# Asymptotic Notation, Review of Functions & Summations

Dr. Spyros Sioutas
Full Professor
CEID, Polytechnic School, University of Patras

## Asymptotic Complexity

- ◆ Running time of an algorithm as a function of input size *n* for large *n*.
- Expressed using only the **highest-order term** in the expression for the exact running time.
  - Instead of exact running time, say  $\Theta(n^2)$ .
- Describes behavior of function in the limit.
- Written using *Asymptotic Notation*.

asymp - 1 Comp 122

## **Asymptotic Notation**

- $\Theta$ , O,  $\Omega$ , o,  $\omega$
- Defined for functions over the natural numbers.
  - $\mathbf{Ex:} f(n) = \Theta(n^2)$ .
  - Describes how f(n) grows in comparison to  $n^2$ .
- Define a *set* of functions; in practice used to compare two function sizes.
- ◆ The notations describe different rate-of-growth relations between the defining function and the defined set of functions.

asymp - 2

### **Θ**-notation

For function g(n), we define  $\Theta(g(n))$ ,

big-Theta of *n*, as the set:

```
\Theta(g(n)) = \{f(n) :
\exists positive constants c_1, c_2, and n_0
such that \forall n \geq n_0,
we have 0 \le c_1 g(n) \le f(n) \le c_2 g(n)
```

*Intuitively*: Set of all functions that have the same *rate of growth* as g(n).



g(n) is an asymptotically tight bound for f(n).

### **Θ**-notation

For function g(n), we define  $\Theta(g(n))$ , big-Theta of n, as the set:

```
\Theta(g(n)) = \{f(n) :
\exists positive constants c_1, c_2, and n_0, such that \forall n \geq n_0,
we have 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)
\}
```

Technically,  $f(n) \in \Theta(g(n))$ . Older usage,  $f(n) = \Theta(g(n))$ . I'll accept either...



f(n) and g(n) are nonnegative, for large n.

asymp - 4

Comp 122

# Example

```
\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \text{ such that } \forall n \geq n_0, \quad 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}
```

- $10n^2 3n = \Theta(n^2)$
- What constants for  $n_0$ ,  $c_1$ , and  $c_2$  will work?
- Make  $c_1$  a little smaller than the leading coefficient, and  $c_2$  a little bigger.
- \* To compare orders of growth, look at the leading term.
- Exercise: Prove that  $n^2/2$ - $3n = \Theta(n^2)$

asymp - 5 Comp 122

## Example

```
\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \text{ such that } \forall n \geq n_0, \quad 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}
```

- Is  $3n^3 \in \Theta(n^4)$ ??
- How about  $2^{2n} \in \Theta(2^n)$ ??

asymp - 6 Comp 122

### O-notation

For function g(n), we define O(g(n)), big-O of n, as the set:

$$O(g(n)) = \{f(n) :$$
  
 $\exists$  positive constants  $c$  and  $n_{0}$ , such that  $\forall n \geq n_{0}$ , we have  $0 \leq f(n) \leq cg(n)$ 

*Intuitively*: Set of all functions whose *rate of growth* is the same as or lower than that of g(n).



g(n) is an asymptotic upper bound for f(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)).$$
  
 $\Theta(g(n)) \subset O(g(n)).$ 

asymp - 7

## **Examples**

```
O(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq f(n) \leq cg(n) \}
```

- Any linear function an + b is in  $O(n^2)$ . How?
- Show that  $3n^3=O(n^4)$  for appropriate c and  $n_0$ .

asymp - 8 Comp 122

### $\Omega$ -notation

For function g(n), we define  $\Omega(g(n))$ , big-Omega of n, as the set:

$$\Omega(g(n)) = \{f(n) :$$
 $\exists$  positive constants  $c$  and  $n_0$ , such that  $\forall n \geq n_0$ ,
we have  $0 \leq cg(n) \leq f(n)\}$ 

*Intuitively*: Set of all functions whose *rate of growth* is the same as or higher than that of g(n).



g(n) is an asymptotic lower bound for f(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n)).$$
  
 $\Theta(g(n)) \subset \Omega(g(n)).$ 

# Example

```
\Omega(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{ such that } \forall n \ge n_0, \text{ we have } 0 \le cg(n) \le f(n)\}
```

•  $\sqrt{\mathbf{n}} = \Omega(\lg n)$ . Choose *c* and  $n_0$ .

asymp - 10 Comp 122

## Relations Between $\Theta$ , O, $\Omega$







asymp - 11 Comp 122

### Relations Between $\Theta$ , $\Omega$ , O

```
Theorem: For any two functions g(n) and f(n), f(n) = \Theta(g(n)) iff f(n) = O(g(n)) and f(n) = \Omega(g(n)).
```

- I.e.,  $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$
- In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

asymp - 12 Comp 122

## Running Times

- "Running time is O(f(n))"  $\Rightarrow$  Worst case is O(f(n))
- O(f(n)) bound on the worst-case running time  $\Rightarrow$  O(f(n)) bound on the running time of every input.
- $\Theta(f(n))$  bound on the worst-case running time  $\Rightarrow$   $\Theta(f(n))$  bound on the running time of every input.
- "Running time is  $\Omega(f(n))$ "  $\Rightarrow$  Best case is  $\Omega(f(n))$
- Can still say "Worst-case running time is  $\Omega(f(n))$ "
  - Means worst-case running time is given by some unspecified function  $g(n) \in \Omega(f(n))$ .

asymp - 13

# Example

- Insertion sort takes  $\Theta(n^2)$  in the worst case, so sorting (as a problem) is  $O(n^2)$ . Why?
- Any sort algorithm must look at each item, so sorting is  $\Omega(n)$ .
- In fact, using (e.g.) merge sort, sorting is  $\Theta(n \lg n)$  in the worst case.
  - Later, we will prove that we cannot hope that any comparison sort to do better in the worst case.

asymp - 14 Comp 122

## Asymptotic Notation in Equations

- Can use asymptotic notation in equations to replace expressions containing lower-order terms.
- For example,

$$4n^3 + 3n^2 + 2n + 1 = 4n^3 + 3n^2 + \Theta(n)$$
  
=  $4n^3 + \Theta(n^2) = \Theta(n^3)$ . How to interpret?

- In equations,  $\Theta(f(n))$  always stands for an anonymous function  $g(n) \in \Theta(f(n))$ 
  - In the example above,  $\Theta(n^2)$  stands for  $3n^2 + 2n + 1$ .

asymp - 15 Comp 122

### o-notation

For a given function g(n), the set little-o:

$$o(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that}$$
  
  $\forall n \ge n_0, \text{ we have } 0 \le f(n) \le cg(n)\}.$ 

f(n) becomes insignificant relative to g(n) as n approaches infinity:

$$\lim_{n\to\infty} [f(n) / g(n)] = 0$$

g(n) is an *upper bound* for f(n) that is not asymptotically tight.

Observe the difference in this definition from previous ones. Why?

asymp - 16

### $\omega$ -notation

For a given function g(n), the set little-omega:

$$\mathcal{O}(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that}$$
  
\forall  $n \geq n_0$ , we have  $0 \leq cg(n) \leq f(n) \}.$ 

f(n) becomes arbitrarily large relative to g(n) as n approaches infinity:

$$\lim_{n\to\infty} [f(n)/g(n)] = \infty.$$

g(n) is a *lower bound* for f(n) that is not asymptotically tight.

asymp - 17

## Comparison of Functions

$$f \leftrightarrow g \approx a \leftrightarrow b$$

$$f(n) = O(g(n)) \approx a \leq b$$

$$f(n) = \Omega(g(n)) \approx a \geq b$$

$$f(n) = \Theta(g(n)) \approx a = b$$

$$f(n) = o(g(n)) \approx a \leq b$$

$$f(n) = o(g(n)) \approx a \leq b$$

asymp - 18 Comp 122

### **Limits**

- $\bullet \lim_{n \to \infty} [f(n) / g(n)] = 0 \Longrightarrow f(n) \in o(g(n))$
- $\lim_{n\to\infty} [f(n)/g(n)] < \infty \Longrightarrow f(n) \in O(g(n))$
- $0 < \lim_{n \to \infty} [f(n) / g(n)] < \infty \Rightarrow f(n) \in \Theta(g(n))$
- $0 < \lim_{n \to \infty} [f(n) / g(n)] \Rightarrow f(n) \in \Omega(g(n))$
- $\bullet \lim_{n \to \infty} [f(n) / g(n)] = \infty \Longrightarrow f(n) \in \omega(g(n))$
- $\lim_{n\to\infty} [f(n)/g(n)]$  undefined  $\Rightarrow$  can't say

# **Properties**

#### Transitivity

$$f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$$

$$f(n) = O(g(n)) \& g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$$

$$f(n) = \Omega(g(n)) \& g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$$

$$f(n) = o(g(n)) \& g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))$$

$$f(n) = \omega(g(n)) \& g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))$$

### Reflexivity

$$f(n) = \Theta(f(n))$$

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

## **Properties**

### Symmetry

$$f(n) = \Theta(g(n)) \text{ iff } g(n) = \Theta(f(n))$$

### Complementarity

$$f(n) = O(g(n)) \text{ iff } g(n) = \Omega(f(n))$$

$$f(n) = o(g(n)) \text{ iff } g(n) = \omega(f(n))$$

## **Common Functions**

# Monotonicity

- f(n) is
  - monotonically increasing if  $m \le n \Rightarrow f(m) \le f(n)$ .
  - monotonically decreasing if  $m \ge n \Rightarrow f(m) \ge f(n)$ .
  - strictly increasing if  $m < n \Rightarrow f(m) < f(n)$ .
  - strictly decreasing if  $m > n \Rightarrow f(m) > f(n)$ .

asymp - 23 Comp 122

# **Exponentials**

#### Useful Identities:

$$a^{-1} = \frac{1}{a}$$
$$(a^m)^n = a^{mn}$$
$$a^m a^n = a^{m+n}$$

### Exponentials and polynomials

$$\lim_{n \to \infty} \frac{n^b}{a^n} = 0$$

$$\Rightarrow n^b = o(a^n)$$

## Logarithms

$$x = \log_b a$$
 is the exponent for  $a = b^x$ .

Natural log: 
$$\ln a = \log_e a$$

Binary log: 
$$\lg a = \log_2 a$$

$$1g^2a = (1g a)^2$$

$$1g 1g a = 1g (1g a)$$

$$a = b^{\log_b a}$$

$$\log_c(ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b(1/a) = -\log_b a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

## Logarithms and exponentials – Bases

- If the base of a logarithm is changed from one constant to another, the value is altered by a constant factor.
  - Ex:  $\log_{10} n * \log_2 10 = \log_2 n$ .
  - Base of logarithm is not an issue in asymptotic notation.
- Exponentials with different bases differ by a exponential factor (not a constant factor).
  - Ex:  $2^n = (2/3)^n * 3^n$ .

## **Polylogarithms**

- ◆ For *a* ≥ 0, *b* > 0,  $\lim_{n\to\infty} (\lg^a n / n^b) = 0$ , so  $\lg^a n = o(n^b)$ , and  $n^b = ω(\lg^a n)$ 
  - Prove using L'Hopital's rule repeatedly
- $\lg(n!) = \Theta(n \lg n)$ 
  - Prove using Stirling's approximation (in the text) for lg(n!).

asymp - 27 Comp 122

### **Exercise**

Express functions in A in asymptotic notation using functions in B.

A B
$$5n^{2} + 100n \qquad 3n^{2} + 2 \qquad A \in \Theta(B)$$

$$A \in \Theta(n^{2}), n^{2} \in \Theta(B) \Rightarrow A \in \Theta(B)$$

$$\log_{3}(n^{2}) \qquad \log_{2}(n^{3}) \qquad A \in \Theta(B)$$

$$\log_{b}a = \log_{c}a / \log_{c}b; A = 2\lg n / \lg 3, B = 3\lg n, A/B = 2/(3\lg 3)$$

$$n^{\lg 4} \qquad 3^{\lg n} \qquad A \in \omega(B)$$

$$a^{\log b} = b^{\log a}; B = 3^{\lg n} = n^{\lg 3}; A/B = n^{\lg(4/3)} \rightarrow \infty \text{ as } n \rightarrow \infty$$

$$\lg^{2}n \qquad n^{1/2} \qquad A \in o(B)$$

$$\lim_{n \to \infty} (\lg^{a}n / n^{b}) = 0 \text{ (here } a = 2 \text{ and } b = 1/2) \Rightarrow A \in o(B)$$
asymp - 28
$$\operatorname{Comp 122}$$

# <u>Summations – Review</u>

• Why do we need summation formulas?

For computing the running times of iterative constructs (loops). (CLRS – Appendix A)

**Example:** Maximum Subvector

Given an array A[1...n] of numeric values (can be positive, zero, and negative) determine the subvector A[i...j] ( $1 \le i \le j \le n$ ) whose sum of elements is maximum over all subvectors.

| 1 | -2 | 2 | 2 |
|---|----|---|---|
|   |    |   |   |

asymp - 30 Comp 122

```
MaxSubvector(A, n)

maxsum \leftarrow 0;

for i \leftarrow 1 to n

do for j = i to n

sum \leftarrow 0

for k \leftarrow i to j

do sum += A[k]

maxsum \leftarrow max(sum, maxsum)

return maxsum
```

$$\bullet T(n) = \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=i}^{j} 1$$

◆NOTE: This is not a simplified solution. What *is* the final answer?

asymp - 31

• Constant Series: For integers a and b,  $a \le b$ ,

$$\sum_{i=a}^{b} 1 = b - a + 1$$

• Linear Series (Arithmetic Series): For  $n \ge 0$ ,

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

• Quadratic Series: For  $n \ge 0$ ,

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

• Cubic Series: For  $n \ge 0$ ,

$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

• Geometric Series: For real  $x \neq 1$ ,

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$$

For 
$$|x| < 1$$
,  $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ 

• Linear-Geometric Series: For  $n \ge 0$ , real  $c \ne 1$ ,

$$\sum_{i=1}^{n} ic^{i} = c + 2c^{2} + \dots + nc^{n} = \frac{-(n+1)c^{n+1} + nc^{n+2} + c}{(c-1)^{2}}$$

• Harmonic Series: *n*th harmonic number,  $n \in I^+$ ,

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
$$= \sum_{k=1}^{n} \frac{1}{k} = \ln(n) + O(1)$$

Telescoping Series:

$$\sum_{k=1}^{n} a_k - a_{k-1} = a_n - a_0$$

• Differentiating Series: For |x| < 1,

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$

- Approximation by integrals:
  - For monotonically increasing f(n)

$$\int_{m-1}^{n} f(x) dx \le \sum_{k=m}^{n} f(k) \le \int_{m}^{n+1} f(x) dx$$

• For monotonically decreasing f(n)

$$\int_{m}^{n+1} f(x) dx \le \sum_{k=m}^{n} f(k) \le \int_{m-1}^{n} f(x) dx$$

• **How?** 

#### • nth harmonic number

$$\sum_{k=1}^{n} \frac{1}{k} \ge \int_{1}^{n+1} \frac{dx}{x} = \ln(n+1)$$

$$\sum_{k=2}^{n} \frac{1}{k} \le \int_{1}^{n} \frac{dx}{x} = \ln n$$

$$\Rightarrow \sum_{k=1}^{n} \frac{1}{k} \le \ln n + 1$$

# Reading Assignment

Chapter 4 of CLRS.

asymp - 38 Comp 122