
Data Structures &
Algorithm Analysis

Rada Mihalcea

http://www.cs.unt.edu/~rada/CSCE3110

Binary Search Trees

http://www.cs.unt.edu/~rada/CSCE3110

A Taxonomy of Trees

General Trees – any number of children / node

Binary Trees – max 2 children / node

Heaps – parent < (>) children

Binary Search Trees

Binary Trees

Binary search tree

Every element has a unique key.

The keys in a nonempty left subtree (right subtree)
are smaller (larger) than the key in the root of
subtree.

The left and right subtrees are also binary search
trees.

Binary Search Trees (BST) are a type of
Binary Trees with a special organization of
data.

This data organization leads to O(log n)
complexity for searches, insertions and
deletions in certain types of the BST
(balanced trees).

O(h) in general

Binary Search Trees

34 41 56 63 72 89 95

0 1 2 3 4 5 6

34 41 56

0 1 2

72 89 95

4 5 6

34 56

0 2

72 95

4 6

Binary Search algorithm of an array of sorted items

reduces the search space by one half after each comparison

Binary Search Algorithm

63

41 89

34 56
72 95

• the values in all nodes in the left subtree of a node are less than

 the node value

• the values in all nodes in the right subtree of a node are greater

 than the node values

Organization Rule for BST

Binary Tree

typedef struct tnode *ptnode;

typedef struct node {

 short int key;

 ptnode right, left;

 } ;

Searching in the BST

function search(key)

• implements the binary search based on comparison of the items

 in the tree

• the items in the BST must be comparable (e.g integers, string,

etc.)

The search starts at the root. It probes down, comparing the

values in each node with the target, till it finds the first item equal

to the target. Returns this item or null if there is none.

BST Operations: Search

if the tree is empty

 return NULL

else if the item in the node equals the target

 return the node value

else if the item in the node is greater than the target

 return the result of searching the left subtree

else if the item in the node is smaller than the target

 return the result of searching the right subtree

Search in BST - Pseudocode

Search in a BST: C code

Ptnode search(ptnode root,
 int key)

{

/* return a pointer to the node that

 contains key. If there is no such
 node, return NULL */

 if (!root) return NULL;

 if (key == root->key) return root;

 if (key < root->key)

 return search(root->left,key);

 return search(root->right,key);

}

function insert(key)

 places a new item near the frontier of the BST while retaining its

organization of data:

starting at the root it probes down the tree till it finds a node

whose left or right pointer is empty and is a logical place for

the new value

uses a binary search to locate the insertion point

is based on comparisons of the new item and values of nodes

in the BST

Elements in nodes must be comparable!

BST Operations: Insertion

9

7

5

4 6 8

Case 1: The Tree is Empty

Set the root to a new node containing the item

Case 2: The Tree is Not Empty

Call a recursive helper method to insert the
item

10
10 > 7

10 > 9

10

if tree is empty

 create a root node with the new key

else

 compare key with the top node

 if key = node key

 replace the node with the new value

 else if key > node key

 compare key with the right subtree:

 if subtree is empty create a leaf node

 else add key in right subtree

 else key < node key

 compare key with the left subtree:

 if the subtree is empty create a leaf node

 else add key to the left subtree

Insertion in BST - Pseudocode

Insertion into a BST: C code

void insert (ptnode *node, int key)

{

 ptnode ptr,

 temp = search(*node, key);

 if (temp || !(*node)) {

 ptr = (ptnode) malloc(sizeof(tnode));

 if (IS_FULL(ptr)) {

 fprintf(stderr, “The memory is full\n”);

 exit(1);

 }

 ptr->key = key;

 ptr->left = ptr->right = NULL;

 if (*node)

 if (key<temp->key) temp->left=ptr;

 else temp->right = ptr;

 else *node = ptr;

 }

}

 The order of supplying the data determines where it is

placed in the BST , which determines the shape of the BST

 Create BSTs from the same set of data presented each time

in a different order:

a) 17 4 14 19 15 7 9 3 16 10

b) 9 10 17 4 3 7 14 16 15 19

c) 19 17 16 15 14 10 9 7 4 3 can you guess this shape?

BST Shapes

 removes a specified item from the BST and adjusts the tree

 uses a binary search to locate the target item:

 starting at the root it probes down the tree till it finds the

target or reaches a leaf node (target not in the tree)

removal of a node must not leave a ‘gap’ in the tree,

BST Operations: Removal

method remove (key)
I if the tree is empty return false
II Attempt to locate the node containing the target using the

binary search algorithm
 if the target is not found return false
 else the target is found, so remove its node:
 Case 1: if the node has 2 empty subtrees
 replace the link in the parent with null

 Case 2: if the node has a left and a right subtree
 - replace the node's value with the max value in the
 left subtree
 - delete the max node in the left subtree

Removal in BST - Pseudocode

 Case 3: if the node has no left child

 - link the parent of the node

 - to the right (non-empty) subtree

 Case 4: if the node has no right child

 - link the parent of the target

 - to the left (non-empty) subtree

Removal in BST - Pseudocode

9

7

5

6 4 8 10

9

7

5

6 8 10

Case 1: removing a node with 2 EMPTY SUBTREES

parent

cursor

Removal in BST: Example

Removing 4

replace the link in the

parent with null

Case 2: removing a node with 2 SUBTREES

9

7

5

6 8 10

9

6

5

8 10

cursor
cursor

- replace the node's value with the max value in the left subtree

- delete the max node in the left subtree

4 4

Removing 7

Removal in BST: Example

What other element

can be used as

replacement?

9

7

5

6 8 10

9

7

5

6 8 10

cursor

cursor

parent

parent

the node has no left child:

link the parent of the node to the right (non-empty) subtree

Case 3: removing a node with 1 EMPTY SUBTREE

Removal in BST: Example

9

7

5

8 10

9

7

5

8 10

cursor
cursor

parent
parent

the node has no right child:

link the parent of the node to the left (non-empty) subtree

Case 4: removing a node with 1 EMPTY SUBTREE

Removing 5

4 4

Removal in BST: Example

The complexity of operations get, insert and

remove in BST is O(h) , where h is the height.

O(log n) when the tree is balanced. The updating

operations cause the tree to become unbalanced.

The tree can degenerate to a linear shape and the

operations will become O (n)

Analysis of BST Operations

BST tree = new BST();

tree.insert ("E");

tree.insert ("C");

tree.insert ("D");

tree.insert ("A");

tree.insert ("H");

tree.insert ("F");

tree.insert ("K");

>>>> Items in advantageous order:

 K

 H

 F

E

 D

 C

 A

Output:

Best Case

BST tree = new BST();

for (int i = 1; i <= 8; i++)

 tree.insert (i);

>>>> Items in worst order:

 8

 7

 6

 5

 4

 3

 2

1

Output:

Worst Case

tree = new BST ();

for (int i = 1; i <= 8; i++)

 tree.insert(random());

>>>> Items in random order:

 X

 U

P

 O

 H

 F

 B

Output:

Random Case

Applications for BST

Sorting with binary search trees

Input: unsorted array

Output: sorted array

Algorithm ?

Running time ?

Prevent the degeneration of the BST :

A BST can be set up to maintain balance during
updating operations (insertions and removals)

Types of ST which maintain the optimal performance:

splay trees

AVL trees

2-4 Trees

Red-Black trees

B-trees

Better Search Trees

