*node, key); 

  if (temp || !(*node)) { 

   ptr = (ptnode) malloc(sizeof(tnode)); 

   if (IS_FULL(ptr)) { 

     fprintf(stderr, “The memory is full\n”); 

     exit(1); 

   } 

   ptr->key = key; 

   ptr->left = ptr->right = NULL; 

   if (*node)  

     if (key<temp->key) temp->left=ptr; 

        else temp->right = ptr; 

   else *node = ptr; 

  } 

}   



 The order of supplying the data determines where it is 

placed in the BST , which determines the shape of the BST 

 Create BSTs from the same set of  data presented each time 

in a different order: 

a) 17 4  14  19  15  7  9  3  16  10 

b) 9  10  17   4  3  7  14  16  15  19 

c) 19  17  16  15  14  10  9  7  4   3  can you guess this shape? 

BST Shapes 



 

 removes a specified item from the BST and adjusts the tree  

 uses a binary search to locate the target item: 

 starting at the root it probes down the tree till it finds the 

target or reaches a leaf node (target not in the tree) 

 

removal of a node must not leave a ‘gap’ in the tree, 

 

  
 

BST Operations: Removal 



method remove (key) 
I  if the tree is empty return false 
II  Attempt to locate the node containing the target using the 

binary search  algorithm 
 if the target is not found return false 
 else the target is found, so remove its node: 
     Case 1:  if the node has 2 empty subtrees                
         replace the link in the parent with null 
 
 Case 2:  if the node has a left and a right subtree 
              - replace the node's value with the max value in the 
                left subtree 
              - delete the max node in the left subtree 
 

Removal in BST - Pseudocode 



 Case 3:  if  the node has no left child 

    - link the parent of the node  

    - to the right (non-empty) subtree         

 

 Case 4:   if the node has no right child 

    - link the parent of the target  

    - to the left (non-empty) subtree 

  
             

Removal in BST - Pseudocode 
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Case 1: removing a node  with 2 EMPTY SUBTREES 

parent 

cursor 

Removal in BST: Example 

Removing  4 

replace the link in the 

parent with  null 

 



Case 2: removing a node with 2 SUBTREES 
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cursor 
cursor 

- replace the node's value with the max value in the left subtree 

- delete the max node in the left subtree 

4 4 

Removing 7 

Removal in BST: Example 

What other element 

can be used as  

replacement? 
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cursor 

cursor 

parent 

parent 

the node has no left child: 

link the parent of the node to the right (non-empty) subtree 

Case 3: removing a node  with 1 EMPTY SUBTREE 

Removal in BST: Example 
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cursor 
cursor 

parent 
parent 

the node has no right child: 

link the parent of the node to the left (non-empty) subtree 

Case 4: removing a node  with 1 EMPTY SUBTREE 

Removing 5 

4 4 

Removal in BST: Example 



The complexity of operations get, insert and 

remove in BST  is O(h) , where h is the height. 

O(log n) when the tree is balanced. The updating 

operations cause the tree to become unbalanced. 

The tree can degenerate to a linear shape and the 

operations will become O (n) 

 

Analysis of BST Operations 



    

BST tree = new BST(); 

 

tree.insert ("E"); 

tree.insert ("C"); 

tree.insert ("D"); 

tree.insert ("A"); 

tree.insert ("H"); 

tree.insert ("F"); 

tree.insert ("K"); 

 

>>>> Items in advantageous order: 

  K 

 H 

  F 

E 

  D 

 C 

  A 

Output: 

Best Case 



    

BST tree = new BST(); 

for (int i = 1; i <= 8; i++) 

   tree.insert (i); 

 

>>>> Items in worst order: 

              8 

            7 

          6 

        5 

      4 

    3 

  2 

1 

Output: 

Worst Case 



    

tree = new BST (); 

for (int i = 1; i <= 8; i++) 

   tree.insert(random()); 

 

>>>> Items in random order: 

 X 

  U 

P 

  O 

 H 

  F 

   B 

Output: 

Random Case 



Applications for BST 

Sorting with binary search trees 

Input: unsorted array 

Output: sorted array 

 

 

Algorithm ? 

Running time ? 



 

 

Prevent the degeneration of the BST : 

A BST can be set up to maintain balance during 
updating operations (insertions and removals) 

Types of  ST which maintain the optimal performance: 

splay trees 

AVL trees 

2-4 Trees 

Red-Black trees 

B-trees 

Better Search Trees 


