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Asymptotic Complexity

¢ Running time of an algorithm as a function of
input size n for large n.
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* Expressed using only the highest-o
the expression for the exact running time.
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¢ Instead of exact running time, say O(n?).

¢ Describes behavior of function in the limat.

¢ Written using Asymptotic Notation.
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Asymptotic Notation

* 0,0,Q0 0
¢ Defined for functions over the natural numbers.
¢ Ex: fln) = ©(n?).
¢+ Describes how f{(n) grows in comparison to #?.

* Define a set of functions; in practice used to compare
two function sizes.

¢ The notations describe different rate-of-growth
relations between the defining function and the
defined set of functions.
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(®-notation

For function g(n), we define ®(g(n)),
big-Theta of n, as the set: c28(n)

O(g(m) = {fin) :
J positive constants c¢,, ¢,, and n
such that Vn > n,,

we have () < ¢,g2(n) < f(n) < c,2(n)

§

Intuitively: Set of all functions that
have the same rate of growth as g(n). N

f(n)

¢18(n)

n

f(n) =0O(g(n))
g(n) 1s an asymptotically tight bound for f(n).
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(®-notation

For function g(n), we define ®(g(n)),
big-Theta of n, as the set: c28(n)

O(g(m) = {fin) :
J positive constants c¢,, ¢,, and n
such that Vn > n,,

we have () < ¢,g2(n) < f(n) < c,2(n)

§

Technically, f(n) € ©(g(n)).

Older usage, fln) =0O(g(n)). "0ty = ©(a(n)
I’1l accept either...

f(n)

¢18(n)

n

f(n) and g(n) are nonnegative, for large n.
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Example

O(g(n)) = {f(n) : I positive constants c,, ¢,, and n,,
such that Vn > n,, 0<c,g(n)< f(n) <c,g(n)}

¢ 10n? - 3n = O(n?)
¢ What constants for n,, ¢, and ¢, will work?

¢ Make c, a little smaller than the leading
coefficient, and ¢, a little bigger.

¢ To compare orders of growth, look at the
leading term.

¢ Exercise: Prove that n%/2-3n= ©(n?)
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Example

O(g(n)) = {f(n) : I positive constants c,, ¢,, and n,,
such that Vn > n,, 0<c,g(n)< f(n) <c,g(n)}

* Is 3n’ € O(n*) ?7?
¢ How about 22" ©(2")??
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(O-notation

For function g(n), we define O(g(n)).
big-O of n, as the set: cg(n)

O(g(m)) = {fln) :
J positive constants ¢ and n,,
such that Vn > n,,

we have 0 < f(n) < cg(n) }

f(n)

Intuitively: Set of all functions
whose rate of growth is the same as | n
or lower than that of g(n). 0 f(n) = 0(gn))

g(n) is an asymptotic upper bound for f(n).

f(n) = O(g(n)) = fin) = O(g(n)).
BO(g(n)) < Og(n)).
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Examples

O(g(n)) = {f(n) : 4 positive constants ¢ and n,,
such that Vn 2 n,, we have 0 < f(n) < cg(n) }

¢ Any linear function an + b is in O(n?). How?

¢ Show that 3n°=0(n*) for appropriate ¢ and »,.
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() -notation

For function g(n), we define Q(g(n)),
big-Omega of n, as the set:

Q(g(n)) = {f(n) :
J positive constants ¢ and n,, cg(n)
such that Vn > n,,

we have 0 < cg(n) < f(n)} .

Intuitively: Set of all functions !
whose rate of growth 1s the same : n
as or higher than that of g(n). 0 f(n) = Qgn))

f(n)

g(n) 1s an asymptotic lower bound for f(n).

[(n) = O(g(n)) = fin) = Q(g(n)).
O(g(n)) < Q(g(n)).
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Example

Q(g(n)) = {f(n) : 3 positive constants c and n,, such
that Vn > n,, we have 0 < cg(n) < f(n)}

¢ \n = Q(Ig n). Choose ¢ and n,.
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Relations Between ®. O, ()

c28(n)

fn)

crg(n)

no
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n

f(n) =0(g(n))

cg(n)

n

"0ty = 0(g(n)
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Relations Between ®. Q). O

Theorem : For any two functions g(n) and f(n),
f(n) = O(g(n)) 1t
f(n) = O(g(n)) and f(n) = Q(g(n)).

* Le., O(g(n)) = O(g(n)) N g(n))

¢ In practice, asymptotically tight bounds are
obtained from asymptotic upper and lower bounds.
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Running Times

¢ “Running time 1s O(f(n))” = Worst case 1s O(f(n))

¢ (O(f(n)) bound on the worst-case running time =
O(f(n)) bound on the running time of every input.

¢ O(f(n)) bound on the worst-case running time 2
O(f(n)) bound on the running time of every input.

¢ “Running time 1s C(f(n))” = Best case 1s C2(f(n))

¢ Can still say “Worst-case running time 1s Q(f(n))”

¢ Means worst-case running time 1s given by some
unspecified function g(n) € Q(f(n)).
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Example

¢ Insertion sort takes ®(n?) in the worst case, so
sorting (as a problem) is O(n?). Why?

+ Any sort algorithm must look at each item, so
sorting 1s Q(n).

¢ In fact, using (e.g.) merge sort, sorting 1s O(n 1g n)
in the worst case.

¢+ Later, we will prove that we cannot hope that any
comparison sort to do better in the worst case.
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Asymptotic Notation in Equations

¢ (Can use asymptotic notation 1n equations to
replace expressions containing lower-order terms.

¢ For example,
4n’ +3n? +2n+1=4n°+ 3n* + O(n)
=4n’ + O(n?) = O(n’). How to interpret?

¢ In equations, O(f(n)) always stands for an
anonymous function g(n) € O(f(n))

¢+ In the example above, ®(n?) stands for
3n?+2n+1.
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o-notation

For a given function g(n), the set little-o:

0(g(n)) = {f(n): V ¢>0, 3 ny> 0 such that
V' n=ny wehave 0 < f(n) <cg(n)}.

f(n) becomes 1nsignificant relative to g(n) as n
approaches infinity:

[im [f(n)/ g(n)] =0

n—»oo

g(n) 1s an upper bound for f(n) that 1s not
asymptotically tight.

Observe the difference 1n this definition from previous
ones. Why?
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@ -notation

For a given function g(n), the set little-omega:

(Ng(n)) = {f(n): V ¢>0, 3 ny> 0 such that
V n = ny wehave 0 < cg(n) < f(n)}.

f(n) becomes arbitrarily large relative to g(n) as n
approaches infinity:

[im [f(n) / g(n)] = co.

n—»co

g(n) 1s a lower bound for f(n) that 1s not
asymptotically tight.
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Comparison of Functions

feoog=aeob

f(n) =0(gn) = a< b
f(n) =Qgn) =~ a=b
f(n) =0Ogn) ~a =b
f(n) =o(gn) = a <b
f(n)=w(gn) =a>b
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* im
n—>oo

* im
n—>oo

e () <

e () <

f(n) / g(n).

n—»co

f(n) / g(n).

[.1mits
=0 = f(n) € o(g(n))
<o = f(n) € O(g(n))

lim [f(n) / g(n)] <0 = fln) € O(g(n))

lim [f(n) / g(n)] = f(n) € (g(n))

n—»oo0

¢ lim [f(n) / g(n)] = o0 = f(n) € ag(n))

n—»oo

¢ [im [f(n) / g(n)] undefined = can’t say

n—>oo0
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Properties

¢ Transitivity
fn) = 0O(g(n)) & g(n) = O(h(n)) = f(n) = O(h(n))
fin) = O(g(n)) & g(n) = O(h(n)) = fn) = O(h(n))
fn) = Q(g(n)) & g(n) = Q(h(n)) = fin) = Q(h(n))
fn) = o (g(n)) & g(n) = o (h(n)) = f(n) = o (h(n))
fn) = a(g(n)) & g(n) = w(h(n)) = fin) = o(h(n))

+ Reflexivity
f(n) = O(f(n))
An) = O(f(n))
An) =Q(f(n))
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Properties

¢ Symmetry

fn) = O(g(n)) iff g(n) = O(f(n))

¢+ Complementarity
fn) = O(g(n)) iff g(n) = (f(n))
fn) = o(g(n)) iff g(n) = a(f(n))
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Monotonicity

¢ f(n)1s
¢+ monotonically increasing if m <n = f(m) < f(n).
+ monotonically decreasing if m > n = f(m) > f(n).
¢ strictly increasing if m <n = f(m) < f(n).
¢+ strictly decreasing if m > n = f(m) > f(n).
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Exponentials

¢ Useful Identities:

—1
a =

")

a —=dad

L
a

m-+n

(a
o

¢ Exponentials and polynomials

b
n

lim— =0

n—»>0 an

=n" =o(a")
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Logarithms

x =log,a 1s the
exponent for a = b*.

Natural log: In a = log a

Binary log: 1g a = log,a

lg2a = (Ig a)?
Iglga =l1g(lga)
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4= blogb a

log.(ab) =log.a+log. b

log, a log.a
log.b
log,(1/a)=-log, a
log, a = 1
S log b
log, c log, a

A = C
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Logarithms and exponentials — Bases

¢ If the base of a logarithm 1s changed from one
constant to another, the value 1s altered by a
constant factor.

¢ Ex: log,,n * log,10 = log, n.

¢+ Base of logarithm 1s not an 1ssue 1n asymptotic
notation.

¢ Exponentials with different bases differ by a
exponential factor (not a constant factor).

v Ex: 27 = (2/3)"*3n.
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Polylogarithms

¢ Fora>0,b>0,lim __(lg?n/nb)=0,
so 1g?n = o(n?), and n® = w(lgén)

¢ Prove using L’Hopital’s rule repeatedly

¢ lg(n!)=0O(n lg n)

¢ Prove using Stirling’s approximation (in the text) for 1g(n!).
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Exercise

Express functions in A in asymptotic notation using functions in B.

A B
Sn? +100n 3n’+2 A € O(B)
A € O(n?), n’ € O(B) = A € O(B)
log,(n?) log,(n°) A € O(B)
log,a =log.a /log.b; A=2lgn /1g3, B =3lgn, A/B =2/(31g3)
524 3lgn A € o(B)
alogb = ploga; B =3len—ple 3. A/B =p'e*3) 5 0 a5 p—00
lg’n nl’? A € o(B)

lim (1g?n/n?)=0(herea=2and b=1/2) = A € o(B)
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Review on Summations

¢+ Why do we need summation formulas?

For computing the running times of iterative
constructs (loops). (CLRS — Appendix A)

Example: Maximum Subvector

Given an array A[1...n] of numeric values (can be
positive, zero, and negative) determine the
subvector A[i...j] (1<1<j<n) whose sum of
clements 1s maximum over all subvectors.

1 -2 2 2
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Review on Summations

MaxSubvector(4, n)
maxsum < 0;
fori< 1ton
do forj=iton
sum < 0
for k< itoj
do sum += A[k]
maxsum <— max(sum, maxsum)
return maxsum

Tm)=333 1

i=1 j=i k=i

*NOTE: This is not a simplified solution. What is the final answer?
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Review on Summations

¢ Constant Series: For integers a and b, a < b,

ilzb—a—l—l

¢ Linear Series (Arithmetic Series): Forn >0,

Zi=1+2+---+n:n(n+l)
i 2

¢ Quadratic Series: Forn >0,
Zn:iz P4 g = n(n+1)(2n+1)
i=1 6
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Review on Summations

¢ Cubic Series: Forn >0,

n 2 2
Y iP=P+2%+. 40’ AGARY

e 4
¢ Geometric Series: Forreal x # 1,
n n+l
x =1
Zxk =l+x+x"+-+x" =
k=0 x—1

For |x| <1, Kk = I
R
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Review on Summations

¢ Linear-Geometric Series: Forn >0, real c # 1,

n+l

Zn:ici:C+2C2+"'+nCn :_(n+1)c _|_ncn+2+c
i=1 (c—1)

¢ Harmonic Series: nth harmonic number, nel”,

Hn :1_|_l_|_l_|_..._|_l
2 n

— Z% = In(n) + O(1)
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Review on Summations

¢ Telescoping Series:

n
Zak —d, =4, —4d
k=1

* Differentiating Series: For [x| <1,
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Review on Summations

¢ Approximation by integrals:

¢ For monotonically increasing f(n)

[ fdx< Y 1< [ £

¢ For monotonically decreasing f(n)
n+l n n
J Feode< Y f) < [ f(x)ds
m k=m m—1

* How?
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Review on Summations

¢ nth harmonic number
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Reading Assignment

¢ Chapter 4 of CLRS.
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