
GRADUATE TEXTS IN COMPUTER SCIENCE

Editors
David Gries

Fred B. Schneider

Springer
New York
Berlin
Heidelberg
Barcelona
Budapest
Hong Kong
London
Milan
Paris
Santa Clara
Singapore
Tokyo

M elvi n Fitti ng

FIRST-ORDER LOGIC
AND AUTOMATED

THEOREM PROVING

Second Ed ition

Springer

Melvin Fitting
Department of Mathematics and Computer Science
Lehman College, The City of New York University
Bronx, NY 10468-1589 USA

Series Editors

David Gries
Fred B. Schneider

Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853-7501 USA

With 15 line illustrations.

Library of Congress Cataloging-in-Publication Data
Fitting, Melvin. 1942-

First-order logic and automated theorem proving I Melvin Fitting.
- 2nd ed.

p. cm. - (Graduate texts in computer science)
Includes bibliographical references and index.
ISBN-13:978-14612-7515-2 e-ISBN-13:978-14612-2360-3
DOI:1 0.1 007/978-14612-2360-3

1. Automatic theorem proving. 2. Logic. Symbolic and
mathematical. I. Title. II. Series III. Series: Graduate texts
in computer science (Springer-Verlag New York Inc.)
QA76.9.A96F68 1996
511.3-<lc20 95-45225

Printed on acid-free paper.

© 1996, 1990 Springer-Verlag New York, Inc.
Softcover reprint of the hardcover 2nd edition 1996
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of
the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially
identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act,
may accordingly be used freely by anyone.

Production managed by Robert Wexler; manufacturing supervised by Jacqui Ashri.
Photocomposed copy prepared from the author's le-TE?< files using Springer's svwidecm style file.

987654321

To Raymond Smullyan
who brought me up
into the trees.

Preface

There are many kinds of books on formal logic. Some have philosophers
as their intended audience, some mathematicians, some computer scien
tists. Although there is a common core to all such books, they will be
very different in emphasis, methods, and even appearance. This book
is intended for computer scientists. But even this is not precise. Within
computer science formal logic turns up in a number of areas, from pro
gram verification to logic programming to artificial intelligence. This
book is intended for computer scientists interested in automated theo
rem proving in classical logic. To be more precise yet, it is essentially
a theoretical treatment, not a how-to book, although how-to issues are
not neglected. This does not mean, of course, that the book will be of no
interest to philosophers or mathematicians. It does contain a thorough
presentation of formal logic and many proof techniques, and as such it
contains all the material one would expect to find in a course in formal
logic covering completeness but, not incompleteness issues.

The first item to be addressed is, What are we talking about and why
are we interested in it? We are primarily talking about truth as used
in mathematical discourse, and our interest in it is, or should be, self
evident. Truth is a semantic concept, so we begin with models and their
properties. These are used to define our subject.

The second issue is how we, as limited human beings, can know what is
true. For this we have a device called a proof Many formal proof pro
cedures have been developed over the years: axiom systems, natural de
duction, tableaux, resolution. We present several of these and show how
they are used. Of course, the connections between these proof procedures
and truth must be established. We need what are called soundness and

viii Preface

completeness results. Ours are demonstrated in a uniform way for all
the systems we consider. Thus, we are able to discuss many formal proof
procedures without doing much more work than if we had only discussed
one.

Finally, how can we get a machine--a computer-to use one of our
proof procedures? When we human beings prove things, we bring all
our insight and experience to bear, not to mention the wisdom of the
past stored up in books. We are still learning how to give machines such
knowledge. Generally, we must be satisfied if we can give a computer
a simple-minded recipe by which it can find proofs, even though the
proofs may not be very clever. So, which of the formal proof procedures
that humans have developed will allow themselves to be applied blindly,
mechanically? What recipes can we give a computer that are reasonably
efficient and still are guaranteed to work? After semantics and formal
proof procedures, this constitutes the third major topic of the book.

We discuss automation for tableaux and for resolution. For tableau sys
tems we give usable implementations in Prolog and we prove, of these
implementations, that they do the job. Similar implementations of reso
lution are set up as exercises and projects. We have chosen Prolog as our
implementation language because it allows us to get to the heart of the
matter almost immediately, and results in code that is rather easy to fol
low. If you do not already know Prolog, here is a good opportunity; the
understanding of Prolog that is necessary is fairly basic. We use few pro
gramming tricks. Indeed, if one understands the Prolog code given here,
implementing comparable theorem provers in other languages should be
straightforward. We do not claim that our theorem provers are particu
larly efficient, though. We tried to commit our quota of sins on the side
of clarity, instead of efficiency. First understand, then speed it up if you
can.

Automated theorem proving has two goals: (1) to prove theorems and
(2) to do it automatically. Over the years experience has shown these
goals are incompatible. Fully automated theorem provers for first-order
logic have been developed, starting in the 1960s, but as theorems get
more complicated, the time that theorem provers spend tends to grow
exponentially. As a result, no really interesting theorems of mathematics
can be proved this way-the human lifespan is not long enough.

The problem is to prove interesting theorems; the solution is to give
theorem provers heuristics--roughly, rules of thumb for knowledge and
wisdom. Some heuristics are fairly general; for example, in a proof that
is about to break into several cases, do as much as possible that will be
of broad applicability before the division into cases occurs. But many
heuristics are area-specific; for instance, heuristics appropriate for plane
geometry will probably not be appropriate for group theory. The devel-

Preface ix

opment of good heuristics is a major area of research and requires much
experience and insight.

But still, heuristics must be imposed on some basic, underlying proof
mechanism. And it is here that fully automated theorem provers play
their role. Generally, heuristics are implemented as restrictions or mod
ifications to such systems. So, as a basis for more sophisticated work,
for general understanding, and for historical reasons as well, fully au
tomated theorem provers are the place to start, and they are what we
will be concerned with here. We will develop the foundations for further
reading and research, but we will not go beyond that.

Almost all fundamental work on automated theorem proving has been
based on Resolution, a method that is due to J. A. Robinson [42] in
the 1960s and that descends from techniques developed by Herbrand
[25] in the 1930s. But there is another method, Semantic Tableaux, also
developed in the 1960s, by R. M Smullyan [48], which descends from
work of Gentzen [22] in the 1930s and Beth [5] in the 1950s. (Tableaux
actually first appeared in [30], though this paper was largely unknown
until recently.) Gentzen's and Herbrand's work are closely related, but
still resolution and semantic tableaux have different flavors to them.
Tableau-based theorem provers have been comparatively rare in the field.
Both methods are, we think, of basic importance. A few books have
treated both [2, 21] and are recommended for additional reading.

So, a brief outline of the book is this. We begin with propositional logic,
move on to first-order logic, then finish up with first-order logic with
equality. For each of these we present both resolution and semantic tab
leau systems as primary. Implementations of semantic tableaux in Pro
log are given, and similar implementations of resolution are outlined as
projects. We also present natural deduction, Gentzen sequent calculi,
and axiomatic systems, because these require little additional work and
are common in the literature, though they are generally less appropriate
for automated theorem proving. Also, for each level of logic that we con
sider, we discuss necessary semantical background: Boolean valuations in
the propositional case; models in the first-order case; and normal models
in the first-order case with equality. Soundness and completeness of our
theorem provers is established. Details of syntax, as well as semantics are
presented, including normal form theorems. In general we use the device
of uniform notation that is due to R. M. Smullyan, which allows us to
have many connectives and quantifiers present in our language without
the need for elaborate theorem provers with many special cases. We hope
to keep it clean and elegant.

Preface to the Second Edition

This edition differs from the previous one in three ways. First, it contains
much new material. Second, revisions of the original material have been
made throughout. Third, it contains this preface.

Chapter 8 is almost entirely new (a few sections were moved to it from
elsewhere). The new material consists of the following:

1. A discussion of the AE calculus. This is a decidable part of first
order logic that is natural from the tableau perspective, powerful,
easy to implement, and of historical significance.

2. Herbrand's theorem. This is presented twice: non-constructively
and constructively. The non-constructive version is based on the
model existence theorem; the constructive one, on the tableau for
mulation.

3. Gentzen's theorem (Gentzen's Hauptsatz). The proof is essentially
the constructive one of Gentzen, but following Smullyan, it is formu
lated explicitly for the tableau calculus. This reformulation tends
to clear away some of the unnecessary detail.

4. A proof that is due to Statman that cut elimination can make proofs
blow up exponentially.

5. Craig's interpolation theorem. A non-constructive proof, based on
the model existence theorem, was in the first edition and is still
present. But now a second, constructive, proof has been added.
This proof extracts an interpolant from a tableau proof.

xii Preface to the Second Edition

6. Lyndon's interpolation theorem. This refinement of Craig's theorem
is obtained from the same proof, with no additional work.

7. Lyndon's homomorphism theorem. This adds to Beth's theorem an
additional application of interpolation results and is of considerable
interest for its own sake.

It was pointed out by Reiner Hiihnle and Peter Schmitt, and indepen
dently by Wilfried Sieg, that the so-called Free-Variable 8-Rule given
in the first edition was unnecessarily inefficient. (This rule deals with
occurrences of existential quantifiers in tableau or resolution proofs.)
Following their suggestions, a new version of the rule has replaced the
old one. This required some changes in soundness proofs, but primar
ily it also forced the rewriting of much of the Prolog implementation
of the first-order tableau theorem prover (and the version incorporating
equality).

At the suggestion of Krzysztof Apt, the original treatment of Multiple
Unification in Chapter 7 has been modified. In the original version it
used the proof of the Unification Theorem, now it uses the Theorem
itself.

A number of exercises were added. In addition, those exercises that are
essentially programming projects have been clearly marked (with P as
a superscript). There are almost 30 such exercises-they range from
relatively easy modifying of programs in the text to substantial pieces
of new work.

Since the first edition of this work appeared, numerous papers and books
on automated theorem-proving have been published, most of which are
beyond our scope. There are, however, two items that are most pertinent,
both handbooks. The first is the Handbook of Logic in Artificial Intel
ligence and Logic Programming [20]. This is an extensive multi-volume
work; fortunately most volumes have already appeared. It includes cov
erage of topics like unification, and resolution and tableau theorem
proving. The other item is the Handbook of Tableau Methods [13], which
should appear shortly. As its name implies, it contains thorough presen
tations of tableau techniques, applied to both classical and non-classical
logics.

Finally, lengthy sections of Prolog code are included in the text. These
can be obtained in the following ways: First, by anonymous ftp, at the
address ftp.springer-ny.com, in the directory /pub/supplements/mfitting
(log on as anonymous, and use your e-mail address as password); second,
at web site http://www.springer-ny.com/supplements/mfitting.html.

Contents

Preface vii

Preface to the Second Edition xi

1 Background 1

2 Propositional Logic 9

2.1 Introduction 9

2.2 Propositional Logic-Syntax 10

2.3 Propositional Logic-Semantics 14

2.4 Boolean Valuations 16

2.5 The Replacement Theorem 20

2.6 Uniform Notation 23

2.7 Konig's Lemma 26

2.8 Normal Forms 27

2.9 Normal Form Implementations 35

xiv Contents

3 Semantic Tableaux and Resolution 41

3.1 Propositional Semantic Tableaux . 41

3.2 Propositional Tableaux Implementations 47

3.3 Propositional Resolution 51

3.4 Soundness 55

3.5 Hintikka's Lemma 58

3.6 The Model Existence Theorem 59

3.7 Tableau and Resolution Completeness 64

3.8 Completeness With Restrictions 69

3.9 Propositional Consequence ... 74

4 Other Propositional Proof Procedures 77

4.1 Hilbert Systems 77

4.2 Natural Deduction 86

4.3 The Sequent Calculus 92

4.4 The Davis-Putnam Procedure 98

4.5 Computational Complexity 104

5 First-Order Logic 109

5.1 First-Order Logic-Syntax 109

5.2 Substitutions 113

5.3 First-Order Semantics 117

5.4 Herbrand Models ... 123

5.5 First-Order Uniform Notation 124

5.6 Hintikka's Lemma 127

5.7 Parameters 128

5.8 The Model Existence Theorem 129

5.9 Applications 132

5.10 Logical Consequence . 135

Contents xv

6 First-Order Proof Procedures 137

6.1 First-Order Semantic Tableaux . 137

6.2 First-Order Resolution 141

6.3 Soundness 142

6.4 Completeness . 143

6.5 Hilbert Systems 146

6.6 Natural Deduction and Gentzen Sequents 149

7 Implementing Tableaux and Resolution 151

7.1 What Next 151

7.2 Unification 152

7.3 Unification Implemented 161

7.4 Free-Variable Semantic Tableaux . 166

7.5 A Tableau Implementation 169

7.6 Free-Variable Resolution 184

7.7 Soundness 188

7.8 Free-Variable Tableau Completeness 191

7.9 Free-Variable Resolution Completeness 196

8 Further First-Order Features 203

8.1 Introduction 203

8.2 The Replacement Theorem 203

8.3 Skolemization 206

8.4 Prenex Form . 209

8.5 The AE-Calculus 212

8.6 Herbrand's Theorem. 215

8.7 Herbrand's Theorem, Constructively. 221

8.8 Gentzen's Theorem 225

8.9 Cut Elimination .. 228

8.10 Do Cuts Shorten Proofs? 243

8.11 Craig's Interpolation Theorem 254

8.12 Craig's Interpolation Theorem-Constructively . 257

8.13 Beth's Definability Theorem 263

8.14 Lyndon'S Homomorphism Theorem 266

XVI Contents

9 Equality 271

9.1 Introduction 271

9.2 Syntax and Semantics 273

9.3 The Equality Axioms 276

9.4 Hintikka's Lemma .. 279

9.5 The Model Existence Theorem 284

9.6 Consequences. 285

9.7 Tableau and Resolution Systems 288

9.8 Alternate Tableau and Resolution Systems 294

9.9 A Free-Variable Tableau System With Equality. 298

9.10 A Tableau Implementation With Equality. 305

9.11 Paramodulation 312

References 315

Index 319

List of Tables

2.1 Primary and Secondary Connectives

2.2 00- and ,B-Formulas and Components

2.3 Clause Set Reduction Rules

2.4 Dual Clause Set Reduction Rules.

3.1 Tableau Expansion Rules ..

3.2 Resolution Expansion Rules.

5.1 "(- and b-Formulas and Instances

6.1 First-Order Tableau Expansion Rules

6.2 First-Order Resolution Expansion Rules .

7.1 Free-Variable Tableau Expansion Rules .

7.2 Free-Variable Resolution Expansion Rules.

15

23

30

33

42

51

124

138

141

167

184

1 ______________________ __

Background

There are many useful logics: temporal, modal, relevance, intuitionistic,
etc. They differ in what concepts are being considered and in what the
basic features of these concepts are thought to be. For example, should
the passage of time playa formal role (as in temporal logic), or not?
Must existence assertions have constructive content (as in intuitionistic
logic), or not? In the family of formal logics, one is central: classical
logic. It is the most widely used logic, the logic underlying mathematics
as it is generally practiced, and the logic on top of which many others
have been built. Indeed, for most people who have occasion to use formal
methods, logic is synonymous with classical logic. Classical logic is the
subject of this book. Our formal treatment of classical logic begins in
the next chapter; here we present the intuitive background. We want to
make sure there is a ground-level informal understanding before erecting
a rigorous mathematical structure.

In everyday life there are assertions whose truth value is unclear or
problematic, such as "That is an ugly chair," and "Then so are you."
Classical logic is incapable of dealing with such things. In fact, classical
logic was created to embody the reasoning principles of mathematics,
where ambiguity and imprecision are a Bad Thing. When classical logic
is applied to non-mathematical examples, the examples are first "math
ematicized." In the real world we might argue about whether block B is
behind block A or not-maybe it depends on one's point of view. But
we can create an ideal world, a mathematical model, in which either
B is behind A, or it isn't. Classical logic can be used to reason cor
rectly about such a model. Whether the model accurately reflects the
real world is a separate issue. But this is standard operating procedure
generally, not just where logic is concerned. Differential equations don't

2 1. Background

describe a real-world vibrating string; they describe the behavior of a
mathematical model of a vibrating string, which in turn captures the
real thing more or less well, depending.

So, in classical logic we investigate the principles of reasoning for perfect
worlds, where truth is unqualified and there are no shades of grey.

When we reason we use sentences. These sentences are built up from
primitive assertions about the world (or rather, our model of it). They
are built up using words like and, or, not, implies, every, some, and
equals. Basically, it is the behavior of these words that we will study.
Most of these words have meanings that are fairly straightforward to
grasp in an informal, intuitive way. But we should be a little careful
about implies, because it plays a very central role, and is used in several
senses in everyday discourse (even among mathematicians).

Commonly, one says "P implies Q" only if one already knows that P is
the case. "P implies Q" is thus often used as another way of asserting Q.
But in reading mathematics, we are frequently faced with the assertion
"P implies Q" where the truth of P is not known, or even where P is
false. Consider, for example: "whatever integer x is, x is even implies
x + 2 is even." This seems correct, but then we could take x to be 7, and
we find we are committed to the truth of "7 is even implies 7 + 2 is even."
This is disconcerting, but it would be wrong to call "7 is even implies
7 + 2 is even" false, because the more general sentence from which it came
would then be false, which is not acceptable. We could say that "7 is even
implies 7 + 2 is even" is neither true nor false, but in mathematics we
want every sentence to have an unambiguous truth value. Then we are
forced to take it to be true. This is not really counterintuitive, it is simply
a case that does not come up in everyday life, that of something false
implying something false. Similar difficulties are met in two other cases:
false implying true, and true implying true. Both are taken to be true in
mathematical usage. What all this amounts to is that mathematicians
use implies in what is called the material sense; "P implies Q" is taken
to mean nothing more than "either P is false or (P is true and so) Q is
true." "P implies Q" entails no particular relationship between P and
Q (as it would in relevance logic say) save the single condition: Q must
be true if P is true.

Special symbols are introduced to represent the logical constructs we
have been discussing. We write /\ for and, V for or, ..., for not, ~ for
implies, V for every and :3 for some. The symbols /\, V, ..., and ~ are
called logical connectives (there are others as well that we will introduce
in the next chapter). The symbols V and :3 are called quantifiers. Other
books may use different symbols.

1. Background 3

Now we begin looking at how these notions are used in a particular math
ematical theory. We have chosen arithmetic, the theory of the natural
numbers, 1, 2, 3, ... , because it is familiar to everyone.

Numbers are abstract objects. If we are to talk about them, we need
names for them. Let us say we have a constant symbol 1, which we
intend as a name for the first of the natural numbers. (It is important
not to mix up the symbol with the object it is naming.) Also suppose
we have a one-place function symbol s, intended to denote the successor
function. Then s(1) names the second natural number, s(s(1)) names
the third, and so on. We also want some operation symbols, say + and
x, intended to denote addition and multiplication. Now we can form
more complicated names like s(s(1)) x (1 + s(1)), and even name-like
expressions containing variables, such as x + s(1). These expressions are
called terms. Loosely, a term is a name, or something that would become
a name if names were substituted for variables.

Next, there are expressions that make assertions but that do not involve
any logical connectives or quantifiers; examples are s(1) + s(s(1)) =
8(8(8(S(1)))) and s(1) > 1. There are also assertion-like expressions,
containing variables, such as x + 1 = 8(s(1)). Such expressions are called
atomic formulas. Notice that we have assumed we have in our language
relation symbols = and >. Saying what relation symbols we have avail
able is part of the specification of the language of arithmetic. If we think
of = as denoting the equality relation and > as denoting the greater
than relation, then atomic formulas without variables are either true or
false, and those with variables become true or false when values for the
variables are specified.

Starting with atomic formulas, using connectives and quantifiers, we
may build up more complex expressions, or formulas, for example: -,(1 +
s(1) = 1). If we take the various symbols as denoting numbers, functions
and relations as described previously, 1 + 8(1) = 1 is false, and hence
-,(1 + 8(1) = 1) is true. Further, (1 + 1 = 8(1)) A -,(1 + 8(1) = 1)
asserts that both (1 + 1 = s(1)) and -,(1 + 8(1) = 1) hold, and so it is
true. (=3x) (x + 1 = 8(1)) asserts that for some value of the variable x,
x+ 1 = 8(1) is true, and this is so, hence (=3x) (x+ 1 = 8(1)) is true. On the
other hand, (Vx) (x + 1 = 8(1)) is false. For a more complicated example,
(Vx)[(=3y)(8(1) x y = x) ~ (=3z)(s(1) x z = 8(8(X)))] is true (informally,
it asserts that whatever number x is, if x is even, so is x + 2).

Generally, we will use the word sentence for a formula that does not
have variables we can substitute values for. It is sentences that we think
of as making assertions.

Two separate notions were intertwined in the preceding discussion. We
have a formal language that we use to make assertions in the form of
sentences, and we have a mathematical structure that the assertions are

4 1. Background

about. The relationship between sentence and subject matter is some
thing we rarely think about in most of mathematics, but it is a central
issue in logic.

On the one hand we have created a formal language of arithmetic, with
a constant symbol 1, a function symbol s, two operation symbols + and
x, and two relation symbols = and >, and various other constructs like
variables, connectives, and quantifiers. This formal language could be
modified in many ways: We could add other constant symbols like 2 and
3, we could add predicate symbols like is_even, and so on. We could make
many changes and still have a language suitable for saying things about
numbers. Likewise, we could have designed a formal language suitable for
a different purpose altogether-we will do so shortly. This part of formal
logic is syntax, the specification of a formal language and its constituent
parts.

On the other hand we have a mathematical structure. There is a domain,
the positive integers, that we think of our variables as ranging over and
our quantifiers as quantifying over. There is a particular member of this
domain for the constant symbol 1 to name; there are particular functions,
operations, and relations on the domain for our function symbol, oper
ation symbols, and relation symbols to designate. In short, our formal
language has been given a particular interpretation in a model. Unless
we have done this, it makes no sense to say a term is a name, or a sen
tence is true. Meanings must be assigned to the expressions of a formal
language. This part of formal logic is semantics.

We consider a few more examples before we turn to general consider
ations. A group is a mathematical structure with a binary operation
that is associative, for which there is a (right and left) identity element,
with each element having a (right and left) inverse. Suppose we create a
language having one constant symbol, e, intended to denote the group
identity; one function symbol i, intended to denote the map from ob
jects to inverses; one operation symbol, 0, to denote the group operation;
and the equality symbol =. The following sentences, the group axioms,
embody the properties required of a group:

1. (Vx)(Vy)(Vz)[x 0 (y 0 z) = (x 0 y) 0 z]

2. (Vx)[(xoe=x)/\(eox=x)]

3. (Vx) [(x 0 i(x) = e) /\ (i(x) 0 x = e)]

Now, what is a group? It is any structure in which the relation symbol =
is interpreted by the equality relation and in which these three sentences
are true. One of the first results established in a course on group theory
is that the inverse operation is an involution, (Vx)(i(i(x)) = x). In other

1. Background 5

words, this sentence is true in all groups. In some sense it "follows from"
the three group axioms by purely logical considerations. We will provide
methods that allow us to show this is so.

For the next example, suppose we have a formal language with relation
symbols parenLoj, male, and jemale. A 'standard model' is one whose
domain is a collection of people, and in which parenLoj(x, y) is true just
when x is a parent of y, male(x) is true just when x is a male, and
jemale(x) is true just when x is a female. Then in each standard model,
the formula parenLoj(x, y) 1\ male(x) is true if x is the father of y. You
might try writing formulas that, in standard models, characterize the
brother, sibling, and aunt relations. Also add an equality symbol to the
language, and write a sentence asserting that each person has a unique
father and a unique mother.

The final example also assumes we have not only a formal language,
but a particular family of models in mind. This time we have predicate
symbols Cube, Small, Large, and so on, and two-place relation symbols
Smaller, JlightOJ, BackOj, and so on. A standard model now is one in
which the domain consists of three-dimensional objects, Cube(x) is true
if x is a cube, and so on. We can write sentences asserting things like
"If one object is to the right of another, then the first is a small cube."
In fact, this example is taken from a very nice piece of software entitled
"Tarski's World," which allows one to become familiar with the basic
concepts of the semantics of first-order logic. We recommend it highly
[3]. ("Tarski's World" is available as a program for the Macintosh, for
Windows, and for the Next, either alone, or as part of a book package,
"The Language of First-Order Logic." Information is available from the
distributor, Cambridge University Press, or from the web site http://csli
www.stanford.edu/hp/.)

Next we turn to general considerations. It is not up to us to decide which
sentences of our formal language of arithmetic are true when interpreted
as being about numbers. This is a book on logic, not arithmetic. But
it is part of our job to determine which sentences are true because of
their logical structure alone, and not because of any special facts about
numbers.

For example, consider the following sentence: (Vx)[(x + 1 = 8(8(1))) V
-,(x+l = 8(8(1)))]. This is a true sentence of arithmetic, but we can show
it is true without using any special facts about the natural numbers. To
see this, replace (x + 1 = 8(8(1))) by (... x·· .), thus concealing much
of the sentence structure. Then the sentence becomes (Vx)[(··· x···) V
-,(... x·· .)], and this will be true, provided, for each object n in our
model, (- .. n· ..) V -,(- .. n· ..) is true. This, in turn, will be true for any
particular n provided, either (... n···) is true or -,(... n···) is true. But
this must be the case, since -,(... n···) is true precisely when (... n···)

6 1. Background

is not true. Thus, we are entitled to say (Vx)[(x+1 = s(s(1)))V-,(x+1 =
s(s(1)))] is true by logic alone, since its truth depends on no particular
facts about numbers but only on the meanings of the logical connectives
and quantifiers.

If we have a sentence of arithmetic, and we want to show it is true by
its logical form alone, what sorts of things may we use, and what sorts
of things are we not allowed to use? We may use the fact that 1 denotes
an object, but we may not use the fact that it denotes the first natural
number. We may use the fact that + denotes an operation; we may
not use the fact that it denotes addition. Similar considerations apply
to x and s. We may use the fact that> denotes a relation, but not
that it denotes greater-than. What we may assume about = is a special
issue, which we will discuss further. Finally, we may not even assume
particular facts about the domain, such as that it is countably infinite,
or even that it is infinite.

Then what we are left with is this. A sentence is true by logic alone if
it is true, no matter what domain we take its variables and quantifiers
to range over, no matter what members of that domain its constant
symbols name, and no matter what functions, operations, and relations
on that domain its function, operation, and relation symbols designate.
Such sentences are called valid.

In addition to validity, we also want to know what follows from what;
which sentences are consequences of which others. This notion has a
characterization similar to validity. A sentence X is a logical consequence
of a set S of sentences if X is true whenever all the members of S are true,
no matter what domain the variables and quantifiers of the language
are thought of as ranging over, and no matter how the symbols of the
language are interpreted in that domain.

It is one of the jobs of formal logic to properly define the notions of
formal language, of model, of truth in a model, of validity, and of logical
consequence. We have sketched the ideas informally; formal counterparts
will be found in subsequent chapters.

It is not enough to have a definition of validity; we also want to be
able to establish that certain sentences are, in fact, valid. In elemen
tary arithmetic, algorithms have been devised that let us compute that
249 + 128 = 377. To apply such algorithms, we do not use the numbers
249 and 128 or the operation +. Indeed, most of us have rather vague
conceptions of what these things actually are. Rather, we perform cer
tain mechanical manipulations on strings of symbols. Similar algorithms
have been developed for classical logic; they are called proof procedures.
A proof procedure does not make use of the meanings of sentences, it
only manipulates them as formal strings of symbols. A proof procedure

1. Background 7

is said to prove a sentence or not, as the case may be. A proof proce
dure, then, is an algorithm in the usual mathematical sense and can be
studied just like any other algorithm. In particular, correctness results
can be established. It should be verified, of a proof procedure, that

1. It only proves valid sentences (it is sound).

2. It proves every valid sentence (it is complete).

In fact, even more is wanted; we should have proof procedures capable of
dealing with logical consequence, not just with validity. The creation and
investigation of proof procedures that capture validity and consequence
are also part of formal logic.

We have yet a further goal. We want to investigate proof procedures that
are suitable for computer implementation, and we want to implement
them. Most proof procedures in the literature are non-deterministic.
Many of them are capable of producing 'short' proofs when used with
knowledge and intelligence, but when used purely mechanically, they can
be extraordinarily inefficient. Certain ones, however, are well adapted
to mechanical use. Resolution is the best-known such proof procedure;
the semantic tableaux procedure is another, though it has not had the
intensive development that resolution has. We will present both systems
in considerable detail and discuss their implementation. We will also
present several other proof procedures of more traditional kinds, partly
for comparisons' sake, partly because they are common in the literature
and should be part of one's general knowledge.

Issues of truth, validity, and consequence can be divided into levels of
difficulty. At the simplest level we ask, What sentences are true solely
because of the way they use the logical connectives~never mind the
role of the quantifiers, variables, constant symbols, function symbols, or
relation symbols? Restricting our attention to the role of logical connec
tives 'yields what is called propositional logic. This is much simpler to
deal with, and a wide variety of techniques have been developed that
are suitable for it. We devote the first several chapters to propositional
logic, both for its own sake, and because it provides a good background
for the more difficult logics that follow.

Next we ask, What sentences are true because of the way they use the
logical connectives and the quantifiers? This is the study of first-order
logic and is the heart of the book.

The greater-than relation makes sense only for certain domains, and this
also holds true for virtually all other relations. But the equality relation
is meaningful for every domain. Suppose we ask which sentences are true
because of their use of the logical connectives, the quantifiers, and the

8 1. Background

equality relation. Normal models are models in which the symbol = is
interpreted as designating the equality relation. Restricting models to
those that are normal gives us first-order logic with equality. It is the
appropriate setting for the development of most formal mathematical
theories. As it happens, the theoretical role of equality is easy to charac
terize, but it makes things much more difficult when implementing proof
procedures. We take this up as our final major topic.

This is not the entire of classical logic. The quantifiers we have been
discussing range over objects. We can also consider quantifiers ranging
over properties. This is second-order logic. There is also third-order logic,
fourth-order logic, and so on, and also type theory, which embodies them
all. We do not go beyond first-order logic here; though we recommend
Andrews' work [2] for those who are interested. Finally, we recommend
several other books on logic, with particular relevance to automated
theorem proving [21, 31, 44, 57].

2 __________________________________ ___

Propositional Logic

2.1
I ntrod uction

In classical propositional (or sentential) logic we study the behavior of
the propositional connectives, such as and and or. We assume we have
a family of sentences (hence the name 'sentential') that can be thought
of as expressing propositions (hence the name 'propositional'). For in
stance, the English sentence "Snow is white," expresses the proposition
that snow is white, which happens to be true. We begin with a family of
elementary, or atomic, sentences, whose internal structure we do not an
alyze. Indeed, we represent these by single letters, propositional letters.
All that matters for us is that these are either true or false, but never
both. (Better said, the propositions expressed by these sentences are ei
ther true or false, but we will ignore such niceties from now on.) Then
we form more elaborate sentences from these using the propositional
connectives. Our major concern is how the truth or falsity of compound
sentences depends on the truth or falsity of the atomic sentences mak
ing them up. In particular, we would like to know which compound
sentences must be true, independently of the status of their atomic con
stituents. For propositional logic these are called tautologies. Much of
classical propositional logic amounts to determining which sentences are
tautologies.

We begin with formal definitions and a proper characterization of the
notion of tautology~in effect the familiar mechanism of truth tables is
used here. Then, in the next two chapters, we turn to proof theoretic
methods~axiom systems, natural deduction, resolution, and semantic
tableaux. Each of these amounts to a set of rules, which, if followed
correctly, must determine the tautologyhood of a given propositional

10 2. Propositional Logic

2.2
Propositional
Logic
Syntax

sentence. Thus, we wind up with several algorithms, algorithms based
on resolution, on tableaux, etc. For each of these, we must prove formally
that it meets our specifications. In propositional logic, a proof procedure
(algorithm) that proves only tautologies is called sound. If it proves every
tautology, it is called complete. So, for each kind of proof procedure, we
must establish soundness and completeness. Finally, in the next chapter,
we consider implementation issues for some of these proof procedures.

Truth tables themselves are implement able , so what is the need for other
kinds of mechanisms? First, truth tables are always inefficient, while on
a case-by-case basis, other mechanisms can be much better. But more
fundamentally, the truth table mechanism is limited to the classical,
propositional setting. Axiom systems, natural deduction, and so on, all
extend readily to encompass classical first-order logic (allowing quanti
fiers), and even various non-classical logics. We will carry out the ex
tension to the first-order setting, but we will not consider non-classical
logics here at all. Since the classical propositional case is the simplest
of all, it is best to get a thorough understanding of the various proof
mechanisms here first, before moving on to more complicated things.

Just as with programming languages, each logic has its syntax and its
semantics. In the case of classical propositional logic, these are rather
simple. We begin with syntax, defining the class of formulas.

We assume we have an infinite list, PI, P2 , ••• , of propositional letters.
Informally, we can think of propositional letters as expressing proposi
tions, without analyzing how. Formally, we may think of these as letters
of an infinite (countable) alphabet. The only real requirement is that
they should be distinct and recognizable. In general we will informally
use P, Q, ... for propositional letters, rather than PI, P2 , •...

A formula will be a word built up from propositional letters using propo
sitional connectives. Propositional connectives can be zero-place (con
stants), one-place, two-place (binary), three-place, and so on. There are
naturally two constants, since classical logic is a two-valued logic. We
will denote these by T and ..l, for true and false, respectively. Negation
(-.) is the only one-place connective of interest. Three-or-more-place con
nectives rarely occur in practice. Different works on logic tend to differ
on what is taken as a binary connective. Some may consider only /\ and
v, while others may allow:=>, =, and maybe more (or less). We leave
the choice open for now and give a kind of generic definition. The is
sue will be considered again when we discuss semantics. The only other
symbols we will need, to form propositional formulas, are left and right
parentheses.

2.2. Propositional Logic-Syntax 11

Definition 2.2.1 A (propositional) atomic formula is a propositional letter, Tor 1..

Definition 2.2.2 The set of propositional formulas is the smallest set P such that

1. If A is an atomic formula, A E P.

2. X E P =? ,X E P.

3. If 0 is a binary symbol, then X, YEP =? (X 0 Y) E P.

As an example, if A and V are binary symbols, then ,((PIA P2) V,(P3 A
,T)) is a propositional formula. You should try showing this.

The definition of propositional formula presupposes the existence of a
(unique) smallest set meeting conditions 1 through 3, where smallest
means is a subset of all others. But the existence of such a set is easily
established. First, there are sets meeting conditions 1 through 3, for ex
ample, the universal set consisting of all words formed from the symbols
we are using. Next, it is easy to verify that the intersection of any family
of sets meeting conditions 1 through 3 is another set meeting these con
ditions. Now, just form the intersection of the (nonempty) family of all
sets meeting conditions 1 through 3. This will be the smallest such set.

From time to time we will define other concepts using this same tech
nique. Defining things this way yields useful immediate consequences.
One is a method of proof, the other is a method of definition.

Theorem 2.2.3 (Principle of Structural Induction)
Every formula of propositional logic has a property, Q, provided:

Basis step Every atomic formula has property Q.

Induction steps

If X has property Q so does ,X.

If X and Y have property Q so does (X 0 Y), where 0 is a binary
symbol.

Proof Let Q* be the set of propositional formulas that have property
Q. The basis step and the induction steps say that Q* meets conditions
1 through 3 of the definition of propositional formula. Since the set P
of propositional formulas is the smallest set meeting these conditions, it
follows that P is a subset of Q*, and hence every propositional formula
has property Q. 0

The other basic principle we need will allow us to define functions on
the class of propositional formulas.

12 2. Propositional Logic

Theorem 2.2.4 (Principle of Structural Recursion) There is one, and only one,
function f defined on the set P of propositional formulas such that:

Basis step The value of f is specified explicitly on atomic formu
las.

Recursion steps

The value of f on,X is specified in terms of the value of f
onX.
The value of f on (X 0 Y) is specified in terms of the values of
f on X and on Y, where 0 is a binary symbol.

We omit the proof of this theorem, which is similar to that of structural
induction, but which requires consideration of existence principles for
functions, and more generally sets, and so would take us rather far afield.

Syntax is really part of the subject matter of automata theory. It is
immediate from the form of the definition that propositional formulas
are a context free language, and hence much is known about them [28J.
The main thing we need is that we have an unambiguous grammar. We
state this as a theorem and leave the proof as a series of exercises. In
fact, the theorem is needed for the proof of the Principle of Structural
Recursion, Theorem 2.2.4.

Theorem 2.2.5 (Unique Parsing) Every propositional formula is in exactly one of
the following categories:

1. atomic

2.,X, for a unique propositional formula X

3. (X 0 Y) for a unique binary symbol 0 and unique propositional for
mulas X and Y

Exercise 2.2.3 shows that every propositional formula falls into at least
one of the three categories listed in the Unique Parsing Theorem. It is
more work to demonstrate uniqueness, however. The job is easier in a
restricted setting in which there are no negations. So, temporarily, by a
restricted formula, we mean a propositional formula that does not con
tain any negation symbols (....,). It is trivial that a restricted formula
can not fall into both categories 1 and 3 of the Unique Parsing Theo
rem. Then Exercise 2.2.6 establishes the theorem for restricted formulas.
Finally, Exercise 2.2.8 establishes the full version.

We will occasionally need the notion of subformula. Informally, a subfor
mula of a formula is a substring that, itself, is a formula. The following
is a more rigorous characterization:

Exercises 13

Definition 2.2.6 Immediate subformulas are defined as follows:

1. An atomic formula has no immediate subformulas

2. The only immediate subformula of....,X is X

3. For a binary symbol 0, the immediate subformulas of (X 0 Y) are
X and Y.

Definition 2.2.7 Let X be a formula. The set of subformulas of X is the smallest set S that
contains X and contains, with each member, the immediate subformulas
of that member. X is called an improper subformula of itself.

Exercises 2.2.1. For a propositional formula X, let b(X) be the number of oc
currences of binary symbols in X. Prove using structural induction that,
for every formula X, b(X) = number of left parentheses in X = number
of right parentheses in X. (Hence every propositional formula has the
same number of left as right parentheses.)

2.2.2. Using structural recursion, we define a function d on the set of
propositional formulas as follows: If P is atomic, d(P) = O. d(....,X) =
d(X) + 1. d((X 0 Y» = d(X) + d(Y) + 1. For a propositional formula X,
d(X) is called the degree of X. Assuming::) and V are binary symbols,
calculate d((....,P ::),(Q V R»).

2.2.3. Suppose F were a propositional formula that fell into none of
the three categories stated in the Unique Parsing Theorem. Let po be
the set P of propositional formulas, with F removed. Show that po still
meets the conditions of the definition of propositional formula. Since
po is a proper subset of P, and P was the smallest set meeting the
conditions, we have a contradiction.

2.2.4. Show that every proper initial segment of a restricted formula
has more left than right parentheses. (Hint: Use Structural Induction
and Exercise 2.2.1.)

2.2.5. Show that no proper initial segment of a restricted formula is
itself a restricted formula. (Hint: Use Exercise 2.2.4.)

2.2.6. Using Exercise 2.2.5 show that, if a restricted formula is of the
form (X 0 Y) and also (U e V), where 0 and e are binary symbols, then:
X = U, Y = V, and 0 = e.

2.2.7. Show the following:

1. No propositional formula consists entirely of negation symbols

14 2. Propositional Logic

2.3
Propositional
Logic
Semantics

2. A proper initial segment of a propositional formula is either a string
of negation symbols or contains more left than right parentheses

3. No proper initial segment of a propositional formula is itself a
propositional formula.

2.2.8. Using Exercise 2.2.7, prove the full version of the Unique Parsing
Theorem.

2.2.9. Assume::J, ==, and! are binary symbols. Determine the set of
subformulas of the following:

1. ((p::J Q) == (Q ! -,R)).

2. ((T::J P) ::J Q).

Classical logic is two-valued. We take as the space of truth values the
set Tr = {t, fl. Here t and f are simply two distinct objects. We will, of
course, think of t as representing truth and f as representing falsehood.
Next, we must say how to interpret each of the operation symbols from
the previous section by an operation on Tr. Negation is easy: From now
on we assume we have a mapping -, : Tr -> Tr, given by -,(t) = f, and
-,(f) = t. (We will generally follow the custom of using the same notation
for an operation symbol of the formal language defined in Section 2.2,
and for an operation on Tr. This should cause no confusion and will
simplify terminology somewhat.)

Binary connectives are a more complicated affair. It is clear that there
are 16 different two-place functions from Tr to itself. But not all of these
are of interest. One of them is the trivial map that sends everything to
t. Another is the identically f map. (These correspond to our language
constants T and ..1...) Ruling these out, we still have 14 maps. One of these
is the map I(x, y) = x, and another is g(x, y) = -,x, identity and nega
tion with respect to the first input. Two more functions behave similarly
with respect to the second input. Tossing these out, we are down to 10
binary operations. These 10 are all of genuine interest, though some play
a more important role than others. For reasons that will be discussed
later, we divide the 10 into two categories, primary and secondary. We
give their definitions, and the symbols by which we will denote them, in
Table 2.1.

Among the Primary Connectives, 1\ (and), V (or), and ::J (implies) are
probably the most familiar. C is backward implication, which is used in
Prolog, but for which the common Prolog notation is :- or +-. jJ and
ct. are simply ::J and C negated. i is conveniently read "not both" or
"NAND," while! may be read "neither-nor" or "NOR." In fact, i and

Exercises

t t
t f
f t
f f

A V

t t
f t
f t
f f

Primary

t t f f f
f t t f t
t f t f f
t t t t f

f
f
t
f

Secondary

t f
f t
f t
t f

TABLE 2.1. Primary and Secondary Connectives

Exercises 15

1 are A and V negated. Finally, for the Secondary Connectives, == (if
and only if) is probably familiar, while ¢ is == negated. In fact, ¢ is the
standard exclusive-or.

From now on we assume that for each of the Primary and Secondary
Connectives we have a corresponding binary operation symbol in the
formal language of propositional logic. To make the relationship between
symbol and operation more memorable, we will overload our notation.
From now on, A will be a binary operation symbol of our formal language
and will also denote an operation on Tr, according to Table 2.1. This
double usage should cause no difficulty, as context will make clear which
is meant.

It is well-known that....., and A form a complete set of connectives in that
all others can be defined using them. For instance, assuming x and y
range over Tr, (x V y) =,(.....,x A,y) and (x => y) =,(x A,y). By all
others, we mean exactly that: all two-place, three-place, ... operations on
Tr can be defined from....., and A alone. Exercises 2.3.1 and 2.3.5 ask for a
proof of this. Two of the binary connectives are complete by themselves.
Exercise 2.3.2 asks you to show there are at least two; Exercise 2.3.4
asks you to show there at most two, which is harder.

2.3.1. Show that all binary connectives can be defined using....., and
anyone of the Primary Connectives.

2.3.2. Show that all binary connectives can be defined using either r
or 1 alone.

2.3.3. Show that no Primary Connective can be defined using....., and
the Secondary Connectives.

2.3.4. Show that rand 1 are the only binary connectives that are
complete by themselves.

2.3.5. Show that all three-place, four-place, ... operations on Tr can
be defined using" A, and V (and hence using, and any Primary
Connective, by Exercise 2.3.1).

16 2. Propositional Logic

2.4
Boolean

Valuations

Now we connect syntax and semantics. We are interested in those propo
sitional formulas that must be true because of their logical structure,
without reference to the meanings of the propositional letters involved.
Such formulas are called tautologies; we give a proper definition later. Of
course, we must say how an operation symbol, /\ say, is to be interpreted.
We will interpret it as naming the operation on Tr that we designated
by /\ in Table 2.1. More generally, as we remarked in Section 2.3, we
follow the convention of using the same notation to refer to a binary op
eration on Tr and to be a binary operation symbol of our propositional
language.

For reading ease, from now on we will generally omit the outer set of
parentheses in a propositional formula, writing X V -,X, for instance,
instead of (X V -,X). This does not change the official definition.

Defi nition 2.4.1 A Boolean valuation is a mapping v from the set of propositionalformulas
to the set Tr meeting the conditions:

1. v(T) = t; vCl) = f.

2. v(-,X) = -'v(X).

3. v(X 0 Y) = v(X) 0 v(Y), for any of the binary operations 0 of
Table 2.1.

It turns out Boolean valuations are easy to specify; the following two
propositions provide a simple mechanism. We leave the proofs to you,
as exercises.

Proposition 2.4.2 For each mapping f from the set of propositional letters to the set Tr,
there is a Boolean valuation v that agrees with f on the propositional
letters.

Proposition 2.4.3 If VI and V2 are two Boolean valuations that agree on a set S of propo
sitional letters, then VI and V2 agree on every propositional formula that
contains only propositional letters from S.

Example Consider the Boolean valuation v such that on the propositional letters
P, Q, and R, we have v(P) = t, v(Q) = f and v(R) = f, and to all other
propositional letters v assigns f. By Proposition 2.4.2, there is a Boolean
valuation that meets these conditions, and by Proposition 2.4.3, there is

exactly one. Now:

v ((P T -.Q) ~ R)

2.4. Boolean Valuations 17

v(P T -.Q) ~ v(R)
(v(P) T v(-.Q)) ~ v(R)
(v(P) T -.v(Q)) ~ v(R)
(t T -.f) ~ f
(tTt)~f
f~f

t.

We are interested in those propositional formulas that can't help being
true. The following makes this rather vague notion precise.

Definition 2.4.4 A propositional formula X is a tautology if v(X) = t for every Boolean
valuation v.

It is decidable whether or not a formula X is a tautology. We have to
check the behavior of X under every Boolean valuation. By Proposi
tion 2.4.2, a Boolean valuation is determined by its action on propo
sitional letters, and by Proposition 2.4.3 we only need to consider this
action on propositional letters that actually appear in X. If X contains
n different propositional letters, we will need to check 2n different cases.
Truth tables provide a convenient technique for doing this. We do not
describe truth tables here, as you are probably already familiar with
them.

Definition 2.4.5 A set S of propositional formulas is satisfiable if some Boolean valuation
v maps every member of S to t.

To be a tautology, every line of a truth table must make a formula true.
To be satisfiable, at least one line must do this. This is inexact, however,
since formulas are tautologies, but sets of formulas are satisfiable. An
infinite set can be satisfiable, but a direct truth table verification of this
would not be possible. There is a useful and simple connection between
the two notions: X is a tautology if and only if {-.X} is not satisfiable.

For classical propositional logic, there is an elegant notion of duality that
can help give some insight into the structure of the logic.

Definition 2.4.6 Suppose 0 and. are two binary operations on Tr. We say. is the dual of
o if -.(x 0 y) = (-.x. -.y). If. is dual to 0, we also say the corresponding
binary operation symbol. is dual to the binary symbol o.

18 2. Propositional Logic

For example, V is the dual of /\ because ,(X /\ Y) = (,X V ,Y). Duality
is symmetric, so we can simply refer to two binary connectives as duals of
each other. We leave the proof of this to you, as well as the determination
of which connectives are duals.

Definition 2.4.7 For a propositional formula X, we write Xd for the result of replacing
every occurrence of T in X with an occurrence of .1., and conversely, and
replacing every occurrence of a binary symbol in X with an occurrence
of its dual. We refer to Xd as the dual formula of X.

Exercises

It is not hard to see that if • and 0 are dual binary symbols then for
any formulas X and Y, (X. y)d = (Xd 0 yd). Next we give exercises
concerning this notion. As a special case of Exercise 2.4.12, for instance,
it follows that (P /\ Q) ~ P is a tautology because P ~ (P V Q) is.

2.4.1. (To establish Proposition 2.4.2.) Show that if f is a mapping
from the set of propositional letters to Tr, then f can be extended to a
Boolean valuation v. (Hint: use Structural Recursion.)

2.4.2. (To establish Proposition 2.4.3.) Show that if VI and V2 are two
Boolean valuations that agree on a set S of propositional letters (which
may not include all propositional letters), then VI and V2 agree on all
propositional formulas that contain only propositional letters from S.
(Hint: use Structural Induction.)

2.4.3. Which of the following are, and which are not tautologies?

1. ((P ~ Q) ~ P) ~ P

2. ((P ~ Q) /\ (Q ~ R)) V ((R ~ Q) /\ (Q ~ P))

3. (,(P /\ Q) /\ (P ==.1.)) i= (Q ==.1.)

4. ((P ~ Q) i (P ~ Q)) == (P /\ ,Q)

5. ((P ~ Q) /\ (Q == .1.)) ~ (P == .1.)

6. ((P~Q)/\(Q==T))~(P==T)

7. (P ¢ Q) == (Q ¢ P)

8. (P¢(Q¢R))==((P¢Q)¢R)

2.4.4. Show that for any propositional formulas X and Y, and any
Boolean valuation v:

1. veX == Y) = t if and only if veX) = v(Y).

Exercises 19

2. veX 1= Y) = t if and only if veX) i= v(Y).

3. vex => Y) = t if and only if (v(X) = f or v(Y) = t) if and only if
(v(X) = t implies v(Y) = t).

2.4.5. Let F be a family of Boolean valuations. We define a new
Boolean valuation 1\ F by specifying it on propositional letters as fol
lows: For a propositional letter P, 1\ F(P) = t if and only if v(P) =
t for every v E F. Show that for Ai and B propositional letters, if
(AI 1\ ... 1\ An) => B is true under every Boolean valuation in F then
it is true under 1\ F. (Propositional formulas of this form are called
propositional Horn clauses. Loosely, this exercise says that the truth of
propositional Horn clauses is preserved under the intersection of Boolean
valuations.)

2.4.6. Suppose VI, v2 are Boolean valuations and every propositional
letter that VI makes true, V2 also makes true.

1. Prove that if X is any formula that contains only the connectives
1\ and v, and if VI(X) = t, then V2(X) = t.

2. Must the converse be true? That is, if X contains only 1\ and V,
and V2(X) = t, must VI(X) = t? Justify your answer.

2.4.7. Suppose F(AI, ... ,An) is a propositional formula whose propo
sitional letters are among AI"'" An, and let Xl,"" Xn be n arbi
trary propositional formulas. We denote by F(XI , ... , Xn) the result
of simultaneously replacing all occurrences of Ai by Xi (i = 1, ... , n)
in F(Al, ... , An). (For example, if F(A, B) = (A 1\ T) V -.B, then
F(P => Q, P V R) = ((P => Q) 1\ T) V -.(P V R).) Show: if F(Al, ... , An)
is a tautology, so is F(XI , ... ,Xn).

2.4.8. Prove that if • is the dual connective of 0, then 0 is also the
dual connective of •.

2.4.9. For each primary and secondary connective, determine its dual.

2.4.10. For each propositional formula X, let X be the result of re
placing every occurrence of a propositional letter P in X with -.P. Prove
that for a propositional formula X, if X is a tautology so is X.

2.4.11. Using the notation of the previous exercise, prove that for ev
ery propositional formula X, and for every Boolean valuation v, v (-.X) =

v(Xd). (Hint: Structural Induction.)

2.4.12. Prove that if the propositional formula X=> Y is a tautology,
so is yd => Xd.

20 2. Propositional Logic

2.5
The
Replacement
Theorem

Exercise 2.4.4 says that the binary connective == has a close relation
ship with equality. In this section we establish a result analogous to the
familiar substitution property of equality that says one can substitute
equals for equals. The result is fundamental, intuitive, and we generally
use it without explicitly saying so.

We find notation like that used in Exercise 2.4.7 convenient. When we
write F(P), we mean F is a propositional formula, and occurrences
of the propositional letter P play a special role. Then later, when we
write F(X) for some propositional formula X, we mean the formula that
results from F when all occurrences of P are replaced by occurrences
of the formula X. For example, if F(P) is the propositional formula
(P ~ Q)V.P, and if X is (P/\R), then F(X) is «P/\R) ~ Q)V.(P/\R).
Note that, as in this example, the replacement formula X may introduce
fresh occurrences of the propositional letter P. We do not require that
P actually have occurrences in F(P), and this is an important point.
F (X) is the result of replacing all occurrences of P by occurrences of X,
if there are any.

Theorem 2.5.1 (ReplaceIllent TheoreIll, Version One) Let F(P), X and Y be
propositional formulas, and v be a Boolean valuation. If v(X) = v(Y)
then v(F(X)) = v(F(Y)).

Proof Suppose we call a propositional formula F(P) good if

v(X) = v(Y) implies v(F(X)) = v(F(Y)) (for all X, Y and v). (*)

We must show that all propositional formulas are good, and we can use
Structural Induction.

Basis Step Suppose F(P) is atomic. Then there are two cases, ei
ther F(P) = P or F(P) i P. If F(P) = P, then F(X) = X and
F(Y) = Y, and (*) is trivially true. If F(P) i P, then F(X) =
F(Y) = F(P), and (*) is again trivially true. Thus all atomic for
mulas are good.

Induction Step Suppose G(P) and H(P) are both good proposi
tional formulas (induction hypothesis), and F(P) = G(P) 0 H(P)
where 0 is some binary symbol; we show F(P) is good. Well, if
v(X) = v(Y), then

v(F(X)) = v(G(X) 0 H(X))
= v(G(X)) 0 v(H(X))
= v(G(Y)) 0 v(H(Y))
= v(G(Y) 0 H(Y))
= v(F(Y))

Thus, in this case F(P) is good.

(def. of F)
(def. of Boolean valuation)
(ind. hypothesis)
(def. of Boolean valuation)
(def. of F)

2.5. The Replacement Theorem 21

The induction step involving negation is established similarly. Now it
follows by the Principle of Structural Induction that all propositional
formulas are good, and we are done. D

Theorem 2.5.2 (Replacement Theorem, Version Two)
so is F(X) == F(Y).

If X == Y is a tautology,

Proof Suppose X == Y is a tautology. Let v be an arbitrary Boolean
valuation; we must show that v(F(X) == F(Y)) = t. Since X == Y is
a tautology, veX == Y) = t, so veX) = v(Y) by Exercise 2.4.4. Then
v(F(X)) = v(F(Y)) by Theorem 2.5.1, hence v(F(X) == F(Y)) = t by
Exercise 2.4.4 again. D

Example Suppose we let F(A) be the formula [(-.P V Q) A (R i -.A)]. Since
(-.PVQ) == (P =:> Q) is a tautology, by Theorem 2.5.2 so is F(-.PVQ) ==
F(P =:> Q), or [(-.PVQ)A(R i (-.PVQ))] == [(-.PvQ)A(R i (P =:> Q))].
Here is an informal but useful way of describing this: we have replaced
one occurrence of -.P V Q by its equivalent, P =:> Q, in (-.p V Q) A (R i
(-.p V Q)) to turn it into its equivalent, (-.p V Q) A (R i (P =:> Q)).

We illustrate the uses of this theorem by showing every propositional
formula can be put into negation normal form.

Definition 2.5.3 A propositional formula X is in negation normal form if the only nega
tion symbols in X occur in front of propositional letters.

Proposition 2.5.4 Every propositional formula can be put into a negation normal form.
More precisely, there is an algorithm that will convert a propositional
formula X into a propositional formula Y, where Y is in negation normal
form and X == Y is a tautology.

Since negation normal form will not playa major role in the development
here, we do not give a formal proof of this theorem but only sketch the
ideas. Say we wish to put X into negation normal form. If we are not
already done, X must contain a subformula of the form -.Z where Z
is not a propositional letter. Choose such a subformula and, using the
Replacement Theorem, substitute for it an equivalent formula in which
the negation symbols occur "further inside." For instance, if we have
a subformula -.(U A V) of X, we can replace it with -.U V -.V, since
-.(U A V) == (-,UV-.V) is a tautology (recall that A and V are duals). If
we have -.-.U, we can replace it with U, since -.-.U == U is a tautology.
If we have -.~, we can replace it with T, and so on.

22 2. Propositional Logic

Exercises 2.5.1. Put the following formulas into negation normal form:

1. -.(-.(P ~ Q) V -.R).

2. -.((P T Q) == R).

3. -.(P =i= Q) 1\ -.(P == R).

2.5.2. Put the propositional formulas of the previous exercise into a
negation normal form in which the only binary connectives are 1\ and V.

2.5.3. In propositional logic, assume all formulas are built up from
propositional letters using only -. and V. Also assume Po is a fixed
propositional letter. We define two functions v and w from triples of
formulas to formulas as follows. First, on a propositional letter L:

v(X, Y,L) = { ~

w(X, Y,L) = { r
if L = Po
otherwise

if L = Po
otherwise

Then, on non-atomic formulas:

v(X, Y, -.Z) = -'w(X, Y, Z)

w(X, Y, -.Z) = -.v(X, Y, Z)

v(X, Y, Z V W) = v(X, Y, Z) V v(X, Y, W)

w(X, Y, Z V W) = w(X, Y, Z) V w(X, Y, W)

1. Let Z = Po V -.(Q V Po) (where Q is a propositional letter differ
ent from Po). Compute w(X, Y, -.Z) V w(X, Y, Z), and show it is a
tautology, provided -.X V Y is.

2. Show, by structural induction on Z that, whenever -.X V Y is a
tautology, so is w(X, Y, -.Z) V w(X, Y, Z).

2.5.4. It follows from Exercise 2.4.7 that, if F(P) is a tautology, so are
both F(T) and F(J...). Now show the converse: if both F(T) and F(J...)
are tautologies, so is F(P).

2.5.5. Devise a decision procedure for being a tautology, based on the
previous exercise. Compare the result with the truth table method.

2.5.6. Let X be a formula that contains no occurrences of T or J...
and no connectives except ==. Show that X is a tautology if and only if
X contains an even number of occurrences of each propositional letter.
Hint: First show that the connective == is associative and commutative
and that (Z == (P == P)) == Z is a tautology.

2.6
Uniform

Notation

2.6. Uniform Notation 23

Works on logic tend to adopt a small number of connectives as basic and
take others as defined. Generally, this has the virtue of cutting down on
the number of cases that must be considered when discussing techniques
and methods. Exercise 2.3.1 is what makes it possible to proceed this
way. But instead, we will use a device that is due to R. M. Smullyan
[48], uniform notation, that allows us to have a very large set of basic
connectives while still not having to do unnecessary work in proving
theorems about our logic, or in writing automated theorem provers. The
method works well for all the Primary Connectives, but not for the
Secondary Connectives.

• From now on, == and =/= will be treated as defined, in terms of
negation and the Primary Connectives.

Of course, we still have results like the Replacement Theorem 2.5.1,2.5.2
available, even though == is a defined connective. For our basic binary
connectives, we take all of the Primary Connectives.

We group all propositional formulas of the forms (X 0 Y) and -.(X 0 Y)
(where 0 is a Primary Connective) into two categories, those that act
conjunctively, which we call a-formulas, and those that act disjunctively,
which we call (3-formulas. For each a-formula we define two components,
which we denote al and a2. Similarly, we define components (31 and (32
for each (3-formula. This is done in Table 2.2.

Conjunctive Disjunctive
a a1 a2 (3 (31 (32

X;\Y X Y -.(X ;\ Y) -.X -.Y
-.(X V Y) -.X -.Y XVY X Y
-.(X => Y) X -.Y X=>Y -.X Y
-.(X c Y) -.X Y XcY X -.Y
-.(X i Y) X Y XiY -.X -.Y

X1Y -.X -.Y -.(X 1 Y) X Y
X;;6Y X -.Y -.(X ;;6 Y) -.X Y
XltY -.X Y -.(X It Y) X -.Y

TABLE 2.2. a- and (3-Formulas and Components

The following accounts for what we said about a-formulas being con
junctive and (3-formulas being disjunctive:

Proposition 2.6.1 For every Boolean valuation v, and for all a- and (3-formulas:

v(a) = v(a1) /\ v(a2)
v((3) = v((3d V V((32)

24 2. Propositional Logic

Corollary 2.6.2 For every a and fJ, a == (al A (2) and fJ == (fJl V fJ2) are tautologies.

Next, we have an alternative to the original version of structural induc
tion, Theorem 2.2.3. We use the first version to establish this one, and
it is this that will be of primary use from now on.

Theorem 2.6.3 (Principle of Structural Induction)
tionallogic has a property, Q, provided:

Every formula of proposi-

Basis step Every atomic formula and its negation has property Q.

Induction steps

If X has property Q, so does -,-,X.

If al and a2 have property Q, so does a.

If fJl and fJ2 have property Q, so does fJ.

Proof Suppose Q is a property that meets these conditions. Say we call
a propositional formula X good, provided both X and -,X have property
Q. If we show every propositional formula is good, it will follow that
every formula has property Q. And we can use the original Principle of
Structural Induction from Section 2.2 to show this.

If X is atomic, X is good by the basis step.

Next we show that the set of good formulas is closed under negation.
Suppose X is good. Then both X and -,X have property Q. Since X has
property Q, by the first of the induction steps, -,-,X also has property
Q. Thus both -,X and -,-,X have property Q, so -,X is good.

Suppose X and Yare good, and 0 is a Primary Connective; we show
(X 0 Y) is good. If (X 0 Y) is an a-formula, -,(X 0 Y) is a fJ-formula; if
(X 0 Y) is a fJ-formula, -,(X 0 Y) is an a. In either case, both al and
fJl are among X, -,X. X is good by hypothesis, hence -,X is also good
by the preceding paragraph. Then both X and -,X have property Q;
in other words, both al and fJl have property Q. Both a2 and fJ2 are
among Y, -,Y, and by a similar argument both have property Q. Then,
by the last two of the induction steps, both a and fJ have property Q,
and it follows that (X 0 Y) is good.

Now, by the original Principle of Structural Induction, Theorem 2.2.3,
every propositional formula is good, hence every propositional formula
has property Q, and we are done. 0

There is also a version of Structural Recursion that uses uniform nota
tion. We state it, but omit the proof.

Exercises 25

Theorem 2.6.4 (Principle of Structural Recursion) There is one, and only one,
function f defined on the set P of propositional formulas such that:

Basis step The value of f is specified explicitly on atomic formulas
and their negations.

Recursion steps

The value of f on -.-.X is specified in terms of the value of f
onX.

The value of f on a is specified in terms of the values of f on
a1 and a2.

The value of f on 13 is specified in terms of the values of f on
131 and 132.

In Exercise 2.2.2, we defined the notion of degree. Now we define a notion
we call rank, which relates better to uniform notation than degree does.
The theorem just stated is needed here.

Definition 2.6.5 The function r on the set P of propositional formulas is defined as fol
lows: First, for atomic formulas and their negations. If A is a proposi
tionalletter, rCA) = r(-.A) = o. reT) = r(..1) = O. r(-. T) = r(-...1) = 1.
Next, the recursion steps: r(-'-'Z) = r(Z) + 1; rea) = r(at) + r(a2) +
1; r(!3) = r(!3t) +r(!32) + 1. The rank of a formula X is the number reX).

Exercises 2.6.1. Compute the degree and the rank of the following:

1. (P ~ Q) ~ (Q l-.R).

2. (T ~ P) ~ Q.

3. Q ~ (T ~ P).

2.6.2. Suppose we define the depth heX) of a propositional formula X
as follows: If A is a propositional letter, h(A) = h(-.A) = o. h(T) =
h(..1) = o. h(-. T) = h(-...1) = 1. And, using recursion, h(-.-.Z) = h(Z) +
1; h(a) = max{h(at), h(a2)} + 1; h(!3) = max{h(!3t), h(!32)} + 1.

1. Prove that for any propositional formula X, reX) ::;; 2h(X) - 1.

2. Prove that for every non-negative integer n there is a formula X of
depth n whose rank is 2n - 1.

2.6.3. Prove Proposition 2.6.1.

26 2. Propositional Logic

2.7
Konig's
Lemma

Definition 2.7.1

We digress from formal logic briefly to present a result about trees that
will be of fundamental use throughout this work. Its statement and proof
are easy, but the consequences are profound. We do not give a definition
of tree here; we assume you are familiar with the notion already. All our
trees will be rooted; we will not say so each time. We do not require a
tree to be finite.

A tree is finitely branching if each node has a finite number of children
(possibly 0). A tree is finite if it has a finite number of nodes; otherwise
it is infinite. Likewise, a branch is finite if it has a finite number of nodes;
otherwise it is infinite.

FIGURE 2.1. Examples of Trees

Examples of trees are given in Figure 2.1. In each case the displayed
pattern is assumed to continue. The tree on the left is finitely branch
ing but infinite. It has an infinite branch. The tree on the right is not
finitely branching, every branch is finite, but branches are arbitrarily
long. Konig's Lemma says that if we don't allow infinite branching, the
left-hand example shows the only way a tree can be infinite.

Theorem 2.7.2 (Konig's LeIllIlla) A tree that is finitely branching but infinite must
have an infinite branch.

Proof Suppose T is a finitely branching, infinite tree. We will show
T has an infinite branch. By a descendant of a node, we mean a child
of it, or a child of a child, or a child of a child of a child, etc. Let us
(temporarily) call a node of T good if it has infinitely many descendants.

The root node of T is good, since every other node of T is its descendant,
and T is infinite.

Suppose N is a good node of T. Since T is finitely branching, N has
a finite set of children; say C 1 , ••. , Cn . If child C i were not good, it

Exercises

2.8
Normal Forms

Definition 2.8.1

Exercises 27

would have a finite number of descendants, say Ci. If none of C1 ,. .. , Cn
were good, N would have C1 + ... + Cn + n descendants, contradicting
the assumption that N had infinitely many descendants. Consequently,
some C i must be good. In brief, we have showed that a good node must
have a good child.

Now, the root node of T is good. It has a good child; pick one. It, in
turn, has a good child; pick one. And so on. Since the process never
stops, in this way we trace out an infinite branch of T. 0

The following is an amusing application of Konig's Lemma (see Smullyan
[49]). We are going to playa game involving balls labeled with positive
integers. There is no restriction on how many balls can have the same
number or on how big the numbers can be. Suppose, at the start, we
have a box containing just one ball. We are allowed to remove it and
replace it with as many balls as we please, all having lower numbers.
And this is also what we do at each stage of the game: Select a ball in
the box, remove it, and replace it with balls having lower numbers. For
instance, we could remove a ball labeled 27 and replace it with 1,000,000
26s. The problem is to show that, no matter how we proceed, eventually
we must remove all balls from the box.

2.7.1. Use Konig's Lemma to show we must empty the box out. (Hint:
Suppose we create a tree as follows: The nodes are all the balls that have
ever been in the box. The root node is the ball that is in the box at the
start. The children of a ball are the balls we replace it with.)

If propositional formulas are standardized, it is sometimes easier to es
tablish their tautologyhood or their satisfiability. In fact, most auto
mated theorem-proving techniques convert formulas into some kind of
normal form as a first step. We have already met one normal form,
negation normal form, but it does not have enough structure for many
purposes. In this section we introduce two more normal forms, both built
on the following idea: Since the behavior of all Primary Connectives can
be described in conjunctive/disjunctive terms, we will eliminate all other
binary connectives in favor of just conjunctions and disjunctions. The
conjunction operation /\ is commutative and associative. Consequently,
in a conjunction of many items, placement of parentheses and order
does not really matter and similarly for disjunction. So, we begin by
introducing generalized conjunction and disjunction notation.

Let Xl, X 2 , ••• , Xn be a list of propositional formulas (possibly empty).
We define two new types of propositional formulas as follows:

28 2. Propositional Logic

(XI ,X2 , ... ,Xn) is the generalized conjunction of Xl, X 2 , ••• ,

X n ·

If v is a Boolean valuation, then in addition to the original conditions,
we also require

V([XI ,X2 , ••• ,Xn]) = t if v maps some member of the list Xl,
X 2 , . .. , Xn to t, V([XI' X 2 , • .. ,Xn]) = f otherwise;

v((Xl, X 2 , •.. , Xn)) = t if v maps every member of the list Xl,
X 2 , ... , Xn to t, v((Xl, X 2 , ••• , Xn)) = f otherwise.

The case of the empty list is a little tricky. For every Boolean valuation
v, v([]) = f because, for v to map [1 to t, it must map some member
of [1 to t, and there aren't any members. Consequently, [1 == ..1 is a
tautology. Similarly, () == T is a tautology. One- and two-member lists
are more straightforward: [Xl == X and (X) == X are both tautologies,
as are [X, Yl == X V Y and (X, Y) == X /\ Y.

To keep special terminology at a minimum, we will use the term con
junction to mean either a binary conjunction, as in earlier sections, or a
generalized conjunction. Context will generally make our meaning clear;
if it does not, we will say so. We reserve the term ordinary formula to
mean one without generalized conjunctions and disjunctions (and, for
that matter, not containing secondary connectives, except as abbrevia
tions). The Replacement Theorems, 2.5.1 and 2.5.2, extend to include
generalized conjunctions and disjunctions. We make use of this, but omit
the proof. The essential items needed are left to you as an exercise.

Resolution theorem proving is built around the notion of a clause. We
are about to define this. At the same time we define what we call a dual
clause. This terminology is not standard, but it will play for semantic
tableaux the role that clauses play for resolution.

Definition 2.8.2 A literal is a propositional letter or the negation of a propositional letter,
or a constant, T or ..i.

Definition 2.8.3 A clause is a disjunction [Xl, X 2 , •.• , Xnl in which each member is a lit
eral. A dual clause is a conjunction (Xl, X 2 , ••• , Xn) in which each mem
ber is a literal. A propositional formula is in conjunctive normal form or
is in clause form or is a clause set if it is a conjunction (GI , G2 , ... , Gn)

in which each member is a clause. A propositional formula is in disjunc
tive normal form or is in dual clause form or is a dual clause set if it is
a disjunction [DI' D 2 , ••• , Dnl in which each member is a dual clause.

2.8. Normal Forms 29

For example, ([P, ...,Q], [T, R, ...,8], [l) is in clause form. Under a Boolean
valuation, it will be treated as a conjunction, each term of which is a
disjunction of literals, and similarly for dual clause form. Notice, by the
way, that all conjunctive and all disjunctive normal form formulas are
also in negation normal form.

Theorem 2.8.4 (Normal Form) There are algorithms for converting an ordinary
propositional formula into clause form and into dual clause form.

The proof of this will, more or less, occupy the rest of the section. We
begin with the algorithm for converting a formula into clause, or con
junctive normal form. Say the ordinary formula to be converted is X.
We describe a sequence of steps, each of which produces a conjunction,
whose members are disjunctions. The last step of the sequence is a con
junctive normal form. The algorithm is non-deterministic; at each stage
there are choices to be made of what to do next. We will show the
algorithm works no matter what choices are made.

Step 1. Start with ([Xl).

Now, having completed step n, producing (Dl, D 2 , ••• ,Dk), where the
members Di are disjunctions, if we do not yet have conjunctive normal
form, go on to the following:

Step n + 1. Select a member, D i , which contains some non-literal; select
a non-literal member, say N, and:

If N is ..., T replace N with J....
If N is ...,J... replace N with T.
If N is ...,...,Z replace N with Z.
If N is a .8-formula, replace N with the two formula se

quence .81,.82,
If N is an a-formula, replace the disjunction Di with two

disjunctions, one like Di but with a replaced by a1 and one
like Di but with a replaced by a2.

This constitutes a complete description of the algorithm. We can present
it somewhat more perspicuously if we first introduce some reduction
rules. We give these in Table 2.3.

These rules are to be thought of as rewrite rules for conjunctions of
disjunctions. More specifically, if 8 is a conjunction, with a member D
that is a disjunction, and if N is a member of D, then if N is ...,...,Z,
N may be replaced with Z, and similarly for the cases where N is ..., T
and ..., . .1. If N is.8, N may be replaced with the two formulas.81 and .82.
Finally, if N is a, then D itself may be replaced with the two disjunctions

30 2. Propositional Logic

"z ,T ,..1 f3
Z ..1 T f31

f32

TABLE 2.3. Clause Set Reduction Rules

Dl and D 2 , where Dl is like D except that 0: has been replaced with
aI, and D2 is like D but with a replaced with 0:2. Now, the key fact
concerning these rules can be easily stated and verified.

Lemma 2.8.5 (Conjunctive Rewrite) If S is a conjunction of disjunctions, and
one of the clause set reduction rules is applied to S, producing S*, then
S == S* is a tautology.

Proof This follows easily from Exercise 2.8.1, the fact that a == (alAa2)
and /3 == (/31 V /32) are tautologies, and the Replacement Theorem. 0

Using the Clause Set Reduction Rules, the algorithm given previously
can be stated in a simpler schematic form.

Clause ForITl AlgorithITl To convert the ordinary propositional for
mula X to clause form,

Let S be ([Xl)

While some member of S contains a non-literal do

select a member D of S containing a non-literal

select a non-literal N of D

apply the appropriate clause set reduction rule

to N in D producing a new S

end.

Example The following is a conversion of

(p:J (Q :J R)) :J ((P :J Q) :J (P :J R))

into clause form using the Clause Form Algorithm. Make sure you can
justify the steps. Note that there is considerable redundancy in the final
result. This can be eliminated, but we do not do so now.

1. ([(p:J (Q :J R)) :J ((P :J Q) :J (P :J R))))

2.8. Normal Forms 31

2. ([--.(P:) (Q :) R», ((P :) Q) :) (P :) R»)])

3. ([--.(P:) (Q :) R», --.(P :) Q), (P :) R)])

4. ([--.(P:) (Q:) R»,--.(P:) Q),--.P,R])

5. ([P, --.(P :) Q), --.P, RJ, [--.(Q :) R), --.(P :) Q), --.P, R])

6. ([P, P, --.P, R], [P, --.Q, --.P, R], [--.(Q :) R), --.(P :) Q), --.P, R])

7. ([P, P, --.P, R], [P, --.Q, --.P, RJ, [Q, --.(P :) Q), --.P, R],
[--.R, --.(P :) Q), --.P, R])

8. ([P, P, --.P, R], [P, --.Q, --.P, R], [Q, P, --.P, R], [Q, --.Q, --.P, R],
[--.R, --.(P :) Q), --.P, R])

9. ([P, P, --.P, R], [P, --.Q, --.P, RJ, [Q, P, --.P, RJ, [Q, --.Q, --.P, RJ,
[--'R, P, --.P, RJ, [--.R, --.Q, --.P, R])

Merely giving an algorithm is not enough; we must verify that it works
the way we think it should. Specifically, we must consider correctness
and termination. Correctness says that if the algorithm halts, then it
halts with the right answer. The termination question is, Under what
circumstances will the algorithm halt? We will have to deal with such
issues frequently, so we take some extra space now to introduce general
methods that have been developed in the area of program verification.

Informally, a loop invariant for a while-loop W is an assertion A having
the property that, if it is true, and the body of the loop W is executed,
then A is still true. Since the execution of the loop body can alter values
of variables, the 'meaning' of A afterward may not be the same as before.
For A to be a loop invariant, it is the truth of A that must be preserved.
Here is a useful form of mathematical induction, specially tailored for
program verification.

Induction Principle for While Loops If A is true at the first entry
into a while loop, and if A is a loop invariant for that while loop, then
A will be true when the loop terminates (if ever).

Say we execute the Clause Form Algorithm, starting with the propo
sitional formula X. Let A be the assertion: S is a conjunction, whose
members are disjunctions, and S == X is a tautology. The algorithm
makes an assignment of an initial value to S of ([X]), and this trivially
makes assertion A true at the first entry into the while loop. It follows
from the Conjunctive Rewrite Lemma that A is a loop invariant. Then
A must be true at termination as well. But the termination condition is
that only literals are present. It follows that at termination S must be

32 2. Propositional Logic

in conjunctive normal form, and equivalent to X; that is, correctness of
the Clause Form Algorithm is established.

The Clause Form Algorithm permits choices to be made in the while-loop
body, and hence there may be several different ways of executing it. In
other words, it has a non-deterministic character. What we mean by ter
mination for a non-deterministic algorithm must be carefully specified.
One possibility is that at least one way of executing the algorithm must
terminate. This is what is generally thought of when non-deterministic
algorithms are considered. We will refer to this as weak termination.
One reason non-deterministic algorithms are viewed with some disfavor
is that they often only weakly terminate: We have termination if the
right choices are made at each step, otherwise not. First-order theorem
proving algorithms are generally of this nature, which is one reason why
the subject is so difficult. But in the present case, we can do much better:
No matter what choices are made in executing the Clause Form Algo
rithm, it must terminate. We will refer to this as strong termination.
Strong termination allows us to impose a wide variety of heuristics on
what choices to make, without affecting termination. It is a very nice
state of affairs, indeed.

Our proof of strong termination is based on Konig's Lemma. In fact,
the application of Konig's Lemma at the end of Section 2.7 to show ter
mination of the game involving numbered balls is exactly what we need
here. In Definition 2.6.5 we defined the rank of an ordinary propositional
formula. Suppose we extend this and define the rank of a generalized
disjunction of propositional formulas to be the sum of the ranks of the
individual propositional formulas. Now associate with each generalized
conjunction S whose members are generalized disjunctions a box B of
numbered balls in the following simple way. For each generalized dis
junction D in S, if the rank of D is positive, put a ball in B labeled
with the rank of D. We leave it to you to check that each pass through
the loop in the Clause Form Algorithm corresponds exactly to taking a
ball from the box B associated with S and replacing it with either two
balls with lower numbers (in the a-case) or with one ball with a lower
number (in all other cases). By Exercise 2.7.1, no matter how we pro
ceed, eventually the box must empty out. The only way this can happen
is if S has been converted into a generalized conjunction all of whose
members have rank 0, which means only literals are present. But this is
the termination condition for the loop.

We have now finished the proof of the conjunctive half of the Normal
Form Theorem. With this behind us, the disjunctive half can be dealt
with more swiftly. We begin with a new set of reduction rules, given in
Table 2.4, suitable for converting formulas into dual clause form. Essen
tially, a and f3 have switched roles from the Clause Set Reduction Rules.

Exercises 33

---.---.z ---.T ---.~ {3
Z ~ T

TABLE 2.4. Dual Clause Set Reduction Rules

This time the rules are to be thought of as rewrite rules for disjunctions
of conjunctions. If S is a disjunction, with a member C, which is a
conjunction, and if N is a member of C, then if N is ---.---.Z, N may be
replaced with Z, and similarly for the cases where N is ---. T and ---.~. If
N is ct, N may be replaced with the two formulas ctl and ct2' And if N
is /3, then C itself may be replaced with the two conjunctions Cl and
C2 , where Cl is like C except that /3 has been replaced with /31, and C2
is like C but with /3 replaced with /32.

Lemma 2.8.6 (Disjunctive Rewrite) If S is a disjunction of conjunctions, and

Exercises

one of the Dual Clause Set Reduction Rules is applied to S, producing
S*, then S == S* is a tautology.

Dual Clause Form Algorithm To convert the ordinary propositional
formula X to dual clause form,

Let S be [(X)]

While some member of S contains a non-literal do

select a member C of S containing a non-literal

select a non-literal N of C

apply the appropriate dual clause set reduction rule

to N producing a new S

end.

2.8.1. Show that the following are tautologies (n or k may be 0):

1. [AI,.'" An, (U V V), B l , ... , B k] == [AI, ... , An, U, V, Bl, ... , Bk]'

2. [Al, ... ,An,(U /\ V),Bl, ... ,Bk] ==
([AI"'" An, U, B l , ... , Bk]/\ [AI, ... , An, V, B l , ... , Bk])'

3. (AI"'" An, (U /\ V), B l , ... , B k) == (AI, ... , An, U, V, B l , ... , Bk)'

34 2. Propositional Logic

4. (AI, ... ,An,(UVV),BI, ... ,Bk/ ==
((AI,". ,An' U, B I , .. · ,Bk/ V (AI,'" ,An' V,BI , ... ,Bk/).

2.8.2. The duality principle extends. Show the following are tautolo
gies:

1. -.[XI , ... , XnJ == (-,XI, ... , -,Xn/'

2. -.(XI , ... , X n! == [-.XI , ... , -'XnJ.

2.8.3. Show that if X == Y is a tautology, so are

1. [AI, ... , An, X, B I , ... , BkJ == [AI"'" An, Y, B I , ... , BkJ.

2. (AI, ... , An, X, B I , ... , Bk/ == (AI, ... , An, Y, B I ,··., B k/.

2.8.4. Apply the Clause Form Algorithm and convert the following
into clause form:

1. P V -.P.

2. P /\ -.P.

3. (P 1 Q)I -.(P 1 Q).

4. -.((p:::J (Q :::J R)) :::J ((P :::J Q) :::J (P :::J R))).

5. (P c (Q r R)) 1 -.P.

2.8.5. Prove Lemma 2.8.6.

2.8.6. Apply the Dual Clause Form Algorithm to convert the formulas
of Exercise 2.8.4.

2.8.7. Establish the correctness and strong termination of the Dual
Clause Form Algorithm.

2.9
Normal Form

Implementa

tions

2.9. Normal Form Implementations 35

Now that we have algorithms for converting formulas into clause and
dual clause forms, we want to embody these algorithms in programs.
We have chosen the language Prolog for this job because it lets us get
to the heart of the matter with a minimum of preliminary detail. We do
not discuss the general ideas of programming in Prolog; several readily
available books do this. A recommended standard here is provided by
Clocksin and Mellish [10]; another more advanced work is Sterling and
Shapiro [51].

Prolog allows one to define 'operators.' Essentially, this is a matter of
convenient syntax. For example, we can specify that the name and will
always be used as an infix binary connective, and hence p and q will be
meaningful. Prolog also allows one to specify an order of precedence and
whether infix operators will be left or right associative. In the implemen
tation that follows we specify neg to be a prefix operator, which we use
to stand for --, (we do not use not, because this already has a meaning
in most Prologs). For the Primary Connectives, we use and for !\, or for
V, imp for ~, revimp for C, uparrow for i, downarrow for 1, notimp for
1;, and notrevimp for rt. We assume all occurrences of == and t= have
been translated away. neg is defined to have a precedence of 140. The
Primary Connectives are all defined to be infix, right associative, and
are given precedences of 160. All this is done at the beginning of the
program, using the op predicate. The precedence numbers selected may
need to be changed for different Prolog implementations, and the syntax
appropriate for the op predicate varies somewhat too. Apart from this,
the program should work as written in any 'Edinburgh syntax' Prolog.

Before giving the Prolog program, a word about its abstract structure
may help. Suppose we call a directed graph well-founded if, for each
node a, every path starting at a is finite. Starting at any node in such
a graph, at a, say, there is at least one maximal path, which begins at
a and ends at a node with only incoming edges, and we can find such
a path by simply following edges until we can't do so any further. Now,
suppose we have clauses for a Prolog predicate that generates the edges
of a well-founded, directed graph; say the predicate edge (X, Y) is true
exactly when X and Yare nodes and there is an edge from X to Y. Then
there is a simple, and standard, way of writing a graph search program
to find maximal paths. We just add the following clauses:

path(X, Y) :- edge(X, Z), path(Z, y).

path(X, X).

Now consider the following graph: The nodes are disjunctions of conjunc
tions. There is an edge from node One to node Two if the application of
a single Dual Clause Set Reduction Rule will turn One into Two. (This
corresponds to a single pass through the while loop of the Dual Clause

36 2. Propositional Logic

Form Algorithm.) The Dual Clause Form Algorithm is correct, and this
amounts to saying that if we start at a node and follow edges until we
reach a node with only incoming edges, that node will be a dual clause
form of the node at which we started. Also, the Dual Clause Form Al
gorithm strongly terminates, and this amounts to saying that the graph
we have created is well-founded.

Now, the Prolog program is easily described. The singlestep predicate
generates edges in the graph just described. We want to find maximal
paths. The predicate that corresponds to path is now called expand, for
obvious reasons. Finally, there is a 'driver' predicate, dualclauseform,
that simply takes an ordinary formula X, turns it into the equivalent of
[(X)], and calls on the expand predicate. For convenience both general
ized conjunctions and generalized disjunctions are represented as lists;
context can easily determine which is meant. So, finally, to use the pro
gram for converting a formula x to dual clause form, enter the query
dualclausef orm (x, V), where V is a Prolog variable. Prolog will return
a value for V that is a list of the dual clauses making up the dual clause
form.

1* Dual Clause Form Program

Propositional operators are: neg, and, or, imp, revimp,
uparrow, downarrow, notimp and notrevimp.

?-op(140, fy, neg).
?-op(160, xfy, [and, or, imp, revimp, uparrow, downarrow,

not imp , notrevimp]).

1* member (Item, List) :- Item occurs in List.
*1

member (X, [X
member (X, [_

-]) .
Tail]) :- member (X , Tail).

1* remove (Item, List, Newlist) :-
Newlist is the result of removing all occurrences of
Item from List.

remove (X, [], []).
remove(X, [X I Tail], Newtail)

remove (X, Tail, Newtail).
remove (X, [Head I Tail], [Head I Newtail])

2.9. Normal Form Implementations 37

remove(X, Tail, Newtail).

1* conjunctive (X) :- X is an alpha formula.
*1

conjunctive(_ and _).
conjunctive(neg(_ or _)).
conjunctive(neg(_ imp _)).
conjunctive(neg(_ revimp _)).
conjunctive(neg(_ uparrow _)).
conjunctive(_ downarrow _).
conjunctive(_ notimp _).
conjunctive(_ notrevimp _).

1* disjunctive (X) :- X is a beta formula.
*1

disjunctive(neg(_ and _)).
disjunctive(_ or _).
disjunctive(_ imp _).
disjunctive(_ revimp _).
disjunctive(_ uparrow _).
disjunctive(neg(_ downarrow _)).
disjunctive(neg(_ notimp _)).
disjunctive(neg(_ notrevimp _)).

1* unary (X) :- X is a double negation,
or a negated constant.

unary(neg neg _).
unary(neg true).
unary(neg false).

1* components (X, Y, Z) Y and Z are the components
of the formula X, as defined in the alpha and
beta table.

components(X and Y, X, Y).
components(neg(X and Y), neg X, neg Y).
components(X or Y, X, Y).
components(neg(X or Y), neg X, neg Y).
components(X imp Y, neg X, Y).
components(neg(X imp Y), X, neg Y).

38 2. Propositional Logic

components(X revimp Y, X, neg Y).
components(neg(X revimp Y), neg X, y).

components(X uparrow Y, neg X, neg y).

components(neg(X uparrow Y), X, y).

components(X downarrow Y, neg X, neg Y).
components(neg(X downarrow Y), X, Y).
components(X notimp Y, X, neg Y).
components(neg(X notimp Y), neg X, Y).
components(X notrevimp Y, neg X, Y).
components(neg(X notrevimp Y), X, neg Y).

1* component(X, Y) Y is the component of the
unary formula X.

component(neg neg X, X).
component(neg true, false).
component(neg false, true).

1* singlestep(Old, New) :- New is the result of applying
a single step of the expansion process to Old, which
is a generalized disjunction of generalized
conjunctions.

singlestep([Conjunction I Rest], New)
member (Formula, Conjunction),
unary (Formula) ,
component (Formula, Newformula),
remove (Formula, Conjunction, Temporary),
Newconjunction = [Newformula I Temporary],
New = [Newconjunction I Rest].

singlestep([Conjunction Rest], New)
member (Alpha , Conjunction),
conjunctive (Alpha) ,
components (Alpha, Alphaone, Alphatwo),
remove (Alpha, Conjunction, Temporary),
Newcon = [Alphaone, Alphatwo I Temporary],
New = [Newcon I Rest].

singlestep([Conjunction I Rest], New)
member(Beta, Conjunction),
disjunctive (Beta) ,
components (Beta, Betaone, Betatwo),

Exercises

remove(Beta, Conjunction, Temporary),
Newconone = [Betaone I Temporary],
Newcontwo = [Betatwo I Temporary],
New = [Newconone, Newcontwo I Rest].

Exercises 39

singlestep([ConjunctionIRest], [ConjunctionINewrest])
singlestep(Rest, Newrest).

1* expand(Old, New) :- New is the result of applying
singlestep as many times as possible, starting
with Old.

expand(Dis, Newdis) :
singlestep(Dis, Temp),
expand (Temp , Newdis).

expand(Dis, Dis).

1* dualclauseform(X, Y)
*1

dualclauseform(X, Y)

Y is the dual clause form of X.

expand([[X]], Y).

2.9.1 p. Write a Prolog program for converting a propositional formula
into clause form.

2.9.2P . Write a Prolog program implementing the algorithm for con
verting a propositional formula into negation normal form that was pre
sented at the end of Section 2.5.

2.9.3P . Write a Prolog program for translating away occurrences of
== and ¢.

2.9.4P • Write a Prolog program implementing the degree function
defined in Exercise 2.2.2 and another implementing the rank function
defined in Definition 2.6.5.

3 __________________________________ _

Semantic Tableaux and Resolution

3.1
Propositional

Semantic

Tableaux

We will present several proof procedures for propositional logic in this
chapter and the next. Two of them are especially suitable for automa
tion: resolution [42] and semantic tableaux [48]. Of these, resolution is
closely connected with conjunctive normal or clause forms, while the se
mantic tableaux system is similarly connected with disjunctive normal
or dual clause forms. We discuss semantic tableaux rules in this section
and resolution in Section 3.3. We begin with a general description that
is suited to either hand or machine implementation and give a Prolog
implementation in Section 3.2.

Both resolution and tableaux are refutation systems. To prove a formula
X, we begin with oX and produce a contradiction. The procedure for
doing this involves expanding oX so that inessential details of its logical
structure are cleared away. In tableaux proofs, such an expansion takes
the form of a tree, where nodes are labeled with formulas. The idea is
that each branch should be thought of as representing the conjunction
of the formulas appearing on it and the tree itself as representing the
disjunction of its branches.

To begin, we restate the Dual Clause Set Reduction Rules from Sec
tion 2.8, but now we call them Tableau Expansion Rules. They are given
in Table 3.1

Next we say something about how the rules in Table 3.1 are intended
to be applied. Basically, they allow us to turn a tree with formulas as
node labels into another such tree. Suppose we have a finite tree T with

42 3. Semantic Tableaux and Resolution

TABLE 3.1. Tableau Expansion Rules

nodes labeled by propositional formulas. Select a branch e and a non
literal formula occurrence X on e. If X is "Z, lengthen e by adding a
node labeled Z to its end. Similarly, if X is ,T, add ~, and if X is ,~,
add T. If X is a, add a node to the end of e labeled a1 and another node
after that labeled a2. Finally, if X is /3, add left and right children to the
final node of e, and label one /31 and the other /32' Call the resulting tree
T*. We say T* results from T by the application of a Tableau Expansion
Rule. If it is necessary to be more specific, we may say T* results from
the application of the a-rule, or whichever, to formula occurrence X on
branch e.
Now we define the notion of a tableau. Our definition is a little more
general than we need at the moment since we allow finite sets of formulas
at the start. The added generality will be of use when we come to prove
completeness. The definition is a recursive one.

Definition 3.1.1 Let {All"" An} be a finite set of propositional formulas.

1. The following one-branch tree is a tableau for {A 1 , ••. , An}:

2. If T is a tableau for {A 1 , ... , An} and T* results from T by the
application of a Tableau Expansion Rule, then T* is a tableau for
{A1 , ... ,An}.

Example Figure 3.1 shows a tableau for {P 1 (Q V R), ,(Q 1\ 'R)}. The numbers
are not an official part of the tableau but have been added to make
talking about it easier. In this tree, 1 and 2 make up the set the tableau
is for; 3 and 4 are from 2 by the /3-rule; 5 is from 4 by the " rule; 6
and 7 are from 1 by the a-rule; 8 and 9 are from 7 by the a-rule. Notice
that we never applied the a rule to 1 on the right-hand branch. Also,
we chose to apply a rule to 2 before we did to 1.

3.1. Propositional Semantic Tableaux 43

1. p HQv R)
2,(Q /\,R)

A
3.,Q 4,....,R

6,p 5. R

7.,(Q V R)
8.,Q

9.,R

FIGURE 3.1. Tableau for {P ! (Q V R),,(Q /\,R)}

Definition 3.1.2 A branch () of a tableau is called closed if both X and,X occur on () for
some propositional formula X, or if ...L occurs on (). If A and,A occur
on () where A is atomic, or if ...L occurs, () is said to be atomically closed.
A tableau is (atomically) closed if every branch is (atomically) closed.

As we remarked earlier, both tableau and resolution-style proofs are
refutation arguments. That is, a proof of X amounts to a refutation of
....,X.

Definition 3.1.3 A tableau proof of X is a closed tableau for {....,X}. X is a theorem of the
tableau system if X has a tableau proof. We will write I-pt X to indicate
that X has a propositional tableau proof.

Example Figure 3.2 shows a tableau proof (with numbers added for reference) of
[(p:J (Q :J R)) :J «P V S) :J «Q :J R) V S))]. In it, 1 is the negation
of the formula to be proved; 2 and 3 are from 1 by Q; 4 and 5 are from
3 by Q; 6 and 7 are from 5 by Q; 8 and 9 are from 2 by /3. 10 and 11 are
from 4 by /3. Reading from left to right, the branches are closed because
of 8 and 10, 7 and 11, and 6 and 9. Notice that on one of the branches
closure was on a non-atomic formula.

Of course, we must establish that the tableau procedure does what we
want. To be precise, we must show soundness: anything provable is a
tautology (Section 3.4). And we must show completeness: all tautologies
have proofs (Section 3.7). Indeed, we will show a particularly strong ver
sion that says, as long as we eventually apply every Tableau Expansion
Rule once to every non-literal formula occurrence on every branch, we

44 3. Semantic Tableaux and Resolution

1. --.[(P ~ (Q ~ R)) ~ ((P V S) ~ ((Q ~ R) V S))]

2. P ~ (Q ~ R)

3. --.((PVS)~((Q~R)VS))

4. PvS
5. --.((Q ~ R) V S)

6. --.(Q ~ R)

7. --.S

A
8. --.P 9. Q ~ R

~
10. P 11. S

FIGURE 3.2. Proof of [(P ~ (Q ~ R)) ~ ((P V S) ~ ((Q ~ R) V S))]

will find a proof if one exists. We will also show that testing for closure
can be restricted to the level of literals without affecting completeness.

Tableau proofs can be very much shorter than truth table verifications.
As a trivial example, if X is a propositional formula with n propositional
variables, a truth table for XV--.X will have 2n lines, but a closed tableau
begins with --.(X V --.X), proceeds with the a rule to add --.X and --.--.X,
and is closed at this point (though it is not atomically closed). Further,
the tableau method extends easily to handle quantifiers, while the truth
table method does not.

The tableau rules are non-deterministic-they say what we may do, not
what we must do. They allow us to choose which formula to work with
next, on which branches. They allow us to skip formulas or use them
more than once. And they allow us to close branches at the atomic
level or at a more complex level if we can. People generally find this
freedom useful, and often judicious choices of rule applications can pro
duce shorter proofs than might be expected. On the other hand, when it
comes to incorporating the tableau system in a deterministic computer
program, some standardized order of rule applications must be imposed,
and various limitations on the basic tableau freedom will be necessary.
One limitation turns out to be very fundamental, and we discuss it now.
As we remarked, in constructing tableaux we are allowed to use formulas
over and over. For instance, if a occurs on a branch, we can add al and
a2, and later we can add al and a2 again, since a is still present. For
certain non-classical logics, this ability to reuse formulas is essential (see

3.1. Propositional Semantic Tableaux 45

Fitting [16]). But if we are allowed to reuse formulas, how do we know
when we should give up on a proof attempt? After all, there will always
be something we can try; if it didn't work before, maybe it will now.
Fortunately, for classical propositional logic, it is never necessary to use
a formula more than once on any branch. This makes the task of imple
menting tableaux easier. On the other hand, it makes the proof of tableau
completeness somewhat more work. If we allow the reuse of formulas,
completeness of the tableau system can easily be proved by a general
method, based on the Model Existence Theorem from Section 3.6, and
this same method allows us to prove the completeness of many other
types of proof procedures. If we impose a no-reuse restriction, the easy
general methods fail us, and we must introduce other techniques. Since
the restriction is so important, we introduce some special terminology
for it.

Definition 3.1.4 A tableau is strict if in its construction no formula has had a Tableau
Expansion Rule applied to it twice on the same branch.

In constructing strict tableaux by hand, we might keep track of which
formulas have had rules applied to them by simply checking them off
as they are used. But a formula occurrence may be common to several
branches, and we may have applied a rule to it on only one of them. An
easy way of dealing with this is to check the occurrence off but add fresh
occurrences at the ends of those branches where we have not used it.

A strictness restriction is of more importance for machine implementa
tion. In our implementation we will represent a tableau as a list of its
branches, and a branch as a list of its formulas. (This is the same data
structure we used for the Dual Clause Form Algorithm implementation.)
Using this representation a formula occurrence that is common to several
branches turns into multiple occurrences, in several lists. Then a strict
tableau construction is easy to keep track of: When we use a formula on
a branch, or list, we simply remove it. Notice that now Tableau Expan
sion Rule applications become identical with Dual Clause Set Reduction
Rule applications. There are some important differences, however. The
procedure here may produce a closed tableau before all possible Expan
sion Rules have been applied. In particular, we do not have to apply the
appropriate Tableau Expansion Rule on every branch that goes through
a given formula occurrence. This means that, by being clever about when
to check for closure and about which Tableau Expansion Rules to ap
ply, and when to apply them, we may be able to produce a short proof
instead of a long one. In other words, there is considerable scope for
heuristics.

(P /\(Q :J (RV 8))) :J (PVQ) is a theorem. Figure 3.3 gives two different
tableau proofs for this formula. Clearly, the right-hand proof is shorter

46 3. Semantic Tableaux and Resolution

Exercises

-.«P 1\ (Q ::J (R V 8))) ::J (P V Q))
P 1\ (Q ::J (R V 8))

-.(P V Q)
P
Q::J (R V 8)

A
-.Q Rv8
-.P A -.Q

R 8
-.P -.P
-.Q -.Q

-.((P 1\ (Q ::J (R V 8))) ::J (P V Q))
P 1\ (Q ::J (R V 8))

-.(P V Q)
P
Q::J (R V 8)

-.P
-.Q

FIGURE 3.3. Two Tableau Proofs of (P 1\ (Q ::J (R V 8))) ::J (P V Q)

than the left. And much more dramatic examples can be given. Now,
having raised the issue of heuristics, we abandon it for the time being.

3.1.1. Give tableau proofs of the following:

1. «p::J Q) 1\ (Q::J R))::J -.(-.RI\P).

2. (-.p::J Q) ::J «P ::J Q) ::J Q).

3. «p::J Q) ::J P) ::J P.

4. (P i P) i P.

5. -.«P 1 Q) 1 (P V Q)).

6. (-.p 1 -.Q) C -.(P i Q).

7. ««A::J B) ::J (-.0 ::J -.D)) ::J 0) ::J E) ::J «E ::J A) ::J (D ::J A)).

8. (P i (Q i R)) i «P i (R i P)) i «8 i Q) i «P i 8) i (P i 8)))).

9. (P i (Q i R)) i «(8 i R) i «P i 8) i (P i 8))) i (P i (P i Q))).

3.1.2. The exclusive-or connective, ¢" can be defined in terms of the
Primary Connectives:

(P ¢, Q) = «P 1\ -.Q) V (-.p 1\ Q)).

1. Using this definition, give a tableau proof that ¢, is commutative.

2. Similarly, give a tableau proof showing that ¢, is associative.

3.2
Proposition a I
Tableaux Im

plementations

3.2. Propositional Tableaux Implementations 47

In Section 3.7 we will prove completeness of the tableau procedure, and
in Section 3.8 we will show it remains complete even when several re
strictions are imposed. These restrictions are critical for successful im
plementation, so we discuss them briefly now.

First, all tableaux in this section will be strict. Second, the tableau
rules allow testing for branch closure at any time; we will show it is
enough to test for atomic closure only, and only after all possible Tableau
Expansion Rules have been applied.

Finally, the tableau rules are non-deterministic, but we will show they
have a certain strong completeness property. The order in which the
rules are applied doesn't matter, as long as we eventually try everything
once. This means we still have considerable freedom for the imposition
of heuristics.

Incidentally, we represent a tableau itself as a list of its branches, and
a branch as a list of its formulas. If we discover that a branch is closed,
we remove it from the list. Then the empty list of branches represents a
closed tableau.

If we apply all the Tableau Expansion Rules we can, removing the for
mulas to which they have been applied, what we are doing is producing a
Dual Clause Form expansion. We already have the Dual Clause program
of Section 2.9, so all we have to do is add a test for closure. Consequently,
a tableau theorem prover can be produced very simply as follows: Begin
with the program from Section 2.8, and remove the Prolog clause for
dualclauseform, which we will not need now. Then add the following
clauses that test a tableau for closure:

1* closed(Tableau) :- every branch of Tableau contains a
contradiction.

closed([Branch I Rest]) :
member(false, Branch),
closed(Rest).

closed([Branch I Rest]) :
member (X , Branch),
member(neg X, Branch),
closed(Rest) .

closed([]).

Now, all we have to do is expand, using the expand predicate from the
earlier program, then test the result for closure. The following will do
the job.

48 3. Semantic Tableaux and Resolution

/* test(X) :- create a complete tableau expansion
for neg X, and see if it is closed.

test(X)
expand([[neg XJJ, Y),
closed(Y).

The test predicate has an efficiency problem (though not a logical one).
If we use test on a formula that is provable, the calIon expand will suc
ceed, then the call on closed will also succeed, all as expected. On the
other hand, if we try this on something that is not provable, the calIon
expand will still succeed, but the call on closed will fail, causing back
tracking to expand. But expand can succeed in several ways (essentially
since dual clause forms are not unique), and closed will never succeed.
Consequently, before the program terminates in failure, it will be forced
to run through many ways of expanding into dual clause form. Since
we know it is enough to try only one such expansion, much unnecessary
work is being done. Clearly, this is a proper place for Prolog's cut !,
which prevents backtracking. The test clause should be replaced by the
following, which will be more efficient in cases involving a non-theorem:

test(X) :-
expand([[neg XJJ, Y),
I . ,
closed(Y).

It would be a little nicer if the program could respond with polite mes
sages, "yes, it's a theorem" or "no, it's not a theorem," say. This minor
improvement is most simply handled using an if-then-else construction.
This exists in some Prologs and is easily implemented in the rest. The
following clauses are taken from Sterling and Shapiro [51].

/* if_then_else(P, Q, R)
either P and Q, or not P and R.

*/

if_then_else(P, Q, R) P, I Q . . ,

if_then_else(P, Q, R) R.

Now, here is an improved version of the test predicate.

/* test(X) :- create a complete tableau expansion

test(X)

3.2. Propositional Tableaux Implementations 49

for neg X, if it is closed, say we have a
proof, otherwise, say we don't.

expand([[neg X]], Y),
if_then_else(closed(Y), yes, no).

yes :- write('Propositional tableau theorem'), nl.

no :- write('Not a propositional tableau theorem'), nl.

Notice that we no longer have a cut after expand. What follows it now is
not closed, which might or might not succeed, but iLthen_else, which
is written so that it always succeeds. Thus we not only get nicer responses
from our program; we have also made it a little more structured.

A notable inefficiency is still present, however. Say we want to prove
the tautology (P 1\ Q) V -,(P 1\ Q). A tableau for this will begin with
-,((P 1\ Q) V -,(P 1\ Q)), then using the a-rule, it will continue with the
two formulas -,(P 1\ Q) and -,-,(P 1\ Q). At this point the tableau is
closed, since one of these formulas is the negation of the other. But if we
use our program to find a proof, work continues beyond this point, since
the program must produce a complete expansion into dual clause form
before checking for closure. In this case not much extra work is required,
but we could just as well have asked for a proof of F V -,F where F is a
formula of great complexity. For such cases a version of the program that
checks for closure frequently might be desirable. It is easy to modify our
program so that it checks for closure after each application of a Tableau
Expansion Rule. First, remove the earlier Prolog clauses for expand, and
replace them by the following clauses for expand_and_close:

1* expand_and_close(Tableau) :-
some expansion of Tableau closes.

expand_and_close(Tableau)
closed(Tableau) .

expand_and_close(Tableau)
singlestep(Tableau, Newtableau), !,
expand_and_close(Newtableau) .

We noted the use of Prolog's cut, to prevent retries of tableau expansions.
We made use of the same device here, but this time we pass a cut after

50 3. Semantic Tableaux and Resolution

Exercises

every application of a single Tableau Expansion Rule. Just as before, the
program would be correct without this cut but would be less efficient.
Now, finally, replace the clause for test used by the following.

1* testCX) :- create a tableau expansion for neg X,
if it is closed, say we have a proof,
otherwise, say we don't.

testCX)
if_then_elseCexpand_and_closeC[[neg X]]), yes, no).

Which is the better program version? It depends. If one is trying to prove
a formula like F V,F, where F is very complicated, the version that
tests for closure frequently is clearly better. But for tautologies whose
proofs have no short-cuts, a program that tests often for closure would
be wasting time. Such tests are expensive, after all. So, which is better
depends on what you know about the formula. In other words, heuristics
playa role.

There is yet one more inefficiency left in the final version of the imple
mentation. Suppose a tableau construction has been carried out to the
point where there are five branches, four of which have closed. The predi
cate called expand_and_close will test the entire tableau for closure, find
it is not closed, then apply a Tableau Expansion Rule, and test the entire
tableau once again for closure. But there were four closed branches; they
will still be closed and need not have been checked again. As written,
these unnecessary closure checks must be made. A better version of the
program would remove a branch from the tableau whenever it has been
discovered to be closed, thus avoiding useless labor.

3.2.1 P • Write a modified version of the Prolog propositional tableau
program that removes closed branches from the tableau as it generates
it, thus avoiding redundant tests for closure.

3.2.2P • The connectives == and ¢. are not primary, and so the tableau
system implemented above cannot treat formulas containing them. They
can be added easily if we "cheat" a little, as follows. Think of X == Y
as an Ct, with Ctl being X :J Y and Ct2 being Y :J X. Likewise think of
....,(X == Y) as a {3 with (31 being,(X :J Y) and (32 being,(Y :J X).
The connective ¢. is treated similarly.

Modify the tableau implementation of this section so that == and ¢. can
appear in formulas, using the device just outlined.

3.3
Propositional

Resolution

3.3. Propositional Resolution 51

Tableau proofs are connected with the notion of Dual Clause Form. In
the same way, resolution proofs are related to Clause Forms. Indeed,
most common versions of resolution begin with a complete conversion
to clause form, followed by applications of what is called the Resolution
Rule. But, just as tableaux can close before a full conversion to Dual
Clause Form has been carried out, so too, the Resolution Rule can be
applied before we have reached Clause Form. Thus, we will begin by
describing a kind of non-clausal resolution; we discuss the more conven
tional version later.

Tableau proofs are presented as trees, where a branch stands for the
conjunction of the formulas on it, and the tree itself stands for the dis
junction of its branches. Thus, trees are convenient ways of displaying
generalized disjunctions of generalized conjunctions. Resolution involves
the dual notion: generalized conjunctions of generalized disjunctions.
This time trees are not convenient for graphical representation. Instead
we represent generalized disjunctions in the usual way, listing the dis
juncts within square brackets. And we represent a conjunction of dis
junctions by simply listing its members in a sequence, one disjunction
to a line. Then what takes the place of Tableau Expansion Rules are
rules for adding new lines, new disjunctions, to a sequence. We begin
by restating the Clause Set Reduction Rules, but this time we call them
Resolution Expansion Rules, Table 3.2.

-,-,z
z

-,T -,~

~ T

TABLE 3.2. Resolution Expansion Rules

The rules in Table 3.2 are intended to specify which disjunctions follow
from which. Suppose we have a disjunction D containing a non-literal
formula occurrence X. If X is -,-,Z, then a disjunction follows that is
like D except that it contains an occurrence of Z where D contained
-,-,Z. Similarly, if X is -, T or -,~. If X is (3, a disjunction follows that
is like D except that it contains occurrences of both (31 and (32 where
D contained (3. If X is a, two disjunctions follow, one like D but with
a replaced by aI, the other with a replaced by a2. In each case we say
the new disjunction (or disjunctions) follows from D by the application
of a Resolution Expansion Rule.

Example The following is a sequence of disjunctions in which each, after the first
two, follows from earlier lines by the application of a Resolution Expan
sion Rule:

52 3. Semantic Tableaux and Resolution

1. [Pl(QAR)]

2. [,(Q V (P ~ Q))]

3. [,P]

4. [,(Q A R)]

5. [,Q"R]

6. [,Q]

7. [,(P ~ Q)]

Here 3 and 4 are from 1 by a; 5 is from 4 by (3; and 6 and 7 are from 2
bya.

For tableaux we distinguished between strict and non-strict. We do the
same thing here and for the same reasons.

Definition 3.3.1 We call a sequence of Resolution Expansion Rule applications strict if
every disjunction has at most one Resolution Expansion Rule applied
to it.

The easiest way to ensure strictness is to check off a disjunction whenever
we apply a rule to it. The previous example is, in fact, strict.

Strict Resolution Expansion Rule applications allow no formula reuse,
non-strict ones do. Just as with tableaux, completeness of the non-strict
version of resolution can be proved easily and by general methods; com
pleteness of the strict version is more work and requires special tech
niques. But again, just as with tableaux, the strict version is by far the
one best suited for implementation.

Resolution Expansion Rules are familiar, under the name Clause Set
Reduction Rules. Now we introduce a rule of quite a different nature,
the Resolution Rule.

Definition 3.3.2 Suppose Dl and D2 are two disjunctions, with X occurring as a member
of Dl and ,X as a member of D 2 • Let D be the result of the following:

1. Deleting all occurrences of X from Dl

2. Deleting all occurrences of ,x from D2

3. Combining the resulting disjunctions

3.3. Propositional Resolution 53

We say D is the result of resolving Dl and D2 on X. We also refer to
D as the resolvent of Dl and D2, with X being the formula resolved on.
We also allow a trivial special case of resolution. If F is a disjunction
containing ..1, and D is the result of deleting all occurrences of ..1 from
F, we call D the trivial resolvent of F.

Example The result ofresolving [P, Q :::J R] and [AAB, -oP] on P is [Q :::J R, AAB].
The result of resolving [A A B] and [-o(A A B)] on A A B is the empty
clause []. The trivial resolution of [P, Q i R,..1] is [P, Q i R].

Propositional Resolution Rule D follows from the disjunctions Dl
and D2 by the Resolution Rule if D is the result of resolving Dl and D2
on some formula X. If X is atomic, we say this is an atomic application of
the Resolution Rule. Likewise, D follows from Dl by a trivial application
of the Resolution Rule if D is the trivial resolvent of D 1 .

There is no analog of strictness for the Resolution Rule. If we are not
allowed to use disjunctions more than once in Resolution Rule applica
tions, completeness can not be proved.

Next we define the notion of a Resolution Expansion. The definition is
a recursive one and a bit more general than we need just now.

Definition 3.3.3 Let {Al' A2 , •.• ,An} be a finite set of propositional formulas.

1.

is a Resolution Expansion for {Al' A2 , ••. , An}.

2. If S is a Resolution Expansion for {A l ,A2 , ••• ,An} and D results
from some line or lines of S by the application of a Resolution
Expansion Rule or the Resolution Rule, then S with D added as a
new last line is also a Resolution Expansion for {Al' A2 , ••• ,An}.

Recall from Section 2.8 that [] is always f under any Boolean valuation.
If we think of a resolution expansion as the conjunction of its lines, any
Resolution Expansion containing [] must also evaluate to f under every
Boolean valuation.

Definition 3.3.4 We call a Resolution Expansion containing the empty clause closed.

54 3. Semantic Tableaux and Resolution

Resolution, like the tableau system, is a refutation system. To prove X
we attempt to refute its negation.

Definition 3.3.5 A resolution proof of X is a closed resolution expansion for {,X}. X is
a theorem of the resolution system if X has a resolution proof. We will
write f-pr X to indicate that X has a propositional resolution proof.

Example The following is a (strict) resolution proof of «P /\ Q) V (R :> 8)) :>
«P V (R :> 8)) /\ (Q V (R :> 8))):

1. [,«(P /\ Q) V (R :> 8)) :> «P V (R :> 8)) /\ (Q V (R :> 8))))]

2. [(P /\ Q) V (R :> 8)]

3. [,«P V (R :> 8)) /\ (Q V (R :> 8)))]

4. [P /\ Q,R:> 8]

5. [P,R:> 8]

6. [Q,R:> 8]

7. [,(P V (R :> 8)), ,(Q V (R :> 8))]

8. [,P, ,(Q V (R :> 8))]

9. [,(R:> 8), ,(Q V (R :> 8))]

10. [,P"Q]

11. [,P, ,(R :> 8)]

12. [,(R:> 8), ,Q]

13. [,(R:> 8), ,(R :> 8)]

14. [P"Q]

15. [,Q]

16. [R:> 8]

17. []

In this, 2 and 3 are from 1 by a; 4 is from 2 by /3; 5 and 6 are from 4
by a; 7 is from 3 by /3; 8 and 9 are from 7 by a; 10 and 11 are from 8
by a; and 12 and 13 are from 9 by a. Now 14 is by the Resolution Rule
on R :> 8 in 5 and 12; 15 is by Resolution on P in 10 and 14; 16 is by
Resolution on Q in 6 and 15; and 17 is by Resolution on R :> 8 in 13
and 16. Note that not all Resolution Rule applications are at the atomic
level. This is not the only resolution proof for this formula. You might
try finding others.

Exercises

3.4
Soundness

Exercises 55

As we remarked earlier, the resolution system is complete even if all Res~
olution Rule applications are atomic and follow all Resolution Expansion
Rules, applications of which are strict. Further, just as with tableaux,
as long as all possible Resolution Expansion Rules and all possible Res
olution Rule applications get made in a proof attempt, a proof must be
found if one exists. We will prove all this later, but use can be made of
it now in implementing a resolution theorem prover.

3.3.1. Redo Exercise 3.1.1, but giving resolution instead of tableau
proofs.

3.3.2. Redo Exercise 3.1.2 on the exclusive-or connective, using reso
lution instead of tableaux.

3.3.3P • Write a resolution theorem prover in Prolog. Use the tableau
program in Section 3.2 as a starting point.

A proof procedure for propositional logic is called sound if it can prove
only tautologies. In effect this is a correctness issue; we want theorem
proving algorithms to give no incorrect answers. We will show soundness
in some detail for the tableau system and leave the resolution version as
a series of exercises. Incidentally, if we show the basic tableau or resolu
tion system is sound, it remains sound no matter what restrictions we
impose, because restrictions can only have the effect of making it im
possible to prove certain things. Consequently, we prove soundness with
no restrictions. It follows that resolution and tableaux with strictness
requirements are also sound, for instance.

Any algorithm based on the tableau system will have the general form:
Begin with some initial tableau, then keep applying Tableau Expan
sion Rules in some order until a closed tableau is generated. Our proof
of soundness is based on the following simple idea: We define what it
means for a tableau to be satisfiable, then we show that satisfiability
is a loop invariant. From this, soundness will follow easily. The defini
tion of satisfiability is straightforward, once we remember the connection
between tableaux and disjunctions of conjunctions.

Definition 3.4.1 A set S of propositional formulas is satisfiable if some Boolean valuation
maps every member of S to t. A tableau branch (J is satisfiable if the set
of propositional formulas on it is satisfiable. A tableau T is satisfiable if
at least one branch of T is satisfiable.

Proposition 3.4.2 Any application of a Tableau Expansion Rule to a satisfiable tableau
yields another satisfiable tableau.

56 3. Semantic Tableaux and Resolution

Proof Suppose T is a satisfiable tableau, and a Tableau Expansion Rule
is applied to formula occurrence X on branch () of T, producing a tableau
T*. We must show T* is also a satisfiable tableau. The proof has several
cases and subcases, all of which are simple. Since T is satisfiable, T has
at least one satisfiable branch. Choose one, say it is branch T.

Case 1 T =1= (). Then since a rule was applied only to (), T is still a
branch of T*, hence T* is satisfiable.

Case 2 T = (). Then () itself is satisfiable, say the Boolean valuation
v maps all formulas on () to t. Now we have subcases depending on
which Rule was applied to the formula occurrence X.

Subcase 2a X = a. Then () was extended with al and a2 to
produce T*. Since a occurs on (), v(a) = t. By Proposition 2.6.1,
v(a) = v(al) 1\ v(a2); hence, v must map both al and a2 to t.
Consequently, v maps every formula on the extension of () in T*
to t, and thus, T* is satisfiable.

Subcase 2b X = {3. Then left and right children were added to
the last node of (), one labeled {3I and one labeled {32, to produce
T*. Since (3 occurs on (), v({3) = t. But v({3) = V({3I) V V({32),
hence one of {3I or {32 must be mapped to t by v. It follows
that either every formula on the left-hand branch extending () is
mapped to t by v, or else every formula on the right-hand branch
extending () is mapped to t. In either event, T* has a satisfiable
branch and hence is a satisfiable tableau.

The other subcases, corresponding to X being --.--.Z, --. Tor --...1.., are
treated by straightforward arguments. We omit these. 0

Proposition 3.4.3 If there is a closed tableau for a set S, then S is not satisfiable.

Proof Suppose there is a closed tableau for S, but S is satisfiable; we
derive a contradiction. The construction of a closed tableau for S begins
with an initial tableau consisting of a single branch whose nodes are
labeled with members of S. Since S is satisfiable, this initial tableau is
satisfiable. By Proposition 3.4.2, every subsequent tableau we construct
must also be satisfiable, including the final closed tableau. But there are
no closed, satisfiable tableaux. 0

Theorem 3.4.4 (Propositional Tableau Soundness)
If X has a tableau proo/, then X is a tautology.

Proof A tableau proof of X is a closed tableau for {--.X}. By the pre
ceding proposition, if there is a closed tableau for {--.X}, then {--.X} is
not a satisfiable set. It follows that X is a tautology. 0

Exercises 57

Next we turn to resolution. Essentially, we simply apply ideas that are
dual to those we used for tableaux.

Definition 3.4.5 A resolution expansion is satisfiable if some Boolean valuation maps
every line of it to t.

If we think of a tableau as a graphical representation of a generalized
disjunction (of branches) of generalized conjunctions (of formulas on a
branch), then satisfiability for a tableau simply means some Boolean
valuation maps it to t. In a similar way, if we think of a resolution
expansion as a generalized conjunction, of its disjunctions, satisfiability
again means some Boolean valuation maps it to t.

Proposition 3.4.6 Any application of a Resolution Expansion Rule or the Resolution Rule to
a satisfiable Resolution Expansion yields another satisfiable Resolution
Expansion.

Proposition 3.4.7 If there is a closed Resolution Expansion for a set S, then S zs not
satisfiable.

Theorem 3.4.8 (Propositional Resolution Soundness)

Exercises

If X has a resolution proof, then X is a tautology.

3.4.1. Show that a closed tableau is not satisfiable.

3.4.2. Prove Proposition 3.4.6.

3.4.3. Prove Proposition 3.4.7.

3.4.4. Prove Theorem 3.4.8.

58 3. Semantic Tableaux and Resolution

3.5
Hintikka's
Lemma

Definition 3.5.1

We must show completeness of both the propositional tableau and reso
lution systems. That is, we must show that each tautology actually has a
proof in these systems. There are many ways of doing this. For instance,
the similarity between tableau construction in Section 3.1 and the Dual
Clause Form Algorithm from Section 2.8 is more than coincidence. If an
attempted tableau proof does not terminate in closure, it will terminate
with a Dual Clause Form, and a proof of completeness can be based
on this. The problem is that such a method does not extend readily to
first-order logic. So rather than using this here, we take a more abstract
approach that does generalize well, though it may seem like overkill for
the propositional case. We begin by proving the propositional version of
a Lemma that is due to Hintikka; we will see more elaborate versions of
it in later chapters.

A set H of propositional formulas is called a propositional Hintikka set,
provided the following:

1. For any propositional letter A, not both A E H and -,A E H.

2. ..1.. rt H; -, T rt H.

3. -,-,Z E H =} Z E H.

4. a E H =} a1 E Hand a2 E H.

5. /3 E H =} /31 E H or /32 E H.

For example, the empty set is trivially a Hintikka set. The set of all
propositional variables is a Hintikka set. The set {P A (-,Q ::J R), P,
(-,Q ::J R), -,-,Q, Q} is a Hintikka set. Notice that conditions 3 through 5
all say, if certain formulas belong, so must certain simpler ones. Hintikka
sets are also called downward saturated. The main result concerning these
sets is due to Hintikka [27]

Proposition 3.5.2 (Hintikka's Lemma) Every propositional Hintikka set is satisfiable.

Proof Let H be a Hintikka set. We produce a Boolean valuation map
ping every member of H to t. As we observed in Section 2.4, every
mapping from the set of propositional letters to Tr extends to a unique
Boolean valuation. Well, let f be the mapping defined as follows: For a
propositional letter A, f(A) = t if A E H; f(A) = f if -,A E H; other
wise f(A) is arbitrary, say for definiteness f(A) = f if neither A nor -,A
is in H. Note that condition 1 ensures that f is well-defined. Now let v
be the Boolean valuation extending f. v maps every member of H to t
(we leave the verification as an exercise). D

Exercises

3.6
The Model

Existence

Theorem

Exercises 59

3.5.1. The definition requires that a propositional Hintikka set be con
sistent at the atomic level. Prove by Structural Induction that, if H is a
propositional Hintikka set, and if X is any propositional formula, then
not both X E H and oX E H.

3.5.2. Complete the proof of Proposition 3.5.2. More specifically, let
us say a propositional formula X has property Q provided X E H =*
v(X) = t. In other words, X has property Q, provided either X is not
in H or else v(X) = t. Now use Structural Induction 2.6.3, and show
every propositional formula has property Q.

Hintikka's Lemma connects syntax and semantics. In this section we
state and prove a more complicated and more powerful theorem that
also relates syntax and semantics. The proof contains the essence of a
'standard' completeness argument. With the argument given abstractly
once and for all, completeness of resolution and tableaux formulations
will be easy consequences and so will the completeness of several other
proof procedures for classical propositional logic. It is partly because we
can deal with several systems at once that we go to the trouble of doing
this work at the level of abstraction we have chosen.

Most completeness proofs make use of the notion of consistency, which
is relative to a particular proof procedure, such as resolution. A set of
formulas is generally called consistent if no contradiction follows from
it using the machinery of the proof procedure. Then various features
of consistency are used to construct a Boolean valuation. By looking
carefully at such constructions, one can identify those features of consis
tency that are essential. An abstract consistency property is something
having these features, and the Model Existence Theorem is the asser
tion that these features are sufficient for the construction of a suitable
Boolean valuation. (Boolean valuations are simplified versions, sufficient
for propositional logic, of the first-order models that will be introduced
in Chapter 5. This accounts for the name of the theorem.)

There is a minor technical point before we get down to business. Instead
of talking about a consistency property, say C, of sets of formulas, we
talk about the collection of all sets having property C. In fact, we identify
this collection with C itself. Thus, an abstract consistency property is
defined to be a collection C of sets of formulas, meeting certain closure
conditions. If a set S is in the collection C, we can refer to S as C
consistent.

Definition 3.6.1 Let C be a collection of sets of propositional formulas. We call C a propo
sitional consistency property if it meets the following conditions for each
SEC:

60 3. Semantic Tableaux and Resolution

1. for any propositional letter A, not both A E Sand -,A E S.

2. 1.. rt. S; -, T rt. S.

3. -,-,Z E S '* S u {Z} E C.

4. (}; E S '* S u {(};1, (};2} E C.

5. /3 E S'* S u {/3d E C or S U {/32} E C.

For instance, item 5 says that if S is C-consistent and contains /3, then
it remains C-consistent when one of /31 or /32 is added, and similarly for
the other items.

Theorem 3.6.2 (Propositional Model Existence) If C is a propositional consis-
tency properly, and SEC, then S is satisfiable.

Proof The basic idea of the proof is to show that any member S of a
Propositional Consistency Property can be enlarged to another member
that is a Hintikka set, which will be satisfiable by Hintikka's Lemma. If
S is finite this is easy. If (}; E S, (};1 and (};2 can be added, by item 4 of the
definition, to produce another member of the consistency property, and
similarly for other kinds of formulas. So, just keep adding what we need
to produce a Hintikka set; the process must terminate because S is finite.
It is a good exercise for you to carry out the details of this sketchy argu
ment, under the assumption that S is finite. But if S is infinite, things are
not so simple. We can, one by one, add the formulas we want to have in
a Hintikka set, but the process need not terminate. Instead, we may find
ourselves producing an infinite sequence of larger and larger members of
the consistency property, and what we want is the limit (chain union) of
this sequence. But there is no guarantee that Propositional Consistency
Properties are closed under limits. Consequently, the proof that follows
begins with an argument that Propositional Consistency Properties can
always be extended to ones that are closed under limits. This portion
of the proof requires several preliminary results, whose verification we
leave to you as exercises.

1. Call a Propositional Consistency Property subset closed if it con
tains, with each member, all subsets of that member. Every Propo
sitional Consistency Property can be extended to one that is subset
closed.

2. Call a Propositional Consistency Property C of finite character pro
vided SEC if and only if every finite subset of S belongs to C. Ev
ery Propositional Consistency Property of finite character is subset
closed.

3.6. The Model Existence Theorem 61

3. A Propositional Consistency Property that is subset closed can be
extended to one of finite character.

Finally, being of finite character is enough to guarantee the existence of
limits. More precisely, suppose C is a Propositional Consistency Property
of finite character, and Sl, S2, S3, ... is a sequence of members of C
such that Sl <:;;: S2 <:;;: S3 <:;;: •••• Then U i Si is a member of C.

The argument for this goes as follows. Since C is of finite character,
to show Ui Si E C, it is enough to show every finite subset of Ui Si
is in C. So, suppose {A1 , .•. ,Ak } <:;;: UiSij we show {A1 , •.• ,Ad E C.
For each i = 1, ... , k, Ai E Sni for some smallest integer ni. Let N =
max{nl, ... , nd. It is easy to see each Ai E SN. But SN E C, and C is
subset closed, hence {A1 , ... , Ad E C.

Now for the heart of the proof. Suppose S belongs to a Propositional
Consistency Property C. By Items 1 and 3, every Propositional Consis
tency Property can be extended to one that is of finite character. We
may assume this has already been done, and so C is of finite character.

Since the list of propositional letters is countable, the entire set of propo
sitional formulas is countable as well. This is a standard result of set
theory, and we do not prove it here. Let Xl, X 2 , X 3 , ••• be an enu
meration of all propositional formulas in some fixed order. We define a
sequence, Sl, S2, S3, ... of members of C as follows:

if Sn U {Xn} E C
otherwise

Then every Sn E C, and also Sn is a subset of Sn+1. Finally, let H =
Sl U S2 U S3 U Trivially, H extends S. Also, since C is of finite
character, it is closed under chain unions, and hence H E C.

H is maximal in Cj that is, if H <:;;: K for some K E C, then H = K.
Reasons: Suppose H is a proper subset of K, where K E C. Then for
some propositional formula X n , we have Xn E K but Xn f/. H. Since
Xn f/. H, Xn f/. Sn+1, which implies SnU{Xn} f/. C. But SnU{Xn} <:;;: K,
since Sn <:;;: H, and H <:;;: K, and also Xn E K. Since C is subset closed,
Sn U {Xn} E C, and we have a contradiction.

H is a Hintikka set. Reasons: Suppose 0 E Hj we show 01,02 E H. Since
o E H and H E C, H U {0l,02} E C. But this set extends H, which is
maximal, hence it must be identical with H, which means 01,02 E H.
The other conditions are verified similarly.

62 3. Semantic Tableaux and Resolution

Now, by Hintikka's Lemma, H is satisfiable, hence, so is S, since S ~
H.O

Mathematically, it is often of interest to work with languages having an
uncountable set of propositional letters. The Propositional Model Exis
tence Theorem is still true when using such languages, though the proof
we gave will not work. This proof explicitly makes use of count ability.
Alternate proofs based on the Axiom of Choice or Zorn's Lemma can be
given instead. We do not do so here.

We illustrate the power of the Model Existence Theorem by proving two
of the fundamental theorems of propositional logic. Both are semantic in
nature; neither mentions a proof procedure. The first is the Compactness
Theorem; we will need it later.

Theorem 3.6.3 (Propositional Cmnpactness) Let S be a set of propositional
formulas. If every finite subset of S is satisfiable, so is S.

Proof Assume every finite subset of S is satisfiable. Let C be the fol
lowing collection of sets of propositional formulas: Put a set W in C,
provided every finite subset of W is satisfiable. Trivially, S is in C. We
claim C is a Propositional Consistency Property. Once this is shown,
satisfiability of S follows immediately from the Propositional Model Ex
istence Theorem.

Suppose WEe, but both A and -.A are in W, where A is a propositional
letter. Then {A, -.A} is a finite subset of W, but it is not a satisfiable
set. Consequently, we can not have both A and -.A in W.

Suppose WEe and a E W. We show every finite subset of W U { aI, a2}
is satisfiable and hence that W U { al, a2} is in C. Now, a finite subset of
W U { aI, a2} mayor may not include al and a2. If it includes neither, it
is a finite subset of W alone and hence is satisfiable because WEe. The
argument for the cases where it includes one of al or a2 is similar to the
argument for the case where it includes both, so we consider only that
one. Suppose we have the set Wo U { aI, a2}, where Wo is a finite subset
of W. Now, Wo U {a} is also a finite subset of W, hence it is satisfiable.
But any Boolean valuation mapping every member of Wo U {a} to t
must map a to t, hence both al and a2 must also be mapped to t. That
is, Wo U {a,al,a2} is satisfiable, hence so is its subset Wo U {al,a2}.

The rest of the proof is similar and is left as an exercise. 0

Our second application of the Model Existence Theorem is Craig's In
terpolation Theorem. This result has important model-theoretic conse
quences, and we will consider it more fully once first-order logic has been
introduced.

Exercises 63

Definition 3.6.4 A formula Z is an interpolant for the implication X J Y if every propo
sitionalletter of Z also occurs in both X and Y and if X J Z and Z J Y
are both tautologies.

For example, (P V (Q 1\ R)) J (P V "Q) has P V Q as an interpolant;
(P 1\ ,P) J Q has ~ as an interpolant.

Theorem 3.6.5 (Craig Interpolation)
terpolant.

If X J Y is a tautology, then it has an in-

Exercises

Proof We write (8), as usual, to denote the conjunction of the members
of 8. Call a finite set 8 Craig consistent, provided there is a partition
of 8 into subsets 8 1 and 8 2 (that is, 8 = 8 1 U 82 and 8 1 n 8 2 = 0)
such that (81) J ,(82) has no interpolant. Let C be the collection of all
Craig-consistent sets. C is a Propositional Consistency Property (Exer
cise 3.6.5).

Now we show the theorem in its contrapositive form. Suppose X J Y
has no interpolant. Let 8 be the set {X, ,Y}, and consider the partition
8 1 = {X}, 8 2 = {,Y}. If ({X}) J ,({,Y}) had an interpolant Z, then
Z would also be an interpolant for X J Y, hence it does not have an
interpolant. Then 8 is Craig consistent, and so by the Model Existence
Theorem, 8 is satisfiable. It follows that X J Y is not a tautology. 0

3.6.1. Show that every Propositional Consistency Property can be ex
tended to one that is subset closed. Hint: Let C be a Propositional Con
sistency Property. Let C+ consist of all subsets of members of C, and
show C+ is also a Propositional Consistency Property.

3.6.2. Show that every Propositional Consistency Property of finite
character is subset closed.

3.6.3. Show that a Propositional Consistency Property that is sub
set closed can be extended to one of finite character. Hint: Let C be a
Propositional Consistency Property that is subset closed. Let C+ consist
of those sets 8 all of whose finite subsets are in C. Show that C+ is a
Propositional Consistency Property and extends C.

3.6.4. Finish the proof of the Propositional Compactness Theorem by
showing in detail that C is a Propositional Consistency Property.

3.6.5. Complete the proof of Theorem 3.6.5 by showing that the col
lection of Craig-consistent sets is a Propositional Consistency Property.

3.6.6. Show that if X J Y is a tautology and X and Y have no
propositional letters in common, then one of ,X or Y is a tautology.

64 3. Semantic Tableaux and Resolution

3.7
Tableau and

Resolution

Com pleteness

Definition 3.7.1

Lemma 3.7.2

3.6.7. Let C be a Propositional Consistency Property and let B be a
set of propositional formulas. We say C is B compatible if, for each SEC
and for each X E B, S U {X} E C. Prove that if C is a propositional
consistency property that is B compatible, and if SEC, then SUB is
satisfiable.

Now that the Model Existence Theorem is available, completeness results
are easy to prove, at least for the non-strict versions of tableau and
resolution. In the next section we take up the completeness of tableau
and resolution with restrictions that are useful for implementation. At
that point the Model Existence Theorem can no longer be used.

A finite set S of propositional formulas is tableau consistent if there is
no closed tableau for S.

The collection of all tableau consistent sets is a Propositional Consis
tency Property.

Proof We must establish that the conditions of Definition 3.6.1 are met.
Items 1 and 2, requiring consistency at the atomic level, are trivial. For
the closure conditions 2 through 5, all are rather similar, so we treat
only one. It is easiest to work in the contrapositive direction. Suppose
a E S, but S U {aI, a2} is not tableau consistent; we show that S is not
tableau consistent either.

Since SU {aI, a2} is not tableau consistent, there is a closed tableau for
S U {aI,a2}' a Is one of the members of S; say S = {a, XI, ... ,Xn }.

Then we have a closed tableau that looks like the following.

Xn
al
a2

rest of closed tableau

To show S itself is not tableau consistent, we must produce a closed
tableau beginning with a, XI, ... ,Xn . But this is easy. Start with these
formulas, apply the a-rule to add al and a2, and then continue the
tableau construction exactly as before. 0

3.7. Tableau and Resolution Completeness 65

Theorem 3.7.3 (Completeness for Propositional Tableaux)
If X is a tautology, X has a tableau proof.

Proof We show the contrapositive. If X does not have a tableau proof,
there is no closed tableau for {,X}. Then {,X} is tableau consistent,
hence satisfiable by the Propositional Model Existence Theorem 3.6.2,
and so X is not a tautology. D

If we change the definition of tableau consistency for a finite set S to no
tableau for S is atomically closed, then nothing essential changes in the
proofs we have given, because condition 1 of Definition 3.6.1 required
only no contradictions at the atomic level. Thus, we have the stronger
result: If X is a tautology, X has a tableau proof in which the tableau
is atomically closed.

The Model Existence Theorem, as it stands, is still not enough to get
us the completeness of strict tableaux. It is possible to strengthen the
Model Existence Theorem for this purpose, but the strengthened version
still does not apply readily to resolution. Consequently, we leave this
approach to you in the Exercises and treat strict versions of tableaux and
resolution by quite different techniques, in the next section. In the rest of
this section, we use the Model Existence Theorem to prove completeness
of resolution without a strictness requirement. It will be convenient to
first introduce some special terminology.

Definition 3.7.4 Let S be a set of disjunctions. A resolution derivation from S is a se
quence of disjunctions, each of which is a member of S, or comes from an
earlier term in the sequence by one of the Resolution Expansion Rules,
or comes from earlier terms by the Resolution Rule. We say a disjunc
tion D is resolution derivable from S if D is the last line of a resolution
derivation from S.

If {AI, ... , An} is a set of formulas, a resolution expansion for this set,
and a resolution derivation from {[AI], ... ' [An]} amount to the same
thing. The notion of resolution derivation is more general though, since
it allows us to start with any family of generalized disjunctions.

Definition 3.7.5 Let X be a propositional formula. We say both disjunctions [X, AI, ... ,
An] and [AI, ... , An] are X -enlargements of [AI, ... , AnJ. If S is a set of
disjunctions and S* is the result of replacing each member of S by an
X-enlargement, we say S* is an X-enlargement of S.

Example {[AI, A2, X], [BI ,B2, B3,X]} and {[AI ,A2], [BI ,B2, B3,X]} are both X
enlargements of {[AI, A2J, [BI , B2, B3]}.

66 3. Semantic Tableaux and Resolution

Lemma 3.7.6 Suppose 8 1 and 8 2 are sets of disjunctions, and 8 2 is an X -enlargement
of 8 1 . If the disjunction D1 is resolution derivable from 8 1 , then there
is an X -enlargement D2 of D1 that is resolution derivable from 82 •

Proof The informal idea is quite simple: carry-along occurrences of X
at appropriate points in the resolution derivation from 8 1. A formal
proof is by induction on the lengths of resolution expansions. Length 1
is trivial.

Suppose the result is known for resolution derivations from 8 1 of length
< n, and we now have a resolution derivation of length n. Say the last
line came from an earlier line using the ,6-Resolution Expansion Rule.
Then the resolution derivation from 8 1 looks like:

Since [,6, AI, ... , AkJ occurs at a line earlier than line n, by the induc
tion hypothesis, there is a resolution derivation from 8 2 ending with an
X-enlargement, one of [,B,A1, ... ,AkJ or [X,,6,AI, ... ,AkJ. In the first
case, [,6I, ,62, AI, . .. , AkJ follows by the ,6-rule, and in the second case,
[X,,6I, ,62, AI, ... , AkJ follows, still by the ,6-rule. Either way, the result
is established for line n in the ,6-case.

This takes care of one case. There are several more, depending on the
rule used to add the nth line. We leave the other cases as an exercise. 0

Definition 3.7.7 A finite set 8 of propositional formulas is resolution consistent if there
is no closed resolution expansion for 8.

An equivalent version of this definition follows: {XI, ... , Xn} is resolu
tion consistent if there is no resolution derivation of the empty clause
from {[X1J, ... , [Xn]}.

Lemma 3.7.8 The collection of all resolution consistent sets is a Propositional Consis
tency Property.

Proof Again we must establish that the conditions of Definition 3.6.1
are met. Items 1 and 2, requiring consistency at the atomic level, are
straightforward and are the only ones that directly involve the Reso
lution Rule. Of the closure conditions 3 through 5, we consider only

3.7. Tableau and Resolution Completeness 67

the a-case and the (3-case. As with tableaux, it is easiest to show the
contrapositive.

Suppose a E Sand S U {aI, a2} is not resolution consistent. We show
that S itself is not resolution consistent. Say S = {Xl, ... , X n , a}. Since
S U {aI, a2} is not resolution consistent, there is a resolution derivation,
call it D, of [] from {[Xl], ... ' [Xn], [a], [al]' [a2]}. Now, a verification
that S is not resolution consistent can easily be produced as follows.
Start a resolution derivation with [Xl], ... ' [Xn], [a]. Apply the a-rule
to add [all and [a2], and then continue with the steps of D.

Next, suppose (3 E S and neither S U {(3l} nor S U {(3d are resolution
consistent. We show S is also not resolution consistent. This time things
are just a little trickier.

Say S = {(3, Xl, ... , X n }. Applying the (3-rule to a resolution derivation
beginning with [Xl]' ... , [Xn] , [(3] allows us to add [(31, (32]. It follows that
to show S is not resolution consistent, it is enough to show there is a
resolution derivation of [] from [Xl], ... ' [Xn], [(3], [(31, (32].

Since S U {(3d is not resolution consistent there is a resolution derivation
of [] from {[Xl], ... ' [Xn],[(3], [(3l]}. Then by Lemma 3.7.6, there is a
derivation from {[Xl], ... , [Xn], [(3], [(31, (32]} of either [] or [(32]. In the
first case we are done immediately; the second possibility requires a little
more work. Since S U {(3d is not resolution consistent, there is a resolu
tion derivation, call it D, of [] from {[Xl], ... , [Xn],[(3], [(32]}. All these
disjunctions already occur as lines in the derivation from {[Xl], ... ' [Xn],
[(3], [(31, (32]} that we have produced thus far, and we can use these lines
again, since we are not imposing a strictness requirement, so simply con
tinue by adding the lines of D to produce a derivation of [] directly. 0

Theorem 3.7.9 (COlnpleteness for Propositional Resolution)
If X is a tautology, X has a resolution proof.

Proof Exactly as with tableaux: If X does not have a resolution proof,
there is no closed resolution expansion for {,X}. Then {,X} is resolu
tion consistent, hence satisfiable by the Propositional Model Existence
Theorem 3.6.2, so X is not a tautology. 0

Just as before, we can change the definition of resolution consistency for
a finite set S as follows: There is no closed resolution expansion for S in
which all applications of the Propositional Resolution Rule are atomic.
This does not affect the proof of Theorem 3.7.9, and so we have the
stronger result: If X is a tautology, X has a resolution proof in which
all applications of the Propositional Resolution Rule are atomic.

68 3. Semantic Tableaux and Resolution

Exercises 3.7.1. Call a set U of propositional formulas upward closed if

1. Z E U => -,-,z E U.

2. al E U and a2 E U => a E U.

3. (31 E U or (32 E U => (3 E U.

Show that any set S has a smallest upward closed extension. (We call
this the upward closure of S and denote it SU.)

3.7.2. Using the notation of Exercise 3.7.1, show that for any sets of
propositional formulas:

1. (SU)U = SU.

2. Sl <;;; S2 => St <;;; S7f.

3. Sl <;;; S7f => St <;;; S7f.

4. If L is a literal, L E SU {o} L E S.

5. If -,-,Z rf. S then Z E SU {o} -,...,Z E Suo

6. If a rf. S then a E SU {o} al E SU and a2 E SU.

7. If (3 rf. S then (3 E SU {o} (31 E SU or (32 E SU.

3.7.3. Let C be a collection of sets of propositional formulas. We call
C a strict propositional consistency property if it meets the following
conditions for each SEC:

1. For any propositional letter A, not both A E S and -,A E S.

2 . ..1 rf. S; -, T rf. S.

3. -,-,Z E S => S- U {Z} E C, where S- is S with ...,-,z removed.

4. a E S => S- U {al,a2} E C, where S- is S with a removed.

5. (3 E S => S- U {(3d E C or S- U {(32} E C, where S- is S with (3
removed.

Show the following: If C is a strict propositional consistency property,
and SEC, then S is satisfiable.

Hint: Suppose C is a strict propositional consistency property. Let CU =
{SU I SEC}, and let C* be the subset closure of Cu. Show C* is a
propositional consistency property. Exercise 3.7.2 will be useful.

3.7.4. Use Exercise 3.7.3, and show every tautology has a strict tableau
proof.

3.7.5. Complete the proof of Lemma 3.7.6

3.8
Completeness

With

Restrictions

3.8. Completeness With Restrictions 69

We now know that every tautology has tableau and resolution proofs.
But for implementation purposes, we need more than that; we need a
way of finding a proof if one exists. Not every implementation of these
proof procedures must do so. As a trivial example, in a tableau con
struction, if we have "Z on a branch, we are allowed to add Z. But
there is nothing to say we can't apply this same rule a second time to
"Z, adding another occurrence of Z, then a third, and a fourth, and
so on. This would be particularly stupid, but it is permitted. And if an
implementation proceeds this way, it can run forever without finding a
proof, though one may exist. But we have not yet established that for
bidding reuse of formulas will leave us with a complete proof procedure.
Indeed, it does not happen with certain non-classical logics, and there
are complications even with first-order classical logic. Fortunately, in
the classical propositional setting, strict tableau and resolution systems
are complete. We prove this now. Our proofs will not use the Model
Existence Theorem.

We begin with tableaux, whose completeness is rather easy to prove.
Then we go on to resolution, which will require more work.

Recall, the strictness restriction is as follows: A Tableau Expansion Rule
can be applied to a formula on a branch only once. Suppose we call a
formula occurrence used on a branch provided it is not a literal, and a
Tableau Expansion Rule has been applied to it on that branch. Then
the restriction is as follows: We are forbidden to apply any rule to a
used formula. We will prove a strong form of completeness that says any
proof attempt that does everything, without violating the restriction on
reusing used formula occurrences, must find a proof if one exists. We
will even show the stronger result that a proof in which each branch
is atomically closed must be found. It is this that justifies the tableau
implementations in Section 3.2.

Theorem 3.8.1 Suppose X is a tautology. A strict tableau construction process for { ,X}
that is continued until every non-literal formula occurrence on every
branch has been used must terminate and do so in an atomically closed
tableau.

Proof Construct a strict sequence of tableaux for {,X}, and continue
until no further Tableau Expansion Rules are applicable. No matter how
this is done, the process must terminate (see Exercise 3.8.1). Let T be
the final tableau produced.

Suppose T is not atomically closed. Let () be a branch of T that is not
atomically closed. If "Z occurs on (), since every non-literal formula
occurrence has been used, Z must also occur on (). If a occurs on (),
both a1 and a2 must occur. Likewise, if /3 occurs on (), one of /31 or /32

70 3. Semantic Tableaux and Resolution

must occur. It follows that the set of formulas occurring on (J, used or
not, is a Hintikka set. By Hintikka's Lemma 3.5.2, this set is satisfiable.
It includes --,X (since --,X occurs on every branch of T). Hence, some
Boolean valuation maps --,X to t, so X is not a tautology. D

Corollary 3.8.2 The tableau system provides a decision procedure for being a tautology.

For resolution we need a dual counterpart of Hintikka's Lemma. Things
are naturally more complicated, since we now must deal with sets of
clauses rather than with sets of formulas. After some preliminary work,
we introduce a notion of Robinson set and prove the analog we need.

Definition 3.8.3 Let C be a set of clauses. We say C is resolution saturated, provided the
result of applying the Propositional Resolution Rule to members of C
always produces another member of C.

Proposition 3.8.4 If C is resolution saturated and unsatisfiable, then the empty clause is
in C.

Proof According to Exercise 3.8.2, we can assume, without loss of gen
erality, that C contains no occurrences of -.1, and so any application of
the Propositional Resolution Rule to members of C is nontrivial. So,
from now on, assume C is a fixed resolution saturated set that is unsat
isfiable and contains no occurrences of -.1.

FIGURE 3.4. The Semantic Tree

The set of propositional letters is countable; let PI, P2 , P3 , ... be a list
ing of them. Now, consider the complete binary tree T displayed in

3.8. Completeness With Restrictions 71

Figure 3.4. Following Robinson [43], where this proof has its origins, we
call T a semantic tree. In T there is no label on the root node, and
otherwise at level n, all left children are labeled Pn and all right chil
dren are labeled --.Pn . Strictly speaking, there are many semantic trees,
depending on the order in which the propositional letters are listed. In
fact this makes no difference; any semantic tree will do for our purposes
as well as any other. We keep the ordering of propositional letters fixed,
use the tree displayed, and refer to it as the semantic tree.

A Boolean valuation is completely determined by its action on propo
sitional letters, and each branch of T in effect assigns a value to each
propositional letter, since each letter or its negation, but not both, ap
pears on each branch. Consequently, there is a one-to-one correspon
dence between Boolean valuations and branches of T: Pair up branch ()
with the unique Boolean valuation Vo assigning to every literal on () the
value t.

A path in a tree is a sequence of nodes starting at the root and proceeding
from parent to child; possibly terminating, possibly not. Maximal paths
are called branches. Every branch is a path, though not every path is
a branch. Also the following notation is handy (and standard): For a
propositional letter P, let P = --.P and --.P = P.

Let () be a path in T. We say () contradicts a clause C if, for each literal
L E C, L occurs as a label on (). Call a path C-closed if it contradicts
some clause in the resolution saturated set C. Call a node N of T a
failure node if the path from the origin to N is C-closed. (Note that if a
node is a failure node, so are its children.)

It is our intention to show the root node of T is a failure node. Since the
only clause that the trivial path from the origin to itself can contradict
is the empty clause, it will follow that the empty clause must be in C,
and we will be done.

Every branch of T must be C-closed, because otherwise there would be
some branch () of T that did not contradict any clause in C, and then it
is easy to see the Boolean valuation Vo corresponding to () would satisfy
C.

Let () be a branch of T. Since () is C-closed, there is some clause C E C
that () contradicts. Since C is finite, there must be a finite initial segment
of () that contradicts C. In other words, every branch of T has a finite
initial segment that is C-closed, and so every branch of T contains a
failure node. Now let T* be the subtree of T in which every descendant
of a failure node has been deleted. If we can show that T* is the trivial
tree, consisting of just the root node, we will be done. To do this we
suppose otherwise, and derive a contradiction.

72 3. Semantic Tableaux and Resolution

Every branch of T* is finite, and T* is binary. It follows from Konig's
Lemma 2.7.2 that T* itself is finite. Since T* is finite, it has a finite
number of branches, and so there is one of maximal length. Since we are
assuming T* is nontrivial, a maximal length branch of T* must end at
a successor node. Say M is a maximal length branch, of the form (), L,
where L is a left child and () is the path from the root of T* to the parent
of L. (The argument if M ends with a right child is similar.) Note that
by the construction of T*, L is a failure node, (), L is C-closed, but () is
not.

Let R be the right sibling of L in T. R is also a failure node, for if it
were not, the shortest C-closed path beginning with (), R would be longer
than (), L, but (), L is of maximal length in T*. Since () is not C-closed,
it follows that (), R must also be a branch of T* .

Now, say the literal that labels node L is P and so -,p labels node R.
Each branch (), Land (), R is C-closed and so contradicts some clause in
C. Say (), L contradicts CL and (), R contradicts CR. It must be that -,p
occurs in C L, for if it did not, () itself would already contradict C L, but ()
is not C-closed. Likewise, P must occur in CR. Now, let C be the result
of resolving CL and CR on P. It is easy to see that () contradicts C. But
C is resolution saturated, so C E C and hence () is C-closed after all.

We arrived at a contradiction by assuming T* was nontrivial. Conse
quently, it is trivial, the root node of T is a failure node, and we are
done. 0

Definition 3.8.5 Let R be a set of disjunctions. We call R a propositional Robinson set if

1. For any member D of R that contains a non-literal, the results of
applying at least one Resolution Expansion Rule to D are also in
R.

2. R is closed under the application of the Resolution Rule to clauses.

3. R does not contain the empty clause.

Theorem 3.8.6 A propositional Robinson set is satisfiable.

Proof Let R be a propositional Robinson set. If C is the set of clauses
in R, C is resolution saturated by part 2 of the definition. Then C is
satisfiable by Proposition 3.8.4. Let v be a Boolean valuation satisfying
C. We claim v satisfies the entire of R.

In Definition 2.6.5 the notion of the rank of a propositional formula was
introduced, and this was extended to generalized disjunctions in Sec
tion 2.6.5 by setting the rank of a disjunction to be the sum of the ranks

Exercises 73

of the individual propositional formulas. Note that under this definition
the rank of a clause is O.

We already know that v maps every member of R of rank 0 to t. This
is the start of an induction argument; we leave the rest to you in Exer
cise 3.8.3. 0

Theorem 3.8.7 Suppose X is a tautology. Strictly construct a sequence of resolution ex
pansions for {,X}, beginning with applications of Resolution Expansion
Rules, until no further applications are possible, followed by applications
of the Resolution Rule to clauses until no new clauses are added. Such
a process must terminate and do so with a closed resolution expansion.

Exercises

Proof We leave proof of termination to you as an exercise. Let R be the
set consisting of those generalized disjunctions that occur at any stage
of the process. If no closed resolution expansion is produced, R will be
a Robinson set, hence satisfiable by Theorem 3.8.6. Since {[,Xl} E R,
{[,Xl} is satisfiable, and it follows that X is not a tautology. 0

Resolution as restricted in the Theorem is, in fact, the traditional version
and amounts to a first-stage conversion to clause form, then a second
stage consisting entirely of Resolution Rule applications to clauses.

3.8.1. Complete the proof of Theorem 3.8.1 by showing termination.

3.8.2. Let C be a set of clauses that is resolution saturated. Let Co be
the result of deleting all occurrences of -1 from the clauses of C. Prove
the following:

1. Co is resolution saturated.

2. C is satisfiable if and only if Co is satisfiable.

3. [l E C if and only if [1 E Co.

3.8.3. Complete the proof of Theorem 3.8.6 by doing the induction
step. That is, show for each n each disjunction in R of rank n maps to
t under v.

3.8.4. Complete the proof of Theorem 3.8.7 by proving termination.

74 3. Semantic Tableaux and Resolution

3.9
Propositional

Consequence

Definition 3.9.1

Often, instead of wanting to know whether something is a tautology, we
want to know whether it follows from other formulas. Typically we ask:
Is something a consequence of certain axioms? This is a question that
becomes especially interesting when there are infinitely many axioms.

We say a propositional formula X is a propositional consequence of a set
S of propositional formulas, and we write S i=p X, provided X maps to
t under every Boolean valuation that maps every member of S to t.

Thus, S i=p X if X has to be true whenever the members of S are. The
notion of propositional consequence directly generalizes what we have
been studying: X is a tautology if and only if 0 i=p X. Generally, we write
i=p X instead of f/J i=p X. The definition of propositional consequence
allows the set S to be infinite, but in fact in any given instance, only a
finite amount of the information in S will be needed.

Theorem 3.9.2 S i=p X if and only if there is a finite subset So of S such that So i=p x.

Proof Suppose there is a finite subset So of S such that So i=p X.
Then S i=p X by Exercise 3.9.2, part 2. Conversely, suppose S i=p X.
Then by Exercise 3.9.2, part 3, S U {-oX} is not satisfiable. By the
Propositional Compactness Theorem 3.6.3, some finite subset of S U

{ -oX} is not satisfiable. If a set is not satisfiable, neither is any extension
of it, so we can assume SU{ -oX} has a finite subset that is not satisfiable,
and that subset includes -oX. Such a set is of the form So U {-oX} where
So is a finite subset of S. Now by Exercise 3.9.2, part 3 again, So i=p X. 0

In principle then, for an infinite set S, to determine whether S i=p X, we
could systematically go through all finite subsets So of S to determine
whether So i=p X, and for finite sets So, Exercise 3.9.3 can be used to
convert the problem to one on which resolution or tableaux can be used.
A better way is to modify the resolution and tableau systems to allow
the direct use of premises.

Definition 3.9.3 Let S be a set of formulas.

1. The S-introduction rule for tableaux: Any member X of S can be
added to the end of any tableau branch. We write S t-pt X if
there is a closed propositional tableau for {-oX}, allowing the S
introduction rule for tableaux.

2. The S-introduction rule for resolution: [Xl can be added as a line to
a resolution expansion, for any X in S. We write S t-pr X if there is
a closed propositional resolution expansion for {-oX}, allowing the
S-introduction rule for resolution.

3.9. Propositional Consequence 75

Theorem 3.9.4 (Strong Soundness and Completeness)
For any set 8 of propositional formulas, and any propositional formula
x; 8 Fp X iff 8 f-pt X iff 8 f-PT X.

Proof Recall the notion of satisfiability (Definition 2.4.5). Now modify
that as follows: A tableau is 8-satisfiable if every branch is 8-satisfiable,
and a branch is 8-satisfiable if there is some Boolean valuation that
maps every formula on the branch to t and also maps every member
of 8 to t. (Thus, 0-satisfiability is equivalent to the standard version of
satisfiability for tableaux.) Now, just as in Section 3.4, one can show that
every Tableau Expansion Rule, and the 8-introduction rule too, turns
an 8-satisfiable tableau into another 8-satisfiable tableau. There are no
closed 8-satisfiable tableaux. Consequently if there is a closed tableau
for {,X} allowing the 8-introduction rule, the initial tableau can not
be 8-satisfiable. This implies that 8 u {,X} is not satisfiable, and hence
8 Fp X. We have shown that 8 f-pt X implies 8 Fp X, a soundness
result.

For the completeness direction, the proof using the Model Existence
Theorem adopts readily, though it applies only to tableaux without a
strictness requirement. For a given formula X, call a set 8 of formulas X
-tableau inconsistent if 8 f-pt X; otherwise, call 8 X--tableau consistent.
Now we need the following facts, whose proofs we leave to you:

1. For each X, the collection of X-tableau consistent sets is a propo
sitional consistency property.

2. If 8 is X-tableau consistent, so is 8 u {,X}.

Now, suppose we do not have that 8 f-pt X. Then 8 is X-tableau con
sistent. By item 2, 8 U {,X} is also X-tableau consistent. But then by
the Propositional Model Existence Theorem 3.6.2, and item 1, 8u {,X}
is satisfiable, and hence we do not have that 8 Fp X by Exercise 3.9.2,
part 3.

The part of the proof involving Resolution is similar and is left to you. 0

Once we have Strong Soundness and Completeness, an alternative proof
of Theorem 3.9.2 is possible. Suppose 8 Fp X. By Strong Completeness
we have 8 f-pt X, and so there is a closed tableau for {,X} using the
8-introduction rule. A closed tableau must be finite, and so only a finite
subset of 8 was actually used in the tableau, say it is the subset 8 0 . Then
the tableau also shows that 8 0 f-pt X, and hence by Strong Soundness,
8 0 Fp X. We could have used resolution proofs just as well. The basic
idea is that, whatever our proof procedure, a proof is.a finite object and
so can contain only a finite amount of information.

76 3. Semantic Tableaux and Resolution

Exercises

In the proof of Strong Soundness and Completeness, we defined a notion
of X consistency for an arbitrary formula X. It is not hard to see that ..1
consistency is equivalent to tableau consistency, as defined in Section 3.7.
The proof we gave does not apply if strictness conditions are imposed,
but the result still holds, and proofs along the general lines of those in
the preceding section are possible.

Since we are now dealing with deductions from sets of formulas that
may be infinite, we can not expect implementations to always terminate.
It can be shown that a fair implementation must succeed in finding a
derivation if any exists. Loosely, a fair implementation is one that even
tually applies any rule that is applicable. In particular it must eventually
introduce each particular member of S, using the S-introduction rule.

3.9.1. Prove the following:

1. {AV-,B,BV-,C,CV-,D}i=pD~A.

2. If S = {AI :=J A 2 ,A2 :=J A3,A3 ~ A4, ... } then S i=p Al ~ An for
each n.

3.9.2. Prove the following:

1. If A, -,A E S, then for any X, S i=p X.

2. If S i=p X and S ~ S*, then S* i=p X.

3. S i=p X if and only if S u {-,X} is not satisfiable.

3.9.3. Prove that (AI, ... , An) :=J X is a tautology if and only if
{AI, ... , An} i=p X.

3.9.4. Complete the proof of Theorem 3.9.4 by showing strong sound
ness and completeness of resolution.

3.9.5. Give an alternate proof of Theorem 3.9.4 by using Exercise 3.6.7.

4 ______________________ __

Other Propositional Proof
Procedures

4.1
Hilbert

Systems

We have, so far, concentrated on tableaux and resolution as theorem
proving mechanisms. Since these are much better suited to automation
than other approaches, the emphasis on them will continue through
out the book. But a wide variety of theorem-proving formalisms have
been developed, based on different insights into the processes by which
one recognizes that a formula expresses a logical truth. In this chapter
we take a brief look at three formalisms in widespread use: axiom sys
tems, natural deduction, and Gentzen sequents. We also consider the
Davis-Putnam method, which, like tableaux and resolution, is especially
suitable for automation purposes. This section is devoted to axiom sys
tems, also called Hilbert systems or Frege systems. We will use the name
Hilbert systems.

One can think of both the tableau and resolution mechanisms as in
volving a kind of backward reasoning. We start with the formula we
are trying to prove, negate it, then break the result down into simpler
and simpler parts until we arrive at an obvious contradiction. By con
trast a Hilbert system embodies forward-reasoning principles. To prove
a formula, one starts with known tautologies, derives immediate conse
quences, immediate consequences of the immediate consequences, and
so on, until the desired formula is reached. Since the number of pos
sible immediate consequences can grow explosively as work progresses,
this approach does not lend itself to proof automation, or even to proof
discovery for human beings. Still, once a Hilbert system proof of some
tautology has been found, it is often easy to follow and explain to others,
and it may provide insights that tableau or resolution arguments lack.

78 4. Other Propositional Proof Procedures

Classical logic is not the only logic of interest. For certain non-classical
logics, only Hilbert-style formulations are known to exist. For this reason,
for historical reasons, and for reasons just mentioned, Hilbert systems
are widespread, and should be familiar to everyone who uses formal logic.

All Hilbert systems, for whatever logic, have the following features in
common. Certain formulas are designated as axioms. Some rules of
derivation or rules of inference are specified. These rules all say that
some formulas 'follow from' others.

Definition 4.1.1 A proof in a Hilbert system is a finite sequence Xl, X 2 , •.• , Xn of
formulas such that each term is either an axiom or follows from earlier
terms by one of the rules of inference.

A more general notion than proof will be of use here, the notion of
derivation.

Definition 4.1.2 A derivation in a Hilbert system from a set S of formulas is a finite
sequence Xl, X 2 , ... , Xn of formulas such that each term is either an
axiom, or is a member of S, or follows from earlier terms by one of the
rules of inference.

A proof is simply a derivation from the empty set of formulas. It is
customary to display proofs and derivations by writing a list of the
formulas, one formula to a line. Consequently, from now on we will refer
to a line of a proof or derivation, rather than to a term of it.

Definition 4.1.3 X is a theorem of a Hilbert system if X is the last line of a proof. X is
a consequence of a set S if X is the last line of a derivation from S.

We write S r-ph X to symbolize that X has a derivation from S in the
propositional Hilbert system called h. Instead of 0 r-ph X, we will write
r-ph X; this corresponds to X being a theorem.

So far we have given general characteristics of Hilbert systems. If we
are interested in classical propositional logic, we will also want every
axiom to be a tautology and every rule of inference to produce only
tautologies from tautologies. But even so, we have not been sufficiently
restrictive. If we take as axioms all tautologies, and no rules of inference,
we have a system meeting these conditions, and in it every tautology has
a one-line proof. Clearly, this is not a very interesting system. Generally,
the additional assumption is made that there are only a finite number of
axioms, or else that there are an infinite number, but only a finite number
of forms they can take on. For instance, P :) P, (P 1\ Q) :) (P 1\ Q),
and -,Q :) -,Q all have the common form X :) X. If we want these,

4.1. Hilbert Systems 79

and other formulas of this form, to be axioms, it is customary to say
X ::) X is an axiom scheme, and any formula of this form is an axiom.
In general, we will allow our axioms to be infinite in number, but they
must be specifiable by a finite number of axiom schemes. Incidentally, we
will adopt the convention that P, Q, ... are propositional letters, while
X, Y, ... are arbitrary formulas. This makes the presentation of axiom
schemes somewhat simpler. It is a convention we used informally earlier
in the paragraph.

We also want a finite number of rules of inference, and we want them
to be structural in the same sense that axiom schemes are. For instance,
one possible rule of inference follows: If X and Yare arbitrary formulas,
the formula X /\ Y follows from X and Y. Such a rule would allow us to
obtain P /\ Q from P and Q, and also (P ::) R) /\ --.Q from P ::) Rand
--.Q. Such a rule is stated schematically as follows:

X Y
X /\ Y'

As it happens, this will not be a rule of inference adopted here, but it
illustrates the kind of thing we intend.

One rule of inference that is often used, but that we will not adopt, is a
rule of substitution. Such a rule states that a formula Y follows from a
formula X, provided Y is the result of uniformly replacing the proposi
tionalletters of X by arbitrary formulas. For example, (P /\Q) ::) (P /\Q)
follows from P ::) P by this rule. Exercise 2.4.7 shows that the rule of
substitution meets the necessary condition of producing tautologies from
tautologies. If a rule of substitution is used, then a finite set of axiom
schemes can be replaced by a finite set of axioms. For various techni
cal reasons, we find it simpler to use axiom schemes and omit a rule of
substitution.

The most common rule of inference is Modus Ponens. We adopt this as
the only rule of inference in this section.

Modus Ponens

X X::)Y
Y

Modus Ponens is stated in terms ofthe connective ::), and this connective
will play a special role in the axiom schemes we have chosen. Indeed,
the first two schemes involve only this connective.

Axiom Scheme 1 X::) (Y ::) X)

80 4. Other Propositional Proof Procedures

Axiom Scheme 2 (X =:> (Y =:> Z)) =:> ((X =:> Y) =:> (X =:> Z))

More axiom schemes will come, but already we can give an example of
a proof in the system we have thus far.

Example P =:> P is a theorem. The following is a proof.

1. (P =:> ((P =:> P) =:> P)) =:> ((P =:> (P =:> P)) =:> (P =:> P))

2. P =:> ((P =:> P) =:> P)

3. (P =:> (P =:> P)) =:> (P =:> P)

4. P =:> (P =:> P)

5. P =:> P

Here 1 is an instance of Axiom Scheme 2, taking X to be P, Y to be
P =:> P, and Z to be P; 2 is an instance of Axiom Scheme 1, taking X
to be P and Y to be P =:> P; 3 follows from 1 and 2 by Modus Ponens;
4 is an instance of axiom scheme 1, taking X and Y to be P. Finally, 5
follows from 3 and 4 by Modus Ponens.

If we had written W in place of P in this proof, we would have a proof
outline that shows how to construct a proof of W =:> W for any particular
formula we might want to put in place of W. We will call such an outline
a proof scheme. Clearly, it is more efficient to give proof schemes rather
than proofs, and this is what we will generally do from now on.

A very important result (that is due independently to Tarski and to
Herbrand) can be established about the system thus far constructed. It
says that there is a proof of X =:> Y, provided there is a derivation of Y
from {X}. The proof of this result is as important as its statement; the
proof is constructive and shows how to turn a derivation of Y from {X}
into a formal proof of X =:> Y. Since such derivations are often easier
to discover, this means we can shortcut much of the work of producing
proofs in a Hilbert system.

Theorem 4.1.4 (Deduction Theorem) In any Hilbert system h with at least Axiom
Schemes 1 and 2, and with Modus Ponens as the only rule of inference,
S U {X} f-ph Y if and only if Sf-ph (X =:> Y).

Proof The argument from right to left is trivial; we concentrate on
the other direction. Suppose S U {X} f-ph Y; say Zl, Z2, ... , Zn is a
derivation of Y from S U {X} (let us call it Derivation One). In it, each
line is either one of the axioms, a member of S U {X}, or comes from

4.1. Hilbert Systems 81

earlier lines by Modus Ponens; and Zn = Y. We show how to convert this
into a derivation (call it Derivation Two) showing that S f--ph (X ~ Y).

First, prefix each formula of Derivation One with X ~, forming the
sequence: X ~ Zl, X ~ Z2, ... , X ~ Zn. This sequence ends with the
desired formula X ~ Y, since Zn = Y, and so it is a preliminary version
of Derivation Two. But it is not necessarily a legal derivation. To turn
it into one, we insert some extra lines, as follows.

If Zi is an axiom or a member of S, then in the Derivation Two candidate,
just before X ~ Zi, insert the formulas Zi (an axiom or a member of S)
and Zi ~ (X ~ Zi) (an axiom). Note that X ~ Zi follows from these by
Modus Ponens.

If Zi is the formula X, then in the Derivation Two candidate, insert the
steps of a proof of X ~ X just before X ~ Zi(= X ~ X).

If Zi comes from earlier terms of Derivation One by Modus Ponens, then
there must be Zj and Zk with j, k < i and where Zk = Zj ~ Zi. In the
Derivation Two candidate, there will be corresponding lines X ~ Zj
and X ~ Zk = X ~ (Zj ~ Zi). Now, insert just before X ~ Zi the
formulas (X ~ (Zj ~ Zi)) ~ ((X ~ Zj) ~ (X ~ Zi)) (an axiom) and
(X ~ Zj) ~ (X ~ Zi) (which follows from earlier terms by Modus
Ponens). Now X ~ Zi also follows from earlier terms by Modus Ponens.

Call the resulting sequence Derivation Two. It is easy to see it constitutes
a derivation of X ~ Y from S. 0

Example (P ~ (Q ~ R)) ~ (Q ~ (P ~ R)) is a theorem, and it is easy to argue
for this using the Deduction Theorem, as follows. First, {P ~ (Q ~
R), Q, P} f--ph R; in fact, the following is a derivation:

1. P ~ (Q ~ R)

2. P

3. Q ~ R

4. Q

5. R

Using the Deduction Theorem, it follows that {P ~ (Q ~ R), Q} f--ph

P ~ R, and again {P ~ (Q ~ R)} f--ph Q ~ (P ~ R), and finally,
f--ph (P ~ (Q ~ R)) ~ (Q ~ (P ~ R)).

Now we want to add axiom schemes to introduce the other (primary)
connectives. We make use of uniform notation here, to give a compact
presentation.

82 4. Other Propositional Proof Procedures

Axiom Scheme 3 ..1 => X

Axiom Scheme 4 X => T

Axiom Scheme 5 -,-,X => X

Axiom Scheme 6 X=>C -,X => Y)

Axiom Scheme 7 a => a1

Axiom Scheme 8 a => a2

Axiom Scheme 9 (/31 => X) => ((/32 => X) => (/3 => X))

Axiom Scheme 6 can be weakened by requiring that X be atomic. It can
be shown that each instance of the unrestricted version is a consequence
in the resulting Hilbert system.

Example (-,X => X) => X is a theorem (for any choice of formula X). In Axiom
Scheme 9, if we take /3 to be -,X => X, then the scheme reads (-,-,X =>
X) => ((X => X) => ((-,X => X) => X)). -,-,X => X is Axiom Scheme
5, and X => X is provable. Then (-,X => X) => X follows using Modus
Ponens.

For the rest of this section, h is the Hilbert system with Axiom Schemes 1
through 9 and the rule of Modus Ponens. It is time to establish soundness
and completeness for the Hilbert system h. Soundness is easy. Every
axiom is a tautology (a fact that is easily checked). Also, if X and X=> Y
are tautologies, so is Y, hence, the rule of Modus Ponens produces only
tautologies from tautologies. It follows easily that every line of a proof is
a tautology; in particular the last line. This argument extends easily to
derivations as well; we do not give details. Thus, we have the following:

Theorem 4.1.5 (Strong Hilbert Soundness)
If S I-ph X, then S Fp x.

To show completeness we use our favorite tool, the Model Existence
Theorem 3.6.2, and we follow a pattern that worked for tableaux and
resolution.

Definition 4.1.6 Let X be a propositional formula. Call a set S of formulas X--Hilberl
inconsistent if S I-ph X; call S X--Hilberl consistent otherwise.

Lemma 4.1.7 For each formula X, the collection of all X --Hilberl consistent sets is a
propositional consistency properly.

4.1. Hilbert Systems 83

Proof Several separate items must be checked. We consider a few in
detail and leave the rest to you.

Suppose S is X-Hilbert consistent; we show, T (j'. S. Or rather, suppose
,T E S; we show S is X -Hilbert inconsistent. Well briefly, since, T E S,
S r-ph ,T. Since, T :) T is an axiom (Axiom Scheme 4), it follows that
S r-ph T. Finally, T :) (, T :) X) is an axiom (Axiom Scheme 6), and
hence S r-ph X.

We also check the ,B-condition, and once again it is simplest to show the
contrapositive. Suppose SU{,Bd and SU{,B2} are X-Hilbert inconsistent;
we show S U {,B} is X -Hilbert inconsistent. Well, we are given that
S U {,Bd r-ph X, so by the Deduction Theorem, S r- ph ,131 :) X. Similarly
S r- ph ,132 :) X. Also (,131 :) X) :) ((,132 :) X) :) (,13 :) X)) is an instance
of Axiom Scheme 9, so it follows that S r-ph ,13 :) X, and hence that
S U {,B} r-ph X. 0

Theorem 4.1.8 (Strong Hilbert Completeness)
If S i=p X, then S r-ph X.

Proof As usual, we show the contrapositive. Suppose we do not have
that S r-ph X. Then S is X-Hilbert consistent. It follows that S U
{,X} is also X-Hilbert consistent, for if not, S U {,X} r-ph X, hence
S r-ph ,X :) X, and it would follow that S r-ph X, since, as we have
shown, (,X:) X) :) X is a theorem. Now, by Lemma 4.1.7, and the
Propositional Model Existence Theorem 3.6.2, S U {,X} is satisfiable,
and hence, we do not have that S i=p X. 0

There are many different Hilbert systems for classical propositional logic
besides the one we have been considering. Frege's system took impli
cation and negation as the only connectives, had Modus Ponens and
Substitution as rules of inference, and had the following six axioms:
P :) (Q :) P), (R :) (Q :) P)) :) ((R :) Q) :) (R :) P)), (R :)
(Q :) P)) :) (Q :) (R :) P)), (Q :) P) :) (,P :) ,Q), "P :) P and
P :) "P. The very influential system of Principia Mathematica [56]
took negation and disjunction as connectives, with implication defined.
The rules of inference were Substitution and a version of Modus Ponens:
from X and ,x V Y to conclude Y. The axioms were the following:
(PVP) :) P, Q:) (PVQ), (PVQ) :) (QVP), (PV(QVR)) :) (QV(PVR)),
and (Q :) R) :) ((P V Q) :) (P V R)). In fact, the fourth of these ax
ioms can be derived from the rest, though it was some time before this
was discovered. As a kind of extreme in this area, consider the Hilbert
system with only the r connective, the rule of inference: Z follows from
X r (Y r Z) and X; and the formula in part 8 of Exercise 3.1.1 as its
only axiom scheme. This is sound and complete (the other connectives
can all be defined from T).

84 4. Other Propositional Proof Procedures

Exercises

We gave the axioms we did to introduce all the Primary Connectives at
once and to prove completeness with a minimum of work. Consequently
we have a rather large number of axiom schemes (Schemes 7 through
9 are really shorthand patterns, with a different actual scheme for each
connective.) In fact, all connectives can be defined from, and :J, and
if we choose to do so, the variety of axiom schemes can be considerably
minimized. Exercises 4.1.8 and 4.1.9 show ways of doing this.

4.1.1. Using the proof of the Deduction Theorem, convert the deriva
tion showing {P :J (Q :J R), Q, P} I-ph R into a direct proof of (P :J

(Q :J R)) :J (Q :J (P :J R)).

4.1.2. Give a proof in Hilbert system h of (,X :J ~) :J X.

4.1.3. We can give an alternate definition of Hilbert system theorem
as follows. A theorem is a member of the smallest set of formulas that
contains all the axioms and that contains Y whenever it contains X and
X :J Y. Prove the two definitions of theorem are equivalent.

4.1.4. Suppose we place a restriction on Axiom Scheme 6, that X must
be atomic. Show by induction on the rank of X that X :J (,X :J Y)
has a proof in the resulting Hilbert system, for arbitrary X.

4.1.5. Show (without using Completeness) that Z :J "Z is a theorem
of the Hilbert system h. Hint: Use Axiom Scheme 9, with (3 = ,Z :J ,Z
and X = Z :J "Z.

4.1.6. Interestingly enough, the two axiom schemes for implication,
Axiom Schemes 1 and 2, together with Modus Ponens, do not char
acterize the implication of classical logic. Here is one way of showing
this. We move from the two-valued version of :J given in Table 2.1 to a
three-valued version by introducing a "middle" truth value, m (read it
as "maybe"). Now, use the following table.

:J f m t
f t t t

m f t t
t f m t

Define a 3-valuation to be a mapping v from the set of propositional
formulas to the set {f, m, t} such that v(X :J Y) = v(X) :J v(Y), where
:J on the right is given by the table. Call a propositional formula X a
3-tautology if v(X) = t for every 3-valuation v. Now show the following:

1. Every instance of Axiom Schemes 1 and 2 is a 3-tautology.

Exercises 85

2. If X and X :J Yare 3-tautologies, so is Y.

3. Every formula provable using Axiom Schemes 1 and 2 and Modus
Ponens is a 3-tautology.

4. Pierce's law, ((p:J Q) :J P) :J P, is not a 3-tautology.

5. Pierce's law is a classical tautology.

(Remarks. It can be shown that Modus Ponens, Axiom Schemes 1 and
2, and Pierce's law do axiomatize classical implication. Without Pierce's
law, what we get is the implication of a well-known non-classical logic,
intuitionistic logic. This exercise continues in Exercise 4.2.2.)

4.1. 7. Complete the proof of Lemma 4.1.7.

4.1.8. Consider the Hilbert system with -, and :J as primitive and with
Modus Ponens and Axiom Schemes 1, 2, 5, 6, and (-,X :J X) :J X. This
system is complete. Show this by giving proofs in this system of the
following:

1. (-,Y:J -,X) :J (X :J Y).

2. (X:J Y) :J (-,y :J -'X).

3. -,(X:J Y) :J X (Axiom Scheme 7).

4. -,(X:J Y) :J -,y (Axiom Scheme 8).

5. (-,X:J Z) :J ((Y :J Z) :J ((X :J Y) :J Z)) (Axiom Scheme 9).

4.1.9. Consider the Hilbert system with -, and :J as primitive, and
with Modus Ponens, Axiom Schemes 1, 2, and (-,y :J -'X) :J ((-,y :J
X) :J Y). Show this system is complete by using Exercise 4.1.8 and
giving proofs of the following:

1. (-,X:J X) :J X.

2. -,-,X:J X (Axiom Scheme 5).

3. X:J (-,X :J Y) (Axiom Scheme 6).

86 4. Other Propositional Proof Procedures

4.2
Natural

Deduction

Natural deduction systems constitute another family of proof mecha
nisms, intended to formalize the kind of reasoning people do in informal
arguments. They are based on the idea of subordinate proofs, in which
one derives conclusions from premises, then discharges those premises to
produce assumption-free results. We will give an example of such a proof
shortly, but first we introduce some typical rules and a mechanism for
displaying subordinate proofs. Many mechanisms exist in the literature;
we will simply write them in boxes, with the first line inside a box being
the particular assumption made in that subordinate proof, and the first
line below the box being the result of discharging the assumption.

A typical rule of many natural deduction systems follows: If one can de
rive Y from X as an assumption, then one can discharge the assumption
X and conclude that one has proved X ~ Y. This is given schematically
in Figure 4.1.

X

Y

X~Y

FIGURE 4.1. A Natural Deduction Rule for Implication

Another typical example is the Modus Ponens Rule. But this must be
formulated with some care. We do not want to use it to derive a con
clusion from an assumption made earlier in a proof that has now been
discharged. If we think of a proof as being constructed in stages, it is
simple to say which formulas we are allowed to consider at each stage.

Definition 4.2.1 The formulas active at a stage in a proof are those occurring in boxes
that have not closed by this stage.

Now the Modus Ponens Rule becomes the following: From X and X ~ Y,
conclude Y, provided both X and X ~ Yare active.

Note that our rules so far have been paired: one for introducing the con
nective ~ and one for using it, in effect, eliminating it. This is a common
and important principle behind the organization of natural deduction
systems.

4.2. Natural Deduction 87

1. P ~ (Q ~ R)

2. Q

3. P

4. Q~R

5. R

6. P~R

7. Q ~ (P ~ R)

8. (P ~ (Q ~ R)) ~ (Q ~ (P ~ R))

FIGURE 4.2. Proof of (P ~ (Q ~ R)) ~ (Q ~ (P ~ R))

Example We have enough machinery to give a simple example of a natural de
duction proof. The argument in Figure 4.2 should be compared with the
Hilbert system proof in Section 4.1, which used the Deduction Theo
rem 4.1.4. Here 1 through 3 are assumptions, each starting a subordi
nate proof; 4 is from 1 and 3 by Modus Ponens (note that at this point
no boxes have closed, so 1 and 3 are both active); and 5 is from 2 and
4), again by Modus Ponens. Now a box is closed, assumption 3 is dis
charged, to conclude 6. Note that formulas 3 through 5 are no longer
active. Two more assumption discharges produce 7 and 8.

Many different natural deduction systems are described in the literature.
Prawitz [36], for instance, has a particularly elegant one, together with
an important analysis of its proof theory. The system we have chosen to
give does not actually have the rules just considered, though it has some
that are very close. And it contains redundancies. It is designed to make
use of uniform notation so that all Primary Connectives can be brought
in smoothly and to lead to a quick proof of completeness.

Constant Rules
T

88 4. Other Propositional Proof Procedures

Negation Rules x
-,X

-y- mIT]
-,X x

Primary Connective Rules

aE a a
a1 a2

aI a1
a2
a

/3E -,/31 -,/32
/3 /3

fJ2 ----p;-

/31 ITl ITl
/3 /3

We have used E and I in rule names to suggest elimination and intro
duction. Note that one of the Constant Rules is a no-premise rule. Also
some of the rules have two premises; in these, order of premises does not
matter. In applying such rules, the premises must be active. Before we
consider examples of proofs of formulas in this system, it will be useful
to introduce the notion of a derived rule. Loosely, a rule is derived if its
addition does not change the strength of the system. More precisely, a
rule is derived if we can translate any use of it away. Two very useful
derived rules in this natural deduction system are the following:

-,-,x x
x -,-,x

To show the first of these rules is derived, suppose line (n) in a proof
is the formula -,-,X. Then, without using the proposed new negation
rules, we may proceed as follows:

4.2. Natural Deduction 89

(n) -,-,X

(n + 1) -,X

(n + 2) ..1

(n + 3) X

Here line n+ 1 is an assumption. Line n+2 follows from nand n+ 1 by the
first of the official negation rules. Then line n + 3 follows using the third
negation rule. Thus, we have added X without using any rules other
than the basic ones; consequently, a rule allowing us to add X directly
when -,-,X is present is a derived rule. The other double negation rule
can be shown to be derived in a similar way.

From now on, we will use the rules for introducing and eliminating double
negations frequently, often without comment.

In the ,6E rules, suppose we take ,6 to be X ~ Y, so that ,61 = -,X and
,62 = Y. Then the rules become the following:

-,-,X
X~Y

Y

-,y
X~Y

-,X

The second of these is a common rule, called Modus Tollens. The first is
almost Modus Ponens and has the effect of it when used in conjunction
with a double negation rule. Likewise the ,61 rules become the following:

mw
X~Y X~Y

The first of these is almost the rule for introducing implication that
we considered earlier; again, a double negation rule is also needed. The
second embodies the principle of contraposition.

90 4. Other Propositional Proof Procedures

Example Figure 4.3 contains a proof of -,(P 1\ Q) =:> (-,P V -,Q). In it 1 and 2
are assumptions. Taking (3 to be -,(P 1\ Q), the first (3E rule says; from
-,-,P and -,(P 1\ Q), conclude -,Q. Using this, 3 follows from 1 and 2.
Now, taking (3 to be -,P V -,Q, the first (31 rule says; conclude -,P V-,Q
from a derivation of -,Q from -,-,P. This allows us to derive 4. Finally,
5 follows, again using (31.

1. -,(P 1\ Q)

~
~
4. -,PV-,Q

5. -,(P 1\ Q) =:> (-,P V -,Q)

FIGURE 4.3. A Natural Deduction Proof of -,(P 1\ Q) =:> (-,P V -,Q)

Just as with earlier proof mechanisms, we can introduce a notion of
derivation, as well as of proof.

Definition 4.2.2 A natural deduction derivation of X from a set S of formulas meets the
conditions for being a proof of X but also allows the following additional
rule: At any stage, any member of S may be used as a line. We write
S f-pn X to indicate there is a derivation of X from S in the propositional
natural deduction system of this section.

Theorem 4.2.3 (Natural Deduction Soundness)
If S f-pn X, then S Fp X.

Proof Unfinished Hilbert system proofs are, themselves, proofs (though
of something else). An unfinished natural deduction proof is not a natural
deduction proof, since there will be premises not yet discharged, boxes
not yet closed. A soundness proof must take this into account.

Suppose we have a possibly unfinished natural deduction derivation,
from a set S. Say the last line contains the formula Z, and at this
stage the assumptions AI'.'" Ak are still active, not having been dis
charged. We associate with this incomplete derivation the assertion S U
{AI, ... , Ad Fp Z. Now, if it could be shown that the assertion associ
ated with every derivation from S (incomplete or not) is always correct,

Exercises 91

the soundness result would follow immediately. This is done by an in
duction on the lengths of incomplete derivations. We leave the details to
you as Exercise 4.2.3. 0

For completeness we proceed much as we did with earlier systems.

Definition 4.2.4 Let X be a propositional formula. Call a set S X--natural deduction
inconsistent if S f- pn X; otherwise call S X--natural deduction consistent.

Lemma 4.2.5 For each formula X, the collection of all X --natural deduction consistent
sets is a propositional consistency property.

Theorem 4.2.6 (Strong Natural Deduction Completeness)
If S i=p X, then S f-pn X.

Exercises 4.2.1. Give natural deduction proofs of the following:

l. X ::) (Y ::) X).

2. (X::) (Y ::) Z» ::) «X::) Y) ::) (X ::) Z».

3. (,Y::) ,X) ::) «,y::) X) ::) Y).

4. «X::) Y) ::) X) ::) X.

5. (X !\ (Y V Z» ::) «X !\ Y) V (X !\ Z».

6. (X::) Y) ::) (,(Y V Z) ::) ,(X V Z».

7. (P i P) i P.

8. ,«P 1 Q) 1 (P V Q».

9. (,P l,Q) c ,(P i Q).

4.2.2. At the beginning of the section, we considered two simple natu
ral deduction rules for implication that did not become part of our "of
ficial" system. Continuing Exercise 4.1.6, we ask you to show that these
two rules do not characterize the implication of classical logic. First,
we re-formulate them using the following notation. We write Sf-X to
mean X is deducible, using the two implication rules, when S is the set
of premises. With this notation, the rules can be stated equivalently as
follows:

Sf-X Sf-X::)Y
Sf-Y

S,X f- Y
Sf-X::)Y S,X f- X

92 4. Other Propositional Proof Procedures

4.3
The Sequent

Calculus

Now, use the 3-valued system of Exercise 4.1.6, define an ordering by
setting f < m < t, and extend 3-valuations to sets of formulas by taking
v(S) = min{v(X) I XES} (as a special case, v(0) = t). Call Sf-X
3-valid if, for every 3-valuation v, v(S) S v(X). Now, show the following:

1. S, X f- X is 3-valid.

2. If Sf-X and Sf-X::) Yare 3-valid, so is Sf- Y.

3. If S, X f- Y is 3-valid, so is Sf-X::) Y.

4. If 0 f- X is provable in this system, X is 3-valid.

5. Pierce's law is not provable in this system.

(Remark. It can be shown that this system is equivalent to the axiom
system considered in Exercise 4.1.6.)

4.2.3. Complete the proof of the Soundness Theorem 4.2.3.

4.2.4. Verify Lemma 4.2.5, and use it to prove the Strong Complete
ness Theorem.

The Gentzen sequent calculus can be looked at as an intermediary be
tween semantic tableaux and natural deduction systems. Historically,
both a natural deduction system and the sequent calculus can be found
in Gentzen's fundamental paper [22]. Indeed, the sequent calculus itself
is sometimes referred to in the current literature as a natural deduction
system, though we find this confusing and will not do so here.

It will be simplest if we limit the binary connectives to those actually
considered by Gentzen: /\, V, and ::). Once the signed tableau system has
been introduced, it will be a simple matter for you to devise rules for the
other connectives. So for the rest of this section, formulas are limited to
these binary connectives (and,.of course, ..." T, and -.l).

Definition 4.3.1 A sequent is a pair (r,~) of finite sets of formulas.

This definition is a technical one. In practice we use the suggestive
notation introduced by Gentzen: the sequent (r,~) will be written
r ---7 ~. The arrow suggests a kind of implication, and that is, in
deed, the intention. We also introduce some useful notational abbre
viations. Instead of writing {AI, ... , An} ---7 {BI' ... , Bd, we will write
AI"'" An ---7 B I , ... , B k . For a single formula X, and sets r and ~
of formulas, we will write r, X ---7 ~ instead of r u {X} ---7 ~, and so
on. Likewise, we will write ---7 ~ for 0 ---7 ~, and similarly for other

4.3. The Sequent Calculus 93

occurrences of 0. Generally, we follow the convention that capital Latin
letters stand for formulas, while capital Greek letters stand for finite sets
of formulas.

We have made a minor departure from Gentzen in our definition of
sequent. For Gentzen a sequent was a pair of lists of formulas, not sets
of formulas. Gentzen included structural rules for rearranging lists and
for dealing with repetitions. By using sets we have avoided this, though
the issue becomes significant if a computer representation of sequent is
to be chosen.

As we remarked, the arrow should be thought of as a kind of implication,
'follows from'. Think of a sequent as asserting the following: If all the
formulas on the left of the arrow are true, then at least one of the formu
las on the right is also true. Technically, we extend Boolean valuations
to sequents as follows:

Definition 4.3.2 vcr ----> ~) = t if veX) = f for some X E r or v(Y) = t for some Y E ~.

Note that under this definition, v(----» = f and v(----> X) = veX).

In the sequent calculus, certain very simple sequents are taken as axioms,
and there are rules for deriving new sequents from old. The resulting
system is not simply a Hilbert system, though. For one thing, the arrow
is not a connective but a 'metalogical' symbol. Thus, while P ----> (Q :::) R)
is legal, P ----> (Q ----> R) is not. This restriction allows the axioms and rules
of the sequent calculus to be particularly simple, and a deep analysis of
formal proofs is possible. Now, the axioms and rules are as follows:

Axioms X---->X
..l---->
---->T

Structural Rule, Thinning

Negation Rules

r---->~,x

r,--.x---->~

Conjunction Rules

r,X,Y---->~

r,x/\Y---->~

r,x---->~

r ----> ~,--.X

r---->~,x r---->~,Y

r ----> ~,X /\ Y

94 4. Other Propositional Proof Procedures

Disjunction Rules

r,x ---+ ~ r, Y ---+ ~

r,XVY--->~

r ---+ ~,X, Y
r ---> ~,X V Y

Implication Rules

r ---+ ~,X r, Y ---> ~
r,X::l Y ---> ~

r,x ---+~, Y
r ---+ ~,X::l Y

The rule for introducing a conjunction onto the left-hand side of a se
quent has a single premise, while the one for introducing a conjunction
onto the right-hand side has two. To conclude r ---+ ~,X 1\ Y, we need
both r ---+ ~,X and r ---+ ~, Y, and similarly for the other connectives.

Definition 4.3.3 A proof is a tree labeled with sequents (generally written with the root
at the bottom) meeting the following conditions. If node N is labeled
with r ---+ ~, then if N is a leaf node, r ---+ ~ must be an axiom; and
if N has children, their labels must be the premises from which r ---+ ~

follows by one of the sequent calculus rules. The label on the root node
is the sequent that is proved. Finally, a formula X is a theorem of the
sequent calculus if the sequent ---+ X has a proof.

l.P---+P
3. P, Q ---+ P

5.
6.
7.
8.
9.

10.

P, Q ---+ P 1\ Q
Q ---+ P 1\ Q, -,p
---+ P 1\ Q, -,P, -,Q
-,(P 1\ Q) ---> -,P, -,Q
-,(P 1\ Q) ---+ -,p V -,Q
---+ -,(P 1\ Q) ::l (-,P V -,Q)

2. Q ---+ Q
4. P, Q ---+ Q

FIGURE 4.4. Sequent Calculus Proof of -,(P 1\ Q) ::l (-,P V -,Q)

Example Figure 4.4 displays a proof of -,(P 1\ Q) ::l (-,P V -,Q), arranged as a tree
with 10 as root and 1 and 2 as leaves. In it, 1 and 2 are axioms, from
which 3 and 4 follow, respectively, by thinning; 5 follows from 3 and
4 using a conjunction rule. Then 6 through 8 follow by negation rules.
Finally 9 follows from 8 using a disjunction rule and 10 from 9 by an
implication rule.

4.3. The Sequent Calculus 95

Soundness is easily established. Each axiom is a tautology, and each rule
produces sequents that are tautologies from sequents that are tautolo
gies. It follows that only tautologous sequents can be proved. We thus
have the following:

Theorem 4.3.4 (Sequent Calculus Soundness)
calculus, X is a tautology.

If X is a theorem of the sequent

Completeness takes work, though once again we can use the Model Ex
istence Theorem 3.6.2. We first need to associate sequents with sets of
formulas.

Definition 4.3.5 ...,8 = {...,X I X E 8}

Definition 4.3.6 Let 8 be a finite set of formulas. An associated sequent for 8 is a sequent
r --+ ...,A, where r, A is a partition of 8, that is, rnA = f/J and rUA = 8.

For example, if 8 = {X =:J Y, ...,X, X AY}, then X =:J Y --+ ...,...,X, ...,(X AY)
and ...,X, X A Y --+ ...,(X =:J Y) are both associated sequents.

Lemma 4.3.7 If any associated sequent for 8 has a proof, every associated sequent
does.

Definition 4.3.8 A finite set 8 of formulas is sequent inconsistent if any (equivalently,
every) associated sequent has a proof. 8 is sequent consistent if it is not
sequent inconsistent.

Proposition 4.3.9 The collection of sequent consistent sets is a propositional consistency
property.

We leave the proof of this proposition to you. From it completeness
follows easily.

Theorem 4.3.10 (Sequent Calculus Completeness)
a theorem of the sequent calculus.

If X is a tautology, then X is

Proof Suppose X is not a theorem. Then the sequent --+ X is not prov
able. It follows that {...,X} is sequent consistent, for otherwise ...,X --+

would be provable, and hence --+ X, by Exercise 4.3.3. Now, by Propo
sition 4.3.9 and the Model Existence Theorem, {...,X} is satisfiable, and
so X is not a tautology. 0

96 4. Other Propositional Proof Procedures

Relationships between the sequent calculus and natural deduction go
back to Gentzen. Loosely, one can imagine the sequent calculus as pro
viding a kind of 'specification language' for a natural deduction system.
Think of the sequent AI, ... ,An ---> B I , ••• ,Bk as asserting the follow
ing: One of BI , ... , Bk can be obtained as a line in a natural deduction
proof whenever all of AI,. .. , An are active as premises. Now one wants
a natural deduction system for which the sequent calculus axioms are
true and such that true premises for a sequent calculus rule ensure a true
conclusion. For example, the first of the sequent calculus rules for con
junction would be true of any natural deduction system that contained
a rule: From X 1\ Y one can derive both X and Y. Since the sequent
calculus is complete, any natural deduction system meeting the sequent
calculus specifications would also be complete. We do not pursue this
idea further here but recommend Gentzen's original, and very readable
paper [22].

Smullyan introduced two kinds of semantic tableaux [48], signed and
unsigned. We have been using the unsigned version so far in this book
and will continue to do so. The signed version has no advantages for
classical theorem proving, but there are natural modifications of it that
provide proof mechanisms for intuitionistic [16] and many-valued logics
[7, 19] and that are not available without signs. What is relevant now is
that there is a direct connection between the Gentzen sequent calculus
and Smullyan's signed tableau system. We briefly sketch the Smullyan
system, and illustrate the connection with an example, though we do
not formally prove the relationship.

First, two new symbols are introduced, T and F, called signs. A signed
formula is a formula prefixed with a sign, such as T X 1\ Y or F -,X.
Think of T Z as asserting that Z is true, and F Z as asserting that Z
is false. Formally, Boolean valuations are extended to signed formulas
by v(T Z) = v(Z) and v(F Z) = -'v(Z). Note that there is a formal
distinction between F Z and T -,Z, just as there is between X ---> Y and
X ::J Y.

Next, the tableau rules we have been using are replaced with correspond
ing signed versions. For example, in the original system we had a rule:
From -,(X ::J Y), obtain X and -,Y. The signed version follows: From
F X ::J Y, obtain T X and F Y. Similarly, there is an unsigned rule:
From X ::J Y, branch to -,X and Y. That corresponds to the following:
from T X ::J Y, branch to F X and T Y. We leave it to you to formulate
the various signed versions. Indeed, an a-, ,a-classification, and uniform
rule formulations are straightforward.

Finally, a tableau branch is closed if it contains both T X and F X, or
if it contains T 1-, or if it contains F T. A closed tableau for {F X}
constitutes a proof of X.

F...,(P 1\ Q) =:> (...,P V ...,Q)
T...,(P 1\ Q)
F...,PV...,Q
F...,P
F...,Q
FPI\Q
TQ
TP

~
FP FQ

4.3. The Sequent Calculus 97

FIGURE 4.5. Signed Tableau Proof of...,(P 1\ Q) =:> (...,p V ...,Q)

One can pair signed formulas with sequents in the following straight
forward way. If a formula X occurs on the left-hand side of an arrow,
associate with it T X; if X occurs on the right-hand side, associate with
it F X. Note the role of the signs here. If we used unsigned formulas,
with negation playing the role of F, we could not tell if we had a for
mula ...,X, because ...,X occurred on the left-hand side of an arrow, or
because X occurred on the right-hand side. Use of the signs avoids this
ambiguity. Now, each of the sequent calculus rules corresponds exactly
to one of the tableau system rules, though we must keep in mind that
sequent trees are written with the root at the bottom, while tableaux are
written with the root at the top. Consequently, in the correspondence,
rules must be turned over. As an example, the sequent calculus rule in
troducing X=:> Y on the left-hand side of an arrow and the tableau rule
for T X =:> Y clearly correspond.

r ---> ~,X r, Y ---> ~

r,x =:> Y ---> ~

TX=:>Y
FX I TY

Using this correspondence, the sequent calculus proof in Figure 4.4 and
the signed tableau proof in Figure 4.5 clearly also correspond. (Remem
ber to invert things when going from one system to the other.)

We have not spelled out the details of this correspondence but have
relied on your general intuition and understanding. Formal details may
be found in Smullyan [48].

98 4. Other Propositional Proof Procedures

Exercises

4.4
The
Davis-Putnam

Procedure

4.3.1. Give sequent calculus proofs of the following:

1. X :J (Y :J X).

2. (X:J (Y :J Z» :J ((X :J Y) :J (X :J Z».

3. (-.Y:J -.X) :J ((-.y :J X) :J Y).

4. ((X:J Y) :J X) :J X.

5. (X 1\ (Y V Z» :J ((X 1\ Y) V (X 1\ Z».

6. (X:J Y) :J (-.(Y V Z) :J -.(X V Z».

4.3.2. Give a rigorous proof of the soundness of the sequent calculus.

4.3.3. Show that if r ----> ~,-.X is a theorem of the sequent calculus,
so is r, X ----> ~. Likewise, if r, -.X ----> ~ is a theorem, so is r ----> ~,X.

Hint: Use induction on the number of sequents in the proof tree.

4.3.4. Prove Lemma 4.3.7. Hint: Use Exercise 4.3.3.

4.3.5. Prove Proposition 4.3.9.

In 1960 the Davis-Putnam procedure was introduced [14]. This was in
tended to be a theorem-proving technique suitable for automation, cov
ering classical propositional and first-order logic. The first-order version
was not as efficient as resolution, which was introduced soon after, be
cause the notion of unification was missing, but the propositional version
is still among the fastest. We present it here for its own sake and as a
theorem-proving algorithm that is not hard to implement and experi
ment with.

The Davis-Putnam procedure, like resolution, is a refutation method.
To prove X, start with -.X and derive a contradiction. The first phase
is a conversion to clause form, just as with resolution. This has been
discussed in Sections 2.8 and 2.9. Essentially, then, the Davis-Putnam
procedure is a test for the unsatisfiability of a clause form.

A clause is a disjunction of literals. A clause set is a conjunction of
clauses. We now need a more complicated object, a disjunction of clause
sets. We call these blocks (the term was not used in Davis and Put
nam [14]). Part of the strategy in applying Davis-Putnam methods will
be to keep the number of clause sets in a block to a minimum, preferably
one.

Definition 4.4.1 A block is a disjunction of clause sets.

4.4. The Davis-Putnam Procedure 99

The procedure involves the mechanical transformation of blocks into
blocks, via simple rewriting rules. Syntactically, all these transforma
tions have the same general pattern: Replace some clause set in a block
by one or more others. Semantically, each transformation should not
affect satisfiability: The transformed block must be satisfiable if and
only if the original block was satisfiable. The intention is to produce a
block that is obviously satisfiable or not. There are two families of rules.
The first are preliminary rules that are not strictly necessary but that
can considerably speed up later steps. Then there are the primary rules
that are the essence of the Davis-Putnam procedure. We begin with a
discussion of the preliminary rules.

Preliminary Step 1 Remove any repetitions from the clauses in a
block, and (maybe) arrange the literals into some standard order.

It is easy to see that this step can not affect satisfiability. The same
applies to the next; we omit any formal verification.

Definition 4.4.2 For a propositional letter P, we set P = oP and OP = P. The literals
Land L are complementary literals.

Preliminary Step 2 Delete any clause that contains both a literal and
its complement. Delete any clause that contains T. Delete every occur
rence of ..l.

Now we come to the main transformations. We state them, and we ei
ther prove the necessary semantic facts about each or leave them as
exercises. Then we give examples, and finally, we prove soundness and
completeness.

One-Literal Rule Suppose B is a block containing the clause set S,
and S in turn contains the one-literal clause [L]. Modify B by changing
S as follows: Remove from S all clauses containing L, and delete all
occurrences of L from the remaining clauses of S. (When talking about
applications of this rule, we say it has been used on the literal L.)

To prove that the One-Literal Rule has no effect on satisfiability of
blocks, it is enough to prove the modifications it makes to clause sets
have this property.

Proposition 4.4.3 Suppose S is a clause set that contains the one-literal clause [L]. Let S*
be like S except that all clauses containing L have been removed, and
from the remaining clauses, all occurrences ofL have been deleted. Then
S is satisfiable if and only if S* is satisfiable.

100 4. Other Propositional Proof Procedures

Proof For the sake of simple notation, we use a Prolog-style convention
when writing clauses. [A I B] denotes a clause whose first item is A,
with B being the clause consisting of the rest of the members. Now,
suppose S is the clause set ([A], [A I C1], ... , [A I Cn], [.A I D1]' .. , [.A I
Dk], EI, ... , Ej), where the literal L is the propositional letter A, and
the only occurrences of A and .A are the ones indicated. Then S* is the
clause set (D 1 , ... , D k , E 1 , ... , E j).

Suppose first that S is satisfiable. Say the Boolean valuation v maps
every member of S to t. Then in particular, v(A) = t. Also v([.A I
DID = t, but since v(.A) = f, it must be that v(DJ) = t, and similarly
for each D i . And of course, v(EJ) = t, ... , v(Ej) = t. Hence, each
member of S* maps to t under v, so S* is satisfiable.

Next suppose that S* is satisfiable; say the Boolean valuation v maps
every member of S* to t. We define a new Boolean valuation w by
specifying it on propositional letters. For every propositional letter P,
except for A, w(P) = v(P). And w(A) = t. It is obvious that on any
clause K that contains no occurrences of A or .A, v(K) = w(K). Hence
W(E1) = t, ... , w(Ej) = t, since V(E1) = t, ... , v(Ej) = t. Further,
since v(Dd = t, W(D1) = t and hence w([.A I DID = t. Similarly,
for [.A I D2], ... , [.A I Dk]' Finally, by design, w(A) = t, and hence
w([A I C1D = t, ... , w([A I CnD = t. And of course, w([AD = t. Thus,
w maps every member of S to t, so S is satisfiable. 0

Now we give the remaining rules, leaving their semantic properties as
exercises.

Affirnlative-Negative Rule Suppose B is a block containing clause
set S, some clauses in S contain the literal L, and no clauses in S contain
L. Modify B by removing from S all clauses containing L. (We will say
this rule has been used on the literal L.)

Definition 4.4.4 A clause C1 subsumes a clause C 2 if every literal in C1 also occurs in
C2 •

The idea behind subsumption is simple. If C 1 subsumes C2 , then if C 1

is unsatisfiable, so is C2 . In testing for unsatisfiability, if one clause
subsumes another, we can ignore the one that is subsumed.

Subsumption Rule Suppose B is a block containing the clause set S,
and S contains clauses C 1 and C2 where C 1 subsumes C2 . Modify B by
removing clause C2 from S.

4.4. The Davis-Putnam Procedure 101

Splitting Rule Suppose B is a block containing the clause set S, and
some clauses in S contain the literal L while others contain L. (There
may also be clauses with neither.) Let SL be the clause set that results
when all clauses in S containing L are removed, and all occurrences
of L are deleted. Likewise, let Sy; be the clause set that results when
all clauses in S containing L are removed, and all occurrences of L are
deleted. Modify B by replacing the clause set S by the two clause sets
S Land Sy;. (When talking about applications of this rule, we say we
have split on the literal L.)

This completes the presentation of the Davis-Putnam Rules. In dis
cussing their use, the following terminology is handy:

Definition 4.4.5 Let B be a block. A Davis-Putnam derivation for B is a finite sequence
of blocks B 1 , B 2 , ... , B n , where Bl = B, and otherwise each block in
the sequence comes from its predecessor using one of the four rewriting
rules. A derivation succeeds if it ends with a block in which each clause
set contains the empty clause. A derivation fails if it ends with a block
in which some clause set itself is empty.

To prove a formula X in this system, begin with --.X, convert this to
a clause set S, form the block [S], perhaps simplify this using the two
preliminary rules, then show there is a Davis-Putnam derivation that
succeeds.

Example We apply the technique to the formula (P == Q) V (P == --.Q).

1. Negate the formula:
--.((P == Q) V (P == --.Q)).

2. Convert to a clause set, and form the corresponding block:
[([P, --.P], [,P, --.Q], [P, Q], [Q, --.Q], [P, --.P], [P, --.Q],
[--.P, Q], [Q, --.Q])].

3. Apply Preliminary Rule 2 (four times):
[([--.P, --.Q], [P, Q], [P, --.Q], [--.P, Q])].

4. Use the Splitting Rule, splitting on the literal P:
[([--.Q], [Q]), ([Q], [--.Q])].

5. Apply the One-Literal Rule to each clause set in the block:
[([]), ([])].

6. Each clause set in the final block contains the empty clause, so the
derivation has succeeded.

102 4. Other Propositional Proof Procedures

Example We attempt to prove the formula (P V Q) => (P /\ Q).

1. Negate the formula:
-,((P V Q) => (P /\ Q)).

2. Convert to a clause set, and form the corresponding block:
[([P, Q], [-,P, -,Q])].

3. Use the Splitting Rule, splitting on the literal P:
[([-,Q]) , ([Q])].

4. Apply either the One-Literal Rule or the Affirmative-Negative Rule
to each clause set in the block:
[(), ()].

5. Some clause set in the block is empty (in fact, both are), so the
derivation has failed.

Now we must establish soundness and completeness for the procedure.
And for once we will not use the Model Existence Theorem. We did not
specify in what order the rules were to be applied; there is a certain
degree of non-determinism here. We show the strong result that this
non-determinism has no effect on success or failure; we have a decision
procedure.

Theorem 4.4.6 Suppose an attempt is made to prove the formula X using the Davis
Putnam procedure, and the attempt is continued until no rule is applica
ble. Any such attempt must terminate, and it must do so in a success or
in a failure. If it terminates in a success, X is a tautology; if it terminates
in a failure, X is not a tautology.

Proof First, we argue that if a proof attempt terminates it must do so
in a success (with every clause set containing the empty clause) or in
a failure (with some clause set itself empty). We actually establish the
contrapositive. Suppose we have a block B that contains some clause
set S that is not empty and that does not contain the empty clause; we
show we do not have termination. Since S is not empty, we can choose
a clause C from it. And since S does not contain the empty clause, C
itself is not empty, so we can choose a literal L from it. If L does not
occur in any clause in S, we can apply the Affirmative-Negative Rule. If
L does occur in some clauses in S, we can apply the Splitting Rule (or
perhaps the One-Literal Rule). Either way, we do not have termination.

Next we argue that every proof attempt must terminate. But this is easy.
Every rule except for Subsumption reduces the number of distinct literals
that occur in clause sets. Since we began with a finite number, these rules

Exercises

Exercises 103

can be applied only a finite number of times. And the Subsumption Rule
removes clauses, which are finite in number, so it too can be applied only
a finite number of times.

Finally, we argue that termination in success means that X is a tau
tology, while termination in failure means it is not. X is a tautology if
and only if {....,X} is not satisfiable, and our proof attempt begins by
converting,X to a clause set 8, and forming the block [8]. Since every
Boolean valuation will assign the same truth value to,X and [8], X
is a tautology if and only if [8] is not satisfiable. Since the rules do not
affect satisfiability, [8] will be satisfiable if and only if the final block in
the derivation is satisfiable. But a block containing the empty clause set
is satisfiable, while a block in which every clause set contains the empty
clause is not. D

As we presented them, the Davis-Putnam Rules are non-deterministic.
According to the theorem just proved, any order of rule application will
produce a proof if one is obtainable. But of course, some attempts will be
speedier than others. It is easy to see that the Splitting Rule multiplies
the number of cases to be considered, so its use should be postponed.
At the other extreme, the One-Literal Rule simply cuts down on the
number of clauses we need to consider without introducing any other
complications, so it should be used in preference to any other rule. In
fact, the order in which we presented the rules is also a good order in
which to apply them.

4.4.1. Prove an application of the Affirmative-Negative Rule will not
affect the satisfiability of a block.

4.4.2. Prove an application of the Subsumption Rule will not affect
the satisfiability of a block.

4.4.3. Prove an application of the Splitting Rule will not affect the
satisfiability of a block.

4.4.4. Use the Davis-Putnam procedure to test the following for being
tautologies:

1. (P =:J (Q.=:J R)) =:J ((P =:J Q) =:J (P =:J R)).

2. ((P =:J Q) =:J (P =:J R)) =:J (P =:J (Q =:J R)).

3. (P /\ Q) ==,(....,P V,Q).

4. (P =:J Q) V (Q =:J R).

104 4. Other Propositional Proof Procedures

4.5
Computational

Complexity

4.4.5. Take the exclusive-or connective =!= to be defined by:

A =!= B = (A 1\ ,B) V (,A 1\ B).

Give a Davis-Putnam proof that =!= is commutative, that is, prove (A =!=
B) == (B =!= A). Similarly, give a proof that =!= is associative. Compare
these with a tableau or resolution version.

4.4.6. Prove that the One-Literal Rule is not necessary; any tautology
can be verified without using this rule.

4.4. 7P • Implement the Davis-Putnam procedure.

If we have a mechanism for showing that formulas are tautologies, it is
natural to ask how complicated it is to use. More precisely, as tautologies
get more complex, what happens to the complexity of their verifications.
For truth tables this is easy to see. A truth table for a formula with
n propositional letters will have 2n lines, so complexity of verification
using truth tables is exponential in n. For other proof procedures such
questions are less straightforward. In this section we very briefly survey
some recent results and give references to the literature. The proofs of
these results are too complicated to be given here.

The 1979 paper by Cook and Reckhow [11 J gives a thorough analysis of
computational complexity for Hilbert systems (which are called Frege
systems there), based partly on Reckhow [37J. The complexity of a for
mula is measured by the number of its symbols and that of a proof by
the number of its lines. It is shown that if we have two Hilbert systems,
using possibly different but complete sets of connectives, then there is a
translation of proofs in one system into proofs in the other that increases
proof length by at most a fixed polynomial in the length of the original
proof. In other words, any two Hilbert systems are equivalent in com
plexity, up to a polynomial factor. And this result extends to include
natural deduction systems as well. On the other hand, Urquhart [53J
shows this does not extend to resolution.

An obvious problem with Hilbert systems, and with natural deduction
systems as well, is that while a tautology may have a short proof, it may
not be easy to find one. In a Hilbert system a short proof of Y may begin
with short proofs of X and X :::> Y, followed by an application of Modus
Ponens. One can think of X and X :::> Y as Lemmas for the proof of Y.
But finding an appropriate formula X when given the task of proving
Y may be nontrivial. And certainly, X :::> Y is more complicated than
Y, so for a portion of the proof, formula complexity goes up instead of
down. Consequently, most, but not all, attempts at automated theorem
proving have relied on mechanisms that build proofs entirely out of parts

4.5. Computational Complexity 105

of the formula being proved and do not require outside lemmas. Both
resolution and tableaux have this important property (called analytic in
Smullyan [48]). While this apparently simplifies the problem of finding
proofs, a recent result of Haken says that the complexity of proofs in
resolution systems still grows exponentially in the complexity of the
formulas being proved.

In a resolution system it is possible to begin by doing all the Resolution
Reduction Rule applications first, leaving only the Resolution Rule itself
to be applied. Most implemented theorem provers proceed this way, and
Haken's analysis [24] starts from this point. So, let S be a set of clauses.
A resolution refutation of S is a sequence of clauses, each a member of
S or following from earlier clauses in the sequence by the Resolution
Ruleply the total number of clauses. The complexity of the set S is
the number of symbols. Haken showed there is a particular sequence of
formulas, PI, P2 , P3 , .. . , each a tautology, such that the complexity of
-'Pn when converted to clause form is of the order of n 3 , but the shortest
resolution refutation of it is of complexity at least cn (for a fixed c > 1).
In other words, for this family of examples, resolution is exponentially
bad.

The formulas Pn that Haken used all express 'pigeonhole' principles.
These were used earlier [11] in the analysis of Hilbert systems, and their
intuitive content is easy to grasp. If we have n + 1 pigeons but only n
pigeonholes, some pigeonhole must contain two pigeons. More mathe
matically stated, if f is a function from a set with n + 1 members to a
set with n members, there must be two elements i and j of the domain
such that f(i) = f(j). We want to capture the essential content of this
principle by a formula of propositional logic; the result will be Pn .

Let n be fixed; we show how to formulate Pn . First, we have n+1 pigeons
and n pigeonholes. Let us introduce a family of n(n + 1) propositional
letters, Hl,l, H l ,2, H 2,1,"" Hi,j, ... where i ranges from 1 to n + 1
and j from 1 to n. Think of Hi,j as saying pigeon i is in pigeonhole
j. Now, to say pigeon i is in some pigeonhole, we need the formula
Hi,l V H i ,2 V ... V Hi,n, more compactly written V7=1 Hi,j' Then, to
say pigeon 1 is in some pigeonhole, and so is pigeon 2, and so on, we
need a conjunction of formulas like this, for i = 1,2, ... , n + 1. Briefly,
I\~::ll V7=1 Hi,j expresses what we want.

Next, to say two pigeons are in pigeonhole k, we say 1 and 2 are there,
or else 1 and 3 are there, or else 2 and 3, etc. This becomes

n+l n+l

V V (Hi,k 1\ Hj,k).
i=l j=i+l

106 4. Other Propositional Proof Procedures

Then saying some pigeonhole has two pigeons requires a disjunction of
formulas like this, for k = 1,2, ... ,n:

n n+1 n+1
V V V (Hi,k 1\ Hj,k).
k=1 i=1 j=i+1

Finally, combining all this, Pn itself becomes the following:

n+1 n n n+1 n+1
1\ V Hi,j ::) V V V (Hi,k 1\ Hj,k)
i=1 j=1 k=1 i=1 j=i+1

It is not hard to show that, for each n, Pn is a tautology. To do this we can
use the informal pigeonhole principle which is, after all, mathematically
correct. The argument goes as follows:

Let v be a Boolean valuation. We wish to show v(Pn) = t. If v maps
the left-hand side of the implication of Pn to f, we are done, so now
suppose V(I\~:11vn=1Hi,j) = t. Then for each i E {l,2, ... ,n+ 1},
there is some j E {1, 2, ... ,n} such that V(Hi,j) = t. Define a function
f : { 1, 2, ... , n + 1} ---+ { 1, 2, ... , n} such that f (i) is the least j for
which V(Hi,j) = t. Think of f as mapping pigeons to pigeonholes. By
the informal pigeonhole principle, there must be i, j with i < j such
that f(i) = f(j) = k for some k. Then V(Hi,k) = V(Hj,k) = t, so v maps
the right-hand side of the implication of Pn to t, and we are done.

While each Pn is a tautology and expresses a mathematical fact that
is easily grasped, resolution proofs of Pn grow so quickly with n as to
become unmanageable.

Haken's method of proof was applied by Urquhart [53] to a different
family, Sn, of formulas based on graph properties. In this case the clauses
have a size that varies with n, rather than with n 3 as happened with
Pn. It is still the case that the minimal resolution proof length of Sn is
bounded. below by an exponential in n. But now it is possible to show
that each Sn has a short proof in a Hilbert system. From this follows
the result cited earlier that, although Hilbert systems are equivalent to
each other from a complexity point of view, at least up to a polynomial
factor, this equivalence does not extend to resolution.

The status of the pigeonhole principle in Hilbert systems is complex.
Cook and Reckhow [11] showed Pn has a Hilbert system proof whose
length grows exponentially with n, while Ajtai [1] showed that there can
be no Hilbert system proof of Pn in which the number of symbols is
bounded by a polynomial in n, and the formulas have constant depth
(deepness of subformula nesting).

Exercises

Exercises 107

Note that the results cited do not say that every complex tautology
must have a complex resolution proof. But the existence of families like
Pn and Sn guarantee that some do. As a matter of fact, a recent paper
[9J shows that in a probabilistic sense, most randomly chosen sequences
of formulas will be bad ones. We must be prepared to guide proofs by
supplying heuristics, since otherwise astronomically long computational
times can arise.

Hilbert systems are inappropriate for automated theorem proving. The
same applies to natural deduction, since Modus Ponens is a rule of both.
Resolution can be exponentially bad. Similar results apply to tableaux.
There is no proof, but there is good reason to believe similar results will
apply to any proposed proof procedure. Heuristics are a necessity, not a
nicety.

4.5.1. Give a resolution proof of P2 .

4.5.2. Give a tableau proof of P2 •

5--_________________________________ _

First-Order Logic

5.1
Fi rst-O rder
Logic

Syntax

In this chapter we present the syntax and semantics of classical first
order logic. We also state and prove a Model Existence Theorem, es
sentially a semantical result, asserting the existence of certain models.
We use the theorem to establish some basic facts about first-order logic,
such as compactness and Lowenheim-Skolem results. In the next chapter
we introduce proof procedures for first-order logic, and then the Model
Existence Theorem will find its primary application, in proving com
pleteness. Further consequences will be found in Chapter 8, after we
have considered the implementation of proof procedures. This section
sets forth the syntax of first-order logic, which is a considerably more
complicated business than it was in the propositional case.

We work with several different first-order languages, depending on what
applications we have in mind. For instance, if we want to talk about
rings, we will want a constant symbol to denote the zero of a ring; if we
want to talk about rings with unity, we will need an additional constant
symbol to denote the ring unit. Language features like these depend
on the intended applications, but certain items are common to all our
languages. We begin with them.

Propositional Connectives are the same as in propositional logic,
with the Secondary Connectives thought of as defined and the Pri
mary ones as basic. We also have the propositional constants, T
and -.1.

110 5. First-Order Logic

Quantifiers

V (for all, the universal quantifier)

=3 (there exists, the existential quantifier)

Punctuation ')' '(' and" " ,
Variables VI, V2,.' . (which we write informally as x, y, z, ...).

Now we turn to the parts that vary from language to language.

Definition 5.1.1 A first-order language is determined by specifying:

1. A finite or countable set R of relation symbols, or predicate symbols,
each of which has a positive integer associated with it. If PER
has the integer n associated with it, we say P is an n-place relation
symbol.

2. A finite or countable set F of function symbols, each of which has
a positive integer associated with it. If f E F has the integer n
associated with it, we say f is an n-place function symbol.

3. A finite or countable set C of constant symbols.

We use the notation L(R, F, C) for the first-order language determined
by R, F, and C. If there is no danger of confusion, we may abbreviate
L(R, F, C) to just L. Sometimes it is useful to allow the same symbol
to be used as an n-place function symbol and also as an m-place one;
no confusion should arise, because the different uses can be told apart
easily. Similar remarks apply to relation symbols. Further, sometimes it
is useful to think of constant symbols as O-place function symbols.

Having specified the basic element of syntax, the alphabet, we go on to
more complex constructions.

Definition 5.1.2 The family of terms of L(R, F, C) is the smallest set meeting the con
ditions:

1. Any variable is a term of L(R, F, C).

2. Any constant symbol (member of C) is a term of L(R, F, C).

3. If f is an n-place function symbol (member of F) and tl, ... , tn
are terms of L(R, F, C), then f(tt, ... , t n) is a term of L(R, F, C).

A term is closed if it contains no variables.

5.1. First-Order Logic-Syntax 111

Example If f is a one-place function symbol, g is a two-place function symbol,
a, b are constants, and x, yare variables, then the following are terms:
f(g(a,x)); g(f(x),g(x,y)); g(a,g(a,g(a,b))).

Earlier we defined the notion of subformula of a propositional formula.
In essentially the same way, we can define the notion of a sub term of a
term. We omit the formal definition, but we will use the concept from
time to time. We may sometimes be informal about how we write terms.
For instance, if + is a two-place function symbol, we may write x + y
instead of +(x, y). Think of x + y as an unofficial way of designating
the 'real' term. In Section 2.2 we established Principles of Structural In
duction and Structural Recursion for the set of propositional formulas.
The definition of term we gave is very similar to that of propositional
formula, and similar principles apply, with similar justifications. Thus,
we can show every term of L(R, F, C) has a certain property by show
ing that variables and constant symbols have the property, and that
f(t l , ... , tn) has the property whenever each of t l , ... , tn does, for each
function symbol f. Similarly, we can define functions on the set of terms
by specifying them outright on variables and constant symbols, and on
f(t l , ... , t n) based on the values assigned to tl,"" tn. This observation
applies equally well to the definition of formula of first-order logic, which
we give shortly. From now on we make free use of these principles, not
always with explicit mention.

Definition 5.1.3 An atomic formula of L(R, F, C) is any string of the form R(tl,"" tn)
where R is an n-place relation symbol (member of R) and h, ... , tn are
terms of L(R, F, C); also T and .1. are taken to be atomic formulas of
L(R,F,C).

Definition 5.1.4 The family of formulas of L(R, F, C) is the smallest set meeting the
following conditions:

1. Any atomic formula of L(R, F, C) is a formula of L(R, F, C).

2. If A is a formula of L(R, F, C) so is ...,A.

3. For a binary connective 0, if A and B are formulas of L(R, F, C),
so is (AoB).

4. If A is a formula of L(R, F, C) and x is a variable, then (\:Ix)A and
(:lx)A are formulas of L(R, F, C).

Example If Rand g are two-place relation and function symbols respectively, then
(\:Ix) (\:Iy) (R(x, y) => (:lz)(R(x, z)I\R(z, y))) and (\:Ix) (:ly)R(f(x, y), z) are

112 5. First-Order Logic

formulas. We will be informal about parentheses, and instead of the first
formula, we may write

(\Ix) (:3y){R(x, y) :::) (:3z)[R(x, z) 1\ R(z, y)]}.

Likewise, if < is a two-place relation symbol, we may write x < y instead
of the official < (x, y), and similarly in other cases. This is to improve
readability, and should be thought of as an informal substitute for the
'real' formula.

In Chapter 2 we sketched a proof that the formulas of propositional logic
could be uniquely parsed. A similar result holds in the first-order case.
We neither prove this result nor state it properly, though we make tacit
use of it. Likewise, the notion of rank (Definition 2.6.5) extends to the
first-order setting.

Definition 5.1.5 The rank reX) of a first-order formula X is given as follows: rCA)
r(-,A) = 0 for A atomic, other than T or...L. reT) = r(...L) = O. r(-,T) =
r(-,...L) = 1. r(-'-'Z) = r(Z) + 1. rea) = real) + r(a2) + 1. r({3)
r({3l) + r({32) + 1. r('Y) = r(-y(x)) + 1. reo) = r(o(x)) + 1.

Next, we must distinguish between a formula like (\lx)P(x, y) and one
like (\Ix) (:3y)P(x, y). In the first, the variable y is not in the scope of
any quantifier, while in the second, every variable is covered by some
quantifier. The notion of free and bound variable is what is needed here.
In the first formula y has a free occurrence, which is not the case with
the second. Note that the definition that follows relies on the Principle
of Structural Recursion.

Definition 5.1.6 The free-variable occurrences in a formula are defined as follows:

1. The free-variable occurrences in an atomic formula are all the vari
able occurrences in that formula.

2. The free-variable occurrences in -,A are the free variable occur
rences in A.

3. The free-variable occurrences in (AoB) are the free-variable occur
rences in A together with the free variable occurrences in B.

4. The free-variable occurrences in (\lx)A and (:3x)A are the free
variable occurrences in A, except for occurrences of x.

A variable occurrence is called bound if it is not free.

Definition 5.1.7 A sentence (also called a closed formula) of L(R, F, C) is a formula of
L(R, F, C) with no free-variable occurrences.

Exercises

5.2
Substitutions

Exercises 113

5.1.1. Identify the free-variable occurrences in the following:

1. (Vx)R(x, c) ~ R(x, c).

2. (Vx) (R(x, c) ~ R(x, c)).

3. (Vx) [(3y)R(f(x, y), c) ~ (3z)S(y, z)].

Formulas of first-order logic may contain free variables that can be re
placed by other, more complicated, terms. The notion of substituting
a term for a variable plays a fundamental role in automated theorem
proving. In this section we begin looking at properties of substitution.

For this section, let L(R, F, C) be a fixed first-order language, and let T
be the set of terms of L(R, F, C). All our definitions are relative to this
language. Also, substitutions are functions; we use algebraic notation,
writing ta instead of a(t) to denote the result of applying the function
a to t.

Definition 5.2.1 A substitution is a mapping a : V ----+ T from the set of variables V to
the set of terms T.

Although substitutions are maps on variables, their actions are easily
extended to all terms.

Definition 5.2.2 Let a be a substitution. Then we set:

1. ca = c for a constant symbol c.

2. [f(tl,"" tn)]a = f(t}O", ... , tna) for an n-place function symbol f·

Example Suppose xa = f(x, y), ya = h(a), and za = g(c, h(x)). Then j(k(x), y)a
= j(k(f(x, y)), h(a)).

The result of applying a substitution to a term always produces another
term. Also, if two substitutions agree on the variables of a term t, they
will produce the same results when applied to t. We leave the verification
of these items as exercises, and assume them in what follows:

Definition 5.2.3 Let a and T be substitutions. By the composition of a and T, we mean
that substitution, which we denote by aT, such that for each variable x,
x(aT) = (xa)T.

114 5. First-Order Logic

The definition of composition concerns behavior on variables. In fact,
using structural induction, one can prove that this extends to all terms.

Proposition 5.2.4 For every term t, t(O"r) = (to")r.

Proposition 5.2.5 Composition of substitutions is associative, that is, (0"10"2)0"3 = 0"1 (0"20"3).

Proof Let v be any variable. We must show V(O"!O"2)0"3 = VO"l(0"20"3).
But, V(O"!O"2)0"3 = [V(O"!O"2)]0"3 = [(VO"d0"2]0"3. Likewise VO"l(0"20"3) =
(VO"d(0"20"3) = [(VO"d0"2]0"3. D

Definition 5.2.6 The support of a substitution 0" is the set of variables x for which xo" =1= x.
A substitution has finite support if its support set is finite.

Proposition 5.2.7 The composition of two substitutions having finite support is a substitu
tion having finite support.

We leave the proof of this to you. The identity substitution has finite
support, and so the set of substitutions having finite support constitutes
a semigroup under composition. Frequently we will only be interested in
substitutions that have finite support. For such cases we have a conve
nient special notation.

Definition 5.2.8 Suppose 0" is a substitution having finite support; say {Xl, ... ,Xn } is
the support, and for each i = 1, ... ,n, XiO" = ti. Our notation for 0" is:
{xI/tl , ... ,xn/tn }. In particular, our notation for the identity substitu
tion is { }.

Proposition 5.2.9 Suppose 0"1 and 0"2 are two substitutions having finite support. Say 0"1 =
{xI/tl , ... , xn/tn} and 0"2 = {yI/ul,"" yk/ud. Then the composition
0"10"2 has notation

where Zl, .. . ,Zm are those variables in the list Yl, ... ,Yk that are not
also in the list Xl, ... , Xn . (We assume that if any item degenerates into
X / X, it is dropped from the substitution notation.)

Example Suppose 0"1 = {xl f(X,y),y/h(a),z/g(C, h(x))} and 0"2 = {x/b, y/g(a, X),
w/z}. Then 0"10"2 = {xl f(b,g(a, X)), y/h(a), z/g(c, h(b)), w/z}.

Next, the action of substitution is extended to arbitrary formulas. Here
things are more complicated, because variables in formulas can have
both free and bound occurrences, and substitutions should not affect
bound variable occurrences.

5.2. Substitutions 115

Definition 5.2.10 Let a be a substitution. By ax we mean the substitution that is like a
except that it does not change the variable x. More precisely, for any
variable y:

a = {ya if y =I- x
y x x if y = x.

Definition 5.2.11 Substitution is extended to formulas as follows. Let a be a substitution.
Then:

1. For the atomic case:

[A(tl,"" tn»)a = A(tla, ... , tna)
Ta=T

..1a = ..i.

2. [.... X)a = [Xa).

3. (X 0 Y)a = (Xa 0 Ya) for a binary symbol o.

4. [(\ix)4.»a = (\ix)[4.>ax).

5. [(:3x)4.»a = (:3x)[4.>ax).

Example Suppose a = {x/a,y/b}. Then

[(\ix)R(x, y) ~ (:3y)R(x, y)) a [(\ix)R(x, y)) a ~ [(:3y)R(x, y)) a
(\ix) [R(x, y») ax ~ (:3y) [R(x, y») ay

(\ix)R(x, b) ~ (:3y)R(a, y).

One of the key facts about substitution in terms follows: For any term t,
(ta)r = t(ar). This result does not carry over to formulas. For example,
let a = {x/y} and r = {y/c} (here x and y are variables and c is
a constant symbol). Then ar = {x/c,y/c}. If 4.> = (\iy)R(x,y), then
4.>a = (\iy)R(y, y), so (4.>a)r = (\iy)R(y, y). But 4.>(ar) = (\iy)R(c, y),
which is different. What is needed is some restriction that will ensure
composition of substitutions behaves well.

Definition 5.2.12 A substitution being free for a formula is characterized as follows:

1. If A is atomic, a is free for A.

2. a Is free for X if a is free for X.

3. a Is free for (X 0 Y) if a is free for X and a is free for Y.

116 5. First-Order Logic

4. a Is free for (Vx)<I> and (:3x)<I> provided: ax is free for <1>, and if y is
a free variable of <I> other than x, ya does not contain x.

Theorem 5.2.13 Suppose the substitution a is free for the formula X, and the substitution
r is free for Xa. Then (Xa)r = X(ar).

Exercises

Proof By structural induction on X. The atomic case is immediate,
and is omitted.

We give the binary operation symbol case; negation is similar. Suppose
the result is known for X and for Y, a is free for (X 0 Y), and r is free
for (X 0 Y)a. We show ((X 0 Y)a)r = (X 0 Y)(ar).

Since a is free for (X 0 Y), a is free for X, and a is free for Y. Since r
is free for (X 0 Y)a = (Xa 0 Ya), r is free for Xa and r is free for Ya.
Then by the induction hypothesis, (Xa)r = X(ar) and (Ya)r = year).
Hence ((X 0 Y)a)r = (Xao Ya)r = (Xa)ro (Ya)r = X(ar) 0 year) =
(X 0 Y)(ar).

Finally, we give one quantifier case; the other is similar. Suppose the
result is known for <1>, a is free for (Vx)<I>, and r is free for [(Vx)<I>]a. We
show that ([(Vx)<I>]a)r = [(Vx)<I>](ar).

Since a is free for (Vx) <I> , ax is free for <1>. And since r is free for
[(Vx)<I>]a = (Vx)[<I>ax], rx is free for <l>ax . Then by the induction hy
pothesis, (<I>ax)rx = <I>(axrx).

Next we show that <I>(axrx) = <I>(ar)x. To do this it is enough to show
that if y is any free variable of <1>, then y(axrx) = y(ar)x. This is trivial
if y = x, so now suppose y =1= x. Since y =1= x, ya = yax and year) =
y(ar)x. Also since a is free for (Vx) <I> , ya does not contain x, hence
(ya)r = (ya)rx. Then, putting all this together, y(axrx) = (yax)rx =
(ya)rx = (ya)r = year) = y(ar)x.

Finally, ([(Vx)<I>]a)r = ((Vx)[<I>ax])r = (Vx)[(<I>ax)rx] = (Vx)[<I>(axrx)] =
(Vx)[<I>(ar)x] = [(Vx)<I>](ar). This concludes the proof. 0

5.2.1. Prove that if t is a term and a is a substitution, then ta is a
term. Use structural induction on t.

5.2.2. Prove that if a and r are two substitutions that agree on the
variables of the term t, then ta = tr. Use structural induction on t.

5.2.3. Prove Proposition 5.2.4 by structural induction on t.

5.2.4. Prove Proposition 5.2.7.

5.3
First-Order

Semantics

5.3. First-Order Semantics 117

5.2.5. Prove Proposition 5.2.9 by showing the substitutions 0'10'2 and
{XI/(t10'2),"" Xn /(tn 0'2), Z1/(Z10'2), ... , zm/(Zm0'2)} have the same ac
tion on each variable.

5.2.6. Prove that if <P is a formula and 0' is a substitution, then <PO' is
a formula. Use structural induction on <P.

5.2.7. Prove that if 0' and T are two substitutions that agree on the
free variables of the formula <P, then <PO' = <PT. Use structural induction
on <P.

5.2.8. Prove that a formula <P is a sentence if and only if <PO' = <P for
every substitution 0'.

It is more complicated to give meaning to a formula of first-order logic
than it was in the propositional case. We must say what we are talking
about, what domain is involved for the quantifiers to quantify over. We
must say how we are interpreting the constant, function, and relation
symbols with respect to that domain, an interpretation. These two items
specify a model. (Models are also called structures.) In fact, the notion
of a model is relative to a first-order language, since that determines
what symbols we have to interpret. And finally, since formulas may con
tain free variables, we must say what they stand for, that is, give an
assignment of values to them.

Definition 5.3.1 A model for the first-order language L(R, F, C) is a pair M
where:

(D, I)

D is a nonempty set, called the domain of M.

I is a mapping, called an interpretation that associates:

To every constant symbol C E C, some member cI ED.

To every n-place function symbol I E F, some n-ary function
II: D n ----+ D.

To every n-place relation symbol PER, some n-ary relation
pI ~ Dn.

Definition 5.3.2 An assignment in a model M = (D, I) is a mapping A from the set of
variables to the set D. We denote the image of the variable v under an
assignment A by VA.

Suppose we have an interpretation, which gives meanings to the constant
and function symbols of the language, and we have an assignment, which
gives values to variables. We have enough information to calculate values
for arbitrary terms.

118 5. First-Order Logic

Definition 5.3.3 Let M = (D, I) be a model for the language L(R, F, C), and let A be
an assignment in this model. To each term t of L(R, F, C), we associate
a value tl,A in D as follows:

1. For a constant symbol c, e,A = cl .

2. For a variable v, vl,A = VA.

3. For a function symbol f, [f(tl, ... , tn)]I,A = fl(t~,A, ... , t~A).

This definition (which is by structural recursion) associates a value in D
with each term of the language. If the term is closed (has no variables),
its value does not depend on the assignment A. For closed terms we
often write t l instead of tl,A to emphasize this point.

Example Suppose the language L has a constant symbol 0, a one-place function
symbol s, and a two-place function symbol +. We will write + in infix
position, x+y instead of +(x, y). Now s(s(O)+s(x)) and s(x+s(x+s(O)))
are terms of L. We consider several choices of model M = (D, I) and
assignment A.

1. D = {O, 1, 2, ... }, 01 = 0, Sl is the successor function, and +1 is the
addition operation. Then, if A is an assignment such that x A = 3,
(s(s(O) + S(X)))I,A = 6 and (s(x + s(x + S(O))))I,A = 9. More
generally, (s(s(O)+S(x)))I,A = x A +3 and (s(x+s(x+s(O))))I,A =
2xA +3.

2. D is the collection of all words over the alphabet {a, b}, 01 = a,
Sl is the operation that appends a to the end of a word, and +1
is concatenation. Then, if A is an assignment such that x A =
aba, (s(s(O) + s(X)))I,A = aaabaaa and (s(x + s(x + S(O))))I,A =
abaabaaaaa.

3. D = { ... , -2, -1,0,1,2, ... }, 01 = 1, Sl is the predecessor function,
and +1 is the subtraction operation. Then (s(s(O) + s(x)))I,A =
-xA and (s(x + s(x + s(O))))I,A = O.

Next, we associate a truth value with each formula of the language,
relative to a model and an assignment. For this we need a preliminary
piece of terminology.

Definition 5.3.4 Let x be a variable. The assignment B in the model M is an x-variant
of the assignment A, provided A and B assign the same values to every
variable except possibly x.

5.3. First-Order Semantics 119

Definition 5.3.5 Let M = (D, I) be a model for the language L(R, F, C), and let A be an
assignment in this model. To each formula <I> of L(R, F, C), we associate
a truth value <I>I,A (t or f) as follows:

1. For the atomic cases,

[P(tl,"" tn)p,A = t ~ (t~,A, ... , t~A) E pI,
TI,A = t,
1.. I,A = f.

2. [.XlI,A = .[XI,Al.

3. [X 0 YlI,A = XI,A 0 yI,A.

4. [(\1'x)<I>lI,A = t ~ <I>I,B = t for every assignment B in M that is
an x-variant of A.

5. [(3x)<I>p,A = t ~ <I>I,B = t for some assignment B in M that is
an x-variant of A.

Just as with terms, if the formula <I> contains no free variables, its truth
value will not depend on the particular assignment used, so we generally
write <I>I instead of <I>I,A, to emphasize this.

Definition 5.3.6 A formula <I> of L(R, F, C) is true in the modelM = (D, I) for L(R, F, C)
provided, <I>I,A = t for all assignments A. A formula <I> is valid if <I> is
true in all models for the language. A set S of formulas is satisfiable in
M = (D, I), provided there is some assignment A (called a satisfying
assignment) such that <I>I,A = t for all <I> E S. S is satisfiable if it is
satisfiable in some model.

Example For the following, suppose we have a language L with a two-place relation
symbol R and a two-place function symbol EEl; also suppose we have a
model M = (D, I).

1. Consider the sentence (3y)R(x,y EEl y). Suppose D = {1,2,3, ... },
EElI is the addition operation, and RI is the equality relation. Then
(3y)R(x, y EEl y)I,A is true if and only if x A is an even number.

2. This time consider the sentence (\1'x)(\1'y)(3z)R(x EEl y, z), where
again D = {l, 2, 3, ... } and EElI is the addition operation, but RI
is the greater-than relation. It is easy to see that the sentence is
true in M if, for every counting number x and every counting num
ber y, there is a counting number z such that x + y > z. Since this
is in fact the case, the sentence is true in M.

120 5. First-Order Logic

3. Use the same sentence as in item 2, but this time use the model
where D = {I, 2, 3, ... } , EElI is addition, but RI is the greater-than
by-4-or-more relation. In this model the sentence is not true. Since
there is a model in which it is not true, the sentence is not valid.
Likewise, item 2 shows the negation of the sentence is not valid
either.

4. The sentence is (\fx)(\fy){R(x,y) ::J (:3z)[R(x,z) 1\ R(z,y)]}, D is
the set of real numbers, and RI is the greater-than relation. The
sentence is true in this model (it expresses the denseness of the
reals). If we change D to the counting numbers, the sentence will
be false in the model.

5. (\fx)(\fy)[R(x,y) ::J R(y,x)]. Nothing requires domains to be infi
nite. Consider the model where D = {7,8} and RI is the relation
that holds of (7,8) but not of (7,7), (8,8), or (8,7). In this model
the sentence is not true.

In formal theorem proving, we (generally) are interested in establishing
that some formula is valid. We can turn arbitrary formulas into sen
tences by universally quantifying away any free variables. Exercise 5.3.2
says this preserves truth in models. Consequently, we need only concern
ourselves with establishing the validity of sentences.

The definition of model, and hence of satisfiability, depends on the lan
guage used, but Exercise 5.3.5 shows this dependence is not really criti
cal.

The following proposition will play a role in proving the soundness of
proof procedures in the next chapter. Since its verification is not difficult,
we leave it as an exercise.

Proposition 5.3.7 Suppose t is a closed term, «P is a formula of the first-order language
L, and M = (D, I) is a model for L. Let x be a variable, and let A
be any assignment such that x A = t I . Then [«p{X/t}]I,A = «pI,A. More
generally, if B is any x-variant of A then [«p{x/t}]I,B = «pI,A.

Finally, we have the following important result, relating substitutions
and models.

Proposition 5.3.8 Suppose M = (D, I) is a model for the language L, «p is a formula in
this language, A is an assignment in M, and a is a substitution that is
free for «P. Define a new assignment B by setting, for each variable v,
vB = (va)I,A. Then «pI,B = (<<pa)I,A.

Exercises

Exercises 121

Proof We first need to know that, for any term t, tI,B = (ta)I,A. This
is a simple structural induction on t, which we omit.

Now, the result is shown by structural induction on <I>. The atomic case
follows immediately from the result just cited concerning substitution in
terms. The various propositional cases are straightforward. The quanti
fier cases are the significant ones.

Suppose the result is known for formulas simpler than <I>, and <I> = (:3x)cp.
Further, suppose [<I>alI,A = t. We show <I>I,B = t.
By our assumption, [[(:3x)cp)ap,A = [(:3x)[cpaxlP,A = t. Then for some
x-variant A' of A, [cpaxlI,A = t. Now, define a new assignment B' by
setting, for each variable v, vB' = (vax)I,A'. Since a is free for (:3x)cp,
ax is free for cpo Then by the induction hypothesis, [cpaxlI,A' = cpI,B',
hence, cpI,B' = t. It will follow from this that [(:3X)cpp,B = <I>I,B = t once
we show that B' is an x-variant of B.

Since a is free for (:3x)cp, if v is any variable except x, va does not
contain x. Now, if v =1= x, VB' = (vax)I,A' = (since v =1= x) (va)I,A' =
(since va cannot contain x, and A and A' agree on all variables except
x) (va)I,A = vB (by definition). Thus B' is an x-variant of B.

We have now showed that, given the induction hypothesis, if [<I>ap,A = t
then <I>I,B = t. The argument in the converse direction is similar, as is
the universal quantifier case. D

5.3.1. Prove Proposition 5.3.7.

5.3.2. Show <I> is true in a model M if and only if (Vx)<I> is true in M.

5.3.3. Show X is valid if and only if {-oX} is not satisfiable.

5.3.4. Show X == Y is true in M = (0, I) if and only if XI,A = yI,A
for all assignments A.

5.3.5. Let L and L' be first-order languages, with every constant, func
tion and relation symbol of L also a symbol of L'. Let S be a set of
formulas of L. Show S is satisfiable in some model for the language L if
and only if S is satisfiable in some model for the language L'.

5.3.6. Write a sentence <I> involving the two-place relation symbol R
such that:

1. <I> Is true in (0, I) if and only if RI is a reflexive relation on 0.

2. <I> Is true in (0, I) if and only if RI is a symmetric relation on 0.

3. <I> Is true in (0, I) if and only if RI is a transitive relation on 0.

122 5. First-Order Logic

4. q; Is true in (D, I) if and only if RI is an equivalence relation on D.

5.3.7. Write a sentence q; involving the two-place relation symbol R
having both the following properties:

1. q; Is not true in any model (D, I) with a one element domain.

2. if D has two or more elements, there is some interpretation I such
that q; is true in (D, I) .

5.3.8. Write a sentence q; involving the two-place relation symbol R
having both the following properties:

1. q; Is not true in any model (D, I) with a one- or a two-element
domain.

2. If D has three or more elements, there is some interpretation I such
that q; is true in (D, I).

5.3.9. Write a sentence q; involving the two-place relation symbol R
having the following properties:

1. q; Is not true in any model (D, I) with a finite domain.

2. If D is infinite, there is some interpretation I such that q; is true in
(D,I).

5.3.10. In the following P and R are relation symbols and c is a con
stant symbol. Demonstrate the validity of the following:

1. (\fx)P(x) ::,) P(c).

2. (3x)[P(x)::,) (\fx)P(x)].

3. (3y) (\fx)R(x, y) ::,) (\fx) (3y)R(x, y).

4. (\fx)q; == -,(3x)-,q;.

5. Determine the status of (\fx) (3y)R(x, y) ::,) (3y) (\fx)R(x, y).

5.4
Herbrand
Models

Definition 5.4.1

5.4. Herbrand Models 123

Assignments are almost substitutions, but not quite. The problem is as
follows: An assignment maps variables to members of a domain D, and
the members of D probably will not be terms of the formal language we
are using, so if we replace a variable in a formula by what an assignment
maps it to, we will not get a formula as a result. Still, it is convenient to
think of assignments and substitutions together, and in certain cases we
can. The domain of a model can be anything we like; in particular its
members could be terms of the language L. If we are in such a fortunate
situation, assignments are substitutions.

A model M = (D, I) for the language L is a Herbmnd model if:

1. D is exactly the set of closed terms of L.

2. For each closed term t, t l = t.

It may seem that Herbrand models are 'rather special. In fact, they do
playa special role in our completeness proofs. By design, an assignment
A in a Herbrand model M is also a substitution for the language L, and
conversely, and so for a formula q, of L, both q,1,A (where A is used as an
assignment) and q,A (where A is used as a substitution) are meaningful.
The connection between these two roles of A is a simple one and is given
in the following two propositions. Before stating them, we note that for
any formula q, of L, and for any assignment A in a Herbrand model,
thought of as a substitution, q, A has no free variables. Then a truth
value for q, A depends only on the interpretation of the model. Similar
observations apply to terms.

Proposition 5.4.2 Suppose M = (D, I) is a Herbmnd model for the language L. For any
term t of L, not necessarily closed, tl,A = (tA)I.

Proof By structural induction on t. We begin with the ground cases.
Suppose t is a variable, v. Then tl,A = VI,A = vA, and (tA)1 = (vA)1 =
vA, since I is the identity on closed terms. And finally, vA = vA. This
completes the argument if t is a variable. Next suppose t is a constant
symbol, c, of L. Then tl,A = cl,A = cl , and (tA)1 = (cA)1 = cl .

Suppose the result is known for the terms tl,'" ,tn, and we have the
term t = f(tl,"" tn). Then tl,A = [f(tl,"" tnW,A = fl(t~,A, ... ,
t~A). Also (tA)1 = [f(tl,"" tn)AP = [f(tIA, ... , tnAW = fl((tIA)I,
... , (tnA)I). Now we are done, by the induction hypothesis. 0

Proposition 5.4.3 Suppose M = (D, I) is a Herbmnd model for the language L. For a
formula q, of L, q,1,A = (q,A)I.

124 5. First-Order Logic

A nice feature of working with Herbrand models is that quantifier truth
conditions become much simplified. The following states this formally,
using our notation for substitutions having finite support.

Proposition 5.4.4 Suppose cP is a formula of Land M = (D, I) is a Herbrand model for
L. Then:

Exercises

5.5
First-Order

Uniform

Notation

1. (\fx)cp is true in M {:} cp{x/d} is true in M for every d ED.

2. (3x)cp is true in M {:} cp{x/d} is true in M for some d ED.

5.4.1. Prove Proposition 5.4.3.

5.4.2. Prove Proposition 5.4.4.

Earlier we introduced a system of uniform notation for propositional
logic. Here, again following Smullyan [48], we extend it to include quan
tifiers. All quantified formulas and their negations are grouped into two
categories, those that act universally, which are called "Y-formulas, and
those that act existentially, which are called 8-formulas. For each variety
and for each term t, an instance is defined. The groups and the notions
of instance are given in Table 5.1.

Universal Existential

"Y "Y(t) 8 8(t)
(\fx)CP cp{x/t} (3x)cp cp{x/t}

-,(3x)cp -,cp{x/t} -,(\fx)CP -,cp{x/t}

TABLE 5.1. "Y- and 8-Formulas and Instances

Essentially, all "Y-formulas act universally and all 8-formulas act existen
tially. More precisely, both "Y == (\fYh(y) and 8 == (3y)8(y) are valid,
provided y is a variable that is new to "Y and 8.

When we come to prove tableau and resolution soundness, the following
will playa central role:

Proposition 5.5.1 Let S be a set of sentences, and"Y and 8 be sentences.

1. If S U {"Y} is satisfiable, so is S U {"Y, "Y(t)} for any closed term t.

2. If S U {8} is satisfiable, so is S U {8, 8 (p)} for any constant symbol
p that is new to Sand 8.

5.5. First-Order Uniform Notation 125

Proof We are working with sentences, which makes things slightly eas
ier for us.

Part 1 Suppose Sub} is satisfiable in the model M = (D, I).
We show S u b,'Y(t)} is satisfiable in the same model. Since'Y is
true in this model, so is (\fxh(x) (where x is a variable new to 'Y).
Then for every assignment A, ['Y(X)]I,A is true. Now, let A be an
assignment such that x A = tI . By Proposition 5.3.7, h(t)]I,A =
['Y{xjt}]I,A = h(x)]I,A = t.

Part 2 Suppose S U {8} is satisfiable in M = (D, I), and p is a
constant symbol new to S and 8. We will show S u {8, 8 (p)} is
satisfiable, though not necessarily in the model M.

Since 8 is true in M, so is (3x)8(x) (x new to 8), and hence [8(X)]I,A
is true for some assignment A. If we had x A = pI, we could complete
the argument just as we did in part 1, but there is no reason to
suppose this happens. So, we construct a new model M* = (D, J),
having the same domain, with an interpretation J that is exactly
the same as I on everything except p, and for that case we set
pJ = x A . Now, since the two models differ only with respect to the
constant symbol p, sentences not containing p will behave the same
in the two models. Then Su {8} is satisfiable in M*, and [8(x)]J,A
is true as well. Since x A = pJ, we have [8(P)]J,A = [8{xjp}]J,A =
[8(x)]J,A = t. Then S U {8, 8(p)} is satisfiable, but in M*. D

When Herbrand models are involved, things become especially simple.

Proposition 5.5.2 Suppose L is a first-order language and M = (D, I) is a Herbrand model
forL.

1. If'Y is a formula of L, 'Y is true in M if and only if 'Y(d) is true in
M for every dE D.

2. If 8 is a formula of L, 8 is true in M if and only if 8(d) is true in
M for some d E D.

We can also extend the notion of structural induction to make use of
first-order uniform notation. We omit the proof, which is siInilar to that
of the corresponding propositional version.

Theorem 5.5.3 (First-Order Structural Induction)
Every formula of a first-order language L has property Q, provided:

Basis step Each atomic formula and its negation has property Q.

126 5. First-Order Logic

Induction steps

If X has property Q so does -,-,X

If a1 and a2 have property Q so does a.

If /31 and /32 have property Q so does /3.
If ')'(t) has property Q for each term t, ')' has property Q.

If 8 (t) has property Q for each term t, 8 has property Q.

There is a similar extension of structural recursion.

Theorem 5.5.4 (First-Order Structural Recursion)

Exercises

There is one, and only one, function f defined on the set of formulas of
L such that:

Basis step The value of f is specified explicitly on atomic formulas
and their negations.

Recursion steps

The value of f on -,-,X is specified in terms of the value of f
onX.

The value of f on a is specified in terms of the values of f on
a1 and a2.

The value of f on /3 is specified in terms of the values of f on
/31 and /32,
The value of f on ')' is specified in terms of the values of f on

')'(t) .

The value of f on 8 is specified in terms of the values of f on
8(t).

5.5.1. Prove that if the variable x does not occur in the sentence ,)" and
if t is a closed term, then ')'(t) = ,),(x){x/t}. (Similarly for 8 sentences
too, of course.)

5.5.2. Prove Proposition 5.5.2.

5.6
Hintikka's

Lemma

Definition 5.6.1

5.6. Hintikka's Lemma 127

In the propositional case, we were able to obtain many fundamental
results as direct corollaries of a single theorem, the Model Existence
Theorem. This happy state of affairs continues. And just as before, it is
convenient to separate out part of the work by first proving a result that
is due to Hintikka. Of course, our task is considerably more difficult now
than it was earlier, since the notion of first-order model is more complex
than that of Boolean valuation.

Let L be some first-order language. A set H of sentences of L is called a
first-order Hintikka set (with respect to L), provided H is a propositional
Hintikka set (Definition 3.5.1), and in addition:

6. "(E H =? "(t) E H for every closed term t of L.

7. 8 E H =? 8(t) E H for some closed term t of L.

Just as in the propositional case, the empty set is trivially a first-order
Hintikka set. So are many finite sets; we leave it to you to produce ex
amples. But if L is a language with an infinite set of closed terms (which
will be the case if L has a function symbol and a constant symbol), then
any Hintikka set containing a "(-sentence must be infinite. The following
essentially says that if L is a nontrivial first-order language, then every
Hintikka set with respect to L is satisfiable:

Proposition 5.6.2 (Hintikka's Lemma) Suppose L is a language with a nonempty set
of closed terms. If H is a first-order Hintikka set with respect to L, then
H is satisfiable in a Herbrand model.

Proof Let H be a first-order Hintikka set with respect to L. We begin
by constructing a model M = (D, I), then we verify that H is satisfiable
in it.

Let D be the collection of closed terms of L, which is a nonempty set
by the conditions of the Proposition.

We specify I on constant and function symbols. For a constant symbol
c of L, cI = c. If f is an n-place function symbol of L, and tl, ... , tn
are members of D (hence closed terms of L), fI(h, ... , tn) is the closed
term f(h, ... , tn). It can now be verified that, for each closed term t of
L, t I = t (Exercise 5.6.2).

Next we define I on relation symbols. Suppose R is an n-place relation
symbol of Land h , ... , tn are members of D (hence closed terms of
L). The relation RI holds of (tl,"" tn) if the sentence R(h, ... , tn) is
a member of H. This completes the definition of the model M = (D, I).

128 5. First-Order Logic

Exercises

5.7
Parameters

Finally we show, by structural induction, that for each sentence X of L,
X E H implies X is true in M. Once this is shown, we are done. We
begin with the atomic cases.

Suppose the atomic sentence R(t1 , ..• , tn) is in H. We must show, for
each assignment A, [R(tl, ... ,tnW,A = t, which will be the case pro
vided (t~,A, ... , t~A) E RI. But since R(tl' ... ,tn) is a sentence, each ti
is a closed term, so t~,A = t~ = t i . Thus, what we need to show reduces
to (h, ... , tn) E RI, and we have this, since R(h, ... , tn) is in H. The
other atomic cases concerning T and 1.. are trivial, and the negation of
atomic case is straightforward.

The propositional cases are essentially as they were earlier and are left to
you. We consider one quantifier case and leave the other as an exercise.

Suppose "Y is a sentence of L, the result is known for simpler sentences of
L, and "Y E H; we show "Y is true in M. Since"Y E H, we have "Y(t) E H
for every closed term t, since H is a Hintikka set. By the induction
hypothesis, and the fact that D is exactly the set of closed terms, "Y(t) is
true in M for every tED. Then "Y is true in M by Proposition 5.5.2. D

5.6.1. Prove that if H is a first-order Hintikka set with respect to L
and if X is any sentence of L, then not both X E H and oX E H.

5.6.2. Prove that, in the model M = (D, J) constructed in the proof
of Hintikka's Lemma, for each closed term t of L, t I = t and hence M is
a Herbrand model.

5.6.3. Complete the proof of Proposition 5.6.2 by doing the remaining
cases.

We have not yet presented any proof procedures for first-order logic;
indeed, we will not do so until the next chapter. But still, we have some
feeling for what formal proofs might be like, from seeing informal ones
in books and lectures. There is an important feature of both formal and
informal proofs that is easily overlooked when logic itself is not the sub
ject. Suppose, in the course of a proof, that we have established (3x)cJ>.
We might want to introduce a 'name' for an item having the property
cJ>, given that we have shown there is such an item. Of course we can't
say anything like "let 3 be something for which property cJ> holds," since
3 already has a standard meaning, and having property cJ> might not fit
with that meaning. More generally, we can't use any term that has al
ready been assigned a role. The solution is to introduce a new collection
of terms that are 'uncommitted,' so that we have them available for this
purpose. In a classroom lecture you probably have heard a version of "let

Exercises 129

c be something having the property <I>." The constant c was something
previously unused, though this was probably taken for granted and never
mentioned explicitly. We will do the same thing here. The new constant
symbols we introduce will be called constant parameters or just parame
ters. As it happens, the introduction of parameters plays a role not only
in proof procedures, but in the Model Existence Theorem as well.

Definition 5.7.1 Let L(R, F, C) be a first-order language, which we abbreviate as L. Let
par be a countable set of constant symbols that is disjoint from C. We
call the members of par parameters. And we use Lpar as shorthand for
the language L(R, F, C U par).

Exercises

5.8
The Model
Existence
Theorem

Definition 5.8.1

When we come to formal proofs, we will see that they are of sentences
of L but may use sentences of Lpar. This is in keeping with informal
mathematical practice in which we may introduce new constant symbols
during the course of a proof, symbols that had no meaning when we
stated the theorem being proved.

5.7.1. Let p be a parameter. Show that <I>{x/p} is valid if and only if
(\Ix)<I>(x) is valid.

Once again we extend a result from the propositional to the first-order
setting. And once again, the extension is considerably more difficult
than the original. We begin with the definition of consistency property,
continuing the earlier propositional definition. Several different versions
of first-order consistency property are used in the literature. They are all
rather similar and are used for the same purposes, but on small details
they diverge at many points. Be warned. One minor piece of terminology
first: We call a parameter new to a set of formulas if it does not occur
in any formula of the set.

Let L be a first-order language, and let Lpar be the extension containing
an infinite set of additional constant symbols, parameters. Let C be a
collection of sets of sentences of Lpar. We call C a first-order consistency
property (with respect to L) if it is a propositional consistency property
as in Definition 3.6.1 and, in addition, for each SEC:

6. ,E S ==? S U { ,(t)} E C for every closed term t of Lpar.

7. 8 E S =? S U {8(p)} E C for some parameter p of Lpar.

130 5. First-Order Logic

Theorem 5.8.2 (First-Order Model Existence) If C is a first-order consistency
property with respect to L, S is a set of sentences of L, and SEC,
then S is satisfiable; in fact S is satisfiable in a Herbrand model (but
Herbrand with respect to Lpar).

The rest of the section will be spent in proving this theorem. The ar
gument has several distinct parts, much as it did in the propositional
case. Recall, there we began by enlarging a consistency property to one
that was of finite character. Once we had done this, we were able to ex
tend any member to a maximal one, which turned out to be a Hintikka
set. We follow a similar plan here, but the quantifier conditions make
life just a little more difficult. Still, the proof closely follows that of the
propositional version, and you should review the proof of Theorem 3.6.2
before going on.

Just as in the propositional setting, we call a first-order consistency prop
erty subset closed if it contains, with each member, all subsets of that
member. We leave it to you to verify that every first-order consistency
property can be extended to one that is subset closed.

In the propositional argument, the next step was to extend to a con
sistency property of finite character. We can not do that now, because
we can not ensure the result meets condition 7. (Try it.) So we proceed
in a more roundabout fashion. The basic intuition is that parameters,
having no preassigned roles, are essentially interchangeable. That is, if
p and q are parameters, wherever we use p, we could use q just as well.
But introducing this idea forces us to modify the notion of consistency
property somewhat.

Definition 5.8.3 An alternate first-order consistency property is a collection C meeting the
conditions for a first-order consistency property, except that condition
7 has been replaced by

7'. 8 E S =} S U {8 (p)} E C for every parameter p that is new
to S.

This alternate version is both weaker and stronger than the original. It
is stronger in the sense that it (generally) says lots of instances of a 8-
sentence can be added to S, not just one. It is weaker in the sense that,
if all parameters already occur in formulas of S, so that none are new,
no instances at all can be added.

Definition 5.8.4 A parameter substitution is a mapping 7r from the set of parameters to
itself (not necessarily 1-1 or onto). If 7r is a parameter substitution, we
extend its action to formulas of Lpar as follows: <P7r means replace each

5.8. The Model Existence Theorem 131

parameter occurring in II> by its image under 1f. Likewise, the action of
1f is extended to sets of formulas by applying it to each member of the
set.

Lemma 5.8.5 8uppose C is a first-order consistency property that is closed under sub
sets. Define a collection C+ as follows: 8 E C+, provided 81f E C for
some parameter substitution 1f. Then:

1. C+ extends C.

2. C+ is closed under subsets.

3. C+ is an alternate first-order consistency property.

We leave the proof of this Lemma to you and continue with the argument
for the Model Existence Theorem. As in the propositional version, we
sayan alternate first-order consistency property C is of finite character,
provided 8 E C if and only if every finite subset of 8 belongs to C. Every
alternate first-order consistency property that is subset closed can be
extended to one of finite character. We leave the verification of this to
you as well.

Now we have the necessary background out of the way. Suppose C is a
first-order consistency property with respect to L, 8 is a set of sentences
of L, and 8 E C. We construct a model in which the members of 8 are
true. First, extend C to C*, an alternate first-order consistency property
of finite character. We work with C* (which also contains 8), rather than
with C.

Since the language Lpar has a countable alphabet, it follows that there
are a countable number of sentences of the language. Let Xl, X 2 , X 3 , ...

be an enumeration of all sentences of Lpar. Now we define a sequence
8 1 , 8 2 , 8 3 , ... of members of C*, each of which leaves unused an infinite
set of parameters. (Note: This is true of 8, since 8 is a set of sentences
of L and so contains no parameters.)

Having defined 8n , which leaves unused infinitely many parameters, we
define 8 n +1 as follows:

If 8n U {Xn} rf- C*, let 8 n+1 = 8n.

If 8nu{Xn} E C*, and Xn is not a 0 sentence, let 8 n+1 = 8 nU{Xn}.

If 8n U {Xn} E C*, and Xn = 0, infinitely many parameters will be
new to 8n U {Xn }; choose one, say p, and let 8 n+1 = 8 n U {Xn} U
{o(p)}.

132 5. First-Order Logic

Exercises

5.9
Applications

By construction, each Sn E C*, and each Sn is a subset of Sn+1. Finally,
let H = Sl U S2 U S3U H extends S.

Claim 1 H E C*. The proof is exactly as it was in the propositional case
and depends on the fact that C* is of finite character.

Claim 2 H is maximal in C*. Again, the proof is exactly as in the propo
sitional case.

Claim 3 H is a first-order Hintikka set with respect to Lpar. Here the
argument is essentially the same as in the propositional case, except for
the 8-condition. But we have taken care of that separately, during the
construction of the Sn sequence.

Now by Hintikka's Lemma, H, and hence S, is satisfiable in a model
that is Herbrand with respect to Lpar.

5.8.1. Show that every first-order consistency property can be ex
tended to one that is subset closed. (See Exercise 3.6.1.)

5.8.2. Prove Lemma 5.8.5.

5.8.3. Show that an alternate first-order consistency property that is
subset closed can be extended to one or' finite character. (See Exer
cise 3.6.3.)

For us, the main uses of the Model Existence Theorem will be in proving
completeness. But there are many other important applications of it.
In this section we consider some particularly fundamental ones, among
them the Compactness Theorem and the Lowenheim-Skolem Theorem.
We proved a propositional version of the Compactness Theorem earlier,
Theorem 3.6.3. The Lowenheim-Skolem Theorem has no propositional
analog.

Theorem 5.9.1 (First-Order Compactness) Let S be a set of sentences of the
first-order language L. If every finite subset of S is satisfiable, so is S.

Proof Let C be a collection of sets of sentences of Lpar, constructed
as follows. Put a set W in C, provided (1) infinitely many parameters
are new to W, and (2) every finite subset of W is satisfiable. SEC; it
meets condition 1 since its members are sentences of L, which contain
no parameters, and it meets condition 2 by assumption. C is a first-order
consistency property, hence the satisfiability of S follows immediately by
the First-Order Model Existence Theorem 5.8.2. 0

5.9. Applications 133

The Compactness Theorem is one of the most powerful tools in model
theory. We illustrate its uses by giving an easy proof of the following
remarkable result.

Corollary 5.9.2 Let L be a first-order language. Any set S of sentences of L that is
satisfiable in arbitrarily large finite models is satisfiable in some infinite
model.

Proof Suppose S is satisfiable in arbitrarily large finite models. Let R
be a two-place relation symbol that is not part of the language L, and
enlarge L to L' by adding R. From now on we work with L' with the
understanding that, in any model, we can modify the interpretation of
R without affecting the truth values of members of S, since R does not
occur in members of S. In Exercise 5.3.7 you were asked to write a sen
tence involving R, call it A2, such that A2 is not true in anyone element
model, but can be made true in any domain with two or more things by
suitably interpreting R. We can think of A2 as saying there are at least
2 things. Similarly, in Exercise 5.3.8 you were asked to write a sentence,
call it A 3 , that informally says there are at least 3 things. The ideas
behind those exercises can be continued, and for each n we can produce
a sentence An that asserts there are at least n things. Now consider the
set S* = S u {A2' A 3 , ... }. Since S is satisfiable in arbitrarily large finite
models, it follows easily that every finite subset of S* is satisfiable. Then
by the Compactness Theorem, the entire set S* is satisfiable. But any
model in which the entire of S* is satisfiable can not be finite, hence S
is satisfiable in some infinite model. 0

In Exercise 5.3.9 you were asked to produce a sentence that was not
true in any finite model but could be made true in any infinite domain
by choosing a suitable interpretation. The corollary shows that the dual
of this is impossible: There is no sentence that can be made true in
any finite domain but is not true in any model with an infinite domain.
Thus, the notion of being finite can not be captured using the machinery
of classical first-order logic.

Theorem 5.9.3 (Lowenhehn-Skolern) Let L be a first-order language, and let S
be a set of sentences of L. If S is satisfiable, then S is satisfiable in a
countable model.

Proof Form a collection C of sets of sentences of Lpar as follows: Put a
set W in C, provided infinitely many parameters are new to Wand W
is satisfiable. We leave it to you to check that C is a first-order consis
tency property. If S is satisfiable, then SEC, so by the Model Existence
Theorem, S is satisfiable in a model that is Herbrand with respect to

134 5. First-Order Logic

Lpar. Now the language Lpar has a countable alphabet, hence a count
able collection of closed terms. And it is the collection of closed terms
that constitutes the domain of a Herbrand model. 0

Like the Compactness Theorem, the Li:iwenheim-Skolem Theorem also
has remarkable consequences. One example will have to suffice here.
Suppose we try to characterize the real-number system with a set of
first-order formulas S. That is, the intended model of S should have the
real numbers as its domain, and any other model should be isomorphic to
the intended one. But the Li:iwenheim-Skolem Theorem says that if S is
satisfiable in the intended model, it is also satisfiable in some countable
model. Since the reals are uncountable, there must be a model for S that
is not isomorphic to the intended one. The real number system has no
first-order characterization.

Theorem 5.9.4 (Herbrand Model) A set S of sentences of L is satisfiable if and
only if it is satisfiable in a model that is Herbrand with respect to Lpar.

A sentence X of L is valid if and only if X is true in all models that are
H erbrand with respect to Lpar.

Exercises 5.9.1. Complete the proof of Theorem 5.9.1 by verifying that C is a
first-order consistency property.

5.9.2. A graph is a structure G = (V, E) where E is a symmetric,
binary relation on V (V is meant to suggest "vertex" and E "edge").
A subgraph of G is a structure (V*, E*) where V* is a subset of V and
E* = En(V* x V*). A graph G is four colorable if there are subsets R, G,
B, Y (meant to suggest red, green, blue, and yellow) of V such that ("Ix E

V)(R(x)VG(x)VB(x)VY(x» and ("Ix E V)(Vy E V){E(x,y) :l [(R(x) :l
-,R(y» /\ (G(x) :l -,G(y» /\ (B(x) :l -,B(y» /\ (Y(x) :l -,Y(y»)]}. Show
that if every finite subgraph of a graph is four colorable, so is the entire
graph.

5.9.3. Prove Theorem 5.9.4.

5.10
Logical

Conseq uence

Definition 5.10.1

5.lD. Logical Consequence 135

In general, knowing which first-order formulas are valid is not enough.
We also want to know which formulas follow from which formulas. Such a
notion was introduced in the propositional case in Section 3.9. Extending
it to first-order logic is straightforward.

A sentence X is a logical consequence of a set S of sentences, provided
X is true in every model in which all the members of S are true. If X is
a logical consequence of S, we symbolize this by S PI X (the subscript
is to suggest first-order consequence).

Notice that we defined logical consequence only for sentences. The notion
can be extended to cover arbitrary formulas, but doing so is not quite
straightforward. If formulas other than sentences are allowed, we could
take S PIX to mean the following: For every model M = (D, I), if the
members of S are true in M, then X is true in M (recall, a formula with
free variables is true in a model if it is true under every assignment). Or
we could take it to have a different meaning: For every model M = (D, I)
and for every assignment A, if the members of S are true in M under
the assignment A, then X is true in M under the assignment A. If only
sentences are allowed, these two notions coincide, since the truth value
of a sentence in a model does not depend on which assignment is used.
But in general, these are different. We have chosen to avoid the problem
by considering only sentences. Exercises 5.10.1 and 5.10.2 show we loose
no expressive power by doing so.

Perhaps the most important feature of logical consequence in first-order
logic is that, for each particular sentence X, to establish that it is a
consequence of a set S, only a finite amount of the information in Swill
be needed. This is the content of the following theorem. Other significant
facts about consequence are contained in the exercises.

Theorem 5.10.2 S PI X if and only if SO PI X for some finite set So ~ S.

Proof If So PIX for some finite So ~ S, then S PIX using Exer
cise 5.10.3, part 3. The converse direction is the more interesting. Sup
pose S PI X. Then S U {--X} is not satisfiable. By the Compactness
Theorem 5.9.1, there must be a finite subset that is not satisfiable. We
can assume that finite subset contains --X (since adding a sentence to
an unsatisfiable set leaves it unsatisfiable). Hence, we have an unsatis
fiable set of the form So U {--X}, where So is finite and So ~ S. Then
So PIX, and the proof is complete. D

136 5. First-Order Logic

Exercises 5.10.1. For a formula «> with free variables Xl,"" Xn , we write \1«> for
the sentence (\lXI) ... (\lxn)«>. For a set S of formulas, we write \IS for
{\I«> I «> E S}. Show the following are equivalent:

1. X is true in every model in which the members of S are true.

2. \IS Pi \IX.

5.10.2. Suppose X is a formula and S is a set of formulas of L. Let
PI, P2, ... be a list of parameters (which do not occur in formulas of L).
Let VI, V2, ... be the list of variables of L, and let a be the substitution
such that via = Pi. Note that Xa is a sentence of Lpar, as are the
members of Sa. Show the following are equivalent:

1. For any model M = (D, I) and for any assignment A, if the mem
bers of S are true in M under the assignment A, then X is true in
M under the assignment A.

2. Sa Pi Xa.

5.10.3. Prove the following:

1. X is valid if and only if S PiX for every set S.

2. If A E Sand ...,A E S, then S Pi X for every X.

3. If S Pi X and S <;;; S*, then S* Pi X.

4. If S Pi X, and T Pi Y for every YES, then T Pi X.

5. S U {Xl, X 2 } Pi Y if and only if S U {Xl !\ Xd Pi Y.

6. S U {X} Pi Y if and only if S PiX ~ Y.

7. {Xl"'" Xn} Pi Y if and only if (Xl !\ ... !\ Xn) ~ Y is valid.

6 ______________________ __

First-Order Proof Procedures

6.1
First-Order

Semantic

Tableaux

In this chapter we show how to extend Hilbert system, natural deduc
tion, Gentzen sequent, tableau, and resolution proof procedures from
propositional to first-order logic. We begin with tableaux and resolu
tion, in versions that are best suited to hand work. In the next chapter,
we revise these to a form that is better for computer implementation. As
we observed in Section 5.3, we can confine ourselves to proving sentences,
since validity of arbitrary formulas can be reduced to that of sentences.
We begin with a tableau system in this section, treating resolution in
the next.

In Section 5.7 we discussed how, in informal proofs, new constant sym
bols are routinely introduced. The formal counterpart is parameters, con
stant symbols not part of the original language. We have already seen
them in the definition of first-order consistency property. They play a
role in our proof procedures exactly as one might expect. Proofs will be
of sentences of L but will use sentences of Lpar, the extension of L by
the addition of a countable list of new parameters.

Tableau proofs are closed trees, constructed exactly as in propositional
logic (Section 3.1) but with two additional Tableau Expansion Rules,
given in Table 6.1. In the 'Y-rule any closed term can be used, including
one involving parameters. But in the 6-rule, we are required to use a
parameter that has not been previously introduced in the tree construc
tion, called a new parameter. Informally, it must be a parameter, so that
it does not have an intended meaning in the original language L, and it
must be new to the tree so that it has not acquired a meaning earlier in
the course of the proof. (As a matter of fact, the parameter need only

138 6. First-Order Proof Procedures

be new to the branch, not to the whole tableau. Our soundness proof
for tableaux will apply to this stronger version.)

"(

"((t)
8

8(p)
(for any closed
term t of Lpar)

(for a new
parameter p)

TABLE 6.1. First-Order Tableau Expansion Rules

Example ('v'x)[P(x) V Q(x)] ::::> [(:lx)P(x) V ('v'x)Q(x)] is given a tableau proof in
Figure 6.1. In this the propositional steps are as usual. Line 6 is from 5
by the 8-rule; the parameter c is new to the tableau at this point. Then
7 is from 4, and 8 is from 2 by the ,,(-rule, which allows any closed term
of Lpar, in particular c.

1. ,(('v'x)[P(x) V Q(x)] ::::> [(:lx)P(x) V ('v'x)Q(x)]}
2. ('v'x) [P(x) V Q(x)]
3. ,[(:lx)P(x) V ('v'x)Q(x)]
4. ,(:lx)P(x)
5. ,('v'x)Q(x)
6. ,Q(c)
7. ,P(c)
8. P(c) V Q(c)

~
9. P(c) 10. Q(c)

FIGURE 6.1. Proof of ('v'x) [P(x) V Q(x)] ::::> [(:lx)P(x) V ('v'x)Q(x)]

If a tableau branch closes because it contains Z and ,Z, we may say it
closes on Z. As in the propositional case, nothing in the tableau rules
requires closure on a formula that is atomic but in fact, if closure is
possible, closure at the atomic level can always be managed.

As usual, the tableau rules are non-deterministic. They say what may
be done, not what must be done. But unlike in the propositional case,
it is possible now to work forever, continually doing something really
new, without producing a closed tableau for a set S, even though a
closed tableau for S may exist. The ,,(-rule is the source of this difficulty.
As a trivial example, suppose we have a tableau branch containing both

Exercises

Exercises 139

(3x)-,P(x) and (Vy)P(y). We might apply the 8-rule to the first formula,
adding -'P(c), where c is a new parameter. But then using the I'-rule on
the second, we might add one after the other P(tl), P(t2), ... where tl,
t2, . .. are all distinct closed terms different from c. In this way we never
stop working, we never repeat an earlier step, and we never produce
the obvious closure. Of course, in this example what one should do is
clear, but in more complex cases things are not so easy. Indeed, unlike
in propositional logic, first-order logic has no decision procedure. There
are ways of partially coping with this, but the basic lesson remains: "life
is not impossible, but it is exponentially difficult, and sometimes worse."

We can introduce a notion of strictness as we did with propositional tab
leaux, so that formula reuse is forbidden. Things are more complicated
now, however. If we have a sentence l' on a branch, and we add I'(h),
and later use l' again to add l'(t2) where tl and t2 are different, should
this be counted as a strictness violation or not? It turns out such things
must be allowed in order to have a complete proof procedure. Allowing
reuse of I'-sentences is related to the lack of a decision procedure for
first-order logic. At any rate, strictness issues become really significant
when implementation is being considered. Since that does not happen
until the next chapter, we impose no such restrictions for now.

Finally, just as in the propositional case, good heuristics are useful. The
following principles are easily seen to be helpful: When possible, apply
propositional rules before quantifier rules; among quantifier cases, apply
8-rules before I'-rules. Beyond this, you are on your own.

In Section 3.9 we showed how the propositional tableau system could be
extended to handle propositional consequence. The same modification
can be applied to the first-order version, to capture the notion of logical
consequence (Section 5.10). From now on we write S rft X (where the
subscript is meant to suggest first-order tableaux), provided there is a
closed first-order tableau for {-,X}, allowing the S-introduction rule: At
any time we can add any member of S to any unclosed branch.

6.1.1. Give, or attempt to give, tableau proofs of the following (they
are not all theorems):

1. (3x)(Vy)R(x,y)::J (Vy)(3x)R(x,y)

2. (Vx)(3y)R(x,y)::J (3y)(Vx)R(x,y)

3. (3x)[P(x)::J (Vx)P(x)]

4. (3x)[P(x) V Q(x)] ::J [(3x)P(x) V (3x)Q(x)]

5. (3x) [P(x) A Q(x)] ::J [(3x)P(x) A (3x)Q(x)]

140 6. First-Order Proof Procedures

6. [(3x)P(x) /\ (Vx)Q(x)J J (3x)[P(x) /\ Q(x)J

7. (Vx) (3y) (Vz) (3w) [R(x, y) V -.R(w, z)J

8. (3x)(Vy)[P(y) 1 (P(x) 1 Q(x))J C (Vx)Q(x)

9. (Vx)[P(x) J QJ J [(3x)P(x) J QJ (where x does not occur free in
Q)

10. (Vx)[P(x) J QJ J [(Vx)P(x) J QJ (where x does not occur free in
Q)

6.1.2. For convenience, we give the following names to sentences:

trans = (Vx) (Vy)(Vz){[R(x, y) /\ R(y, z)J J R(x, z)}

sym = (Vx) (Vy) [R(x, y) J R(y, x)J

ref= (Vx)R(x,x)

nontriv = (Vx) (3y)R(x, y)

1. Show {trans, sym} [;i=j refby producing a model in which trans and
sym are true but ref is not.

2. Show {trans, sym, nontriv} f-jt ref

6.1.3. Prove the following:

1. (3x)(Vy)(Vz)[(P(y) J Q(z)) J (P(x) J Q(x))J

2. (3x)(Vy)(Vz)[(P(y) V Q(z)) J (P(x) V Q(x))J

3. (3x)(Vy)(Vz)(Vw)[(P(y) V Q(z) V R(w)) J (P(x) V Q(x) V R(x))J

6.1.4. Prove, by structural induction, that if there exists a closed first
order tableau for a set S then there is a closed tableau for S in which
all closures are on atomic sentences.

6.2
First-Order

Resolution

Example

~
'Y(t)

(for any closed
term t of Lpar)

8
8(e)

(for a new
parameter c)

6.2. First-Order Resolution 141

TABLE 6.2. First-Order Resolution Expansion Rules

Just as we did with tableaux, we present a version of resolution that is
best suited to hand calculation, and we postpone until the next chap
ter a variation that is better adapted to machines. Once again we are
interested only in proving sentences, and once again we do not impose
a strictness condition. The rules of this section should be thought of
as continuing those in Section 3.3. Just as in the previous section, we
prove sentences of a language L, but proofs use sentences of Lpar. In
Table 6.2, we add two new Resolution Expansion Rules, which have the
same appearance as the Tableau Rules in the previous section. As ex
pected, in the 'Y-rule any closed term can be used, including one involving
parameters, but in the 8-rule we must use a parameter that has not been
previously introduced in the resolution construction.

We give a resolution proof of (Vx)(P(x)VQ(x)) ::> ((:3x)P(x)V(Vx)Q(x)).

1. [--,{(Vx)(P(x) V Q(x)) ::> ((:3x)P(x) V (Vx)Q(x))}]

2. [(Vx)(P(x) V Q(x))]

3. [--,((:3x)P(x) V (Vx)Q(x))]

4. [--,(:3x)P(x)]

5. [--,(Vx)Q(x)]

6. [--,Q(e)]

7. [--,P(e)]

8. [Pee) V Q(e)]

9. [Pee), Q(e)]

10. [Q(e)]

11. []

Here 6 is from 5 by a 8-rule application, 7 is from 4, and 8 is from 2 by
'Y-rule applications.

142 6. First-Order Proof Procedures

Exercises

6.3
Soundness

Definition 6.3.1

Lemma 6.3.2

The resolution system, like tableaux, can be extended to capture the
notion of first-order logical consequence. The S-Introduction Rule for
resolution from Section 3.9 applies just as it did in the propositional
setting. We will write S I-fr X (where the subscript is meant to suggest
first-order resolution), provided there is a closed resolution expansion
for {,X} allowing the following rule: At any time we can add [Z] to a
resolution expansion for any member Z of S.

6.2.1. Give (or attempt to give) resolution proofs of the sentences in
Exercise 6.1.1.

6.2.2. Redo Exercise 6.1.2 using resolution.

6.2.3. Redo Exercise 6.1.3 using resolution.

6.2.4. Prove that an application of the Resolution Rule involving a
formula that is not atomic can be replaced by resolutions involving sim
pler formulas. Hence, by structural induction, only atomic resolutions
need be used.

In Section 5.3 satisfiability was defined for sets of first-order formulas.
This definition is extended to the structures used in proofs, essentially
as in Section 3.4.

A tableau branch is satisfiable if the set of first-order sentences on it is
satisfiable. A tableau is satisfiable if some branch is satisfiable. Likewise,
a resolution expansion is satisfiable if there is some model in which every
disjunction in it is true.

Thinking of a tableau as a disjunction of conjunctions, this definition
amounts to saying a tableau is satisfiable if there is some model in which
it is true, and similarly for a resolution expansion, thinking of it as a
conjunction of disjunctions.

1. If any Tableau Expansion Rule is applied to a satisfiable tableau,
the result is another satisfiable tableau.

2. If any Resolution Expansion Rule, or the Resolution Rule is applied
to a satisfiable resolution expansion the result is again satisfiable.

Exercises 143

Proof We show only part 1. Suppose T is a satisfiable tableau and some
Tableau Expansion Rule is applied to T, producing the tableau T*. We
show T* is satisfiable. The cases where T has a satisfiable branch other
than the one on which the rule is applied, or the rule is a propositional
one, are treated just as in the propositional case, and the arguments
are not repeated here. (You probably should go back and look at the
proof of Proposition 3.4.2 again.) This leaves the two quantifier cases,
and Proposition 5.5.1 takes care of these. 0

Theorem 6.3.3 (Soundness)

Exercises

6.4
Com pleteness

Definition 6.4.1

Lemma 6.4.2

1. If X has a tableau proof, then X is valid.

2. If X has a resolution proof, then X is valid.

Proof (of part 1). Suppose X has a tableau proof but is not valid; we
derive a contradiction. Since X is not valid, there is a model in which
....,X is true. The construction of a tableau proof for X begins with the
one-branch, one-node tableau labeled,X, which is a satisfiable tableau.
By Lemma 6.3.2, every subsequent tableau is satisfiable, including the
final closed tableau that constitutes the proof. But a closed tableau can
not be satisfiable. 0

6.3.1. Prove Part 2 of Lemma 6.3.2 and then Part 2 of Theorem 6.3.3.

6.3.2. Prove the strong soundness of the tableau system. That is, if S
is a set of sentences and X is a sentence of the language L, show that
S f-/t X implies S 1=/ X.

6.3.3. Prove the strong soundness of the resolution system. That is, if
S is a set of sentences and X is a sentence of the language L, show that
Sf- /r X implies S 1=/ X.

Just as in the propositional case, completeness results are easy to es
tablish with the Model Existence Theorem available. We begin with
tableaux, then move on to resolution. For this section, let L be a fixed
first-order language.

A finite set S of sentences of Lpar is tableau consistent if there is no
closed tableau for S.

The collection of all tableau-consistent sets is a first-order consistency
property.

144 6. First-Order Proof Procedures

Proof Most of the proof is a straightforward extension of the cor
responding propositional version, Lemma 3.7.2. The {3-case is slightly
tricky though, and we discuss it in some detail.

Suppose S is a finite set of sentences of Lpar, {3 E S, but neither S U {{3I}
nor S U {{32} is tableau consistent; we show S is not tableau consistent.
Since S U {{3I} is not tableau consistent, there is a closed tableau, call it
T I , for S U {{3d. Similarly, there is a closed tableau, call it T 2, for S U
{{32}. The trouble is, these tableaux may be incompatible with each other
because we may have introduced a parameter via a o-rule application
in one tableau that had already been used in the other tableau. To get
around this, we need the following simple observation. Suppose T is a
correctly constructed tableau, c is a parameter used in the construction
of T, and d is a parameter that never appears in T. Let T* be like
T but with every occurrence of c replaced by an occurrence of d. It is
straightforward to check that T* is still a correctly constructed tableau
and is closed provided T is closed.

So, by renaming parameters in this way, we can assume the closed tab
leau TI for S U {{3I} and the closed tableau T2 for S U {{32} meet the
condition that no o-rule application in either introduces a parameter
that has appeared in the other. Now TI and T2 can be combined to
produce a closed tableau for S as follows. Say S = {{3, Xl"'" X n }. We
begin a tableau for S by using the {3-rule to produce the following:

Then we simply append to the left branch the tableau T I and to the
right branch the tableau T 2, producing a closed tableau for S. 0

Theorem 6.4.3 (Completeness for First-Order Tableaux)
If the sentence X of L is valid, X has a tableau proof.

Proof If X does not have a tableau proof, there is no closed tableau
for {oX}. Then {oX} is tableau consistent, hence satisfiable by the
First-Order Model Existence Theorem, and so X is not valid. 0

Exercises 145

In the propositional case, we noted that the completeness proof contin
ued to work if we required atomic closure. This still applies. We leave it
to you to verify it.

Next we turn to resolution. We omit all details, since they are virtually
the same as in the propositional case or are similar to the first-order
treatment of tableaux. We carryover the notion of resolution derivation
from Chapter 3. The following generalizes Lemma 3.7.6.

Lemma 6.4.4 Suppose Sl and S2 are sets of disjunctions, and S2 is an X -enlargement
of 8 1 . If the disjunction D1 is resolution derivable from 8 1 , then there
is an X -enlargement D2 of D1 that is resolution derivable from 8 2,
provided X contains no parameters occurring in the derivation of D 1.

Definition 6.4.5 A finite set 8 of sentences of Lpar is resolution consistent if there is no
closed resolution expansion for 8.

Lemma 6.4.6 The collection of all resolution-consistent sets is a first-order consistency
property.

Proof Just as in the propositional setting, Section 3.7, except that in
the f3-case some parameter renaming must be done, as in the tableau
argument above. D

Theorem 6.4.7 (Colllpleteness for First-Order Resolution)

Exercises

If the sentence X of L is valid, X has a resolution proof.

Completeness can also be established under the stronger requirement
that all applications of the Resolution Rule be on atomic formulas.

6.4.1. Prove Lemma 6.4.6, and hence Theorem 6.4.7.

6.4.2. Prove the strong. completeness of the tableau system. That is,
if 8 is a set of sentences and X is a sentence of the language L, show
that 8 Pf X implies 8 r-ft X.

6.4.3. Prove the strong completeness of the resolution system. That
is, if 8 is a set of sentences and X is a sentence of the language L, show
that 8 Pf X implies 8 r-fr X.

146 6. First-Order Proof Procedures

6.5
Hilbert

Systems

In Chapter 4 we considered several proof procedures for propositional
logic besides tableau and resolution. Generally, these extend easily to
first-order logic. We show this for Hilbert systems now, and for natural
deduction and the Gentzen sequent calculus next.

As in the propositional case, there is considerable leeway in formulating
a Hilbert system, in the choice of axioms and rules. In addition we have
chosen to present a system in which only sentences are used, though
these may contain parameters. In other treatments free variables are
often used in a similar way instead.

We add one axiom scheme and one rule of inference to our propositional
Hilbert system. Uniform notation comes in, of course. We continue the
numbering from Section 4.1.

Axiom Scheme 10 'Y ~ 'Y(t) for any closed term t of Lpar.

The rule we add is the following, generally known as Universal General
ization:

Universal Generalization

provided p is a parameter that does not occur in the sentence cI> ~ 'Y.
In a derivation from a set S of sentences, p must not occur in S as
well.

We write S I-fh X if there is a derivation of X from the set S in the
first-order Hilbert system just presented. As usual, if 0 I-f h X, we will
call the derivation of X a proof and say X is a theorem.

There is a weaker version of the Universal Generalization Rule that reads
as follows:

where p is a parameter that does not occur in 'Y, or in the set of premises
of a derivation. The use of this version is easily justified. In a proof or
derivation, if we have a line 'Y(p), we can easily get T ~ 'Y(p). Then
T ~ 'Y follows by the Universal Generalization Rule as we gave it, from
which we get 'Y using Modus Ponens. From now on we will use this sim
pler version of the Universal Generalization Rule, as convenient, without
special comment.

6.5. Hilbert Systems 147

Example The following is a proof (sketch) of the L sentence (Vx)(P(x) /\ Q(x)) ::::>

(Vx)P(x). In it p is a parameter.

1. (Vx)(P(x) /\ Q(x)) ::::> (P(p) /\ Q(p))

2. (P(p) /\ Q(p)) ::::> pep)

3. (Vx) (P(x) /\ Q(x)) ::::> Pcp)

4. (Vx) (P(x) /\ Q(x)) ::::> (Vx)P(x)

Here 1 is an instance of Axiom Scheme 10; 2 is a tautology, hence prov
able in the propositional Hilbert system of Section 4.1; 3 follows from 1
and 2 by propositional logic. Finally 4 follows from 3 by the Universal
Generalization Rule.

The Deduction Theorem 4.1.4 is an important tool for propositional
Hilbert systems. Fortunately, it extends to the first-order setting.

Theorem 6.5.1 (Deduction Theorem) In any first-order Hilbert system h with at
least Axiom Schemes 1 and 2, and with Modus Ponens and Universal
Generalization as the only rules of inference, S U {X} r ph Y if and only
if S rph (X::::> Y).

Proof The proof is simply an extension of the proof of Theorem 4.1.4,
which you should go back and read. We continue the notation and ter
minology from that proof, adding one more case corresponding to the
Universal Generalization Rule.

Suppose Zi comes from an earlier term Zj of Derivation One by the
Universal Generalization Rule. Say Zj is <I> ::::> 1'(p) and Zi is <I> ::::> 1'.
The parameter p can not occur in <I> ::::> 1', and since Derivation One
is a derivation from the set S U {X}, P can not occur in S or in X
either. Now, in the Derivation Two candidate, the corresponding lines
are (X ::::> Zj) = (X ::::> (<I> ::::> 1'(p))) and (X ::::> Zi) = (X ::::> (<I> ::::> 1')). We
must insert extra lines justifying the presence of X::::> Zi, using X::::> Zj.
But this is easy. We have X ::::> (<I> ::::> 1'(p)), From it, by propositional
logic, we can get (X /\ <1» ::::> 1'(p), By the Universal Generalization Rule
applied to this (note that p does not occur in either <I> or X), we can get
(X /\ <1» ::::> 1', and then by propositional manipulations again, we have
X::::> (<I> ::::> 1'). D

Example Let S be the set ((Vx)(P(x) ::::> Q(x)), (Vx)P(x)}. The following deriva
tion shows that S rJh (Vx)Q(x):

1. (Vx)P(x)

148 6. First-Order Proof Procedures

2. P(P)

3. (\ix)(P(x):J Q(x»

4. P(p) :J Q(P)

5. Q(P)

6. (\ix)Q(x)

Here 1 and 3 are members of S; 2 and 4 follow from 1 and 3 by Axiom
Scheme 10; 5 follows from 2 and 4 by Modus Ponens; 6 follows from 5
by Universal Generalization.

Now, two applications of the Deduction Theorem show that (\ix)(P(x) :J

Q(x» :J «\ix)P(x) :J (\ix)Q(x)) is a theorem.

Theorem 6.5.2 (Strong Hilbert Soundness)
If S f-fh X, then S Ff X, where S is a set of sentences of L and X is
a sentence of L.

Theorem 6.5.3 (Strong Hilbert Completeness)
If S Ff X, then S f-fh X, where S is a set of sentences of L and X is
a sentence of L.

Exercises 6.5.1. Give (or attempt to give) Hilbert-style proofs of the sentences
in Exercise 6.1.1.

6.5.2. Show that all instances of the scheme 8(t) :J 8 have Hilbert
system proofs, for any closed term t.

6.5.3. Show the following is a derived rule in the Hilbert system of this
section:

provided p is a parameter that does not occur in the sentence 8 :J cJ>,
and in a derivation from a set S of sentences, p does not occur in S as
well.

6.5.4. Prove Theorem 6.5.2.

6.5.5. Prove Theorem 6.5.3 (use the Model Existence Theorem).

6.6
Natural

Deduction

and Gentzen

Sequents

6.6. Natural Deduction and Gentzen Sequents 149

A propositional natural deduction system was given in Section 4.2. The
addition of a few quantifier rules turns it into a first-order version. The
propositional rules came in pairs, rules for introducing and rules for
eliminating connectives. The quantifier rules can be given in the same
paired format, and for theoretical investigations it is important to do so
[36]. As it happens, though, the propositional system we gave becomes
a complete first-order system through the addition of elimination rules
only, so in the interests of simplicity, these are all we state.

Quantifier Rules

In the 8E rule, p must be a parameter that does not occur previously in
the proof. In the 'YE rule, t can be any closed term of Lpar. Incidentally,
the similarity of these rules and the tableau and resolution rules is no
coincidence.

Figure 6.2 displays a natural deduction proof of ('v'x)[P(x) => Q(x)] =>
[('v'x)P(x) => ('v'x)Q(x)]. In it, 1 through 3 are assumptions; 4 is from 3
by 8E (p is a new parameter at this point); 5 is from 2 and 6 is from 1
by 'YE. Then 7 is from 5 and 6 by ,6E; 8 is from 4 and 7 by a negation
rule; 9 is likewise by a negation rule. Finally 10 and 11 are by ,61.

In Section 4.3 we gave a sequent calculus formulation of propositional
logic. This too extends readily to a first-order version on the addition of
quantifier rules.

'Y-Rules

8-Rules

r --> ~,8(t)
r --> ~,8

r,8(p) -->~
r,8 --> ~

As should be expected, in these rules t can be any closed term, but p
must be a parameter that does not occur in any sentence below the line.

150 6. First-Order Proof Procedures

Example

Exercises

1. (Vx)[P(x) => Q(x)]

2. (Vx)P(x)

3. ,(Vx)Q(x)

4. ,Q(p)

5. P(p)

6. P(p) => Q(p)

7. Q(p)

8. ..1

9. (Vx)Q(x)

10. (Vx)P(x) => (Vx)Q(x)

11. (Vx)[P(x) => Q(x)] => [(Vx)P(x) => (Vx)Q(x)]

FIGURE 6.2. A Natural Deduction Proof of (Vx)[P(x) => Q(x)] =>
[(Vx)P(x) => (Vx)Q(x)]

6.6.1. Give (or attempt to give) natural deduction-style proofs of the
sentences in Exercise 6.1.1.

6.6.2. Prove the soundness of the first-order natural deduction system.

6.6.3. Prove the completeness of the first-order natural deduction sys
tem.

6.6.4. Give (or attempt to give) sequent calculus-style proofs of the
sentences in Exercise 6.1.1.

6.6.5. Prove the soundness of the first-order sequent calculus system.

6.6.6. Prove the completeness of the first-order sequent calculus sys
tem.

7------____________________________ _

Implementing Tableaux and
Resolution

7.1
What Next

In using either the resolution or the tableau system, the basic problem
lies with the 1'-rule. It allows us to introduce any closed term, but ob
viously some choices will be better than others. How do we decide? Our
solution will be to postpone the choice, by going from l' to 1'(x), where
x is a free variable whose value we will figure out later. But this intro
duces problems with the 8-rule, since we won't know which parameters
are new if we haven't yet said what terms we have used in 1'-rule appli
cations. Our solution for this will be to introduce a more general notion
of parameter, allowing function symbols. Then the 8-rule will become:
from 8 conclude 8(J(xl, ... , x n)), where f is a new function parameter
and Xl, ... , Xn are the free variables introduced so far. Intuitively, this
forces the term to be new because we can figure out what it is only after
we have made choices for Xl, ... , X n . The details will come later, but the
basic issues confront us now. Both tableau and resolution proofs must be
allowed to contain free variables, whose values must be chosen somehow.

In earlier chapters free variables did not occur in proofs, and the ba
sic problem for tableaux, say, was whether branches were closed. Once
free variables are allowed, the issue changes to the following: Can values
for free variables be found that will result in closed branches? For in
stance, if a branch contains P(tl) and,P(t2), where hand t2 are terms
containing free variables, we want to know whether some assignment of
values to these free variables will result in tl and t2 becoming identi
cal and so yielding a contradiction. In other words, we want to solve
the equation tl = t2 in the space of terms. More generally, since tab
leaux almost always have several branches that must be closed, we will

152 7. Implementing Tableaux and Resolution

7.2
Unification

have the problem of solving a system of simultaneous equations. Similar
considerations apply to resolution-style proofs. Algorithms exist for this
problem, under the general heading of Unification Algorithms. It is such
algorithms that we take up first.

Suppose we have two terms t and u, each containing variables. How do we
decide whether there are any substitutions that make t and u identical,
and if there are, how do we find them all? A substitution a such that
ta = ua is called a unifier of t and u, so the problem is to determine
the set of unifiers for t and u. Another way of expressing this sounds
more algebraic: Determine the set of solutions for the equation t = u.
In fact, we will often be interested in solving a system of equations. The
relationship that this suggests with linear algebra is a real one and is
discussed by Lassez and co-workers in [29].

Many different unification algorithms for solving the unification problem
have been proposed. The earliest, by Herbrand [25], manipulated sys
tems of equations. On the other hand, Robinson [42] worked with terms
and substitutions directly. It was Robinson's paper [42] that introduced
the term unification, and recognized the concept as fundamental for
automated theorem proving. More recently, unification algorithms have
been proposed that are more efficient, but they are harder to under
stand. We present an algorithm that follows Robinson's treatment fairly
closely, in the interests of pedagogical simplicity. The report by Lassez
and colleagues [29] provides references to other unification algorithms
and a fuller study of theoretical issues than we can present here.

For the rest of this section, let L be a fixed first-order language. All
reference to terms is to terms of L.

Definition 7.2.1 Let al and a2 be substitutions. We say a2 is more general than al if,
for some substitution T, al = a2T.

Example For the two substitutions al = {xl f(g(a, h(z))), y/g(h(x), b), z/h(x)}
and a2 = {x/f(g(x,y)), y/g(z,b)}, a2 is more general than aI, because
al = a2T where T = {x/a, y/h(z), z/h(x)}.

The idea is that a2 is more general than al if we can get the effect of al

by first carrying out a2 and then making some further substitutions for
variables. Every substitution is more general than itself, because a = aE,
where E is the identity substitution. Thus, we are using the term more
general in a weak rather than a strict sense. The following shows the
notion is transitive as well as reflexive.

7.2. Unification 153

Proposition 7.2.2 If 0"3 is more general than 0"2 and 0"2 is more general than 0"1, then 0"3
is more general than 0"1.

Proof Since 0"2 is more general than 0"1, there is a substitution 7 such
that 0"1 = 0"27. Since 0"3 is more general than 0"2, there is a substitution
'T/ such that 0"2 = 0"3'T/. But then 0"1 = 0"27 = (0"3'T/)7 = 0"3('T/7), and so 0"3
is more general than 0"1. D

Definition 7.2.3 Let t1 and t2 be two terms (this definition extends in the obvious way
to more than two terms). A substitution 0" is a unifier, for hand t2
provided hO" = t 20". hand t2 are unifiable if they have a unifier. A
substitution 0" is a most general unifier if it is a unifier and is more
general than any other unifier.

Example The terms f(y, h(a)) and f(h(x), h(z)) are unifiable using the substitu
tion {y/h(x),z/a}. Also, the substitution {x/k(w), y/h(k(w)), z/a} is a
unifier, but the first substitution is more general. The terms f(x, x) and
f(a, b) are not unifiable (here x is a variable, and a and b are constant
symbols).

It is possible for two terms to have several most general unifiers, but
there are close relationships between them. This will play no role in
what follows, so we consider the point only briefly and do not prove the
strongest possible results.

Definition 7.2.4 A substitution 'T/ is a variable renaming for a set V of variables if

1. For each x E V, X'T/ is a variable;

2. For x, y E V with x -I y, X'T/ and y'T/ are distinct.

Definition 7.2.5 The variable range for a substitution 0" is the set of variables that occur
in terms of the form XO", where x is a variable.

Proposition 7.2.6 Suppose both 0"1 and 0"2 are most general unifiers oft1 and t2' Then there
is a variable renaming 'T/ for the variable range of 0"1 such that 0"1'T/ = 0"2.

Proof 0"2 Is a unifier of t1 and t2, but 0"1 is most general, hence more
general than 0"2. Then there is a substitution 'T/ such that 0"2 = 0"1'T/·
Switching around the roles of 0"1 and 0"2, there is a substitution 7 so
that 0"1 = 0"27. Then 0"1 = 0"27 = (0"1'T/)7. We show 'T/ is a variable
renaming for the variable range of 0"1.

Suppose y is in the variable range of 0"1; say it occurs in the term XO"l.
Then y'T/ can not be of the form f(···) where f is a function symbol, for

154 7. Implementing Tableaux and Resolution

if it were, (xad'TJ would be longer than xal, and since no substitution
can make a term shorter, xal'TJT would be at least as long as xal'TJ,
longer than xal, and hence unequal to xal, which is impossible, since
al = (al'TJ)T. Likewise, Y'TJ can not be a constant symbol, for then there
would be no way for T to restore occurrences of Y when applied to xal'TJ,
and so xal'TJT and xal would again be different. It follows that Y'TJ must
be a variable, though it need not be y itself. Finally, it is easy to see
that if YI and Y2 are distinct variables in the variable range of aI, YI'TJ
and Y2'TJ must be distinct variables. D

Now what we are heading for is an algorithm that can say of two terms
whether or not they are unifiable and, if they are, will produce a most
general unifier. For this purpose it is convenient to introduce some special
terminology first.

We have been writing terms in conventional, linear fashion. It is also
common to think of them as trees. For example, f(g(x, y, h(a, k(b))))
can be represented as the (labeled, ordered) tree displayed on the left
hand side in Figure 7.1, where the arguments of a function are displayed
as the children of the node labeled with the function. In general, we will
freely interchange tree terminology with that which we have been using.
These are ordered trees, and sometimes it is useful to make explicit
whether a node in a tree is the first child of its parent (first from the
left, say), or the second, or whatever. An augmented tree representation
of a term is a tree in which the label on each node has been augmented
by an integer representing which child it is of its parent. For instance,
the augmented version of the tree for the term f(g(x,y,h(a,k(b)))) is
on the right in Figure 7.1.

f f,o

I
9 g,1

/I~ /I~
x y h x,1 y,2 h,3

/ '" / '" a k a,1 k,2
I I
b b,1

FIGURE 7.1. Terms as Trees

7.2. Unification 155

Now, given two terms that differ, we want to locate a place where they
disagree, but we want the broadest disagreement possible. For instance,
f(g(a)) and f(h(b)) differ on a and b, but they differed on 9 and h before
we got inside to the level of a and b.

Definition 7.2.7 Let hand t2 be two terms. A disagreement pair for these terms is a pair,
db d2 , where d1 is a subterm of hand d2 is a subterm of t2 such that,
thinking of terms as augmented trees, d1 and d2 have distinct labels at
their roots, but the path from the root of h down to the root of d1 , and
the path from the root of t2 down to the root of d2 are the same.

Example Figure 7.2 shows a disagreement pair. Note that in both trees the paths
from the root node down to the subterms constituting the disagreement
pair are the same, (1,0), (h, 2). In this example there is only one dis
agreement pair, though in other cases there could be more.

f(g(a,x),h(c,j(y,x)))
f,O
~

g,l h,2

a/~2 c,{~~
y,l x,2

FIGURE 7.2. A Disagreement Pair

f(g(a,x),h(c,k(z)))
f,O
~

g,l h,2

a/~2 ,,{~ (Z,l
disagreement pair

j(y,x) k(z)

If two terms differ, there must be one or more disagreement pairs. Also
if a unifies distinct terms tl and t2, it must unify each disagreement pair
of these terms.

Now we state the Unification Algorithm that is due to Robinson. We
give it in non-deterministic form, using a kind of pseudocode. The in
struction FAIL means: terminate the algorithm and issue some kind of
failure message. At the start tl and t2 are terms that have been specified
from the outside and that we wish to unify. a Is a variable that takes
substitutions as values; € is the identity substitution.

156 7. Implementing Tableaux and Resolution

Unification Algorithm
Let 0' := €;
While tlO' =I t20' do

begin
choose a disagreement pair, db d2 for tlO', t 20';

if neither dl nor d2 is a variable then FAIL;
let x be whichever of db d2 is a variable

(if both are, choose one),
and let t be the other one of db d2;

if x occurs in t then FAIL;
let 0':= O'{x/t}
end.

We claim that (1) this algorithm always terminates; (2) if tl and t2 are
not unifiable, the algorithm will FAIL; (3) if tl and t2 are unifiable, the
algorithm will terminate without FAILure, and (4) the final value of 0'

will be a most general unifier for tl and t 2 •

Proof that the algorithm terminates is easy. Let S(O') be the set of vari
ables that occur in either tlO' or in t20" Each pass through the while
loop, if it does not terminate with FAIL, must decrease the size of S(O')
by 1 (because x is replaced by a term t that cannot contain occurrences
of x). Since tl and t2 have only a finite number of variables, termination
is ensured. Correctness requires more of an argument, but the following
simple lemma provides the key item needed.

Lemma 7.2.8 Suppose u and v are two terms that are unifiable, and T is a unifier,
UT = VT. Suppose also that x, t is a disagreement pair for u, v, where x
is a variable. Then (1) x does not occur in t, and (2) {X/t}T = T.

Proof Since T unifies u and v, which has x, t as a disagreement pair, it
must be that tT = XT. If x occurred in t, since x, t is a disagreement pair,
x must be a proper part of t. Then for any substitution 'TJ, X'TJ would be
a proper part of t'TJ. But this is false for 'TJ = T. Hence, x does not occur
in t and we have item 1. For item 2, to show two substitutions are equal,
it is enough to show they have the same effect on each variable. If y is a
variable other than x, both y{X/t}T and yT are trivially the same; the
lemma hypotheses are not needed for this. Finally, x{ x /t}T = tT = XT,
so {X/t}T and T agree on x as well. 0

Theorem 7.2.9 (Unification Theorem) Lettl and t2 be terms. Iftl and t2 are not
unifiable, the Unification Algorithm will FAIL. Iftl and t2 are unifiable,
the Unification Algorithm will terminate without FAILure, and the final
value of 0' will be a most general unifier for tl and t2'

7.2. Unification 157

Proof First, suppose hand t2 are not unifiable. We already showed
that the algorithm must terminate. If it does not terminate in FAILure,
but because of the while loop condition, then we must have produced
a substitution a such that ha = t2a, hence hand t2 would have been
unifiable. Consequently, the algorithm must terminate with FAIL.

Next, suppose hand t2 are unifiable. Let T be any unifier for hand t2'
We must show the algorithm terminates without FAILure (and hence
the final value of a is a unifier for tl and t 2), and we must show the final
value of a is more general than T.

Consider the statement: T = aT. When the while loop is first encoun
tered, this statement is true, because a is the identity substitution. If
we show the statement is a loop invariant, then it will be true when the
loop terminates. It will follow immediately that a is more general than
T because there is a substitution TJ such that T = aTJ, namely, TJ = T.
If we also show the loop can not terminate because of FAILure, we are
done.

Suppose we are at the beginning of the loop body, and for the current
value of a, ha i= t2a, and also T = aT is true. We first claim tla and
t2a, though different terms, are unifiable; in fact, T is a unifier. The
verification is simple: (h a)T = tl (aT) = tIT (by our hypothesis that
T = aT) = t2T (since T unifies tl and t2) = t2(aT) = (t2a)T. Since
t1a i= t2a, there must exist a disagreement pair for tla and t2a, say
d1 , d2. One of d1 , d2 must be a variable, because otherwise tla and t2a
would not be unifiable; consequently, we do not exit the loop because of
the first FAIL condition. Let x be one of d 1 , d2 that is a variable, and let
t be the other. By part 1 of Lemma 7.2.8, x does not occur in t, so we do
not exit the loop because of the second FAIL condition either. Then we
must execute the assignment statement at the bottom of the loop. Let us
denote the new value of a by a' and continue to use a for the old value;
thus, a' = a{x/t}. Then what we must show is the following: T = a'T.
But this is easy. Using part 2 of Lemma 7.2.8, and our assumption that
T = aT, we have a'T = a{x/t}T = aT = T. This concludes the proof. 0

The proof of the Unification Theorem actually shows something stronger
about the Unification Algorithm than was stated. According to the def
inition of most general unifier, if a is a most general unifier for hand
t2, and if T is any unifier, then T = aTJ for some TJ. But according to
the proof, for the most general unifier constructed by the Unification
Algorithm, we can take TJ to be T itself~that is, T = aT! A special case
of this is particularly interesting. Since T can be any unifier, we can take
it to be a, since a most general unifier is certainly a unifier. The result
is that a = aa.

Definition 7.2.10 A substitution a is called idempotent if a = aa.

158 7. Implementing Tableaux and Resolution

Then the proof gives us the following, for free.

Corollary 7.2.11 If tl and t2 are unifiable, the Unification Algorithm terminates with a
final value that is an idempotent most general unifier for them.

It is not the case that most general unifiers must be idempotent, but
idempotent ones have rather nice properties, so it is pleasant to have
them. Here is one simple example of a nice feature. Earlier, when we
first noted that the Unification Theorem proof gave more information
than the statement of the theorem said, we began with a general fact
about an arbitrary unifier T, then narrowed it to the special case where
T = a. In fact, the general case follows easily.

Proposition 7.2.12 Suppose a is an idempotent most general unifier for hand t2, and T is
any unifier. Then T = aT.

Proof Since T is a unifier and a is a most general unifier, for some
substitution 'T], T = a'T]. And since a is idempotent, a = aa. But then,
T = a'T] = aa'T] = aT. 0

The Unification Algorithm as we stated it unifies exactly two terms. For
convenience we will sometimes refer to this as binary unification. Often
we will be interested in something more general. We introduce some
names to make talking about the generalizations we need easier. We
use the phrase multiple unification for the problem of finding a unifier
for a set of more than two terms. We use concurrent unification for
the problem of simultaneously unifying several pairs of terms. It is not
necessary to invent completely new algorithms for these problems, since
both can be reduced to binary unification.

Multiple Unification Suppose {to, tl, t2,"" tn} is a set of terms. A
unifier for the set is a substitution a such that toa = ha = ... = tna.
As usual, a most general unifier is a unifier that is more general than
any other unifier. The problem of multiple unification can be reduced to
a sequence of binary unification problems in a rather simple way (note
the use of idempotent most general unifiers here).

Suppose {to, t l , t2, ... ,tn} has a unifier. Define a sequence of substitu
tions, each computed by binary unification, as follows.

al Is an idempotent most general unifier of to and t l .

a2 Is an idempotent most general unifier of toal and t2al.

a3 Is an idempotent most general unifier of toal a2 and t3al a2.

etc.

7.2. Unification 159

CJn Is an idempotent most general unifier of tOCJICJ2 ... CJn-1
and tnCJICJ2'" CJn-I' We claim CJICJ2'" CJn-ICJn is a most general unifier
for {to, h, ... , t n } .

We are assuming that the set {to, h, ... , t n } has a unifier. Let CJ be
some arbitrary unifier for the set. In particular, CJ unifies to and t l , so an
idempotent most general unifier CJI for them exists. Thus, the first step
of the process is meaningful. However, it is not obvious that the rest of
the sequence of unifiers is even well-defined, since the existence of each
item after the first requires that a complicated pair of terms, involving
substitutions, be unifiable, and this unifiability needs verification. In fact
the sequence is well-defined, but to verify this we must show something
stronger.

Suppose, for i < n, that CJI, CJ2, ... , CJi have been defined and that
CJICJ2'" CJiCJ = CJ. (This is true if i = 1, since CJI is idempotent.) Now,
the terms tOCJICJ2 ... CJi and ti+ICJICJ2 ... CJi are unifiable, because CJ is a
unifier for the set {to, t I, ... , t n }, and

(tOCJICJ2 ... CJi)CJ toCJ
ti+ICJ
(ti+1CJICJ2 ... CJi)CJ.

Let CJi+1 be an idempotent most general unifier for these two terms.
Since CJ itself unifies them, by Proposition 7.2.12, CJ = CJi+ICJ. But then

and we are ready to proceed with the next step.

Then, finally, CJICJ2'" CJn must exist. Since CJI unifies to and h, so does
CJICJ2, which also unifies to and t2, and so on. Thus, CJICJ2 ... CJn unifies
the whole set {to, h, ... , t n }. We also know that CJICJ2'" CJnCJ = CJ, and
since CJ was any unifier for the set, it follows that CJICJ2' .. CJn is most
general.

This is one way of proceeding: Reduce multiple unification to a sequence
of binary unification problems. Another simple way is reducing it to a
single, though more complex, binary unification problem. Let f be an
arbitrary n + I-place function symbol, and consider the pair of terms
f(to, t l , ... , t n) and f(to, to, ... , to). Clearly, a most general unifier for
{to, tl, ... , t n } is also a most general unifier for these two and conversely
(the argument earlier establishes that a most general unifier for the
set exists, so we are justified in talking about it). Now just use binary
unification with these terms.

160 7. Implementing Tableaux and Resolution

Exercises

As a slightly different variation, apply binary unification to the pair of
terms f(to, tl,.··, tn-I, tn) and f(tl, t2,···' tn, to).

Concurrent Unification Instead of saying the substitution 0" unifies
the terms t and u, it is sometimes convenient to say it is a solution of
the equation t = u. We use this terminology here.

Suppose we have the equations to = Uo, tl = Ul, ... , tn = Un. A simul
taneous solution is a substitution 0" that is a solution for each equation.
A most general solution is a simultaneous solution that is more general
than any other. This time we want to reduce the problem of finding a
most general simultaneous solution to a sequence of binary unifications,
much as we did in the case of multiple unification.

Suppose the system has a simultaneous solution. Construct the following
sequence of substitutions:

0"0 Is an idempotent most general unifier of to and uo.

0"1 Is an idempotent most general unifier of tlo"o and UlO"O.

etc.

0" n Is an idempotent most general unifier of tnO"OO"l ... 0" n-l
and UnO"OO"l .. ·O"n-l.

We claim 0"10"2· .. O"n-lO"n is a most general solution for the system of
equations.

As with multiple unification, if each item in this sequence can be con
structed, then 0"10"2' .. O"n-lO"n exists and is a simultaneous solution of
the family of equations. Hence, if the family of equations has no solu
tion, the construction must terminate early. We leave the rest to you in
Exercise 7.2.5.

7.2.1 p. Write a Prolog program that will locate a disagreement pair
(if one exists), when given two terms.

7.2.2. Find a most general simultaneous solution of the system

k(Xl,X3) = k(g(X2),j(X4)) and f(x2,q(x4,a)) = f(h(x3,a),x5).

7.2.3. Attempt to solve the system x = fey) and y = g(x). Explain
what goes wrong.

7.2.4. Show that the multiple unification problem can be reduced to
the concurrent unification problem.

7.2.5. In the concurrent unification discussion, show that if the system
of equations has a simultaneous solution, then the sequence of substitu
tions is well-defined; each O"i exists, and 0"10"2· .. O"n-lO"n is a most general
solution.

7.3
Unification

Implemented

7.3. Unification Implemented 161

Several alternatives to Robinson's unification algorithm are fundamen
tally different. The one we will implement is just a mild variation.

First, in the Unification Algorithm, the unifying substitution 0' is pro
duced by successively composing simple substitutions, often called bind
ings. We will not actually carry out the calculation of the composition;
instead, we will remember each of the bindings separately. This saves
time without loosing information. We will remember these substitutions
by maintaining an environment list, consisting of items like [x, tj, which
is intended to record that occurrences of x should be replaced by oc
currences of t. In its turn, t itself may contain variables that have their
bindings elsewhere in the environment list.

Second, we will not actually carry out the substitution 0' on the terms
tl and t2 that we are unifying. The reason now is not time but space: If
the variable x has many occurrences, and 0' replaces x by some very big
term t, we will wind up with many copies of t when the substitution is
carried out, thus wasting space. Instead we will remember, when we see
an x, that we should treat it as if it were t. In other words, whenever we
see an x, we will look up its value in the environment list.

Finally, we will only partially use the environment list for 0' anyway.
Partial application is possible because we are maintaining an environ
ment list that says things like, replace x by t, where t in turn may have
other variables for which the environment list supplies values. We can
think of x as replaced by t without necessarily replacing variables in t
by their respective values. If under such a partial replacement we find
a disagreement pair-say f(···) and g(.. .), where f and 9 are distinct
function symbols-we know unification is impossible and we do not need
to know what the arguments of f and 9 are. Thus, a partial application
of substitution may be sufficient, and if it is not, we can always carry
out more of it.

Now we present the algorithm, implemented in Prolog. We need some
representation for the free variables of the language L; these should not
be confused with Prolog's variables. For this purpose we use expressions
of the form var (...) .

/* variable (X) :- X is a free variable.
*/

variable(var(_)).

Next we consider partialvalue(Term, Env, Result), which partially
evaluates a term in an environment. If Term is not a free variable, or is
a free variable without a binding in the environment Env, then Result

162 7. Implementing Tableaux and Resolution

is Term unchanged. Otherwise, the binding of Term in Env is found, and
the partial evaluation process is applied in turn to that binding.

1* partialvalue(X, Env, y) :-

Y is the partially evaluated value of term X
in environment Env.

partialvalue(X, Env, Y)
member([X,ZJ, Env) ,
partialvalue(Z, Env, Y).

partialvalue(X, Env, X).

1* member(X, Y) :- X is a member of the list Y.
*1

member (X, [X
member (X , [_

_J) .

YJ) :- member(X, Y).

The next few predicates constitute the so-called occurs check. They de
termine whether a variable occurs in a term, when the term is evaluated
in a particular environment.

1* in(X, T, Env)
X occurs in term T, evaluated in environment Env.

in(X, T, Env) :
partialvalue(T, Env, U),
(X == U;

not variable(U), not atomic(U), infunctor(X, U, Env)
) .

infunctor(X, U, Env) :
U = .. LILJ,
inlist(X, L, Env).

inlist(X, [TI_J, Env)
in(X, T, Env).

inlist(X, [_ILJ, Env)
inlist(X, L, Env).

7.3. Unification Implemented 163

Finally, we give the unification predicate itself. It should be read as fol
lows: unify (Term1 , Term2, Env, Newenv) is true if the result of unify
ing Term1 and Term2 in the environment Env produces the environment
Newenv. We have used Prolog's "or," written as "; ," to make the pro
gram easier to read. Basically, to unify two terms in an environment,
first their values are (partially) calculated in that environment. Next,
if one of these values is a variable, it is bound to the other value, pro
vided the occurs check is not violated. Finally, if both values turn out
to be more complicated terms, these terms are broken up and unified
component by component.

1* unify(Term1, Term2, Env, Newenv) :-
Unifying Term1 and Term2 in environment Env
produces the new environment Newenv.

unify(Term1, Term2, Env, Newenv) :
partialvalue(Term1, Env, Va11) ,
partialvalue(Term2, Env, Va12) ,
(

) .

(Va11==Va12, Newenv = Env);
(variable (Va11), not in(Va11, Va12, Env) ,

Newenv=[[Va11, Va12] I Env]);
(variable (Va12), not in(Va12, Va11, Env) ,

Newenv=[[Va12, Va11] I Env]);
(not variable (Va11), not variable (Va12),

not atomic(Va11), not atomic (Va12),
unifyfunctor(Va11, Va12, Env, Newenv)

1* unifyfunctor(Fun1, Fun2, Env, Newenv) :
Unifying the functors Fun1 and Fun2 in
environment Env produces environment Newenv.

unifyfunctor(Fun1, Fun2, Env, Newenv)
Fun1 = .. [FunSymb I Args1] ,
Fun2 = .. [FunSymb I Args2],
unifylist(Args1, Args2, Env, Newenv).

1* unifylist(List1, List2, Env, Newenv)
Starting in environment Env and
unifying each term in List1 with the
corresponding term in List2 produces
the environment Newenv.

164 7. Implementing Tableaux and Resolution

unifylist([], [], Env, Env).

unifylist([Head1 I Tail1], [Head2 I Tail2], Env, Newenv)
unify(Head1, Head2, Env, Temp),
unifylist(Tai11, Tail2, Temp, Newenv).

By now you should have a reasonable understanding of the Robinson
Unification Algorithm, so we should be able to suppress its visible op
eration and assume we can simply call on unification as needed. Those
of you who know something about how Prolog works probably know
that a built-in Unification Algorithm is central to its operations. In
deed, Prolog will unify two of its terms t and u when given the query
t = u. It would be nice if we could make use of this to simplify our
work: Use Prolog variables instead of expressions like var (...) and use
Prolog's built-in unification, which is fast and efficient. Unfortunately,
the Unification Algorithm in standard Prolog is incorrect, since it omits
the occurs check in the interests of greater speed. Nonetheless, a good
compromise is available: We can use the built-in algorithm but impose
our own occurs check. From now on this is the course we take. The fol
lowing program is from Sterling and Shapiro [51]. In effect, Prolog's own
environment list takes the place of the one we constructed.

1* unify (Term1, Term2) :-
Term1 and Term2 are unified with the occurs check.
See Sterling and Shapiro, The Art of Prolog.

unify(X, Y)
var(X) , var(Y), X=Y.

unify (X , Y) :-
var(X), nonvar(Y), not_occurs_in(X,Y), X=Y.

unify(X,Y) :-
var(Y), nonvar(X), not_occurs_in(Y,X), Y=X.

unify(X,Y) :-
nonvar(X) , nonvar(Y), atomic(X), atomic(Y), X=Y.

unify (X, Y) :-
nonvar(X), nonvar(Y),
compound (X) , compound(Y),
term_unify(X,Y).

not_occurs_in(X,Y)
var(Y), X \== Y.

not_occurs_in(X,Y) :-

Exercises

nonvar(Y), atomic(Y).
not_occurs_in(X,Y) ;-

nonvar(Y), compound(Y), functor(Y,F,N),
not_occurs_in(N,X,Y) .

not_occurs_in(N,X,Y) ;-

Exercises 165

N>O, arg(N,Y,Arg), not_occurs_in(X,Arg), N1 is N-1,
not_occurs_in(N1,X,Y) .

not_occurs_in(O,X,Y)

term_unify(X,Y) ;-
functor(X,F,N), functor(Y,F,N), unify_args(N,X,Y).

unify_args(N,X,Y) ;-
N>O, unify_arg(N,X,Y), N1 is N-1, unify_args(N1,X,Y).

unify_args(O,X,Y).

unify_arg(N,X,Y) ;-
arg(N,X,ArgX), arg(N,Y,ArgY), unify(ArgX,ArgY).

compound (X) ;- functor(X,_,N), N>O.

7.3.1 p. Write a Prolog program that composes substitutions; a sub
stitution can be represented in the same way that the environment list
was represented.

7.3.2P • Write a version of our first unification program, but one that
produces a substitution rather than an environment list.

7.3.3P . Write a Prolog implementation that will carry out concurrent
unification.

166 7. Implementing Tableaux and Resolution

7.4
Free-Variable

Semantic

Tableaux

Definition 7.4.1

The chief practical difficulty in implementing tableaux is centered in the
,),-rule. It allows us to add to a branch containing,), the formula ')'(t)
where t is any closed term. How do we know what is a good choice? Of
course, it is possible to simply try all (infinitely many) choices in some
systematic fashion. Early theorem provers essentially did this. But it is
hopelessly inefficient. A better solution-one that we will adopt-is to
add to a branch containing')' the formula ,),(x), where x is a new free
variable, and later use unification to choose a useful value for x, one that
will close a branch. This accounts for the title of the section; we consider
tableaux that allow formulas with free variables. But this device, in turn,
creates a problem with the 8-rule. If we have postponed our decision
of what terms to use in ,),-rule applications, how can we be sure the
parameters used in 8-rule applications are new? We will get around this
by using a more complicated notion of parameter than before. If 8 occurs
on a branch, we add 8(f(xl, ... ,xn)) to the branch end, where f is a
new function symbol, and Xl,. .. , Xn are all the free variables occurring
in 8. Then, no matter what values are eventually assigned to X!, ... ,

Xn, f(xl, ... , Xn) must be different from any of them (the occurs check
is needed here). These new function symbols are called Skolem function
symbols. Of course the 8 formula may have no free variables at all, and the
Skolem function symbol we want must be O-place. But O-place function
symbols are simply constant symbols-they are parameters in the old
sense. All this leads to the following definition.

Let L = L(R, F, C) be a first-order language. As usual, let par be a
countable set of constant symbols not in C. Also let sko be a countable
set of function symbols not in F (called Skolem function symbols), in
cluding infinitely many one-place, infinitely many two-place, and so on.
By L sko we mean the first-order language L(R, F U sko, C U par).

We begin with a very general version of the free-variable tableau system.
It is non-deterministic, and great flexibility in proof creation is allowed.
Of course, various restrictions must be imposed to have a system that
is practical to implement. Since our soundness proof will apply to the
general version, it automatically applies to any version with restrictions.

Proofs will be of sentences of L but will use formulas of Lsko. The
general mechanism is exactly as in Chapter 6, except for the quantifier
rules. Thus, the propositional Tableau Expansion Rules are the same,
as are the rules for branch closure. The quantifier rules are replaced by
those in Table 7.1. In these rules, X must be a free variable that does
not also occur bound in the tableau; f must be a new Skolem function
symbol, and Xl, . .. , Xn must be all the free variables occurring in the
8-formula.

7.4. Free-Variable Semantic Tableaux 167

8 ~
')'(x)

(for an unbound
variable x)

8(J(Xl' ... ,xn))

(for f new Skolem and
Xl, •.. ,Xn all the

free variables of 8)

TABLE 7.1. Free-Variable Tableau Expansion Rules

Definition 7.4.2 Let a be a substitution and T be a tableau. We extend the action of a
to T by setting Ta to be the result of replacing each formula X in T by
Xa. We say a is free for T, provided a is free for every formula in T.

Tableau Substitution Rule If T is a tableau for the set S of sentences
of L, and the substitution a is free for T, then Ta is also a tableau for
S.

As usual, a free-variable tableau proof of X is a closed tableau for {-,X},
though now the tableau is constructed using the propositional rules, the
free-variable quantifier rules given, and the Tableau Substitution Rule.

Example The following is a one-branch tableau proof of
(3w)(Vx)R(x, w, f(x, w)) => (3w) (Vx)(3y)R(x, w, y).

1. -,[(:lw) (Vx)R(x, w, f(x, w)) => (3w)(Vx)(3y)R(x, w, y)]
2. (:lw)(Vx)R(x,w,f(x,w))
3. -,(3w)(Vx)(3y)R(x, w, y)
4. (Vx)R(x, a,J(x, a))
5. -,(Vx) (3y)R(x, Vl, y)
6. -,(:ly)R(b(vt),Vl'Y)
7. R(V2' a, f(V2, a))
8. -,R(b(vt),Vl,V3)

In this tableau proof 2 and 3 are from 1 by the a-rule; 4 is from 2 by the
8-rule; here a is a zero-place Skolem function symbol, i.e., a parameter;
5 is from 3 by the ,),-rule, introducing the new free variable Vl; 6 is from
5 by the 8-rule, using the one-place Skolem function symbol b; 7 is from
4 using the ,),-rule, introducing the new free variable V2' Then 8 is from
6 using the ,),-rule, introducing the new free variable V3.

Now we apply the Tableau Substitution Rule, using the substitution
a = {vda, v2/b(a), V3/ f(b(a), an, producing a closed tableau by making
7 and 8 conflict. The substitution is trivially free, since the terms being
substituted are all closed.

168 7. Implementing Tableaux and Resolution

We have defined the free-variable tableau system in a very general way,
because that is most desirable when it comes to proving soundness. But
we have still not solved all the implementation problems. Before we in
troduced free variables into tableaux, the problem was, Which terms
should we use in I'-rule applications? We have simply shifted the prob
lem to, Which free substitutions should we apply? But now there is an
obvious choice: We should apply substitutions that cause a branch to
close, and we can determine these using unification.

We still have to meet the requirement that substitutions must be free
for a tableau, and freeness is generally an expensive thing to check for.
But there is one simple case where the check can be avoided. Suppose A
and -.B are quantifier-free formulas that occur on a branch of a tableau,
and suppose cr is a most general unifier for A and B, obtained using
the Unification Algorithm. The only variables that an application of cr
can introduce are those already present in A or B. These will all be
free variables introduced by the I'-rule and so will be different than any
bound variables. It follows easily that cr must be free for the tableau.

The simplest cases that meet the no-bound-variables condition are those
involving literals. Thus, it makes sense to restrict substitution applica
tions to most general substitutions that will cause a branch to atomically
close. For convenience we give a name to this restricted version of sub
stitution; in it, MGU stands for most general unifier.

MGU Atomic Closure Rule Suppose T is a tableau for the set S of
sentences of L, and some branch of T contains A and -.B, where A and
B are atomic. Then Tcr is also a tableau for S, where cr is a most general
unifier of A and B.

We will prove the soundness of the free-variable system in full generality.
Since the MGU Atomic Closure Rule is just a special case of the Tableau
Substitution Rule, its addition to the system will not affect soundness.
And we will prove the system is complete even when all applications of
the Tableau Substitution Rule are restricted to MGU Atomic Closure
Rule applications (and other restrictions are imposed as well). We make
use of this in the tableau implementation given in the next section.

Remarks In the first edition of this book, the 8-free variable tableau
expansion rule was stated differently. While correct, it led to less efficient
tableau constructions. The version presented in this edition is due to
Reiner Hahnle and Peter Schmitt [23], and independently to Wilfried
Sieg (unpublished).

If we wish to check tableaux for non-atomic closure, we must use a ver
sion of unification that distinguishes between free and bound occurrences
of variables. Such an algorithm has been developed, [45].

Exercises

7.5
A Tableau Im

plementation

Exercises 169

7.4.1. Give tableau proofs of the following, using the rules of this sec
tion:

1. (C:lx) (l;fy)R(x, y) ::J (l;fy)(C:lx)R(x, y).

2. (C:lx)[P(x) ::J (l;fx)P(x)].

3. (I;fx) (I;fy) [P(x) 1\ P(y)] ::J (C:lx) (C:ly) [P(x) V P(y)].

4. (I;fx) (I;fy) [P(x) 1\ P(y)] ::J (l;fx)(l;fy)[P(x) V P(y)].

5. (I;fx) (C:ly) (I;fz) (C:lw)[R(x, y) V ,R(w, z)].

6. (C:lx)(l;fy)[P(y) i (P(x) i Q(x))] C (l;fx)Q(x).

Most theorem provers that have been implemented are based on reso
lution, but there has always been interest in tableaux [35], and recently
quite an efficient theorem prover using tableaux has appeared [34]. In
this section we give an implementation based on the free-variable first
order tableau system. The implementation imposes constraints much like
the propositional version did. There is a strictness condition, although it
does not apply to ,),-formulas for reasons discussed later. Also, we apply
all Tableau Expansion Rules before considering branch closure. Finally,
all Tableau Substitution Rule applications will involve most general uni
fiers that are designed to close branches. In fact, they will be applications
of the MGU Atomic Closure Rule. In Section 7.8 we will show that the
tableau system is complete even when restricted in these ways. Our im
plementation, in Prolog, follows the general pattern of the propositional
version in Section 3.2, but it is considerably more complicated, and so we
present it one part at a time, preceding each portion with a discussion
of its key features.

We begin with a few minor utility routines, to get them out of the
way. Note that the remove predicate is a little different than in the
propositional case. We are using Prolog variables as the free variables of
our formal language, so we must be careful not to introduce an accidental
unification. We will remove a formula from a branch only if it is there,
not if it can be unified with something that is there.

member(Item, List)

member (X , [X
member (X, [_

-]) .
Tail])

Item occurs in List.

member(X, Tail).

170 7. Implementing Tableaux and Resolution

1* remove (Item, List, Newlist) :-
Newlist is the result of removing all
occurrences of Item from List.

remove (X , [], []).
remove (X, [Y I Tail], Newtail)

X == Y,
remove(X, Tail, Newtail).

remove (X, [Y I Tail], [y I Newtail])
X \== y,
remove (X, Tail, Newtail).

1* append (ListA, ListB, Newlist)
Newlist is the result of appending ListA
and ListB.

append([], List, List).
append([Head I Tail], List, [Head I Newlist])

append(Tail, List, Newlist).

The propositional operators are exactly what they were in Section 2.9,
and so their characterization is carried over without change.

1* Propositional operators are: neg, and, or, imp,
revimp, uparrow, downarrow, notimp
and notrevimp.

?-op(140, fy, neg).
?-op(160, xfy, [and, or, imp, revimp, uparrow, downarrow,

not imp , notrevimp]).

1* conjunctive (X) :- X is an alpha formula.
*1

conjunctive(_ and _).
conjunctive(neg(_ or _)).
conjunctive(neg(_ imp _)).
conjunctive(neg(_ revimp _)).
conjunctive(neg(_ uparrow _)).

conjunctive(_ downarrow _).
conjunctive(_ notimp _).
conjunctive(_ notrevimp _).

7.5. A Tableau Implementation 171

1* disjunctive(X):- X is a beta formula.
*1

disjunctive(neg(_ and _».
disjunctive(_ or _).
disjunctiveC_ imp _).
disjunctive(_ revimp _).
disjunctive(_ uparrow _).
disjunctive(neg(_ downarrow _».
disjunctive(neg(_ notimp _».
disjunctive(neg(_ notrevimp _».

1* unary (X) :- X is a double negation,
or a negated propositional constant.

unary(neg neg _).
unary(neg true).
unary(neg false).

binary_operator (X)

binary_operator (X)

X is a binary operator.

member(X, [and, or, imp, revimp, uparrow, downarrow,
notimp, notrevimp]).

1* components(X, Y, Z) :- Y and Z are the components of
the formula X, as defined in the alpha and
beta table.

components(X and Y, X, Y).
components(neg(X and Y), neg X, neg Y).
components(X or Y, X, Y).
components(neg(X or Y), neg X, neg Y).
components(X imp Y, neg X, Y).
components(negCX imp Y), X, neg Y).
components(X revimp Y, X, neg Y).
componentsCneg(X revimp Y), neg X, Y).
components(X uparrow Y, neg X, neg y).

172 7. Implementing Tableaux and Resolution

components(neg(X uparrow V), X, V).
components(X downarrow Y, neg X, neg V).
components(neg(X downarrow V), X, V).
components(X notimp Y, X, neg V).
components(neg(X notimp V), neg X, V).
components(X notrevimp Y, neg X, V).
components(neg(X notrevimp V), X, neg V).

1* component (X, Y) :- Y is the component of the
unary formula X.

component(neg neg X, X).
component(neg true, false).
component(neg false, true).

For quantifiers we make use of Prolog's functional notation. The formula
(V'x)P(x) will be represented using a two-argument functor, as all(x,
p(x)). Similarly, (3x)p(x) will be represented as some(x, p(x)). Then
a sentence like (3x)(P(x) :J (V'x)P(x» will be written some(x, p(x)
imp all (x, p(x))).

universal (X) X is a gamma formula.

universal(all(_,_)).
universal(neg some(_,_)).

1* existential (X) :- X is a delta formula.
*/

existential(some(_,_)).
existential(neg all(_,_)).

literal (X) X is a literal.

literal (X)
not conjunctive (X) ,
not disjunctive (X) ,
not unary (X) ,
not universal (X) ,
not existential(X).

7.5. A Tableau Implementation 173

atomicimla(X) X is an atomic formula.

atomicfmla(X)
literal (X) ,
X \= neg _.

(l- And ,8-formulas have components, but "(- and o-formulas have in
stances. The notion of instance presupposes that we know how to carry
out the substitution of a term for a free variable in a formula. This is
what the predicate sub does. It calls on the auxiliary predicate sub_,
which does the real work; the main purpose of this division of labor is to
provide an added level of safety by preventing accidental backtracking
(note the cut in the body of sub). You should compare the clauses for
sub_ that follow with the definition of substitution, Definition 5.2.11.
The only mildly tricky part is that involving substitution at the atomic
level. Here formulas and terms are broken down into lists, and the sub
stitution is carried out by a simple list traversal.

1* sub(Term, Variable, Formula, NewFormula) :
NewFormula is the result of substituting
occurrences of Term for each free
occurrence of Variable in Formula.

sub(Term, Variable, Formula, NewFormula) :
sub_(Term, Variable, Formula, NewFormula) !.

sub_(Term, Var, A, Term) :- Var == A.
sub_(Term, Var, A, A) atomic(A).
sub_(Term, Var, A, A) var(A).

sub_(Term, Var, neg X, neg Y) :
sub_(Term, Var, X, Y).

sub_(Term, Var, Binary_One, Binary_Two)
binary_operator (F) ,
Binary_One = .. [F, X, Y],
Binary_Two = .. [F, U, V],
sub_(Term, Var, X, U),
sub_(Term, Var, Y, V).

174 7. Implementing Tableaux and Resolution

sub_(Term, Var, all (Var, Y), all (Var, V)).
sub_(Term, Var, all(X, Y), all(X, Z))

sub_(Term, Var, Y, Z).
sub_(Term, Var, some (Var, Y), some (Var, V)).
sub_(Term, Var, some(X, Y), some(X, Z))

sub_(Term, Var, Y, Z).

sub_(Term, Var, Functor, Newfunctor)
Functor =.. [F I Arglist],
sub_list (Term, Var, Arglist, Newarglist),
Newfunctor =.. [F I Newarglist].

sub_list (Term, Var, [Head I Tail], [Newhead I Newtail])
sub_(Term, Var, Head, Newhead),
sub_list (Term, Var, Tail, Newtail).

sub_list (Term, Var, [], []).

Now the notion of an instance of a ,- or 8-formula can be characterized
easily.

/* instance(F, Term, Ins) :-
F is a quantified formula, and Ins is the result
of removing the quantifier and replacing all
free occurrences of the quantified variable by
occurrences of Term.

instance(all(X,Y), Term, Z) :- sub (Term, X, Y, Z).
instance(neg some(X,Y), Term, neg Z) :- sub (Term, X, Y, Z).
instance(some(X,Y), Term, Z) :- sub (Term, X, Y, Z).
instance(neg all(X,Y), Term, neg Z) :- sub (Term, X, Y, Z).

In using the 8-rule, we need a new function symbol each time the rule
is applied. We take a Skolem function symbol to be fun (n), where n is
a number that is increased by 1 at each 8-rule application. We find it
convenient to remember the current value of this number using a Prolog
mechanism that is something like a global variable in a more conventional
programming language. Specifically, we introduce a predicate, funcount,
whose purpose is to remember the current Skolem function number. At
the start of execution, there is a program clause funcount (1). Then
each time the 8-rule is used, the predicate newfuncount is called on.

7.5. A Tableau Implementation 175

This retracts the program clause funcount (n) and asserts in its place
a new program clause funcount (n+1). This rather nonlogical use of
Prolog could be avoided, but we believe no harm is done here. Since a
user of this program will probably want to test several different formulas
for theoremhood, we also include a reset predicate, which simply resets
the value of funcount to 1.

funcount (N) N is the current Skolem function index.

funcount (1) .

1* newfuncount(N)
N is the current Skolem function index, and as a
side effect, the remembered value is incremented.

newfuncount(N)
funcount(N),
retract (funcount(N»,
M is N+1,
assert(funcount(M».

1* reset:- the Skolem function index is reset to 1.
*1

reset
retract(funcount(_»,
assert (funcount(1»,
! .

Once the problem of ensuring fresh Skolem functions has been addressed,
the introduction of terms involving Skolem functions is easy. This is
taken care of by the predicate sko_fun (X, y) .

1* sko_fun(X, y) :-
X is a list of free variables, and Y is a
previously unused Skolem function symbol
applied to those free variables.

sko_fun(Varlist, Skoterm)

176 7. Implementing Tableaux and Resolution

newfuncount(N),
Skoterm = .. [fun I [N I Varlist]].

We are still not done with complications that are due to the 8-rule. In
applying it we need to know what the free variables of a formula are.
This can be done in two ways. First, we can figure out what they are
when we need to. Second, we can keep track of them as we go along.
Either way is acceptable-we use the second method, and leave the first
to you as an exercise. Instead of placing formulas on tableau branches,
in our program we use notated formulas, where a notated formula is a
structure n(Notation, Formula) in which Formula is a formula in the
usual sense and Notation is a list of free variables, intended to be those
occurring in Formula. We introduce two utility predicates for dealing
with this structure, mostly to make reading the clauses of single step
somewhat easier.

1* notation(Notated, Free) :-
Notated is a notated formula, and Free is its
associated free variable list.

notation(n(X, Y), X).

1* fmla(Notated, Formula)
Notated is a notated formula, and Formula is its
formula part.

fmla(n(X, Y), Y).

In our propositional tableau implementation, we had a singlestep pred
icate, which carried out a single step of the tableau expansion. This
was called on by an expand predicate, which applied singlestep until
all possible Tableau Expansion Rules had been applied, after which we
tested for closure. This simple approach no longer works now that quan
tifiers have been introduced. The ,-rule is the source of the difficulty.
Recall that in its original form, without free variables, it allowed us to
go from, to ,(t) for any closed term t, and such a rule can clearly be
applied to the same formula several times, using a different closed term
each time. Since there are infinitely many closed terms, we can never
complete the process of expanding a tableau, and so we will never reach
the stage at which we test for closure. Similar problems are encountered

7.5. A Tableau Implementation 177

with the free-variable version, too. But after all, if there were some pro
cess that always produced a complete first-order tableau expansion in a
finite number of steps, we would have a decision procedure for first-order
logic, and a famous result known as Church's Theorem says there can
be no such thing [8].

Our way out of this difficulty is to limit the number of applications of the
,),-rule in a tableau proof. We have a user preset bound, known as the Q
depth, standing for quantifier depth. When the ,),-rule has been applied
the maximum allowed number of times, as specified by the value of Q
depth, it can not be applied any more. In this way a complete tableau
expansion to a given Q-depth can be constructed in a finite number
of steps, and we can then go on to the closure testing stage. Proofs are
finite objects, so if a sentence X is provable, it has a proof in which some
finite number of ,),-rule applications have been made. Consequently, if X
is valid it will be provable at some Q-depth. So in principle, by trying
higher and higher values for Q-depth, a proof of any valid sentence will
eventually be discovered. (Of course, this ignores problems of time and
space complexity.) On the other hand, being invalid is equivalent to being
unprovable at every Q-depth, and this is something no implementation
can discover for us, since infinitely many proof attempts would have to
be made.

We need to ensure that if there are several ,),-formulas on a branch each
gets its fair share of attention and that we do not use up our Q-depth
allotment of ,),-rule applications on a single formula. For this we use
an idea of Smullyan [48], which amounts to treating each branch as a
priority queue. When working with a branch, we always work from the
top down. We pick the uppermost negation, or a-formula, or whatever,
to apply a rule to. Now, if we have chosen a formula that is not a ')'
formula, we remove it from the branch and add its components, or an
instance. (Because of the way Prolog works, it is convenient to always
add these to the top of the branch, though this is of no theoretical
significance.) On the other hand, if we have chosen a ,),-formula to work
with, we remove it, add an appropriate instance to the branch top, and
add a fresh occurrence of ')' to the branch end. This guarantees that over
time, each ,),-formula on the branch will be considered, after which those
that have been used once will be reused in their original order.

We have a similar problem ensuring that each branch also gets its fair
share of ,),-rule applications. Our solution here is a similar one. We treat
a tableau representation, which is a list of notated branches, as a priority
queue also. We work as long as possible on the first branch, then the
second, and so on, unless we happen to apply a ,),-rule. When a ,),-rule
is applied to a branch, that branch is moved to the end of the list of
branches. This guarantees that the ,),-rule applications allowed by the
value of Q-depth are spread over all branches fairly.

178 7. Implementing Tableaux and Resolution

Now we give the singlestep predicate clauses. These should be com
pared with those in Section 2.9. There are four arguments now, instead
of two. Two of the arguments represent the tableau before and after a
single Tableau Expansion Rule has been applied, just as in the proposi
tional implementation. The two new arguments represent the available
number of ,),-rule applications before and after the rule application, the
Q-depth. Of course, this plays a role only in a single program clause,
the one corresponding to the ,),-rule. The propositional cases are basi
cally the same as in earlier chapters, except for the complications arising
from the use of notated formulas. Notice that the list of free variables as
sociated with a formula is passed along unchanged by every rule except
for ,)" when a new free variable is added. In addition, in applying the
,),-rule, we must decrease the available Q-depth by 1 and reorder both
the branch and the tableau itself. Note again that we are using Prolog's
variables as free variables.

1* singlestep(OldTableau, OldQdepth,
NewTableau, NewQdepth) :-

the application of one tableau rule to OldTableau,
with a Q-depth of OldQdepth, will produce the
tableau NewTableau, and will change the available
Q-depth to NewQdepth.

singlestep([OldBranch I Rest], Qdepth,
[NewBranch I Rest], Qdepth) :

member (NotatedFormula, OldBranch),
notation (NotatedFormula, Free),
fmla(NotatedFormula, Formula),
unary (Formula) ,
component (Formula, NewFormula),
notation (NewNotatedFormula , Free),
fmla(NewNotatedFormula, NewFormula),
remove (NotatedFormula, OldBranch, TempBranch),
NewBranch = [NewNotatedFormula I TempBranch].

singlestep([OldBranch I Rest], Qdepth,
[NewBranch I Rest], Qdepth) :

member (NotatedAlpha, OldBranch),
notation(NotatedAlpha, Free),
fmla(NotatedAlpha, Alpha),
conjunctive (Alpha) ,
components (Alpha, AlphaOne, AlphaTwo),
notation(NotatedAlphaOne, Free),

7.5. A Tableau Implementation 179

fmla(NotatedAlphaOne, AlphaOne),
notation (NotatedAlphaTwo, Free),
fmla(NotatedAlphaTwo, AlphaTwo),
remove (NotatedAlpha, OldBranch, TempBranch),
NewBranch =

[NotatedAlphaOne, NotatedAlphaTwo I TempBranch].

singlestep([OldBranch I Rest], Qdepth,
[NewBranchOne, NewBranchTwo I Rest], Qdepth)

member (NotatedBeta, OldBranch),
notation(NotatedBeta, Free),
fmla(NotatedBeta, Beta),
disjunctive(Beta),
components (Beta, BetaOne, BetaTwo),
notation (NotatedBetaOne, Free),
fmla(NotatedBetaOne, BetaOne),
notation (NotatedBetaTwo, Free),
fmla(NotatedBetaTwo, BetaTwo),
remove (NotatedBeta, OldBranch, TempBranch),
NewBranchOne [NotatedBetaOne I TempBranch],
NewBranchTwo = [NotatedBetaTwo I TempBranch].

singlestep([OldBranch I Rest], Qdepth,
[NewBranch I Rest], Qdepth) :

member(NotatedDelta, OldBranch),
notation(NotatedDelta, Free),
fmla(NotatedDelta, Delta),
existential (Delta) ,
sko_fun(Free, Term),
instance (Delta, Term, Deltalnstance),
notation(NotatedDeltalnstance, Free),
fmla(NotatedDeltalnstance, Deltalnstance),
remove (NotatedDelta, OldBranch, TempBranch),
NewBranch = [NotatedDeltalnstance I TempBranch].

singlestep([OldBranch I Rest], OldQdepth,
NewTree, NewQdepth) :

member (NotatedGamma, OldBranch),
notation (NotatedGamma, Free),
fmla(NotatedGamma, Gamma),
universal (Gamma) ,
OldQdepth > 0,
remove (NotatedGamma, OldBranch, TempBranch),
NewFree = [V I Free],
instance (Gamma, V, Gammalnstance),

180 7. Implementing Tableaux and Resolution

notation (NotatedGammalnstance, NewFree),
fmla(NotatedGammalnstance, Gammalnstance),
append([NotatedGammalnstance I TempBranch],

[NotatedGamma], NewBranch),
append (Rest , [NewBranch], NewTree),
NewQdepth is OldQdepth-1.

singlestep([Branch I OldRest], OldQdepth,
[Branch I NewRest], NewQdepth) :

singlestep(OldRest, OldQdepth, NewRest, NewQdepth).

Now the expand predicate is just as it was in the propositional case,
except that we have an extra argument to specify Q-depth.

1* expand (Tree , Qdepth, Newtree) :-
the complete expansion of the tableau Tree,
allowing Qdepth applications of the gamma
rule, is Newtree.

expand (Tree , Qdepth, Newtree) :-
singlestep(Tree, Qdepth, TempTree, TempQdepth),
expand (TempTree, TempQdepth, Newtree).

expand (Tree , Qdepth, Tree).

Testing an expanded tableau for closure is more complicated than it was
in the propositional case. A branch is counted as closed if it contains
literals X and --.Y, where X and Y unify. As noted earlier, we can
not rely on Prolog's built-in unification, because it incorrectly omits
the occurs check. Consequently, we need the unification clauses from
Section 7.3. These are repeated here, for convenience.

1* unify(Term1, Term2) :-
Term1 and Term2 are unified with the occurs check.
See Sterling and Shapiro,
The Art of Prolog.

unify(X, Y)

var(X) , var(Y), X=Y.
unify(X, Y)

7.5. A Tableau Implementation 181

var(X) , nonvar(Y), not_occurs_in(X,Y), X=Y.
unify(X,Y)

var(Y), nonvar(X) , not_occurs_in(Y,X) , Y=X.
unify (X , Y)

nonvar(X) , nonvar(Y), atomic (X) , atomic(Y), X=Y.
unify(X,Y) :-

nonvar(X) , nonvar(Y),
compound (X) , compound(Y),
term_unify(X,Y).

not_occurs_in(X,Y) :
var(Y), X \== Y.

not_occurs_in(X,Y) :
nonvar(Y), atomic(Y).

not_occurs_in(X,Y) :-
nonvar(Y), compound(Y), functor(Y,F,N),
not_occurs_in(N,X,Y).

not_occurs_in(N,X,Y) :-
N>O, arg(N,Y,Arg), not_occurs_in(X,Arg), N1 is N-1,
not_occurs_in(N1,X,Y).

not_occurs_in(O,X,Y)

term_unify(X,Y) :-
functor(X,F,N), functor(Y,F,N), unify_args(N,X,Y).

unify_args(N,X,Y) :-
N>O, unify_arg(N,X,Y), N1 is N-1, unify_args(N1,X,Y).

unify_args(O,X,Y).

unify_arg(N,X,Y) :-
arg(N,X,ArgX), arg(N,Y,ArgY), unify(ArgX,ArgY).

compound (X) :- functor(X,_,N), N>O.

With unification available, the clauses for closure are straightforward.
Note that we only test for atomic closure via the MGU Atomic Closure
Rule. As we pointed out in the last section, this guarantees that all
applications of the Tableau Substitution Rule are free ones.

closed(Tableau) every branch of Tableau can be

182 7. Implementing Tableaux and Resolution

made to contain a contradiction, after a suitable
free variable substitution.

closed([Branch I Rest]) :
member(Falsehood, Branch),
fmla(Falsehood, false),
closed(Rest).

closed([Branch I Rest]) :
member(NotatedOne, Branch),
fmla(NotatedOne, X),
atomicfmla(X),
member(NotatedTwo, Branch),
fmla(NotatedTwo, neg V),
unify (X, Y),
closed(Rest).

closed([]).

Now, exactly as in the propositional case, we simply expand (to a given
Q-depth) using expand, and test for closure. We carryover the amenities
that we used earlier.

1* if_then_else(P, Q, R) :-
either P and Q, or not P and R.

P, !, Q.

R.

1* test(X, Qdepth) :- create a complete tableau expansion
for neg X, allowing Qdepth applications of the
gamma rule. Test for closure.

test(X, Qdepth) :-
reset,
notation(NotatedFormula, []),
fmla(NotatedFormula, neg X),
expand([[NotatedFormula]], Qdepth, Tree),
if_then_else(closed(Tree), yes(Qdepth), no(Qdepth)).

Exercises

Exercises 183

yes (Qdepth) :-
write('First-order tableau theorem at Q-depth '),
write (Qdepth),
write(.),
nl.

no (Qdepth)
write('Not a first-order tableau theorem at Q-depth '),
write (Qdepth),
write('.') ,
nl.

This is the end of the program. To use it with a formula x, select a
reasonable Q-depth, Q, and issue the query test (X, Q).

In Section 3.2 two versions of a propositional tableau implementation
were given. The first, like the one in this section, began with a tableau
expansion stage, followed by a closure testing stage. The second version
applied a test for closure after each Tableau Expansion Rule application.
Such variations are equally applicable in the first-order case as well. We
leave them to you, as exercises.

7.5.1 p. In the program of this section, at the stage of testing for
closure, there may still be non-atomic formulas left, l'-formulas, for in
stance. This leads to a certain amount of inefficiency. Modify the pro
gram so that non-atomic formulas are removed before testing for closure.

7.5.2P . Write a Prolog procedure that directly determines the free
variables occurring in a formula. Then use your procedure and rewrite
the Prolog program above so that formulas, and not notated formulas,
occur on branches.

7.5.3P . Modify the Prolog program of this section by incorporating
an expand_and_close predicate, as in Section 3.2, in place of the expand
predicate that was used.

7.5.4P . Write a modified version of the Prolog implementation of this
section that removes closed branches from the tableau as it generates it,
thus avoiding redundant tests for closure.

7.5.5P . In Section 7.3 we gave an implementation of the unification
algorithm directly, not using Prolog's built-in version. In this, expres
sions of the form var (...) were used as variables. Rewrite the Prolog

184 7. Implementing Tableaux and Resolution

7.6
Free-Variable

Resolution

program of this section using these as free variables, rather than us
ing Prolog variables as we did, and using the corresponding unification
implementation from Section 7.3.

We have seen how to turn the semantic tableau system with parameters,
from the previous chapter, into a system suitable for automation, using
unification. The same ideas apply to resolution. We sketch things and
leave the actual implementation as an exercise. Just as in Section 7.4,
proofs will be of sentences of a first-order language L, but will use for
mulas of Lsko. The formal system is much as in Section 6.2, except that
the quantifier rules are replaced by free-variable versions and a substi
tution rule is added. We begin with the expansion rules, in Table 7.2.
In these rules, x is a free variable that does not also occur bound in the
resolution expansion; f is a new Skolem function symbol and Xl, •.. , Xn

are all the free variables occurring in the 6-formula.

~
,(x)

(for an unbound
variable x)

6(f(xI, ... ,xn »
(for f new and

XI, .•• ,Xn all the
free variables of 6)

TABLE 7.2. Free-Variable Resolution Expansion Rules

Definition 7.6.1 Let a be a substitution and R be a resolution expansion. We extend
the action of a to R by setting Ra to be the result of replacing each
formula X in R by Xa. We say a is free for R, provided a is free for
every formula in R.

Resolution Substitution Rule If R is a resolution expansion for the
set S of sentences of L, and the substitution a is free for R, then Ra is
also a resolution expansion for S.

As usual, a resolution proof of X is a closed resolution expansion for
{ -oX}. Closure of a resolution expansion still means that it contains the
empty clause. The key point is that the resolution-system rules are used
in constructing the resolution expansion, instead of the quantifier rules
from the previous chapter.

Example The following is a resolution proof of

(3w)(Vx)R(x, w, f(x, w» ::) (3w) (Vx)(3y)R(x, w, y)

7.6. Free-Variable Resolution 185

1. [....,((:3w) (\fx)R(x, w, f(x, w)) :J (:3w) (\fx)(:3y)R(x, w, y))]

2. [(:3w) (\fx)R(x, w, f(x, w))]

3. [....,(:3w) (\fx) (:3y)R(x, w, y)]

4. [(\fx)R(x, a, f(x, a))]

5. [....,(\fx) (:3y)R(x, VI, y)]

6. [....,(:3y)R(b(VI), VI, y)]

7. [R(V2' a, f(V2, a))]

8. [....,R(b(VI)' VI, V3)]

Here 4 is from 2 by 6 (with a being a new parameter); 5 is from 3
by "I (with VI a new free variable); 6 is from 5 by 6 (with b as a new
Skolem function symbol; 7 is from 4 by "I; and 8 is from 6 by "I. Now
the substitution {vI/a, v2/b(a), V3/ f(b(a), a)} is free for the resolution
expansion. When it is applied, 7 becomes [R(b(a) , a, f(b(a), a))] and 8
becomes [....,R(b(a) , a, f(b(a), a))]. From these we get [] by the Resolution
Rule.

As expected, the problem in implementing this free-variable version of
resolution comes from the Resolution Substitution Rule: What substi
tutions do we use? The obvious answer is to use a substitution that
allows us to apply the Resolution Rule. That is, if one generalized dis
junction in a resolution expansion contains X and another contains,Y,
we should try to unify X and Y, then apply Resolution. And, as with
tableaux, we can guarantee freeness of the unifying substitution if X
and Y are atomic. But there is a hidden problem here. Suppose we have
the following two clauses:

[P(x, fey)), P(g(y), f(a)) , Q(c, z)] and [....,P(g(a) , z), R(x, a)].

We might choose to unify P(x, fey)) and P(g(a), z), in which case a =
{x/g(a), z/ fey)} is a most general unifier. Applying it to both clauses,
we get

[P(g(a), fey)), P(g(y), f(a)) , Q(c, fey))] and [--'P(g(a) , fey)), R(g(a), a)],

and so the Resolution Rule yields

186 7. Implementing Tableaux and Resolution

[P(g(y) , J(a)), Q(c, J(y)), R(g(a), a)].

On the other hand, T = {x/g(a), z/ J(a), y/a} is also a unifier, though
not most general, and when we apply it we get

[P(g(a) , J(a)), P(g(a), J(a)), Q(c, J(a))] and [---.P(g(a) , J(a)), R(g(a), a)].

So now the Resolution Rule gives us

[Q(c, J(a)), R(g(a), a)],

which is simpler! The use of a less general substitution got us nearer the
goal of producing the empty clause.

There is nothing quite analogous for the tableau system. Of course what
happened is that the substitution T also happened to unify two formulas
within one of the clauses, as well as unifying across clauses. Such a
possibility must be taken into account if we are to have a complete
proof procedure. Two general approaches have been introduced to deal
with this.

Notice that in the example, the substitution T, though not a most gen
eral unifier of P(x,J(y)) and P(g(a), z), is a most general unifier of the
three formulas P(x, J(y)), P(g(a), z), and P(g(y), J(a)). This suggests
the following rule:

General Literal Resolution Rule Suppose R is a resolution expan
sion for the set S of sentences of L, R contains the generalized dis
junctions [X!, ... , X n , YI, ... , Ym] and [---,Zl, ... , ---,Zk' WI, ... , W p],

where each Xi and Zi is atomic and a is a most general unifier of
{X1, ... ,Xn,ZI, ... ,Zk}. Then R*a is also a resolution expansion for
S, where R* is R with [YI, ... , Ym , W 1 , •.• , Wp] added.

This rule combines the Resolution Rule and the Resolution Substitution
Rule, supplies a mechanism for choosing the substitutions, and ensures
their freeness. We will show in Section 7.9 that the Resolution system
is complete using this rule, with no other applications of Substitution.
On the other hand, there is a certain simplicity in not bringing multiple
unification into the picture. We could also consider the following special
case of the rule just stated:

Exercises

Exercises 187

Binary Literal Resolution Rule Suppose R is a resolution expan
sion for the set S of sentences of L, R contains the generalized disjunc
tions [X, YI , ... , Y'In] and [--,Z, WI, ... , Wp], where X and Z are atomic,
and (J is a most general unifier of X and Z. Then R * (J is also a resolution
expansion for S, where R* is R with [YI , ... , Y'In' WI' ... ' W p] added.

As it happens, the system is not complete when only the binary version is
used. You might try giving a proof ofthe valid sentence (\ix) (\iy) [P(x) V
P(y)] =:J (3x)(3y)[P(x) /\ P(y)] to convince yourself of this. To restore
completeness we also need the following.

Factoring Rule Suppose R is a resolution expansion for the set S of
sentences of L, R contains the generalized disjunction [X, Y, ZI, ... ,
Zn], where X and Yare literals, and (J is a most general unifier of X
and Y. Then R(J is also a resolution expansion for S.

Now we have the basics set out, and we can make a few remarks about
more specific implementation issues. In our tableau system implementa
tion, we applied all Tableau Expansion Rules to a given Q-depth first,
before testing for branch closure. The notion of Q-depth carries over
directly to resolution, and similar ideas apply: Carry out all possible
Resolution Expansion Rule applications to a given Q-depth first. Also
these applications should be strict; remove any generalized disjunction to
which a rule has been applied, unless it was a ,),-rule; ,),-rule applications
should be fairly distributed in some manner. Finally, all applications of
resolution, either Binary with Factoring, or General, can come last, and
it is enough to apply them just to clauses. When we prove completeness
in Section 7.8, our proof will apply to any implementation that meets
these specifications.

7.6.1. Give free-variable resolution proofs of the sentences in Exer
cise 7.4.1.

7.6.2. Give proofs using the General Literal Resolution Rule, and using
the Binary Literal Resolution Rule and Factoring, of (\ix)(\iy)[P(x) V

P(y)] =:J (3x)(3y)[P(x) /\ P(y)].

7.6.3P • Give an implementation of the resolution system in Prolog.
You may use the tableau version in the previous section as a model,
and you may use either General Resolution or Binary Resolution with
Factoring.

188 7. Implementing Tableaux and Resolution

7.7
Soundness

In the previous chapter we proved soundness of tableau and resolution
systems in versions using constant parameters. Now we prove similar
results for the systems of this chapter, which allow free variables and
function parameters. The idea we followed before was to show that sat
isfiability of a tableau or resolution expansion is preserved whenever any
ofthe rules is applied; in effect, that satisfiability is a loop invariant. This
is still the idea, but we have the problem of how to treat free variables.
Basically, we want to think of them as standing for anything-as if they
were universally quantified. But the definition of satisfiability, Defini
tion 5.3.6, treats them as if they were existentially quantified instead.
To get around this, we introduce a variation on satisfiability, one that
treats free variables as if they were universally quantified in some model.

For this section, L is a fixed first-order language. It is to sentences of L
that we apply our theorem-proving methods.

Definition 7.7.1 Let T be a free-variable tableau.

1. Suppose M = (D, I) is a model for the language Lsko and A is an
assignment in M. We say T is (M, A) -satisfiable provided there is
some branch e of T such that X I,A is true for each formula X on
e.

2. We say T is V -satisfiable provided there is some model M such that
Tis (M, A)-satisfiable for every assignment A in M.

We can associate a closed formula with a free-variable tableau T in a
simple way. First, think of each branch as the conjunction of its formulas.
Next, think of the tree as the disjunction of its branches. Finally, take the
universal closure of the result-that is, add enough universal quantifiers
at the beginning of the formula to turn it into a closed formula. Call
the result X T . The definition just given really amounts to this: T is
V-satisfiable if and only if X T is satisfiable in the usual sense. However,
it is convenient to have a direct definition of the notion, avoiding the
introduction of an auxiliary formula.

In a similar way a free-variable resolution expansion R can be converted
into a closed formula-take the universal closure of the conjunction of
its clauses, each of which is a disjunction. Satisfiability for the resulting
formula is equivalent to the following directly defined notion.

Definition 7.7.2 Let R be a free-variable resolution expansion. We say R is V-satisfiable
provided there is a model (D, I) such that, for each assignment A in the
model, aud for each generalized disjunction D in R, D1,A is true.

Lemma 7.7.3

7.7. Soundness 189

It is V-satisfiability that is a loop invariant for the construction of free
variable tableau or resolution proofs. This is the content of the following
two lemmas:

1. If any propositional tableau expansion rule, or the Pree- Variable "(
or 6-Rule, is applied to a V-satisfiable tableau, the result is another
V -satisfiable tableau.

2. If any propositional resolution rule, or the Pree- Variable "(- or 6-
Rule, is applied to a V -satisfiable resolution expansion, the result is
another V -satisfiable resolution expansion.

Proof We give the argument for tableaux and leave resolution as an
exercise. The propositional tableau rules are treated exactly as they
were in Section 3.1, and the ,,(-rule is straightforward. We concentrate
on the 6-rule.

Suppose () is a branch of the tableau T and 6 occurs on (). Extend ()
with 6(f(XI"" ,xn)), producing ()', where f is a function symbol new
to T and Xl, ... , Xn are the free variables occurring in 6. Let T' be the
tableau that results from T when () is replaced with ()'. We show that if
T is V-satisfiable, so is T'.

Assume T is V-satisfiable. Then there is some model M = (D, I) such
that T is (M, A)-satisfiable, for every assignment A in M.

Given all this machinery, we define a new model M' as follows: The
domain of M' is the same as that of M, namely, D. The interpretation
I' of M' is the same as the interpretation I of M on all symbols except
f. What is left is to specify a value for jl' (dl , ... ,dn), for each dl , ... ,

dn E D. We do this as follows: Let A be any assignment in M such
that xi" = d l ,··., x~ = dn (the behavior of A on variables not free
in 6 will not make a difference). If 61,A = f, let jl' (dl , ... , dn) be any
arbitrarily chosen member of D. On the other hand, suppose 61,A = t.
Speaking quite informally, since we are dealing with a 6-formula, which
is existential in nature, if it is true in the model, there must be some
member of the model domain that will serve as a true instance. To make
this precise, let v be a new free variable. Then, since 61,A = t, it must
be that 6(v)I,B = t for at least one B that is a v-variant of A. Choose
such an interpretation B, and set P' (db' .. , dn) to be vB.

Note that since the domains of M and M' are the same, an assignment
in M is also an assignment in M'. The point of the construction we just
gave is to ensure the following easily checked fact: If 61,A is true in the
model M, then 6(f(XI' ... ,xn)I',A is true in the model M'.

190 7. Implementing Tableaux and Resolution

Lemma 7.7.4

Now, we will show that T' is (M', A) satisfiable for every assignment A
in M', which will conclude the argument. Let A be some given assign
ment. The argument has two parts.

By assumption, all formulas on some branch of T are true in M under
assignment A. If that branch is not (), then that branch is also a member
of T', and its formulas are also true in M' under A, since the two models
differ only with respect to the symbol f, which was required to be new,
hence, which can not occur on this branch. This is the easier half.

Now suppose all formulas on () are true in M under assignment A. Then
all members of () are also true in M' under A, since, as earlier, the symbol
f does not occur in T and hence does not occur in any formula of (). But
also, since 8 is on (), 8I ,A is true in M, so as noted, 8(f(xl, ... ,xn)I' ,A is
true in the model M'. Thus, all formulas on ()' are true in M' under A.

This concludes the argument. 0

1. If the Tableau Substitution Rule is applied to a V -satisfiable tableau,
the result is another V -satisfiable tableau.

2. If the Resolution Substitution Rule is applied to a V -satisfiable res
olution expansion, the result is another V -satisfiable resolution ex
pansion.

Proof Suppose the tableau T is V-satisfiable. Then for some model M,
T is (M, A)-satisfiable for every assignment A. We show the same is
true for TO', where 17 is free for T.

Let A be an assignment in M-we show TO' is (M, A)-satisfiable. De
fine a new assignment B by setting, for each variable v, VB = (VI7)I,A.
Since B is also an assignment in M, there must be some branch () of T
whose formulas are all true in M under assignment B. But now, using
Proposition 5.3.8, it follows that for each formula X occurring in the
tableau T, [X I7jI,A = XI,B. Consequently, all members of branch ()17 of
tableau TO' must be true in M under assignment A.

This concludes the proof for tableaus. The resolution argument is shni
lar.D

Theorem 7.7.5 (Soundness)

1. If the sentence ~ has a free-variable tableau proof, ~ is valid.

2. If the sentence ~ has a free-variable resolution proof, ~ is valid.

Exercises

7.8
Free-Variable

Tableau

Completeness

Exercises 191

Proof As usual, suppose <I> has a tableau proof but is not valid. Since <I>
is not valid, {~<I>} is satisfiable. For sentences, satisfiability and ground
satisfiability coincide, and so the tableau proof of <I> begins with a tab
leau that is ground-satisfiable. Then every subsequent tableau must be
ground-satisfiable including the final closed one, which is impossible.
The resolution argument is similar. 0

7.7.1. Prove part 2 of Lemma 7.7.3.

7.7.2. Prove part 2 of Lemma 7.7.4.

Proving completeness of the free-variable tableau system is not diffi
cult. The Model Existence Theorem 5.8.2 can be used. But we need
something stronger than mere completeness. We need to show that the
free-variable tableau system remains complete even when various restric
tions are placed on allowed proofs. This will let us show completeness
not just of the tableau system itself but of a family of implementations,
including the one presented in Section 7.5.

The Tableau Substitution Rule allows us to make a free substitution
at any time. This means we could devise an implementation in which
Tableau Expansion Rule applications are mingled with substitutions and
with tests for branch closure. There is a wide variety of possibilities. But
two practical issues stand out: How do we decide what substitutions to
make? And how do we test whether a substitution is free?

The problem of what substitutions to make has an obvious solution:
Make those that will cause branches to close. We can write an imple
mentation so that it selects two formulas on the same branch, A and
~B, and produces a free substitution that unifies them, thus closing the
branch. Since these formulas are not required to be literals, we may in
this way be able to produce short proofs, proofs that do not apply tab
leau expansion rules to the point where every formula gets broken down.
A notable inefficiency is hidden here, however. Suppose a tableau T has
a branch (J containing A and ~B, and cr is a free substitution that unifies
A and B. If we apply cr, we may get a tableau Tcr with a closed branch
but in which no other branches can be closed. Applying cr may lead us to
a dead end in our proof attempt. But there may be two other formulas C
and ~D on (J, where C and D have a unifying substitution T that is also
free, so that TT does admit further work that will close its remaining
branches. We see that it is not enough to select one pair of formulas
on a branch and use them to develop a branch-closing substitution-we
must be prepared to try each pair. And for each one of these pairs we
try, we must be prepared to try each pair on the next branch, and so

192 7. Implementing Tableaux and Resolution

on. Clearly, this leads to exponentially explosive time expenditure. To
make things worse, testing whether a substitution is free for a tableau
is also expensive. We must, after all, verify whether it is free for every
formula in the tableau, and this might be a very large number.

Part of the strategy in designing a reasonable general purpose theorem
prover is to avoid, as far as possible, the kind of problems we have raised.
In our implementation of Section 7.5, we only tested for branch closure
at the atomic level by applying the MGV Atomic Closure Rule. This
means we might miss the chance to close a branch early, before applying
unnecessary tableau expansion rules. But it also means we can avoid the
test for freeness of a substitution.

One of the restrictions under which we will prove tableau completeness,
then, is that all substitutions are those required by the MGV Atomic
Closure Rule. Be aware, though, that such a restriction is not built
into the Tableau Substitution Rule. Other kinds of substitutions may
be reasonable under other circumstances-given additional information
about what is being proved, or given some human assistance with proofs,
say. The restrictions we consider here are not the only ones that are
possible or that are reasonable under all circumstances.

In the following we make use of the notion of most general solution of a
family of simultaneous equations. This was defined in Section 7.2.

Definition 7.8.1 Suppose T is a tableau with branches 0o, Ol, ... , On, and for each i, Ai
and ---.Ei are a pair of literals on branch Oi. If a is a most general solution
of the family of equations A o = Eo, Al = E I , ... , An = En, we call a a
most general atomic closure substitution.

The discussion of concurrent unification in Section 7.2 shows that finding
a solution to a family of equations reduces to repeated applications of
ordinary binary unification. In the present case, a most general atomic
closure substitution can be found (if one exists) by repeated applications
of the MGV Atomic Closure Rule. So, if we prove tableau completeness
under the restriction that all branch closures and substitutions must
be those arising from a most general atomic closure substitution, we
will also have completeness under a similar restriction to MGV Atomic
Closure Rule applications.

The restriction to most general is not as strong as it seems, as the fol
lowing shows. We call it a Lifting Lemma because it plays the role, for
tableaux, that the well-known Lifting Lemma 7.9.2 plays for resolution.

Lemma 7.8.2 (Lifting Lemma) Suppose T is a tableau, and T is a substitution,
free for T, such that each branch of TT is atomically closed. Then there
is a most general atomic closure substitution a for T.

7.8. Free-Variable Tableau Completeness 193

Proof Let () be a branch of T. Since TT is atomically closed, there
must be formulas P(tl, ... , t n) and -,P(Ul, ... ,un) on () such that tIT =
UIT, ... , tnT = UnTo Associate the equations tl = UI, ... , tn = Un with
the branch (). Now, let [; be the set of equations associated with any
branch of T. The substitution T is a simultaneous solution of [;. By
our discussion of concurrent unification in Section 7.2, a most general
solution (}" for [; must exist. It is easy to see that (}" is also a most general
atomic closure substitution for T. D

Next we turn to the problem of which tableau expansion rules to apply,
when, and how. The rules are non-deterministic. We have free choice of
what to do next. In any actual implementation, some algorithm must
specify these choices. We need to know which algorithms will allow us
to discover proofs and which will not. Keep in mind that special knowl
edge about the sentence being proved may suggest which tableau expan
sion rules are best to try. What we are interested in here is what must
work, given no special knowledge. In the propositional case, a strict
ness assumption was imposed: Each formula could be used only once
on a branch. That will still be the case, except for 'Y-formulas. On the
other hand, 'with strictness imposed, propositional tableau constructions
must terminate. In the first-order case, with single use not required of 'Y
formulas, termination may not always happen, and so fairness becomes
an issue. We want to be sure every formula occurrence has its chance at
having a rule applied to it. These issues are formalized in the notion of
fair tableau construction rule, to be given shortly.

First, we have a minor issue to deal with. The Free-Variable 'Y-Rule al
lows us to introduce any free variable. Let XI, X2, .•. be an enumeration
of all the variables of L that do not occur in the sentence we are attempt
ing to prove; fix this list once and for all. For the rest of this section, we
assume that when we work with the formula 'Y on a branch we simply
add 'Y(Xi) where Xi is the first free variable in this enumeration such
that 'Y(Xi) does not already appear on the branch. This makes 'Y-rule
applications deterministic in a uniform way.

In the tableau implementation of Section 7.5, branches were rearranged
from time to time, as a sort of priority queue, and formulas were deleted
as well. Although this was useful for implementation purposes, it is not
convenient now. But we can easily rephrase a description of what we are
doing so that only the usual tableau rules are applied, but we remember
as side information which formula occurrences should be treated as if
they had been deleted, and in what order we should try formulas, and on
which branches. We do not make precise this notion of side information.
Intuition will serve quite well for now.

194 7. Implementing Tableaux and Resolution

Definition 7.8.3 A tableau construction rule is a rule R that, when supplied with a tableau
T and some side information, either 1 says no continuation is possible or
2 produces a new tableau T' and new side information, where T' results
from T by the application of a single Tableau Expansion Rule to T. We
also assume that R specifies outright the appropriate side information
to accompany the initial tableau of an attempt to prove the sentence X.

Example The following is a tableau construction rule, R. For each tableau, side
information consists of which formula occurrences have been used, on
which branches; a priority ordering for formula occurrences on each
branch; and a priority ordering for branches. The side information asso
ciated with an initial tableau is as follows: The sentence ---.X is not used;
the sentence has top priority on its branch; the single branch has top
priority among branches. (You might have guessed this.)

Next, given a tableau T and side information about it, R says the fol
lowing: If every non-literal formula occurrence has been used on every
branch, no continuation is possible. Otherwise, select the branch e of
highest priority on which some non-literal is unused, and on it select
the unused non-literal Z of highest priority. Apply the appropriate tab
leau expansion rule to Z on e, producing the new tableau T'. For the
side information associated with T', add to the side information of T
that the occurrence of Z on e is now used. Give the lengthened branch
(or branches) of T' the lowest priority, and on these branches, give the
added formula occurrences lowest priorities.

Incidentally, this rule treats l'-formulas like all others; no reuse is allowed.

Definition 7.8.4 Let 1> be a sentence of L. We say a sequence of tableaux (and associated
side information) T I , T 2 , T 3 , ••• (finite or infinite) is a sequence for 1>
constructed according to rule R provided T I is the tableau with one
branch, that branch containing only 1>, and with the side information
associated with it by R, and provided each THI and its side information
result from T i and its side information by an application of rule R.

Some tableau construction rules are pretty dull. We might always select
the same formula occurrence to work with over and over, for instance.
This is clearly not fair to the other formulas.

Definition 7.8.5 A tableau construction rule R is fair provided, for any sentence 1>, the
sequence T I , T 2 , ... , of tableaux for 1> constructed according to R has
the following properties, for each n:

1. Every non-literal formula occurrence in Tn eventually has the ap
propriate Tableau Expansion Rule applied to it, on each branch on
which it occurs.

7.8. Free-Variable Tableau Completeness 195

2. Every 'I-formula occurrence in Tn has the 'I-rule applied to it ar
bitrarily often, on each branch on which it occurs.

The tableau construction rule used in the implementation of Section 7.5
is fair; we leave it to you to convince yourself of this. The tableau con
struction rule used in the example just given is not fair, as 'I-formulas
only are worked with once.

Now we are ready to state the main result of this section: Not only is
the free-variable tableau system complete, but it is complete when rather
severely restricted.

Theorem 7.8.6 (Completeness) Let R be any fair tableau construction rule. If X
is a valid sentence of L, X has a proof in which the following apply:

1. All Tableau Expansion Rule applications come first and are accord
ing to rule R.

2. A single Tableau Substitution Rule application follows, using a sub
stitution a that is a most general atomic closure substitution.

Proof Let T I , T 2 , T 3 , ... be the sequence of tableaux for -,X con
structed according to rule R, and suppose that no Tn has a most general
atomic closure substitution. We show X is not valid.

We assume the sequence of tableaux is infinite. If it is finite, the argument
is similar, but simpler. Since the sequence is infinite, and tree Tn+!
extends tree Tn in an obvious way, we can think of what we are doing
as constructing a sequence of approximations to an infinite tree. Let us
call this tree T.

Recall that we have fixed an ordering of all free variables, Xl, X2, ... , and
in applying the 'I-rule, we said we would always use the first variable in
this list that we had not used yet, with that formula, on that branch. Now
we also assume we have a fixed enumeration h, t 2 , ... , of all closed terms
of the language Lpar. Let a be the substitution given by Xia = ti for all
i. a Is free for T, since only closed terms are substituted. Incidentally,
this also means that in Ta only sentences appear.

We claim Ta is not atomically closed. The argument goes as follows: Sup
pose Ta were atomically closed. In Ta, prune each branch by removing
all sentences below an atomic contradiction, that is, all those below -.1,
or below both of A and -,A, where A is atomic. Call the resulting tree
(Ta)*. In (Ta)* every branch is finite, so by Konig's Lemma 2.7.2 (Ta)*
itself is finite. Then, for some n, (Ta)* must be a subtree of Tna. It fol
lows that Tna itself is atomically closed, and so by Lemma 7.8.2, there

196 7. Implementing Tableaux and Resolution

Exercises

7.9
Free-Variable

Resolution

Completeness

is a most general atomic closure substitution for Tn. Since this is not
the case, Ta can not be atomically closed.

Since Ta is not atomically closed, it must have a branch (}a, without an
atomic contradiction, where () is some branch of the infinite tree T. R is
a fair tableau construction rule, and so if c¥ occurs on (), so will C¥l and
C¥2, and similarly for other formulas. Likewise, fair tableau construction
rules return to 'Y-formulas arbitrarily often, so if l' occurs on (), so will
each of 'Y(xd, 'Y(X2), (This makes use of our special way of selecting
which free variables to use in 'Y-rule applications.) It follows that the set
of sentences on branch (}a of Ta is a first-order Hintikka set (with respect
to the language Lpar) and so is satisfiable by Hintikka's Lemma 5.6.2.
-.X occurs on () (indeed, on every branch of T) and so (-.X)a occurs on
(}a. Since X is a sentence of L, -.X is not affected by a, so -.X itself is
on (}a; -.X is satisfiable; X is not valid. D

7.8.1. Give a proof of the completeness of the free-variable tableau
system without any restrictions, using the Model Existence Theorem.

7.8.2. Give a proper statement of the tableau construction rule used
in the tableau implementation of Section 7.5.

7.8.3. State two additional fair tableau construction rules.

The free-variable resolution system presented in Section 7.6 is very gen
eral. It allows for free substitutions at any time, and resolution on any
formulas, not necessarily literals. Resolution, traditionally, has worked
with clauses only, so we are allowing a kind of non-clausal resolution.
Nonetheless, writing an implementation that can make adequate use of
this freedom is a complicated matter. When we suggested you write
an implementation of resolution, we outlined restrictions that, in effect,
eliminated this non-clausal aspect. In this section we prove resolution
completeness when such restrictions are imposed. This will ensure that
your implementation is complete, provided it meets our specifications.
Completeness of other implementations, based on different restrictions,
is a different matter altogether. We confine ourselves here to restrictions
that produce an equivalent of traditional resolution. The completeness
proof we present is a cross between the completeness proof we gave ear
lier for propositional resolution, and the first-order tableau completeness
proof of the previous section. It would be useful to go back and review
Section 3.8.

The restrictions we impose on free-variable resolution are in the same
spirit as those we imposed on tableaux: Apply all expansion rules first;
make only those substitutions that will enable an application of the

7.9. Free-Variable Resolution Completeness 197

resolution rule; only resolve on literals. Nonetheless, details differ con
siderably from the tableau completeness proof.

As we noted in Section 7.6, we have a choice of adopting the General
Literal Resolution Rule or else both the Binary Literal Resolution Rule
and the Factoring Rule. Any application of the General Literal Reso
lution Rule can be replaced by applications of Factoring, followed by
an application of the Binary Resolution Rule. So it is enough to show
completeness using only the General Resolution Rule. Further, we will
restrict its application to clauses only. (As originally stated, only the
formulas being resolved on had to be literals.)

The Resolution Substitution Rule allowed us to make any free substitu
tion. We now restrict ourselves to special ones, to most general unifiers.
It is important to know this is no real restriction, at least when applied
to clauses. The formal statement of this is called the Lifting Lemma.
Before giving it we introduce some useful, but temporary, terminology
and notation.

Definition 7.9.1 Let S be a set of clauses. By a G-derivation from S, we mean a resolution
derivation from S in which only the General Literal Resolution Rule is
used. We write S ---7 n [] if there is a G-derivation from S of [] with
exactly n applications of General Literal Resolution.

Actually, we will want to apply trivial resolutions in derivations as well
(removing .l from a clause). We have ignored this in the definition of
G-derivation, for simplicity. It is not hard to see that if we allow trivial
resolutions in G-derivations we can always arrange to do all of them
first, so that the tail end of such a derivation will be a G-derivation in
the narrower sense. Thus, nothing essential is lost by our concentration
on nontrivial resolution steps. We continue this policy, ignoring trivial
resolutions.

Since we are confining our attention to clause sets for now, only literals
are present, and all substitutions are automatically free. This makes
things a little simpler for us.

Theorem 7.9.2 (Lifting Lemma) For every clause set S and every substitution v,
if Sv ---7 n [], then S ---7 n [].

Proof The argument is by induction on n. The initial case is trivial; if
n = 0 and Sv ---7 n [], Sv itself must contain the empty clause, in which
case so does S.

Now suppose the result is known for n. That is, for any S and any v, if
Sv ---7 n [], then S ---7 n []. We show the result holds for n + 1 as well.

198 7. Implementing Tableaux and Resolution

Suppose 8v ---+n+1 []; we show 8 ---+n+l fl. We are given that there is a
G-derivation of [] from 8v with n+ 1 General Literal Resolution Rule ap
plications. Consider the first such application in this G-derivation. There
must be clauses [AI, ... ,Ai, YI, ... , Yj] and [..,BI,,Bk, WI, ... , Wp]
in 8, and a substitution a that is a most general unifier for the set
{Alv, ... ,Aiv, Blv, ... , Bkv}, so that [Ylv, ... , Yjv, Wlv, ... , Wpv] is
added and a is applied, giving (8v)a U {[Ylv, . .. , Yjv, Wlv, . .. , Wpv]a},
which we denote 8'. Clearly 8' ---+n [].

va Is a unifier for the set {AI, ... , Ai, BI, ... , Bd, so this set has a most
general unifier, say 'fJ. Since'fJ is more general than va, there must be a
substitution J-t such that 'fJJ-t = va.

Let R = 8'fJ U {[YI'fJ, ... ,Yj'fJ, WI'fJ, ... , Wp'fJ]}. Since 'fJ is a most general
unifier of {AI"'" Ai, B I , ... , Bp}, and both of [AI, ... , Ai, YI , ... Yj]
and [..,BI, ... , ..,Bk, WI, .. " Wp] are in 8, we can turn 8 into R by a
single application of the General Literal Resolution Rule. So, to show
8 ---+n+l [] it is enough to show R ---+n fl.

RJ-t (8'fJ U {[YI'fJ, ... , Yj'fJ, WI'fJ, ... , Wp'fJ]})J-t
(8 U {[YI , ... , Yj, WI, ... , Wp]})'fJJ-t
(8 U {[YI , ... , Yj, WI, ... , Wp]})va
(8v)a U {[YIv, ... , YjV, WI V, ... , Wpv]a}
8'

Since 8' ---+n [], RJ-t ---+n [], so by the induction hypothesis, R ---+n [], and
we are done. 0

Definition 7.9.3 We write 8 ---+ [] if 8 ---+n [] for some n.

Suppose 8 is a set of clauses that does not contain any free variables.
Then the internal structure of the atomic formulas present is not really
relevant, and we can think of them as if they were propositional letters.
This means all notions of propositional logic can be applied. In particular
we need Boolean valuations, which now become mappings from closed
atomic formulas to Tr. Also, propositional satisfiability notions make
sense, in addition to first-order ones. (See Exercise 7.9.1.)

Definition 7.9.4 We say a substitution T is grounding if, for each variable x, XT is a closed
term of Lsko .

Corollary 7.9.5 Suppose C is a (possibly infinite) set of clauses, a is a grounding substi
tution, and Ca is propositionaUy unsatisfiable. Then there is some finite
subset 8 of C such that S ---+ [].

7.9. Free-Variable Resolution Completeness 199

Proof Extend Ca to a resolution saturated set as in Definition 3.8.3;
call the result D. Since D has a propositionally unsatisfiable subset Ca,
D itself is propositionally unsatisfiable and so must contain the empty
clause by Proposition 3.8.4. Since [] is in D, [] must be obtainable from
some of the members of Ca using the Propositional Resolution Rule.
Since no free variables are present, Propositional Resolution and General
Literal Resolution Rule are essentially identical. Also, a derivation of []
will use only a finite number of members of Ca. It follows that Sa --+ [],

where S is some finite subset of C. Then S --+ [] by the Lifting Lemma. D

Corollary 7.9.5 contains the essence of resolution completeness for pure
clauses. Now we extend it to take more complicated formulas into ac
count. The following is an obvious transfer from our tableau discussion:

Definition 7.9.6 A resolution construction rule is a rule R that, when supplied with a
resolution expansion R and some side information, either (1) says no
continuation is possible or (2) produces a new resolution expansion R'
and new side information, where R' results from R by the application
of a single Resolution Expansion Rule to R. We also assume that R
specifies outright the appropriate side information to accompany the
initial resolution expansion of an attempt to prove the sentence X.

The free-variable ,),-rule for resolution, like that for tableaux, allows us
to introduce any free variable. Let Xl, X2,'" be a list of all the variables
of L that do not occur in the sentence we are attempting to prove. From
now on we assume that when we work with the formula,), we simply add
')'(Xi) where Xi is the first free variable in the list that has not yet been
used with this')' formula occurrence.

Definition 7.9.7 Let cP be a sentence of L. We say a sequence of resolution expansions
(and associated side information) R 1 , R 2 , R 3 , ... (finite or infinite) is a
sequence for cP constructed according to rule R provided Rl is the initial
resolution expansion for cP with the side information associated with it
by R, and each Ri+l and its side information results from Ri and its
side information by an application of rule R.

Definition 7.9.8 A resolution construction rule R is fair provided, for any sentence CP,
the sequence Rl, R 2 ,. .• , of resolution expansions for cP constructed
according to R has the following properties, for each n:

1. Every disjunction in Rn containing a non-literal eventually has
some resolution expansion rule applied to it.

2. If the ,),-rule is applied to a disjunction in Rn, then it is applied to
that disjunction arbitrarily often.

200 7. Implementing Tableaux and Resolution

Theorem 7.9.9 (Cmnpleteness) Let R be any fair resolution construction rule. If
X is a valid sentence of L, X has a proof in which

1. All Resolution Expansion Rule applications come first and are ac
cording to rule R.

2. These are followed by applications of the General Literal Resolution
Rule, to clauses only.

Proof Let R I , R 2 , ... be the sequence ofresolution expansions for {.X}
constructed according to rule R and suppose that for each n we do not
have S ----> [] where S is the set of clauses from Rn. We show X is not
valid.

Recall, Xl, X2, . .. was our fixed listing of free variables. Let h, t2, . .. be a
listing of all closed terms of the language L, and let a be the substitution
given by XirJ = k

Let C be the set consisting of those clauses that appear in any Rn.
If Ca were propositionally unsatisfiable, by Corollary 7.9.5 we would
have S ----> [] where S is some finite subset of C. But since S is finite, it
would be a subset of some Rn as well, which contradicts our assumption.
Consequently, Ca is propositionally satisfiable, say using the Boolean
valuation v.

Now we construct a Herbrand model M = (D, I) as follows: The domain
D must be the set of closed terms of Lpar, and the interpretation I is
standard on constant and function symbols. For a relation symbol, we
set RI(tl,"" tn) = t just in case V(R(tl, ... , tn» = t. This completes
the definition of our model.

In the model M, every member of Ca is true. This observation can
be restated in a suggestive way. In Definition 2.6.5 we defined a notion
of rank for propositional formulas. That is easily extended to include
quantifiers: The rank of a "1- or a 8-formula is one more than the rank
of any (equivalently all) of its instances. Rank extends to a generalized
disjunction by taking it to be the sum of the formulas making up the
disjunction. Clauses have rank 0, so what we have established is the
following: If D is a disjunction in some Rn of rank 0, Da is true in M.

We leave it to you to prove, by induction on rank, that for every general
ized disjunction D in any R n , Da will be true in M. Since RI contains
only [.X], .Xa must be true in M. But X is a sentence of L, hence
unaffected by a. Consequently, .X is true in M, X is not, and so X is
not valid. 0

This completeness proof applies to a number of different implementa
tions, since any fair resolution construction rule will do. Clearly, some

Exercises

Exercises 201

will be more efficient than others. For instance, it is not hard to see that
it is best to postpone ,,),-rule applications as long as possible, but it is
best to reduce double negations early. If you wrote a Prolog implemen
tation, you might use it to experiment with different priorities for rule
applications.

7.9.1. Let C be a set of clauses containing no free variables. If we iden
tify closed atomic formulas with the propositional letters of Chapter 2,
then the notion of Boolean valuation can be applied, as well as the no
tion of first-order model. Show C is satisfiable in the propositional sense
(some Boolean valuation maps all its members to t) if and only if C is
satisfiable in the first-order sense (there is a model in which its members
are true).

7.9.2. Complete the proof of Theorem 7.9.9 by doing the induction.

8 ______________________ __

Further First-Order Features

8.1
I ntrod uction

8.2
The

Replacement

Theorem

Over the years many fundamental and important results have been es
tablished for classical first-order logic. This chapter is devoted to what
are probably the most basic of these, ranging from Herbrand's theorem
to Beth's definability theorem. The Model Existence Theorem plays a
role in establishing many of the results of this chapter, thus proving its
versatility. It has one big drawback, though-proofs that use it are non
constructive in nature. For some of the things we are interested in, such
as Herbrand's theorem, it is important to have a constructive proof as
well, and this leads us to the beginnings of proof theory, supplementing
the semantic methods that we initially rely on.

It is often useful to rewrite a sentence before trying to prove it, to avoid
time-consuming work during the course of the proof. We do this in the
next section. The machinery that allows this is a first-order version of
the Replacement Theorem 2.5.1 and 2.5.2. Fortunately, the propositional
version extends to first-order logic with no serious complications. To
state the theorem more easily, we use the following notation: Suppose
A is an atomic formula. We write <I>(A) to denote a first-order formula
in which occurrences of A playa significant role. Then if F is a first
order formula, we write <I>(F) to denote the formula that is like <I>(A)
except that all occurrences of A have been replaced by occurrences of
the formula F.

204 8. Further First-Order Features

Theorem 8.2.1 (Replacelllent Theorelll) Let <I>(A), X, and Y be first-order for-
mulas of the language L. Let M = (D, II be a model for L. If X == Y is
true in M, then <I>(X) == <I>(Y) is also true in M.

Proof Suppose X == Y is true in M. Then for every assignment A,
XI,A = yI,A, by Exercise 5.3.4. We must show that for every assignment
A, [<I>(X)jI,A = [<I>(y)]I,A. This is done by structural induction on <I>(A).
The atomic and propositional cases are treated essentially as they were
in the proof of Theorem 2.5.1; we do not repeat the arguments. There are
two quantifier cases; we consider only the universal one, where <I>(A) =

(\iy)w(A).

Induction hypothesis: [W(X)]I,A = [W(Y)jI,A for all assignments A.

To be shown: [(\iy)W(X)jI,B = [(\iy)W(y)p,B for all assignments B.

Well, let B be an assignment. [(\iy)W(X)jI,B = t -¢=? for every v-variant
A of B, [W(X)]I,A = t -¢=? for every v-variant A of B, [W(y)]I,A = t
(this used the induction hypothesis) -¢=? [(\iy)W(y)]I,B = t. D

Corollary 8.2.2 If X == Y is valid, so is <I>(X) == <I>(Y).

The Replacement Theorem concerns logical equivalence. Sometimes we
will need something stronger, in which implication plays a role. In this
version we will not be able to replace all occurrences of a formula but only
those that occur positively. Loosely speaking, a subformula occurrence
in <I> is positive if it would be within the scope of an even number of
negation signs when <I> is rewritten using only A and -, as propositional
connectives. Our formal definition is along different lines, however.

Definition 8.2.3 As usual we write <I>(A) to indicate a formula in which occurrences of
the atomic formula A will playa role. We say that all occurrences of A
in <I>(A) are positive provided:

1. <I>(A) = A.

2. <I>(A) = -,-,w(A) and the occurrences of A in w(A) are positive.

3. <I>(A) is an a-formula and the occurrences of A in a1 and in a2 are
positive.

4. <I>(A) is a ,8-formula and the occurrences of A in ,81 and in ,82 are
positive.

5. <I>(A) is a ,),-formula, with x being the variable quantified, and the
occurrences of A in ')'(x) are positive.

Exercises 205

6. <I>(A) is a 8-formula, with x being the variable quantified, and the
occurrences of A in 8(x) are positive.

Example Consider the formula (\ix) [P(x, y) =:J -{3y)--.R(x, y)]. This is a l'-formula,
so the occurrence of R(x, y) will be positive here, provided it is posi
tive in P(x, y) =:J --.(3y)--.R(x, y). This is a ,8-formula; the occurrence of
R(x, y) will be positive, provided it is positive in ,82 = --.(3y)--.R(x, y).
This is also a l'-formula; R(x, y) will be positive, provided it is positive
in l'(y) = --.--.R(x, y). R(x, y) is positive here, provided it is positive in
R(x, y), and it is.

We leave it to you to check that the occurrence of P(x, y) is not positive.

We will often be somewhat informal when we apply this definition. For
instance, we might say that the second occurrence of P(x) /\ Q(x) in
(\ix)(P(x) /\ Q(x)) =:J (3x)(P(x) /\ Q(x)) is positive. What is meant is
pretty clear; if we let <I>(A) be the sentence (\ix) (P(x) /\ Q(x)) =:J (3x)A,
the only occurrence of A here is positive, and the sentence we began
with is <I>(P(x) /\ Q(x)).

Theorem 8.2.4 (Implicational Replacement Theorem) Let <I>(A) be a formula
in which the atomic formula A has only positive occurrences. Let X and
Y be first-order formulas of the language L, and let M = (D, I) be a
model for L. If X =:J Y is true in M then <I>(X) =:J <I>(Y) is also true in
M.

Definition 8.2.5 A has only negative occurrences in <I>(A), provided A has only positive
occurrences in --.<I>(A).

Corollary 8.2.6 Suppose all occurrences of A in <I>(A) are negative. If Y =:J X is true in
the model M, so is <I>(X) =:J <I>(Y).

Exercises 8.2.1. Prove Theorem 8.2.4 by structural induction.

8.2.2P • Write a Prolog program to determine whether all occurrences
of A in <I>(A) are positive.

8.2.3. The notion of all occurrences of A in <I>(A) being negative can be
also defined directly, by paralleling Definition 8.2.3. Item 1 is replaced by
the following: all occurrences of A in <I>(A) are negative, provided <I>(A) =
--.A, and in the other items the word positive is replaced with the word
negative. Show this definition is equivalent to the one in Definition 8.2.5.

206 8. Further First-Order Features

8.3
Skolemization

Lemma 8.3.1

In the course of a free-variable tableau or resolution proof, function pa
rameters are introduced whenever the 8-rule is applied. It is possible
to preprocess a sentence so that these function symbols are all intro
duced ahead of time. If we do this, the 8-rule will never be needed in a
proof, and the theorem-proving machinery can be simplified and perhaps
made more efficient. The introduction of these function symbols is called
Skolemization. We describe the process and prove it does not affect the
satisfiability of sentences. It is convenient to continue the notational con
ventions of the previous section: <I>(A) is a formula with occurrences of
the atomic subformula A playing a special role, and <I>(X) is the result
of replacing all occurrences of A with occurrences of the formula X.

Let W be a formula with free variables among x, YI,"" Yn, and let f be
an n-place function symbol that does not occur in W. If M = (D, I) is
any model, there are models NI = (D, J I), and N2 = (D, J 2) where I,
J I, and J 2 differ only on the interpretation of f, and

1. In N I , (:3x)w =:> w{x/ f(YI,"" Yn)} is true.

2. In N 2 , w{x/ f(YI,"" Yn)} =:> (\fx)w is true.

Proof We only show item 1; the other is similar. We are given the model
M = (D, I); J I is the same as I on every symbol except f, on which it
is defined as follows:

Let d l , ... , dn E D; we specify a value for fJ 1 (d l , ... , dn). Let A be
any assignment such that yt = d l , ... , y~ = dn- (These are the only
variables that occur free in (:3x) W, so the behavior of A elsewhere is
not significant.) If (:3x)WI,A = f, choose any arbitrary member d E D
and set fJ 1 (d l , ... , dn) = d. If (:3x)WI,A = t, then WI,B = t for some
x-variant B of A. Choose one such B and set fJ 1 (d l , ... , dn) = x B .

We have now specified the model N I , and (:3x)w =:> w{x/ f(YI,"" Yn)}
is true in it, essentially by construction. D

In the following theorem and proof, to make the notation a little easier
to read, we write w(x) in place of W, and W(J(YI,"" Yn)) in place of
w{x/ f(YI,"" Yn)}.

Theorem 8.3.2 (Skolemization) Let w(x) be a formula with free variables x, YI, . .. ,
Yn, and let <I>(A) be a formula such that <I>«:3x)w(x)) is a sentence. Fi
nally, suppose f is a function symbol that does not occur in <I> ((:3x)w(x)).

1. If all occurrences of A are positive in <I>(A), then {<I>«:3x)w(x))} is
satisfiable if and only if { <I> (w (J (YI, ... , Yn)))} is satisfiable.

8.3. Skolemization 207

2. If all occurrences of A are negative in <1>(A) then {<1>((Vx)\lI(x))} is
satisfiable if and only if {<1>(\lI(f(YI' ... ,Yn)))} is satisfiable.

Proof Once again we only show item 1; the other has a similar proof.

One direction is easy. The formula \lI (f (YI, ... , Yn)) ::) (::Ix) \lI (x) is easily
seen to be valid. Then <1>(\lI(f(YI, ... , Yn))) ::) <1>((::Ix)\lI(x)) is true in
every model by Theorem 8.2.4, hence if <1> (\lI (f(YI , ... , Yn))) is true in
some model M, so is <1>((::Ix)\lI(x)).

For the other direction, suppose the sentence <1> ((::Ix) \lI (x)) is true in
the model M = (D, I). By Lemma 8.3.1 there is a model N = (D, J),
where J is exactly like I except on the function symbol f and in which
(::Ix)\lI(x) ::) \lI(f(YI,"" Yn)) is true. By Theorem 8.2.4 again the for
mula <1>((::Ix)\lI(x)) ::) <1>(\lI(f(Yl, ... , Yn))) is also true in N. Further, M
and N differ only on f, which does not occur in <1>((::Ix)\lI(x)). Since this
sentence is true in M, it will be true in N. Then <1>(\lI(f(YI, ... ,Yn))) is
true in N. 0

Now the idea of Skolemization is simple: keep replacing positively oc
curring existentially quantified subformulas, and negatively occurring
universally quantified subformulas, introducing function symbols as in
the Skolemization Theorem, until no more positive existential or nega
tive universal quantifier occurrences are left.

Example Consider sentence Xl = (Vx) (::Iy) [(::Iz) (Vw)R(x, y, z, w) ::) (::Iw)P(w)]. In
this the subformula beginning with the existential quantifier (::Iy) occurs
positively. Now set X 2 = (Vx) [(::Iz)(Vw)R(x,J(x), z, w) ::) (::Iw)P(w)],
and by Theorem 8.3.2, Xl will be satisfiable if and only if X 2 is.

Now the subformula beginning with the universal quantifier (Vw) occurs
negatively, so we can introduce yet another function symbol. Let X3 =
(Vx)[(::Iz)R(x,J(x) , z, g(x, z)) ::) (:3w)P(w)]. Then X3 is satisfiable if and
only if X 2 is.

Continuing, the subformula beginning with the existential quantifier
(::Iw) occurs positively. Let

X 4 = (Vx) [(::Iz)R(x, f(x), z, g(x, z)) ::) P(h(x))].

X 4 is satisfiable if and only if X3 is, and hence if and only if Xl is. The
process stops here, because there are no further positive existentials or
negative universals to replace.

The process of Skolemization is nondeterministic. We can freely choose
which subformulas to work with next. This means many significantly
different Skolemized sentences can be produced. Some can be less com
plicated than others, as the following example shows:

208 8. Further First-Order Features

Example Consider the sentence (l;fx)(3y)(3z)R(x, y, z). In Skolemizing we can
work with the quantifier (3y) first, producing (I;fx) (3z)R(x, f(x), z), and
then with the quantifier (3z), yielding (l;fx)R(x, f(x), g(x». On the other
hand, starting over, we could choose to work with (3z) first, produc
ing (I;fx) (3y)R(x, y, hex, y». Then if we eliminate (3y) next, we get
(l;fx)R(x, k(x), hex, k(x))). This is clearly a more complicated sentence
than the first Skolemized version.

The moral of this example is that in Skolemizing we should work from the
outside in. That is, whenever we have a choice, we should pick a positive
existential or negative universal quantifier that is not itself within the
scope of another positive existential or negative universal.

Proposition 8.3.3 Suppose ...,X' is a Skolemized version of the sentence ...,X. Then X is
valid if and only if X' is valid.

Exercises

Proof X is valid if and only if {...,X} is not satisfiable if and only if
{...,X'} is not satisfiable if and only if X' is valid. 0

The utility of Skolemization for automated theorem proving is easy to
see. Suppose we are trying to prove the sentence X. Instead we can apply
our proof techniques to X', where ...,X' is a Skolemized version of ...,X.
In a free-variable tableau or resolution construction for ...,X', the 8-rule
will never come up, thus considerably simplifying the proof attempt.

8.3.1. Skolemize the following sentences:

1. (I;fx) (3y) (I;fz) (3w)R(x, y, z, w).

2,(3x)[P(x) ::J (l;fx)P(x)].

3,(3x)(3y)[P(x,y) ::J (l;fx)(l;fy)P(x,y)].

4. (l;fx){(l;fy)[«l;fz)P(x,y,z)::J (3w)Q(x,y,w»::J R(x)] ::J Sex)}.

8.3.2P • Write a Prolog program that Skolemizes sentences.

8.3.3P • Revise the free-variable tableau implementation given earlier
in Chapter 7, or your resolution theorem-proving implementation, to
incorporate a Skolemizing step (previous exercise), eliminate the 8-rule
portion, and remove the machinery necessary to keep track of which
variables are free.

8.4. Prenex Form 209

8.4
Prenex Form

Given any sentence, it is always possible to find another equivalent sen
tence in which all quantifiers come first. Such a sentence is said to be in
prenex form. Sentences that are in prenex form and are also Skolemized
have a particularly simple structure. We begin this section with a brief
discussion of how to convert a sentence to prenex form, then we consider
applications to automated theorem proving.

First of all, the same variable may be bound by two different quantifiers
in different parts of a formula or may occur both free and bound. Though
there is nothing wrong with this in principle, it is generally simpler to
avoid it, which we can do by renaming variables. Suppose <I> is a formula
in which there is a subformula (\Ix)'!!, say. Let y be a variable that does
not occur in <I>. The formula (\Ix)'!! == (\ly)'!!{xjy} is valid. Then if we
let <I>* be the result of replacing (\Ix)'!! in <I> with (\ly)'!!{xjy}, <I> == <I>*
will also be valid, by Corollary 8.2.2. In this way we can always rename
a bound variable, replacing it by one that is completely new.

Definition 8.4.1 We say a formula <I> has its variables named apart if no two quantifiers
in <I> bind the same variable and no bound variable is also free.

By the discussion just given, every formula is equivalent to one in which
the variables are named apart. For the rest of this section, we assume
all formulas have their variables named apart.

It is easy to formulate a list of valid equivalences, which we can think of
as rewriting rules, each having the effect of moving a quantifier further
out. We want such an equivalence for each quantifier and each type of
propositional connective. We only give a few and leave it to you to for
mulate the rest. Note that since we are assuming formulas have variables
named apart, in a formula like (\lx)A /\ B, say, the variable x can have
no occurrences in B.

Quantifier Rewrite Rules

-.(:3x)A
-.(\lx)A

[(\lx)A /\ B]
[A /\ (\lx)B]
[(:3x)A /\ B]
[A /\ (:3x)B]
[(\lx)A ~ B]
[A ~ (\lx)B]
[(:3x)A ~ B]
[A ~ (:3x)B]

(\lx)-.A
(:3x)-.A

(\Ix) [A /\ B]
(\Ix) [A /\ B]
(:3x) [A /\ B]
(:3x) [A /\ B]
(:3x) [A ~ B]
(\Ix) [A ~ B]
(\Ix) [A ~ B]
(:3x) [A ~ B]

210 8. Further First-Order Features

Using these rules, and those from Exercise 8.4.1, quantifiers can be
moved to the front, by replacing left-hand sides of equivalences above
by right-hand sides, eventually producing a prenex equivalent for any
formula.

Example Start with the sentence (3x)(Vy)R(x,y) ::J (Vy)(3x)R(x,y). Rename
variables apart, getting (3x) (Vy)R(x, y) ::J (Vz)(3w)R(w, z). By apply
ing the equivalences, we can first move the x and y quantifiers to the
front, then the z and w ones, producing the equivalent sentence (Vx)(3y)
(Vz)(3w)[R(x, y) ::J R(w, z)]. On the other hand, if we move the z
and w quantifiers first, we get the sentence (Vz)(3w)(Vx)(3y)[R(x,y) ::J

R(w, z)]. Both of these are prenex equivalents of the original sentence.

In applying these rewriting rules, quantifiers that are essentially existen
tial remain so. That is, a positive occurrence of an existential quantifier
or a negative occurrence of a universal quantifier both are converted to
an existential quantifier in front, and similarly for universals. This means
that if we convert into prenex form a sentence that has been Skolemized,
the result will have only universal quantifiers in front. Equivalently, we
could first convert a sentence to prenex form, then Skolemize away the
existential quantifiers. Either way we wind up with a sentence contain~
ing only universal quantifiers, all of which are in front. We summarize
things so far.

Proposition 8.4.2 There is an algorithm for converting a sentence <[> into a sentence <[>* in
prenex form, with only universal quantifiers, such that {<[>} is satisfiable
if and only if {<[>*} is satisfiable.

In the most general version of resolution theorem proving that we pre
sented, Resolution Expansion Rules can be applied anytime during the
course of the proof. But by using Proposition 8.4.2 and some additional
rewriting, all applications can be done ahead of time. Suppose we have a
sentence <[> that we wish to prove. As usual, we begin by negating it,,<[>.
Next, convert this to a prenex, Skolemized form, (VXl)··· (Vxn)\II, where
\II contains no quantifiers. \II Is often called the matrix of the sentence.
Now we can further convert this matrix into conjunctive normal form
clause form. We get an equivalent sentence, (VXl)··· (Vxn)(Cl , ... , Ck),
where each of Ct, ... , Ck is a clause. Next,

(Vx) (A 1\ B) == «Vx)A 1\ (Vx)B)

is valid, and so our sentence can be rewritten in the equivalent form

Exercises

Exercises 211

If we start a resolution proof construction from this point, clearly, the
only rules that can ever apply are the ,),-rule, and the Binary Literal
Resolution Rule with Factoring, or the General Literal Resolution Rule.

There is one more, essentially cosmetic, simplification we can make. We
can drop the quantifiers altogether, and work with the list C1 , ... , Ck of
clauses containing free variables. But we must remember the quantifiers
are implicitly present. This means that we never work with one of these
clauses directly, but rather with the result of renaming its variables,
replacing them with new free variables-in effect an application of the
free-variable ,),-rule.

Most implemented resolution theorem provers take the route we have
just outlined. The 8-rule is thus avoided altogether, and the propositional
reduction rules are applied ahead of time. The explicit ,),-rule that we
have been using is generally dropped. In its place the application of the
resolution rule to two clauses C1 and C2 , containing free variables, is
defined to be the application of the resolution rule in our sense to the
result of renaming the variables in these two clauses so that they do
not share variables. In effect this incorporates an implicit application of
the ,),-rule. Thus, in the discussions of resolution theorem proving to be
found in the literature, the only rule generally allowed is the resolution
rule (and maybe factoring) but combined with variable renaming. It
is assumed sentences have been preprocessed into appropriate forms,
and the real theorem proving starts after that step. We have explicitly
incorporated the propositional and quantifier rules into our version of
the system. This makes it possible to experiment with various versions of
non-clausal theorem proving. And also, it leads naturally to the topic of
theorem proving in non-classical logics, where a simple analog of clause
form may not be available [17, 18]. Following up on these topics is beyond
our range here, however.

8.4.1. Complete the list of Quantifier Rewrite Rules by giving the cases
for the other propositional connectives.

8.4.2. Convert the following sentences to prenex form:

1. {,(3x)(\fy)P(x, y) V (\fx)Q(x)} 1\ {(\fx)A(x) =:> (\fx)B(x)}.

2. ,(3x)(3y)[P(x, y) =:> (\fx) (\fy)P(x, y)].

3. (\fx){(\fy) [((\fz)P(x, y, z) =:> (3w)Q(x, y, w)) =:> R(x)] =:> S(x)}.

212 8. Further First-Order Features

8.5
The

8.4.3P • Write a Prolog program to rename the variables of sentences
apart.

8.4.4P • Write a Prolog program to convert formulas to prenex form.

8.4.5P • Write an implementation of resolution theorem proving fol
lowing the outline sketched in this section.

AE-Ca leu I us

In 1958 Hao Wang designed and implemented one of the first automated
theorem provers [55]. It was based on the Gentzen sequent calculus and
predated the introduction of resolution. When applied to sections *9
through *13 of Whitehead and Russell's Principia Mathematica [56], it
was able to prove all of the pure logic theorems found therein, in about
4 minutes! This was a remarkable achievement so early in the history of
automated theorem proving. But because unification was not discovered
until later (or rediscovered, because it appeared in Herbrand's work of
1930 [25], but this was not realized until much later), how was such
success possible? In fact, the success says something remarkable about
Principia Mathematica itself.

Definition 8.5.1 We say a quantified subformula of a formula <P is essentially universal if it
is a positive subformula ofthe form (Vx)'P or a negative subformula ofthe
form (3x)'P. Likewise, a quantified subformula is essentially existential
if it is a positive subformula of the form (3x)'P or a negative subformula
of the form (Vx)'P.

This definition uses the notion of positive and negative subformula-see
Definition 8.2.3 and the discussion following it for terminology.

Definition 8.5.2 An AE-formula is a formula without function symbols, in which no
essentially universal quantifier is within the scope of an essentially exis
tential quantifier.

Example The formlila (3x) (Vy)R(x, y) ::J (Vz)(3w)R(w, z) is an AE formlila. In it
the subformulas beginning with (3x) and (V z) are essentially universal,
while the subformulas beginning with (Vy) and (3w) are essentially ex
istential. On the other hand, (Vx)(3y)R(x,y)::J (3z)(Vw)R(w,z) is not
an AE formula (for two reasons).

An equivalent way of characterizing AE formulas is that they are for
mulas without function symbols that can be put in prenex form (Sec
tion 8.4), so that the initial string of quantifiers consists of a sequence of
universal ones, followed by a sequence of existential ones. This version
explains where the name for the class of formulas came from: We have

8.5. The AE-Calculus 213

a string of AIls followed by a string of Exists. More significantly for us,
in tableau terms, if X is a closed AE formula and we construct a tab
leau for -.X, we can carry out all 8-rule applications before any /,-rule
applications.

We can now say more precisely what Hao Wang's work actually con
sisted of. First, there is a decision procedure for AE sentences. Second,
Wang discovered that the theorems of pure first-order logic in Principia
Mathematica are all AE sentences--quite a surprising fact! In his paper
Wang described a full first-order theorem prover but did not implement
it, essentially because unification was not yet known. He did implement
a theorem prover for AE sentences and obtained the success just noted.
We now sketch a tableau version of his Gentzen system idea.

We use the first-order tableau system of Chapter 6, with parameters, but
without free variables. And we impose the following extra restrictions.

1. No 8-rule application can follow a /,-rule application.

2. The tableau is strict in the sense that, except for /,-formulas, no
formula on a branch can have a tableau rule applied to it more
than once.

3. If /' occurs on a branch, /,(PI), ... , /,(Pn) can be added where PI, ... ,
Pn are the parameters previously introduced to the branch by a 8-
rule. (If there are no 8-formulas on the branch, we allow /,(Po) to
be added, for a single, fixed parameter Po.)

Call a tableau meeting these conditions an AE tableau. Call an AE
tableau complete if every formula occurrence on each branch has had
the appropriate tableau rule applied to it. Now the key facts are these.

Proposition 8.5.3 Let X be an AE sentence.

1. X is valid if and only if there is a closed, complete AE tableau for
-.x.

2. If any complete AE tableau for -.X is closed, every complete AE
tableau for -.X is closed.

3. There is a systematic way of constructing a complete AE tableau
for -.X that terminates, whether X is valid or not.

According to this proposition, we have a decision procedure for AE
sentences. To check if the AE sentence X is valid, apply the systematic
tableau construction procedure of part 3 and produce a complete AE

214 8. Further First-Order Features

Exercises

tableau for --.X. If the resulting tableau is closed, X is valid by part 1.
If the resulting tableau is not closed, by part 2 no complete AE tableau
for --.X will be, so X is not valid by part 1 again.

We leave the proof of Proposition 8.5.3 to you as exercises. But here is
an example that illustrates the ideas behind the proof. Consider the AE
sentence (3x) (Vy)R(x, y) :=> (Vz)R(z, z). Here is a complete AE tableau
for its negation.

1. --.[(3x)(Vy)R(x, y) :=> (Vz)R(z, z)]
2. (3x)(Vy)R(x, y)
3. --'(Vz)R(z, z)
4. (Vy)R(PI,Y)
5. --.R(P2,P2)
6. R(PI,pd
7. R(PllP2)

In this, 4 is from 2 and 5 is from 3 by the 8-rule, then 6 and 7 are from
4 by the ,),-rule (using all the parameters previously introduced). The
tableau is complete and not closed. We now use it to construct a model
showing the formula in question is not valid.

Take for the domain D the set {PI, P2} of parameters. Interpret the
parameters to name themselves, that is, pI = PI and p~ = P2. Finally,
interpret R the way 5 through 7 say: RI is true of (PI,PI) and (PI,P2)
and false of (P2,P2). (What happens with (P2,PI) won't matter~make
an arbitrary choice.) We thus have a model M = (D,I). Now it is easy
to see that, in this model, tableau lines 4, 3, 2, and finally 1 are all true.
Since 1 is true in the model, (3x)(Vy)R(x, y) :=> (Vz)R(z, z) is not valid.

8.5.1. Describe a systematic construction procedure for complete AE
tableaus. Show that when applied to --.X, where X is an AE sentence,
it must terminate.

8.5.2P • Implement the tableau procedure of the Exercise 8.5.1.

8.5.3. Show that if the tableau procedure of Exercise 8.5.1 is applied
to --.X, where X is an AE sentence, and the procedure does not produce
a closed tableau, any open branch generates a countermodel for X.

8.6
Herbrand's

Theorem

8.6. Herbrand's Theorem 215

In 1930 Herbrand proved a fundamental theorem [25] that is a kind
of constructive version of Godel's completeness theorem, and has since
come to be seen as the theoretical foundation of automated theorem
proving. The theorem involves the notion of a Herbrand expansion-a
formula that can be thought of as a finite approximation to a Herbrand
model. Herbrand's result is that X is a theorem of first-order logic if and
only if some Herbrand expansion of X is a propositional tautology. Thus,
it can be seen as reducing a first-order provability problem to an infinite
set of propositional problems, one for each possible Herbrand expansion.
Since there is a decision procedure for being a tautology, first-order the
oremhood has thus been reduced to an open-ended search through an
infinite set of finite calculations. In a broad sense the history of first
order automated theorem proving can be split into two parts: what is
the best strategy for conducting the search for a Herbrand expansion
that is a tautology and what is the most efficient technique for testing
tautologyhood.

Herbrand himself was a constructivist and thus could not accept the
kinds of semantic arguments we have used throughout, many of which
involve proving the existence of infinite models nonconstructively. From
a constructive point of view, Herbrand's Theorem provides a proof
theoretic substitute for semantic methods, and indeed, its use has led
to proofs of decidability for several natural subclasses of first-order logic
(see Exercise 8.6.5 for a simple example). But since many people find se
mantic arguments easier to follow, in this section we give a nonconstruc
tive proof of Herbrand's Theorem, using the Model Existence Theorem.
In the next section we consider a constructive version.

Definition 8.6.1 The sentence X' is a validity functional form of X if ...,X' is a Skolemized
version of ...,X.

Proposition 8.3.3 makes the choice of terminology clear-if X' is a va
lidity functional form of a sentence X, then X is valid if and only if
X' is. Also, Skolemization of ...,X removes all its essentially existential
quantifiers, which correspond to the essentially universal quantifiers of
X. Consequently, we have the following simple, yet basic, observation:
The validity functional form of a sentence contains only essentially ex
istential quantifiers. Now, the whole idea of Herbrand expansion is to
replace these by appropriate disjunctions and conjunctions.

Definition 8.6.2 Let X be a sentence. Its Herbrand universe is the set of all closed terms
constructed from the constant and function symbols of X. (If X contains
no constant symbols, allow co, where Co is an arbitrary new constant
symbol.)

216 8. Further First-Order Features

Example The Herbrand universe of the sentence (\fx) [(:3y)R(x, y) :=J R(b, f(x»] is
the set {b, f(b), f(f(b», .. . }. The Herbrand universe of (\fx) (:3y)R(x, y)
is just {co}. (The reason for introducing the constant symbol Co is simply
so that Herbrand universes are never empty.)

Definition 8.6.3 A Herbrand domain for a sentence X is a finite, non-empty subset of the
Herbrand universe of X.

Now we present the key notion-that of a Herbrand expansion. Often
in the literature, Herbrand expansions are defined only for formulas in
prenex form, but this is an unnecessary restriction, one that Herbrand
himself did not impose, and it is not a restriction imposed here either.
The essential idea of a Herbrand expansion is simple: Existential quan
tifiers become disjunctions of instances over the Herbrand universe, and
universal quantifiers become conjunctions. We formally characterize Her
brand expansions using uniform notation because it is most convenient
for an application of the Model Existence Theorem, but our definition
is easily seen to be equivalent to more conventional ones (see Exer
cise 8.6.4). For Herbrand's Theorem itself, we are interested only in
formulas whose quantifiers are essentially existential, but even so we de
fine the notion of an expansion for every formula, since it will make it
easier to present the proof of the theorem-thus, there is not only the
expected 8-case, but a I'-case as well.

Definition 8.6.4 Let D = {h, ... , tn } be a non-empty set of closed terms. For a sentence
X, the Herbrand expansion of X over D, denoted £(X,D), is defined
recursively as follows:

1. If L is a literal, £(L, D) = L.

2. £(-.-.Z, D) = £(Z, D).

3. £(a, D) = £(al' D) 1\ £(a2' D).

4. £((3, D) = £((31, D) V £((32, D).

5. £b, D) = £b(h), D) 1\ ... 1\ £b(tn), D).

6. £(8, D) = £(8(tl)' D) V ... V £(8(tn), D).

A Herbrand expansion of a sentence X is a Herbrand expansion of Y over
D, where Y is a validity functional form of X and D is any Herbrand
domain for Y.

Theorem 8.6.5 (Herbrand's Theorem) A sentence X is valid if and only if some
Herbrand expansion of X is a tautology.

8.6. Herbrand's Theorem 217

Example Consider the valid sentence:

(\iz) (3w) (\ix) [(\iy)R(x, y) ~ R(w, z)].

Converting it to validity functional form produces:

(3w)[(\iy)R(f(w) , y) ~ R(w, c)],

where c is a new constant symbol and f is a new one-place function
symbol. Now, D = {c, f(c)} is a Herbrand domain for this sentence, and
the following computes the Herbrand expansion over D:

£«3w)[(\iy)R(f(w), y) ~ R(w, c)], D)
= -'R(f(c) , c) V -'R(f(c) , f(c» V R(c, c)V

-,R(f(f(c», c) V -,R(f(f(c» , f(c» V R(f(c), c)

It is easy to see that this is a tautology.

There are a few simple, but very important properties of Herbrand
expansions-we will use them over and over in what follows. We state
them here and leave the proofs to you as exercises.

Proposition 8.6.6 Let D be a non-empty set of closed terms.

1. For an arbitrary sentence X, -,£(X, D) == £(-,X,D) is a tautology.

2. Let D' be a non-empty set of closed terms such that D <;;;; D'.

(a) If X is a sentence all of whose quantifiers are essentially exis
tential, then £(X, D) ~ £(X, D') is a tautology.

(b) If X is a sentence all of whose quantifiers are essentially univer
sal, then £(X, D') ~ £(X, D) is a tautology.

According to Proposition 8.3.3, a sentence is valid if and only if its valid
ity functional form is valid, so in demonstrating Herbrand's Theorem, it
is enough to prove it for sentences already in validity functional form
that is, we can assume X has only essentially existential quantifiers.
Now, Herbrand's Theorem has an "if and only if" form, and the argu
ments in each direction are different. We begin with the easier half and
show that if some Herbrand expansion of X is a tautology, then X itself
is valid. But this is an immediate consequence of the following:

Lemma 8.6.7 Suppose all quantifiers in the sentence X are essentially existential and
D is a finite set of closed terms. Then £(X, D) ~ X is valid.

218 8. Further First-Order Features

Proof This is a simple argument by structural induction on X (or equiv
alently, we could use Theorem 8.2.4 and its Corollary 8.2.6). We give only
the 8-case. (The ,-case does not arise, since only essentially existential
quantifiers are present. The other cases to be considered are all propo
sitional.) Suppose, for each tl E D, that £(8(ti), D) ::) 8(ti) is valid.
Then

£(8, D) £(8(h), D) V ... V £(8(tn), D)
::) 8(tl) V ... V 8(tn)

::) 8

where the last step makes use of an obvious validity of first-order logic. D

In the other direction, we make use of the Model Existence Theorem
(5.8.2). We use the following notation: For a finite set S of formulas,
/\ S is the conjunction of members of S, arranged in some arbitrary
order, and parenthesized in some arbitrary way.

Lemma 8.6.8 Let L be a first-order language, and let Lpar be its extension having an
infinite set of new constant symbols---parameters. Let H be the collection
of all closed terms built from constant and function symbols of Lpar. Call
a set S of sentences of Lpar Herbrand consistent if:

1. S is finite.

2. All members of S are essentially universal.

3. -,£(/\ S, D) is not a tautology, for any finite D ~ H.

Let C be the collection of all Herbrand-consistent sets. Then C is a first
order consistency property with respect to L.

Proof Note that by Exercise 8.6.3, details of the formation of /\ Scan
be safely ignored. Proving the lemma amounts to checking the various
conditions for being a first-order consistency property. We begin with the
,6-condition. Suppose SEC, ,6 E S, but S U {,6l} rf. C and S U {,62} rf. C.
We derive a contradiction.

Since S U {,6Il rf. C, for some finite Dl ~ H, -,£(/\ S /\ ,61, Dd is a
tautology. Likewise, since S U {,62} rf. C, -,£(/\ S /\ ,62, D 2) is a tautology
for some finite D2 ~ H. Let D = Dl U D2 • Then both -,£(/\ S /\,61, D)
and -,£(/\ S /\ ,62, D) are tautologies, using part 2 of Proposition 8.6.6.
But now,

£(/\ S /\ ,6, D) £(/\ S, D) /\ £(,6, D)
£(/\ S, D) /\ [£(,61, D) V £(,62, D)]
[£(/\ S, D) /\ £(,61, D)] V [£(/\ S, D) /\ £(,62, D)]
£(/\ S /\ ,61, D) V £(/\ S /\ ,62, D)

8.6. Herbrand's Theorem 219

Consequently, ,[(/\ 8 A(3, D) == ,[(/\ 8 A(31, D) A ,[(/\ 8 A(32, D), and
so must also be a tautology, which contradicts the facts that (3 E 8 and
8 E C.

The other propositional cases are similar. We now turn to the 'Y-case-
there is no o-case since C involves only essentially universal formulas. So,
suppose 8 E C, 'Y E 8, but for some closed term t, 8 U bet)} r{:. c. We
derive a contradiction.

By our assumptions, for some finite D S;;; H, ,[(/\ 8 A 'Y(t), D) must be
a tautology. Now, /\ 8 A'Y(t) is essentially universal, and D S;;; D U {t}, so
it follows from part 2 of Proposition 8.6.6 that ,[(/\ 8 A 'Y(t) , D u {t})
is a tautology. Note also that [('Y, D U {t}) is a conjunction, and one of
its conjuncts is [(-Yet), D U {t}). Now,

[(/\ 8 A 'Y, D U {t}) [(/\ 8, D U {t}) A [(-y, D U {t})
:::) [(/\8,DU{t}) A[(-y(t),DU {t})

[(/\ 8 A 'Y(t), D U {t})

Since ,[(/\8 A'Y(t),Du {t}) is a tautology, so is ,[(/\8 A'Y,Du {t}),
and this contradicts the facts that 'Y E 8 and 8 E C.

This concludes the proof of the lemma. D

Now, finally, we can put into place the final pieces of the proof of Her
brand's Theorem.

Lemma 8.6.9 Let X be a sentence whose quantifiers are all essentially existential. If
X is valid, then [(X, D) is a tautology, for some Herbrand domain D
forX.

Proof We first prove a slightly weaker version, from which the lemma
follows quickly. Let L be the first-order language whose constant, func
tion, and relation symbols are exactly those of X -that is, L is the
smallest language in which X is a sentence. (If X has no constant sym
bols, then Co is allowed as the only constant symbol of L.) As usual,
Lpar is the extension of L with an infinite set of new constant symbols.
We first show that if X is valid, then [(X, D) is a tautology, for some
finite set D of closed terms of Lpar.

Suppose [(X, D) is not a tautology, for every finite set D of closed terms
of Lpar. Then {,X} is a member of the first-order consistency property
C constructed in the previous lemma. This follows because (1) {,X}
is obviously finite; (2) all quantifiers in ,X are essentially universal,
since those of X are essentially existential; and (3) ,[(/\ {,X}, D) =
,[(,X, D) == ,,[(X, D) (by part 1 of Proposition 8.6.6) == [(X, D),

220 8. Further First-Order Features

Exercises

and this is not a tautology for any D, by assumption. Then by the Model
Existence Theorem 5.8.2, {,X} is satisfiable in a first-order model, and
so X is not valid.

We now know that if X is valid, E(X, D) is a tautology for some fi
nite set D of closed terms of Lpar. Now we eliminate parameters from
D. Simply map each parameter p to some closed term rep) of L-the
particular choice won't matter. This mapping on parameters induces a
corresponding mapping on terms, sets of terms, formulas, and sets of for
mulas, in the obvious way-we use r for the induced mapping as well.
Then, for instance, for a term t, r(t) is the result of replacing, through
out t, each parameter p by the corresponding closed term r(p). It is easy
to see that r(E(X, D)) is simply E(X, r(D)) (recall that X contained no
parameters). But also, r(E(X, D)) can be thought of as resulting from
E(X, D) by replacing each atomic subformula A by r(A), and in Exer
cise 2.4.7 you showed that such a replacement of atomic formulas in a
tautology produced another tautology. Since E(X, D) is a tautology, so
is E(X,r(D)), and we thus have a tautologous Herbrand expansion of
X.D

8.6.1. Prove part 1 of Proposition 8.6.6.

8.6.2. Prove part 2 of Proposition 8.6.6.

8.6.3. Let S be a finite set of sentences, and let C 1 be a conjunction
of all the members of S, with an arbitrarily chosen order and parenthe
sization; likewise, let C2 be another such conjunction of all the mem
bers of S. Finally, let D be a non-empty set of closed terms. Show that
E(C1 , D) == E(C2 , D) is a tautology.

8.6.4. A more conventional definition of a Herbrand expansion is given
by the following, where D = {tb ... , tn}:

1. If A is atomic, E'(A, D) = A.

2. E'(,Z, D) = ,E'(Z, D).

3. E'(Z 0 W, D) = E'(Z, D) 0 E'(W, D), for a binary connective o.

4. E'((Vx)<p(x), D) = E'(<p(t1), D) 1\ ... 1\ E'(<p(tn), D).

5. E'((:3x)<p(x), D) = E'(<p(t1), D) V ... V E'(<p(tn), D).

Prove that for every sentence X, E(X, D) == E'(X, D) is a tautology.

8.6.5. Use Herbrand's Theorem and give an alternative proof that
there is a decision procedure for the validity of AE sentences (Defi
nition 8.5.2).

8.7
Herbrand's

Theorem,

Constructively

8.7. Herbrand's Theorem, Constructively 221

The harder half of Herbrand's Theorem says that if a sentence X is valid,
then some Herbrand expansion of X must be a tautology. Our proof of
this was non-constructive, in the sense that if we "know" X to be valid,
we still do not know which Herbrand expansion will be a tautology.
Of course, we could systematically search through the infinite set of
Herbrand expansions of X for one that is a tautology, and our knowledge
that X is valid guarantees our search must succeed. But beyond this, we
don't even know how long we must search before success.

How could we "know" X to be valid? We could be given a proof of X
using one of the formal proof procedures considered in Chapter 6. Such a
proof contains more information than the simple fact of validity of X
it presents evidence for this validity. Ideally, we should be able to use
that evidence to improve on the naive search procedure for a tautologous
Herbrand expansion of X.

Herbrand himself had a constructive philosophy of mathematics: Any
talk of validity is essentially meaningless, but talk of proofs is allowed.
Proofs, after all, are finite objects, but to check validity of a sentence,
infinitely many models must be examined, and the models themselves
can be infinite. As a constructivist, Herbrand actually proved some
thing stronger than Theorem 8.6.5-something algorithmic in nature.
He showed that from a first-order proof of X one can extract a Herbrand
expansion of X that is a tautology. We will prove this stronger, construc
tive version, though we do not follow Herbrand's proof methods--see
Herbrand [26] for these.

We have given several different first-order proof procedures. Herbrand's
theorem is quite easy to establish constructively when a tableau, reso
lution, or Gentzen system is involved, and much harder using a Hilbert
or a natural deduction system. In this section we consider tableau as
a representative example of the easy class of proof procedures. In the
next section we turn to the harder variety. So, the rest of this section is
devoted to a proof of the following:

Theorem 8.7.1 (Herbrand's Theorelll, Constructively) There is an algorithm
that extracts from a tableau proof of a first-order sentence X a Her
brand expansion of X that is a tautology.

Every sentence can be put into validity functional form-we have an
algorithm for doing so. Consequently, it is enough to prove Theorem 8.7.1
for sentences in this form.

Let X be a sentence in validity functional form, and let L be the first
order language whose constant, function, and relation symbols are ex
actly those of X. (As usual, if X has no constant symbols, let L have
Co as its only one.) If X is provable, there is a closed tableau T for -oX.

222 8. Further First-Order Features

Since X is in validity functional form, all its quantifiers are essentially
existential, so all quantifiers of -,X are essentially universal. Then in T
the 8-rule cannot be used. This means no rule application "forces" us
to introduce parameters. Nonetheless, a tableau for -,X is constructed
using the language Lpar, so in a 'Y-rule application, we could have added
'Y(t) to a branch, where t is a closed term containing parameters. But
even though this is allowed, it is unnecessary. Let c be some fixed con
stant symbol of L, and throughout T replace every occurrence of any
parameter by an occurrence of c. It is easy to see that the resulting tree
is still a correctly constructed tableau and is still closed. Further, since
-,X contains no parameters, the new tableau is still one for -,X. We can
sum up these simple observations as follows:

Definition 8.7.2 Call a tableau parameter free if it contains no parameter occurrences.

Lemma 8.7.3 If all quantifiers of X are essentially existential, a tableau proof of X
can be converted into a parameter-free tableau proof.

Now we come to the central fact, one showing how close Herbrand's
theorem is to tableau methods. The similarity of its proof to that of
Lemma 8.6.8 is no coincidence.

Proposition 8.7.4 Let X be a sentence whose quantifiers are essentially existential, let T
be a closed, parameter-free tableau for -,X, and let D be the set of closed
terms that are used in applications of the 'Y-rule in T. Then £(X, D) is
a tautology.

Proof To show this Proposition we must prove a somewhat stronger
statement, from which the result we want follows easily as a special
case, using part 1 of Proposition 8.6.6. We must show the following:

• Let S be a finite set of sentences, all of whose quantifiers are essen
tially existential, let T be a closed, parameter-free tableau for S,
and let D be the set of closed terms introduced in T by the 'Y-rule.
Then -,£(/\ S, D) is a tautology.

The proof of this is, roughly, by induction on the number of branch
extension rule applications in the tableau T for the set S. More precisely,
let us denote by B(T, S) the number of nodes in the tree T below the
initial nodes labeled with S. The induction, properly, is on B(T, S).

The ground case is when B(T, S) = O. In this case, S itself must contain
a formula Z and its negation, -,Z. But then -, /\ S itself is a tautology-a
degenerate case, if you will.

8.7. Herbrand's Theorem, Constructively 223

Now suppose B(T, S) > 0, and the result is known for all "simpler"
tableaux. There are several cases, depending on which branch extension
rule was first applied in T. We consider two of the cases and leave the
rest to you.

Suppose the first rule applied in T is the ,6-rule. Thus, S = {Zl, . .. ,,6,
... , Z k}, and T has the following form:

closed
branches

,6

closed
branches

Let T 1 be the subtableau consisting of the left half of T -it is a correctly
constructed, closed tableau for SU {,6l}. And let Dl be the set of closed
terms introduced by the ,-rule in T l . Likewise let T2 be the right half
of T -a closed tableau for S U {,62}, and let D2 be the set of closed terms
introduced in it by the ,-rule. We now have two "simpler" tableaux
specifically, we have the following:

Zl Zl

,6 ,6

Zk Zk
,61 ,62

/\ /\
closed closed

branches branches

Tl T2

224 8. Further First-Order Features

Clearly B(T, S) = B(T1' S U {,8d) + B(T2' S U {,82}) + 2 (the "+2" cor
responds to the initial ,8-rule application in T). Thus, B(T1' SU {,8d) <
B(T, S) and B(T2' SU{,8d) < B(T,S), so the induction hypothesis ap
plies, and both --,[(/\ S /\ ,81, Dd and -.[(/\ S /\ ,82, D2) are tautologies.
Since all formulas involved are essentially existential, it follows by part 2
of Proposition 8.6.6 that both -.[(/\ S /\ ,81, D) and -.[(/\ S /\ ,82, D) are
tautologies. It further follows that -.[(/\ S /\ ,8, D) is a tautology, ex
actly as in the proof of Lemma 8.6.8, and since ,8 E S, -.[(/\ S, D) is a
tautology.

Next we turn to the case where the first branch extension rule applied
in T is the ,),-rule. In this case T looks like the following:

closed
branches

But instead of considering this to be a closed tableau for S, we can
also consider it to be a closed tableau for S U {')'(t)}. If we do, one
fewer branch extension rule application is involved, since ')'(t) is one of
the sentences the tableau construction begins with. That is, B(T, S) =
B(T, S U {')'(t)}) + 1, so B(T, S U {')'(t)}) < B(T, S), and the induction
hypothesis applies. Suppose we let D be the set of closed terms intro
duced in T by the ,),-rule, when T is thought of as a tableau for S, and
we let Do be the set of closed terms introduced in T by the ,),-rule, when
it is thought of as a tableau for Su {')'(t)}. (Then D = Do U {t}, though
it is possible that D = Do, since t may have been involved in an earlier
,),-rule application in T.) By the induction hypothesis, -.[(/\ S /\')'(t) , Do)
is a tautology, and since Do <:;;; D and all sentences are essentially exis
tential, part 2 of Proposition 8.6.6 again tells us that -.[(/\ S /\ ')'(t) , D)
is a tautology. Once again, just as in the proof of Lemma 8.6.8, it follows
that -.[(/\ S /\ ,)" D) is a tautology, and since,), E S, -,[(/\ s, D) is a
tautology, completing this case, and the proof. 0

Exercises

8.8
Gentzen's

Theorem

Exercises 225

8.7.1. Give tautologous Herbrand expansions for the following:

1. (3x)[P(x)::J (Vy)P(y)].

2. (3x) (Vy)R(x, y) ::J (Vy) (3x)R(x, y).

3. [trans /\ sym /\ nontriv] ::J ref, where terminology is as in Exer
cise 6.1.2.

We have proved Herbrand's Theorem constructively, using a tableau
proof procedure. What about using a Hilbert system, or a natural de
duction system? We know that if a sentence X is provable in the Hilbert
system of Section 6.5, then X is valid (since the Hilbert system is sound).
If X is valid, then X is provable in the tableau system (since the tableau
system is complete). And from a tableau proof, we can construct a tau
tologous Herbrand expansion. But this is quite nonconstructive, making
use of both soundness and completeness theorems. Even though we may
start with an explicit proof of X in the Hilbert system, all we know from
this argument is that there must exist a tableau proof of X-we don't
actually have one in front of us. Of course, we could start constructing
a tableau for -,X systematically, and we are guaranteed success, but we
don't know how long it will take. Briefly, we are using the fact that X
had a Hilbert system proof, but we are making no use of the proof itself.

What we need is a translation procedure: an algorithm to convert a
Hilbert system proof into a tableau proof. Combined with the work of the
previous section, this would allow us to extract a tautologous Herbrand
expansion from a Hilbert system proof. (This was not the route Herbrand
took---see Herbrand [25] for a presentation of his approach.) The general
idea of such a translation procedure is straightforward. We must show
that each of the Hilbert system axioms has a tableau proof, and we must
show that, if we have tableau proofs of the premises of a Hilbert system
rule, then we can produce a tableau proof of its conclusion. Showing that
Hilbert system axioms have tableau proofs is no problem-it is a routine
exercise. This leaves the rules of inference, and of these, the Universal
Generalization Rule is simple. It reads as follows:

where p is a parameter that does not occur in q> ::J ,. Because of uniform
notation, this is really two rules-we consider the case, = (Vx)<p(x),
the other is similar. Suppose we have a tableau proof of q> ::J <PCP), where
p meets the conditions. Such a proof begins as follows:

226 8. Further First-Order Features

and continues to closure. Clearly if the a-rule is applied to the first line
more than once, the effect is to add <I> and -'<p(P) to branches already
containing them, so we may assume the initial rule application to the
first line is the only such application. It follows that if we throwaway
the first line, we have a closed tableau, call it T, beginning with <I> and
-.<p(P). Now to convert this shortened tableau into one for <I> :::J (Vx)<p(x),
simply begin as follows:

-.(<I> :::J (Vx)<p(x))
<I>

-.(Vx)<p(x)
-.<p(p)

The last line is added using the a-rule-the conditions on the Universal
Generalization Rule serve to tell us that p is a new parameter at this
point. Now we have both <I> and -.<p(p) present, so simply copy under
neath the steps of T, producing a closed tableau.

This leaves us with one last case, the Rule of Modus Ponens,

X X:::JY
Y

and here things are no longer simple. We must convert tableau proofs
of X and X :::J Y into a tableau proof of Y. Now a tableau proof of Y
begins with -.Y, and so each formula appearing will be a subformula of
-.Y or the negation of one. But X need not be such a formula-indeed, it
can be very much longer and more complicated than Y. Consequently,
a tableau proof of X :::J Y, which begins with -.(X :::J Y) followed by
X and -.Y, can contain many lines that are subformulas of X but not
of -.Y, and such lines simply cannot appear in a tableau proof of Y.
Similarly for a tableau proof of X itself, which begins with -.X. Then
extracting a tableau proof of Y from proofs of X and X :::J Y is no longer
just a matter of discarding a few lines and copying others-the whole
proof structure must be modified. How to do this is a major insight,
discovered by Gentzen at about the same time as Herbrand's work.

Gentzen added a new rule, which he called "cut," to the sequent calculus
of Section 6.6. Several variations are possible in its formulation; here is
a simple version.

Sequent Cut Rule

r-~,x r,x-~

r-~

8.8. Gentzen's Theorem 227

In this, X is any sentence. Informally, if we can prove a sequent with
X on the left and also with X on the right, then X can be "cut" out.
Smullyan formulated a version for tableau systems that is particularly
simple.

Tableau Cut Rule

X -.X

In words, at any point in a tableau construction, we can split a branch
and introduce the sentences X and -.X.

If the Cut Rule is added to the tableau (or sequent) system, we still
have a sound proof procedure. The argument for this is quite elementary.
Suppose, for instance, that e is a satisfiable branch of a tableau, and e
is extended using the Cut Rule, involving the sentences X and -.X. All
the sentences on e are true in some model, and in that model either X or
-.X must be true, so one of the two branches extending e is satisfiable, in
the same model. This is enough to guarantee the system is sound. Since
the tableau system was complete without this additional rule, it is still
complete. We have soundness and completeness whether the Cut Rule is
allowed or not, and thus the same sentences are provable whether Cut is
used or not. But, of course, this argument is not constructive-it makes
essential use of models.

Gentzen realized two things. First, if the Cut Rule is available, it is easy
to convert proofs of X and X ~ Y into a proof of Y, thus completing
the constructive argument that Hilbert system proofs can be turned into
tableau proofs (but proofs in an extended tableau system). Second, there
is an algorithm for removing all Cut Rule applications from a proof.

Proposition 8.8.1 If the Cut Rule is allowed, a tableau proof of X and a tablea'u proof of
X ~ Y can be converted into a tableau proof of Y.

Proof Assume X and X ~ Y have tableau proofs-say T 1 is a closed
tableau for -.X and T2 is a closed tableau for -.(X ~ Y). Now we
produce a closed tableau for -.Y as follows:

228 8. Further First-Order Features

8.9
Cut
Elimination

.. X

1

.. y

A
Y

2

.. (X =:J Y)

3

We begin with .. Y, then use the Cut Rule and branch to X =:J Y and
.. (X =:J Y). On the left branch, X =:J Y is a ,8-sentence, so we branch
again to .. X and Y. Now branch 1 can be continued to closure by simply
copying the steps of tableau T I , which was a closed tableau for .. X.
Branch 2 is already closed, because of Y and .. Y. And branch 3 can be
continued to closure by copying the steps of tableau T 2 , which was a
closed tableau for .. (X =:J Y). 0

This was easy. But proving there is a constructive way of eliminating
applications of the Cut Rule from proofs is hard. We devote a separate
section to it.

Gentzen's algorithm for eliminating Cut Rule applications, together with
the proof that the algorithm works, is one of the major foundations
of proof theory. The fact that cuts can be eliminated constructively
also has consequences for automated theorem proving. Our presentation
of his work uses a tableau system, though all the ideas come directly
from Gentzen's sequent calculus argument (with some minor terminol
ogy changes that are discussed later). His presentation is clear, readable,
and recommended [22J.

A proof of cut elimination involves consideration of many different cases.
In order to keep things as simple as possible, we use uniform notation.
There are a few observations about uniform notation that we can make
now, rather than presenting them in the middle of the argument.

Suppose X is a formula of the form A 0 B, where 0 is one of the primary
connectives. If X is A A B, X is an a-formula, and .. X is a ,8-formula.
Likewise, if X is A =:J B, X is a ,8-formula, and .. X is an a-formula.
It is easy to see that no matter which primary connective 0 might be,
one of {X, .. X} is an a and one is a ,8. But this pattern can be carried
still further. Suppose again that X is A A B, an a-formula, and so .. X

8.9. Cut Elimination 229

is -.(A 1\ B), a ,8-formula. Then a1 = Xl is A, and ,81 = (-.Xh is -.A,
which is its negation. Likewise, if X is A =:J B, a ,8-formula, and -.X is
-.(A =:J B), an a-formula, then ,81 = Xl = -.A and a1 = (-.Xh = A.
Again, one is the negation of the other, though this time it is the other
way around~the first is the negation of the second. This kind of thing
always happens, as can easily be verified by a glance at Table 2.2. We
summarize as follows.

Fact 1 Suppose X = (A 0 B), where 0 is a primary connective. Then
one of {X, -.X} is an a- and one is a ,8-formula. Further, of the
two first components, a1 and ,81, one is the negation of the other.
Similarly for the two second components, a2 and ,82, one is the
negation of the other.

There are similar patterns involving quantified formulas. We state them,
and leave verification to you.

Fact 2 Suppose X = (Qx)tp(x), where Q is a quantifier, one of \I or 3.
Then one of {X, -.X} is a 1'-formula and one is a o-formula. Further,
of the instances 1'(t) and oCt), one is the negation of the other.

Now, the rest of this section is devoted to a proof of the following, which
is sometimes referred to as Gentzen's Hauptsatz, which simply means
Gentzen's Main Theorem.

Theorem 8.9.1 (Cut Elimination) Any closed tableau in which the Cut Rule has
been used can be convened into a closed tableau in which there are no
Cut Rule applications.

The idea of the proof in broad outline is simple. We execute a sequence
of moves, each of which either reduces the complexity of the sentence
involved in some cut, or pushes a cut further down in the tableau, or
generally, both. Eventually, all cuts are pushed to the bottom of the
tableau, and these simply disappear. Let us begin with this last point.
Suppose a closed tableau contains a cut involving the sentence X, and
it is at the bottom of at least one of the branches through it. Say part
of the tableau looks like this.

230 8. Further First-Order Features

x -,X

/\
That is, we have a cut introducing X and -,X, X comes at the end of its
branch, and both forks are closed. We show we have closure even with
the cut removed. Incidentally, the situation is similar if the roles of X
and -,X are reversed, using essentially the same argument.

The left fork is closed, so it contains a syntactic contradiction. If X
plays no role as part of this contradiction, the contradiction must involve
sentences in e, and so we will still have closure if the cut is eliminated.
Now suppose X does playa role in the closure of the left fork.

There are two ways branches can be closed: because -1 is present or be
cause a sentence and its negation are present. Since we are now assuming
X plays a role in the closure of the left fork, X must play one of these
roles.

If X = -1, then -,X = -,-1, and this can have no function in the closing
of the right fork. Consequently, the right fork is closed even if -,X is
removed, so the cut can be eliminated.

Next, suppose X is ofthe form (AoB) where 0 is a binary connective, or
X is (\Ix)cp or (3x)cp, or X is atomic. Since X plays a role in the closure
of its branch, it must be that -,X occurs as part of e. But in this case
the cut adds a redundant sentence to the right fork. Consequently if the
cut is eliminated, we still have closure.

Finally suppose X is of the form -,y for some sentence Y. This case
requires somewhat more consideration.

8.9. Cut Elimination 231

X=....,y,X=....,....,y

/\
Since X plays a role in branch closure, either Y or,....,y must occur as
part of e. If,....,y is part of e, the cut adds a redundant sentence to the
right fork and so can be eliminated. Now suppose it is Y that occurs as
part of e.
If,....,y is not used in the right fork at all, obviously the cut can be elim
inated. If it is used, either the double negation rule is applied to it at one
or more places in the subtableau below,....,Y, or it is involved directly in
the closure of a branch, or both. Since Y is part of e, applying the dou
ble negation rule to,....,Y adds a redundant sentence, so any such double
negation rule application can be dropped. If,....,Y is involved directly
in a branch closure, the branch must contain either,Y or,....,....,Y. In
the first case the branch is closed without using,....,Y, since it contains
both,y and Y (which is part of e). In the second case we can insert
an application of the double negation rule to,....,....,Y, adjoining,Y, and
we are reduced to the first case. Thus the tableau can be turned into
one in which,....,y is not used in the right fork, and so the cut can be
eliminated.

We are left with the problem of showing that all cuts in a tableau can
be "pushed" to branch ends, for which we introduce some special termi
nology.

Definition 8.9.2 Suppose that in tableau T there is a cut to sentences X and,X.

1. We say the cut is at a branch end if either there are no sentences
below X, or there are no sentences below,X, or both.

2. The rank of the cut is the rank of X (Definitions 2.6.5, 5.1.5).

3. The weight of the cut is the number of sentences in T strictly below
the cut; that is, the weight is the number of sentences below X plus
the number of sentences below,X.

232 8. Further First-Order Features

4. We say a cut is minimal if there are no cuts below it in the tableau~
that is, if there are no cuts in the subtableaux below X and below
-,X.

Incidentally, Gentzen used the notion of "degree" (Exercise 2.2.2) instead
of "rank," but the idea is the same no matter what~both measure
sentence complexity. (Gentzen used the word rank for what we are calling
weight.) Now, the heart of the proof is the following:

Lemma 8.9.3 Let T be a closed tableau in which there is a minimal cut of rank nand
weight k, not at the end of a branch. Then T can be transformed into
another closed tableau in which the cut has been replaced by cuts of lower
rank, by cuts of the same rank but of lower weight, or both.

Before proving this Lemma, we show that it does yield a proof of Theo
rem 8.9.1. Intuitively, the idea is simple. To eliminate cuts from a tableau
T, keep applying the transformation of Lemma 8.9.3 to minimal cuts,
lowering rank or, if not, lowering weight. Eventually, cuts must be trans
formed into cuts at branch ends (because once cut rank has been reduced
to 0, transformations must reduce weight). And cuts at branch ends can
be deleted. The formal proof (which amounts to a termination proof for
this process) is by a double induction.

Gentzen's transformation techniques, to be given shortly, are intended
to eliminate cuts from tableau proofs. Suppose they are not capable of
eliminating all cuts. Let C be the collection consisting of those cuts that
the techniques do not allow us to transform away. Then, members of C
are uneliminable cuts, and C is not empty. Now, among the cuts in C
that are minimal in their tableaux, there must be one or more of smallest
rank (say of rank n). Further, among these minimal cuts of rank n in C,
there must be one or more of smallest weight (say of weight k). Choose
one such cut: in C, minimal in its tableau, of rank n, and of weight k.
This cut can not be at a branch end or else it could be eliminated, as we
have seen, and this is impossible for cuts in C. But by Lemma 8.9.3, a
closed tableau containing a minimal cut of rank n and weight k, not at a
branch end, can be transformed into another in which the cut has been
replaced by cuts of rank < n, by cuts of rank n and weight < k, or both.
But if we replace the original cut in this way, among the new cuts that
result, any that are minimal can be eliminated (since they are either of
lower rank than n, which was the smallest rank of cuts in C, or of rank
n but of lower weight than k, which was the smallest weight among cuts
of rank n in C). Once these minimal cuts have been eliminated, new
ones become minimal and likewise can be eliminated, and so on, until
all the cuts that replaced the original one have been eliminated. The
final outcome is that the original cut itself has been eliminated. This

8.9. Cut Elimination 233

contradicts our assumptions about C, and consequently all cuts must be
eliminable.

Before proving the Lemma, there are a few more elementary points about
tableaux that will be needed, and it will be simplest to present them now.

Fact 3 Suppose T is a closed tableau for a finite set 8 of sentences and
8 c; 8', where 8' is also finite. Then there is a closed tableau for 8'
as well, with essentially the same, and certainly the same number,
of steps. Except for one point, this is almost trivial. If the 8-rule
is not used in T, then to get a closed tableau for 8', just repeat
the steps of T, making no use of those sentences of 8' that are not
in 8. But if the 8-rule was used in T, there is a small problem,
since a parameter that was new when it was introduced in T might
appear in 8' (though not, of course, in 8), and so can no longer be
considered new. But the solution is simple. First, modify tableau
T by substituting different parameters for those introduced by the
8-rule, making sure to choose parameters that do not appear in 8'.
This gives an altered tableau, T', and it is easy to see that T' is
also a closed tableau for 8. Now the steps of T' serve to produce a
closed tableau for 8', as before.

Fact 4 Suppose T is a closed tableau for the finite set 8 U {8(c)} of
sentences, where c is a parameter that does not occur in 8 or 8.
Then for each closed term t, there is a closed tableau for 8 U { 8 (t)}
with the same number of steps. This point is a little harder to
verify. First, modify T as we did in the discussion of Fact 3, so that
any parameters introduced by 8-rule applications do not occur in
t and are distinct from c. This gives us a tableau T' of the same
size and "shape" as T. Now, further modify T' by replacing every
occurrence of c with an occurrence of t, yielding yet another tableau
Til. Since c did not occur in 8 or 8, these do not change under the
replacement, so 8 U {8(c)} simply becomes 8 U {8(t)}, and it is not
hard to check that Til will be a correctly constructed closed tableau
for it.

Proof of Lemma 8.9.3 Suppose T is a tableau containing a minimal
cut to X and,X, not at a branch end, of rank n and weight k. Then

234 8. Further First-Order Features

part of the tableau has the following form:

-.X

where Tl and T2 are the subtableaux below X and -.X, respectively.
There are two constructions, depending on whether the uppermost sen
tences in Tl or T2 were obtained by applying a tableau rule to a sentence
from 8, or to X and -.X themselves. We begin with the case involving a
sentence from 8; this in turn divides into subcases, depending on what
kind of a sentence it was. We present the discussion for the left fork,
through X -the fork through -.X is treated similarly.

fJ-Case Suppose that fJ is a disjunctive sentence on 8, and a branch
extension rule was applied to it, adding fJl and fJ2 underneath X,
thus:

X -.X

~
fJl fJ2

fr~ fr~
The weight of this cut is ITfl + ITfl + IT21 + 2 (where ITfl is the
number of formulas in Tf, and so on). Now replace this part of T
by the following:

8.9. Cut Elimination 235

Here the leftmost displayed part (through (31 and X) is the same
as the original leftmost part, except that the occurrences of X and
(31 have been switched around. The next subtableau to the right
(through (31 and,X) needs some further explanation. We know
T2 provides the steps to close a tableau beginning with e u {.....,X}.
Since e u {(31,,X} extends this set, as we noted in Fact 3, T2
can be converted to T 2, providing a closed tableau for this larger
set-assume that we make this modification. Similarly for the other
two branches (leave Tf as is and modify the other occurrence of
T 2, as appropriate, into T~). The result is a correctly constructed
tableau. Now, although the original cut on X has been replaced by
two, each involving the same sentence, the weight of each is less.
That of the leftmost cut is ITfl + IT21 = ITfl + IT21 and that of
the rightmost one is ITfl + IT~I = ITfl + IT21·

8-Case This time suppose that on e is an existential sentence 8,
and a branch extension rule was applied to it, adding 8(c) under
neath X, where c is new, thus:

236 8. Further First-Order Features

Here the weight of the cut is ITII + IT21 + 1. This is simply replaced
by the following:

I
8 }e
I

8(c)

~

Because c was a new parameter when originally introduced, it is still
new in the modified tableau (since it is introduced earlier). The left
subtableau is still correctly constructed, since the only change here
was to reverse the positions of X and 8(c). In the original tableau,
T2 provided closure for the set e u {oX}, and we now have the
larger set e u {8(c), oX}, but T2 can be modified, as described in
Fact 3, into T;, to provide closure for this enlarged set. Now the
weight of the cut in this new tableau is ITII + IT;I = ITII + IT21,
and thus is smaller than the weight of the original cut.

D:-, ,,(-, and Negation Cases These are similar to the 8-case just
discussed, and are left to you.

8.9. Cut Elimination 237

This ends the discussion of what modifications to make if the first sen
tences in T 1 (or in T 2) arise from the application of a rule to a sentence
in 8. Now we turn to the case where they arise by applying rules to X
and --.X themselves, and again we have several subcases, depending on
the form of X.

Primary Connective Case Suppose the cut sentence X is of the
form A 0 B, where 0 is a Primary Connective, and the first rule
applied on each fork of the cut is to the sentences introduced by
the cut. By Fact 1, one of {X, --.X} is an a-sentence, the other is
a ,6-sentence. Say X is the a and --.X is the ,6-the argument is
symmetrical. Thus, we suppose the cut looks like this:

The weight of this cut is ITll + IT21 + IT31 + 4. Recall, from Fact 1
again, that one of {al,,6d is the negation of the other. Now the
first step in modifying the tableau is to replace the cut to X and
--.X by one to al and ,61.

This is a cut of lower rank. Next we say how to continue each
branch, and we begin with the right one, since it is simpler. To
keep the pictures uncluttered, we display only the right branch for
now. And on it we begin with another cut, to X and --.X again!

238 8. Further First-Order Features

We have applied a Branch Extension Rule to the a-sentence, adding
a1 and a2, closing the branch because of the presence of a1 and /31
(one of which is the negation of the other). Underneath --.X = /3 we
have reproduced T2 from the original tableau-this is still correct,
since the same sentences are present above it, though in a different
order. The weight of this new cut to X and --.X is IT21 + 2, which
is smaller than the weight of the original cut.

Now we turn to the left-hand fork of the cut to a1 and /31, and here
we continue with a cut to a2 and /32 (again by Fact 1, one of these
is the negation of the other). This too is a cut of lower rank.

Finally, we say how to continue each of the forks of this cut to a2
and /32, and again, each of them begins with a cut to X and --.X!
We begin by displaying the fork through a2.

8.9. Cut Elimination 239

We have applied to --.X the ,8-Branch Extension Rule. Each branch
below it is closed because of the presence of QI and,81, or Q2 and ,82,
respectively (in each case, one is the negation of the other). Below
X = Q we copy T I , still appropriate because the branch above
it contains the same sentences that were above TI in the original
tableau. The weight of this cut to X and --.X is ITII + 2, again a
lower weight than that of the original.

Finally, we display the fork through ,82.

The branch through X is closed because of Q2 and ,82. The branch
through --.X continues with T 3, which is a modification of T3 (T3

240 8. Further First-Order Features

was for e u {,6, ,62} and we now have the larger set e U {aI, ,62, ,6},
so Fact 3 comes in.) The weight of the new cut to X and --.X is
IT31 + 2, so it too is less than the weight of the original cut. This
concludes the Primary Connective case.

Other Propositional Cases If X is --.--.Z, T, --. T, .1, or --..1, the
construction is simpler than that above, and we leave the details to
you.

Quantifier Case Suppose the cut sentence X is a quantified sen
tence, and the first rule applied on each fork of the cut is to the
sentences introduced by the cut. By Fact 2, one of {X, --.X} is a
l'-sentence and the other is a 8-sentence. Say X is the l' and --.X is
the 8-as in the propositional case, the argument is symmetric. So
we suppose the cut looks like this:

--.X = 8
8(c)

/T~
where t is some closed term, and c is a parameter that is new at the
point it is introduced. The weight ofthis cut is IT11+ IT2 1+2. Recall
by Fact 2 that one of bet), 8(t)} is the negation of the other. The
tableau modifications begin by replacing the original cut by one to
l'(t) and 8(t), which is a cut of lower rank. Thus we start as follows:

(t)

Now we continue each branch, and we start with the construction
for the left one, beginning with a cut, to X and --.X again.

8.9. Cut Elimination 241

8(t)

Under X = 'Y, the subtableau Tl has been copied over~justified
because the branch above it contains the same sentences that were
in the original tableau above T l . Under oX = 8, we display T2
copied over, but this may not be quite right since the parameter
c, which was new when introduced into the original tableau, might
not be new when introduced in the modified tableau, since it could
appear in t. The solution is to further modify the subtableau from
8(c) down, in accordance with Fact 3. This yields a correct closed
tableau construction of the same size and shape. The weight of this
cut to X and oX is ITll + IT21 + I, which is lower than the weight
of the original cut.

Now we turn to the branch through 8(t), which requires the most
work. The right-hand fork of the original cut, through oX = 8,
contained the sentences of 8, 8, 8(c), and finally the subtableau
T 2. Note that the parameter c was new when introduced in 8(c).
According to Fact 4, T2 can be modified to yield a correctly con
structed closed subtableau in which the closed term t takes the
place of c. Let T~ be such a modification. Then T~ provides closure
for a branch that begins with 8, 8, and 8(t).

The fork of the cut through 8(t) is continued as follows:

242 8. Further First-Order Features

Exercises

1'(t)

A Branch Extension Rule is applied on the fork through X = 1',
and the branch closes because it contains 1'(t) and o(t) (one is the
negation of the other, by Fact 2). The right fork closes because of
what was said earlier. The weight of this cut is IT~I + 1 = IT21 + 1,
which is less than the weight of the original cut to X and ---.X. This
concludes the quantifier case.

And this concludes the proof. 0

8.9.1. Following is a propositional tableau containing a cut. In it, 2
and 3 are from 1 by Ct; 4 and 5 constitute the cut; 6 and 7 are from 2
by Ct; 8 is from 7 by double negation; 9 and 10 are from 4 by /3; 11 and
12 are from 3 by Ct; and 13 and 14 are from 5 by Ct.

1. ---.((P ::J ---.---.Q) V (Q ::J R))
2. ---.(P ::J ---.---.Q)
3. ---.(Q ::J R)

~
4. P::J Q
6. P
7. ---.---.---.Q
8. ---.Q

5. ---.(P ::J Q)
11. Q
12. ---.R
13. P

A 14. ---.Q

9. ---.P 10. Q

Follow the procedure given in this section and transform the tableau
into a cut-free proof.

8.10
Do Cuts
Shorten
Proofs?

B.10. Do Cuts Shorten Proofs? 243

Allowing cuts in tableau proofs is important from the point of view of
automated theorem proving. Without cuts, each tableau proof starts
from a state of zero knowledge--previously constructed proofs play no
role. But with cuts, known theorems can serve as lemmas for further
work, in the way mathematicians normally expect. Suppose that we
have already proved a sentence X, and now we are trying to prove a
different sentence, Y. In a tableau for ,Y, if cut is an allowed rule, we
can split a branch at any point, adding ,x to one fork and X to the
other. Underneath ,X, we can simply copy the closed tableau for ,X
that we already have, thus closing that fork. (In practice, we would just
refer to where a proof of X can be found, rather than reproducing it.)
This leaves us the other fork to work with, and we have X available on
it, which may help us in producing a closed branch. The net effect is that
we have added the previously proved sentence X to an open branch of
the tableau we are constructing for ,Y, thus making X available as a
lemma. Cut elimination tells us that if we discover a proof using lemmas
in this way, it can be converted into one that does not use them. This
leads to a natural question: Can such use of lemmas, or cuts, shorten
proofs?

Injudicious use of cuts can, of course, sometimes lengthen proofs, not
shorten them. In Section 4.1 we gave a Hilbert system proof of the propo
sitional formula P ::J P. That can be turned into a tableau proof with
cuts, as outlined in Section 8.8, yielding a lengthy and complex tableau.
But if cuts are eliminated, following the procedure in Section 8.9, the re
sult must be the tableau that begins with ,(P ::J P), applies the a-rule,
and closes immediately-since this is the only closed cut-free tableau for
,(P ::J P). In this case, eliminating cuts is a great simplification.

The example is misleading, however. The short tableau proof of P ::J P is
also a proof in a tableau system allowing cuts-we simply didn't happen
to apply the cut rule. The real question is not whether (mis)use of cuts
can make things worse, but whether wise use of them can ever make
things better. And to this question the answer is most emphatically yes
cuts can make the difference between linear and exponential! Boolos [6]
gives an intuitively clear example showing this, but it involves not only
quantification but also equality. Here we give a somewhat more complex
example that is entirely propositional, due to Statman [50] and simplified
by Takeuti and Buss.

Theorem 8.10.1 For each n = 1,2, ... there is a finite unsatisfiable set Sn of propositional
formulas such that:

1. There is a closed tableau for Sn, allowing cuts, of weight 12n - 4,
hence of weight linear in n.

244 8. Further First-Order Features

2. The shortest cut-free closed tableau for Sn has weight 2: 2n.

We devote the rest of the section to a proof of this theorem. From now on,
let al, a2, ... and bl , b2, ... be two disjoint lists of distinct propositional
letters. Using them, we define three families of more complex formulas.

First, for each n = 1,2, ... let

Fn intuitively says that for each i from 1 to n we must have one of ai or
bi . The definition can also be given recursively, as follows:

Fl = al V bl

Fn+l = Fn /\ (an+l V bn+l)

Semantically, Fn is equivalent to ([aI, bl], ... , [an, bnJ), using notation
from Chapter 2. This may help with motivation, though it can play no
role in our proof because there are no tableau rules for clauses and dual
clauses. It also suggests a natural definition for Fo, namely the empty
conjunction (), semantically equivalent to T. We do not use Fo, though
the proof could be revised in minor ways to do so. We start with n = l.
Next, we set Al = aI, BI = bl , and for each n = 1,2, ... :

A n+l = Fn =:> an+l

Bn+l = Fn =:> bn+l

If we allow the use of Fo, Al turns out to be equivalent to Fo =:> al, and
similarly for B l . Both of these follow the general pattern.

Notice that each An intuitively says that, if we have one of ai or bi for
each i from 1 to n - 1, then we have an, and Bn says a similar thing
concerning bn . Consequently, An V Bn intuitively says that, if we have
one of ai or bi for all i up to n, then the pattern continues one more
step, and we have one of an or bn as well.

Finally, for n = 1,2, ... , let Sn be the set

Informally, each Sn is unsatisfiable by the following argument. Since
Al V BI is present, we have one of al or bl . Then by the informal meaning
of A2 V B 2, we have one of a2 or b2 as well. Since we have one of al or
bl and also one of a2 or b2 , and A3 V B3 is present, we have one of a3 or
b3 , too. This pattern continues until finally we must have one of an+! or
bn+!, but Sn explicitly says we don't have either. This informal reasoning
can be turned into a mathematically correct semantical argument, using

8.10. Do Cuts Shorten Proofs? 245

Fk
A k +1 V B k +1

-.ak+l
-.bk +1

/~

FIGURE 8.1. Tableau for Lemma 8.10.2

induction, to show the unsatisfiability of Sn. Then, by the completeness
of the propositional tableau rules, there must be a closed tableau for
each Sn whether cuts are allowed or not.

The rest of this section is devoted to our promised proof, using induction,
that:

1. There is a closed tableau of weight 12n - 4 for Sn, allowing cuts;

2. Every closed tableau for Sn that does not allow cuts has weight at
least 2n.

This, of course, establishes that cut elimination can introduce an expo
nential blowup. Now for the details.

Lemma 8.10.2 Independently of k there is a closed, cut-free tableau for {Fk' Ak+1 V

Bk+l, -.ak+1, -.bk+1 } of weight 6.

Proof The tableau is shown in Figure 8.1. In it, there are three ,a-rule
applications. 0

Lemma 8.10.3 Again independently of k, there is a closed, cut-free tableau for {Fk'
Ak+l V Bk+l, -.Fk+d of weight 10.

Proof The tableau is given in Figure 8.2. 0

246 8. Further First-Order Features

Fk
A k +1 V B k +1

-.Fk+! = -.[Fk /\ (ak+1 V bk+dl

/~
-.(ak+1 V bk+d

-.ak+1
-.bk+1

FIGURE 8.2. Tableau for Lemma 8.10.3

Proposition 8.10.4 There is a closed tableau for Sn, with cuts, of weight 12n - 4.

Proof The tableau, schematically, is given in Figure 8.3. In it there are
n cuts on Fn , Fn - I , ... , FI , contributing 2n formulas to the tableau
weight. Underneath Fn appears a subtableau denoted U, which is the
closed tableau of weight 6 for {Fn' An+! V B n+!, -.an+l, -.bn+d from
Lemma 8.10.2. Underneath Fn- I is a subtableau denoted Tn-I, which is
the closed tableau of weight 10 for {Fn- I , An V B n , -.Fn} whose existence
is given by Lemma 8.10.3, and similarly for T n - 2 below F n - 2 , and so on.
The subtableaux T I , ... , T n - I contribute a total of 10(n - 1) formulas.
Note that the rightmost branch is directly closed, since -.FI = -. (al V bl)
and Al V BI = al V bl both appear on it. Thus, we have a closed tableau
of weight 2n + 6 + 10(n - 1) = 12n - 4. D

We have now established the first half of Theorem 8.10.1 and turn to
the second. Recall the term strict (Definition 3.1.4) which designates
a tableau in which no propositional rule is applied to a formula more
than once on any branch. A careful look at the completeness proof for
the tableau system shows that strict tableaux are enough. The following
makes this more concrete--we leave its proof as an exercise:

Lemma 8.10.5 If there is a closed non-strict tableau of weight n for a set S, there is
also a closed strict tableau for S whose weight is < n.

Lemma 8.10.6

An VBn
A n +l V B n +l

-'an+l

-,bn +l

8.lD. Do Cuts Shorten Proofs? 247

~~

FIGURE 8.3. Tableau for Proposition 8.10.4

In investigating which cut-free tableau proofs are shortest, we can confine
our attention to the strict ones, because of this lemma.

We say a formula X is directly involved in a branch closure in tableau T
if some branch of T closes because it contains a formula and its negation,
and X is one of these two formulas. Now we state and prove the chief
tool for what follows:

1. If there is a closed strict tableau T of weight n for the set S U {,8},
and ,8 is not directly involved in a branch closure in T, then there
is a closed strict tableau for the set S U {,8l} of weight :s: n, and
similarly for S U {,82}.

2. If there is a closed strict tableau T of weight n for S U {a}, and
a is not directly involved in a branch closure in T, then there is a
closed strict tableau for the set S U {aI, a2} of weight :s: n.

248 8. Further First-Order Features

Proof Suppose T is a closed strict tableau for S U {,6}. If no rule is
applied to ,6 in T, then just replace ,6 by ,61 throughout T, and make no
other changes. This gives a closed strict tableau for S U {,61} of the same
weight. Otherwise, say a rule is applied to ,6 on at least one branch of
T, so there are parts of T of the following form:

I
S U {,6}

A
Here, T1 represents the subtableau beneath ,61; and T 2 , the subtableau
beneath ,62. Now, replace this by the following:

The result contains at least one fewer formula (,62). Do a similar thing
throughout T for each branch on which a rule was applied to ,6, produc
ing a strict tableau for S U {,6t} of smaller weight, a tableau that is still
closed because ,6 itself played no direct role in the closure of any branch.

Part 2 has a similar, and simpler, proof. 0

We now come to the central result.

Proposition 8.lD.7 Suppose a shortest closed cut-free tableau for Sn has weight ~ k. Then
a shortest closed cut-free tableau for Sn+1 has weight ~ 2k.

Proof Let T be a shortest closed cut-free tableau for Sn+1 = {A1 V Bl,
A 2VB2,. .. , An+1 VBn+l, A n+2VBn+2, ...,an+2, ...,bn+2}. By Lemma 8.10.5
we can assume T is strict. Since an+2 and bn+2 are propositional letters,
T must begin with a ,6-rule application, so T looks like the following:

A n +l V B n +l

An+2 V Bn+2
-,an+2
-,bn +2

/~
Ai Bi
TI T2

8.10. Do Cuts Shorten Proofs? 249

Here TI and T2 denote the subtableaux below Ai and B i , respectively.
Now we show ITII ::" k and IT21 ::" k (recall, lUI is the number of
formulas in U). From this it follows that the weight of the tableau T
for S is ::" 2k. The argument for T2 is similar to that for TI, which we
present. The idea is to show that the left fork can be modified into a
shorter strict closed tableau for Sn. Since we know the weight of such a
tableau must be ::" k, the original left fork must also have weight::" k.

Much of the argument involves the use of Lemma 8.10.6, and to be able
to apply it we must know that certain formulas are not directly involved
in branch closures. We begin by verifying this is so for all the cases we
need, so that the heart of the argument will not be cluttered with such
details. Fortunately, the idea is always the same. If a formula X has
only positive occurrences in a tableau, X obviously can not be directly
involved in a branch closure. But if X occurs only in positive positions
in formulas of a set S, Exercise 8.10.3 says X can occur only in positive
positions in the formulas of a tableau for S. Combining these facts: if X
occurs only in positive positions in S, X cannot be directly involved in
a branch closure in any tableau for S. Of course, the same result holds
if X occurs only negatively in S. Now for the cases we need.

First we argue that for h = 1,2, ... , n+2, Ah V Bh is not directly involved
in a branch closure in T. Ah V Bh can't be a subformula of -,an+2 or
-,.bn+2 because these are literals. If it were a subformula of Ak V Bk for
k i= h, it would be a subformula of one of Ak or B k , but both of these
are implications if k > 1, or atomic if k = 1, so this is impossible. It
follows that the only occurrence of Ah V Bh in any formula of Sn+1 is its
occurrence explicitly as a member of Sn+1' Conseqently, Ah V Bh occurs
only positively, and so cannot be directly involved in a branch closure
in T.

Next, for h = 2,3, ... ,n + 2, neither Ah nor Bh is directly involved in a
branch closure in T. We argue for A h; the argument for Bh is similar.
Since h ::" 2, Ah is an implication, so it cannot be a subformula of -,an +2

250 8. Further First-Order Features

or .bn+2. Now suppose Ah is a subformula of Aj V B j . Since this is a
disjunction and Ah is an implication, Ah must be a proper subformula,
and hence is a subformula of Aj or of B j . If it is a subformula of A j , it
cannot be a proper subformula-there are two cases to consider. If j = 1,
Aj is atomic, but Ah is not. If j > 1, Aj = Fj -1 :=J aj, so Ah would be a
subformula of F j - l , or of aj. The first of these is impossible since Ah is
an implication, but F j - l contains no implication symbols. The second
is impossible because aj is atomic. We leave it to you to argue that Ah
cannot be a subformula of B j at all. The only possibility that is left is
that Ah must be a subformula of A j , but not proper-in other words,
Ah = A j , and so h = j. Thus the only occurrence of Ah in Sn+1 is its
occurrence in Ah V B h, and this is a positive one. Then Ah cannot be
directly involved in a branch closure in T.

Next we claim that for h 2: 2, ah V bh occurs only negatively in Sn+l
and so it (and likewise its negation) cannot be directly involved in a
branch closure in T. Certainly, ah V bh cannot be a sub formula of .an+2
or of .bn+2, since these are literals. Because h 2: 2, ah V bh cannot
be a subformula of Al V B l . If ah V bh is a subformula of Aj V B j for
some j 2: 2, it must be a proper subformula, and so is a subformula
of Aj or of Bj-say of A j , since the argument is similar either way.
Since Aj = Fj - l :=J aj is an implication, the disjunction a" V b" must
be a proper subformula of it. It cannot be a subformula of aj, and if
it is a subformula of F j - l , it must be one of the conjuncts of it, and
consequently it must be a positive subformula of Fj - l . But then that
occurrence of ah V bh is in a negative position in Aj = Fj - l :=J aj, and
so also in Aj V B j .

Finally, Fn+l is obviously a subformula of both An+2 = Fn+l :=J an+2
and Bn+2 = Fn+1 :=J bn+2, but it is easy to see it is not a subformula
of any member of Sn+l besides An+2 V B n+2. Since Fn+l appears only
negatively in An+2 V Bn+2, neither it nor its negation can be directly
involved in a branch closure in T.

With all this out of the way, we now turn to the main argument-showing
the left branch of T can be shortened into a strict closed tableau for Sn.
Since T is strict and the (3 rule has been applied to Ai V Bi at the
start, this formula never again has a rule applied to it-in particular,
not in T l . Also, as shown above, Ai V Bi cannot playa direct role
in the closure of a branch. Consequently, if Ai V Bi is removed, Tl
constitutes a correctly constructed, strict, closed tableau for the set {AI V
B l , ... , A i - l V B i- l , A i +l V B i+l , ... , An+2 V Bn+2' ·an+2, .bn+2, Ad.

Ai~l V Bi~l

Ai+l V Bi+l

An+2 V Bn+2
-.an +2
-.bn +2

Ai
Tl

8.10. Do Cuts Shorten Proofs? 251

Now there are two cases, depending on whether i = n + 2 or not.

Case 1 (i = n + 2) In this case Tl is a closed strict tableau for the set
{AI V B l , A2 V B 2, ... , A n+l V B n+l , -.an+2, -.bn+2, A n+2}.

An+2 = Fn+l :::) an+2, and An+2 plays no direct role in closing any
branch, so by Lemma 8.10.6 there is a closed strict tableau, of no greater
weight, for {AI V B l , A2 V B 2, ... , A n+l V Bn+l' -.an+2, -.bn+2, -.Fn+I};
that is, of weight ~ ITII. But -.Fn+l = -.[Fn /\ (an+l V bn+l)] also
plays no direct role in closing any branch, so by Lemma 8.10.6 once
again, there is a closed strict tableau for {AI V B l , A2 V B 2, ... ,An+! V
Bn+l' -.an+2, -.bn+2, -.(an+l V bn+l)} of no greater weight, that is, of
weight ~ ITII. The propositional letter an +2 does not occur in any for
mula of this set except for -.an+2, and similarly for bn+2; consequently
neither can playa role in the tableau construction or closure. It follows
that if we remove them from the tableau, we will have a closed strict tab
leau for {AI V B l , A2 V B 2, ... , An+l V B n+l , -.(an+! Vbn+d} of weight ~
ITII. Finally, it follows, from Lemma 8.10.6 again, that there is a closed
strict tableau for {AI V B l , A2 V B 2, ... , A n+l V Bn+l' -.an+l, -.bn+l }
of weight ~ IT 11. But this is the set Sn, and the smallest closed strict
tableau for it has weight 2 k. Consequently, ITII 2 k.

Case 2 (i ~ n + 1) In this case Tl is a closed tableau for the set {AI V
B l , ... , Ai~l V Bi~l' A i+l V B i+l ,···, An+2 V B n+2, -.an+2, -.bn+2, Ad·
If i 2 2, Ai = Fi~l :::) ai plays no direct role in branch closure, so by
Lemma 8.10.6, there is a closed strict tableau of no greater weight for
this set with Ai removed and ai added. If i = 1, Ai itself is al. Either way
there is a closed strict tableau, call it T~, for the set {AI V B l , ... , Ai~ 1 V
Bi~l' Ai+l V Bi+l, ... , An+2 V B n+2, -.an+2, -.bn+2, ad, with IT~I ~ ITll·
We modify this tableau, telling it to forget all about ai V bi. The details
are slightly more complicated if i = 1, so first suppose i 2 2. We defined
Fk to be the conjunction of the formulas al V bl , a2 V b2, ... , ak V bk

252 8. Further First-Order Features

(associated to the right). Let F; be the same conjunction, but with
ai V bi removed. Then of course Ft = Fi- I , and if k < i then F; = Fk.

Let m be any integer from 1 to n + 2 except i. We say how to m-modify
the tableau, which intuitively means removing ai V bi from Am V Bm
and all formulas that derive from it in the tableau. (We don't consider
m = i because Ai V Bi is missing.) A bit of notation first. Recall, Am =
Fm- I ~ am, except for m = 1, and Al = al; and similarly for Bm. We
define A;'" = F;';,,_I ~ am, except for m = 1, and Ai = Al = al; and
similarly for B;".

Here is the m-modification process. In the tableau, where Am V Bm
appears, replace it by A;'" V B;". Next, in the resulting tableau, wherever
the ,B-rule was applied to Am V B m , branching to Am and B m , replace
it by an application of,B to A;'" V B;", branching to A;'" and B;". Then,
where a ,B-rule was applied to Am = Fm- I ~ am, branching to -,Fm- I
and am, replace it by an application of,B to A;'" = F;';,,_I ~ am, branching
to -,F;';,,_I and am. Again similarly for Bm. Where a ,B-rule was applied
to -,Fk = -,(Fk-I !\ (ak V bk)), branching to -,Fk-I and -,(ak V bk), if
k =1= i, replace this by a ,B-rule application to -,F; = -,(F;_I !\ (ak V bk)),
branching to -,F;_I and -,(ak V bk). But if a ,B-rule was applied to -,Fi =
-,[Fi-I !\ (ai V bi)], branching to -,Fi- I and -,(ai V bi), in the revised
tableau -,Fi will have been replaced by -,Ft = -,Fi- I . Simply remove
the right branch, beginning with -,(ai V bi), and keep the left branch that
begins with -,Fi - I .

We have described the m-modification process under the assumption
that i =1= 1. In case i = 1, small changes are necessary. Al V BI will not
be present, since the formula Ai V Bi has been removed, but A2 and B2
are slightly problematic. Since FI = (al V bd we can not simply delete
al V bl from FI to produce Ft, since this would eliminate everything. But
A2 = FI ~ a2, so we can take A2 to be a2 (recall, the empty conjunction
is semantically true); similarly we take B:;' to be b2 . Now, in making an
m-modification, where m = 2, A2 is replaced by A 2, and any ,B-rule
application to A 2, branching to -,FI and a2 has its left branch through
-,FI discarded, and just the branch through a2 retained. Similarly for
B2 • Everything else is as it was above.

Now carry the m-modification process out for m = 1, starting with T~,
then for m = 2, starting with the result, and so on (skipping m = i),
up to m = n + 2. It is not hard to see that each stage leaves us with a
correctly constructed, strict, closed tableau. Further, at the end we have
a tableau in which ai V bi no longer appears. Call this tableau Ti.

Ti is a closed tableau for {Ai V B 1, ... , Ai-I V Bi_I' Ai+! V Bi+!,···,
A~+2 V B;'+2, -,an +2, -,bn +2, ad. The propositional letter ai occurs in this
set, but because of the modifications made above, its only occurrence
is the explicitly displayed one. Consequently, Ti also provides us with

Exercises

Exercises 253

a closed strict tableau for {Ai V Bi, ... ,Ai-l V Bi-l' Ai+1 V Bi+1'· .. ,
A;',+2 V B;'.+2, -'an +2, -,bn +2}, and ITil :S ITll· No occurrences of ai or
bi remain.

Finally, we rename propositional letters, pushing everything down one
level from i onwards. Specifically: for each m > i we replace am by
am-I, and bm by bm - 1 . If k < i, we already observed that Fi: = Fk.
But also Ai; = Ak and B/; = B k, and this replacement has no effect
on any of these formulas. But now, if k > i, this replacement turns Ai;
into Ak-l and similarly for B/;. Consequently, it converts the tableau
Ti into a closed strict tableau (with the same number of formulas) for
{AI V B ll ..• , Ai - 1 V Bi- ll Ai V Bi , ... , A n +1 V B n +ll -'an +l, -,bn +1 },

that is, for 8n . Since the smallest closed strict tableau for 8n has weight
2: k, once again ITll 2: k.

o

By Lemma 8.10.5, strict tableaus are all we need to consider if we are
interested in short proofs. It is easy to check, by trying all the possibil
ities, that the smallest closed cut-free tableau proof for 8 1 is of weight
6. It follows from Proposition 8.10.7 that the smallest cut-free tableau
proof of 8 n must be of weight 2: 6 . 2n - 1 2: 2n.

Analytic Cut We have just seen that if cuts are allowed, proofs can be
dramatically shortened. But even so, cuts are a problem for automated
theorem proving. If Cut is an allowed rule, at any point of a tableau
construction, we can cut to X and -,X for any formula X -how do
we make a useful choice of X? Recall, the use of Cut is tantamount to
allowing Lemmas in proofs, and finding good Lemmas is a mathematical
art, not a science.

One approach to this problem that has had some success is to re
strict cuts to subformulas of formulas that already appear on the tableau
branch. Such cuts are called analytic. Since a formula has only a finite
number of subformulas, this gives us a limited search space to try. Notice
that the cuts in Proposition 8.10.4 are all analytic.

8.10.1. Give a direct mathematical argument that 8n is unsatisfiable.

8.10.2. Prove Lemma 8.10.5.

8.10.3. Show that, if every occurrence of a formula X in a set 8 of
propositional formulas is in a positive position, the same is true for
every occurrence of X in any tableau for 8; and similarly for negative
occurrences.

254 8. Further First-Order Features

8.11
Craig's

Interpolation

Theorem

Definition 8.11.1

Definition 8.11.2

8.10.4. Show there is a closed tableau, allowing cuts, of weight 12n for
{AI V Bl, A2 V B 2,. .. , An V Bn , An+l V Bn+1 , -.Pn+l}.

8.10.5P • Modify the propositional tableau implementation of Chap
ter 3 to add analytic cut.

We sketched a proof of Craig's interpolation theorem for propositional
logic in Chapter 3 (Theorem 3.6.5). The propositional theorem does
not really have any interesting applications, but the first-order version
most certainly does. In this section we extend the earlier proof, which
is nonconstructive, to the first-order setting, and in the next section we
give a constructive argument as well. Applications then follow. The proof
in this section has superficial differences with that of Theorem 3.6.5, but
the essential features are the same.

Let 8 1 and 82 be sets of sentences. An interpolant for the pair 8 1 , 82

is a sentence Z such that all constant, function, and relation symbols
of Z occur in formulas of both 8 1 and 82 and such that 8 1 U {Z} and
82 U {-.Z} are not satisfiable.

A finite set 8 of sentences is Craig consistent if there is a partition 8 1 , 8 2

of 8 that lacks an interpolant. (81. 82 is a partition of 8 if 8 1 U 82 = 8
and 81 n 82 = 0.)

The following lemma is in a form that is particularly suited for an ap
plication of the Model Existence Theorem. Craig's Theorem itself is an
easy consequence.

Lemma 8.11.3 Let C be the collection of Craig-consistent sets. C is a first-order consis
tency property.

Proof Several items must be checked; we only do a few.

'Y-case Suppose 'Y E 8 but for some closed term t, 8 U h(t)} is
not Craig consistent. We show 8 is not Craig-consistent either. Let
81. 82 be a partition of 8; we show it has an interpolant. And we
assume 'Y E 8 1 ; the argument if'Y E 8 2 is similar.

8 1 U {'Y(t)}, 82 is a partition of 8 U {'Y(t)}, so it has an interpolant,
say Z, since 8uh(t)} is not Craig-consistent. Now 82 U{ -.Z} is not
satisfiable. Also, 8 1 U h(t)} U {Z} is not satisfiable, and it follows
easily that 8 1 U {Z} is not satisfiable either, since 'Y E 81.

We know that all constant, function, and relation symbols of Z are
common to 8 1 U h(t)} and 82 • If they all occur in 81. we are done;

8.11. Craig's Interpolation Theorem 255

Z is an interpolant for S1, S2. So now suppose Z contains some
symbol occurring in S1 U b(t)} but not in S1. Since 'Y E S1, any
such symbol must occur in t and so must be a constant or a function
symbol. There may be several; for simplicity let us say Z contains
just one subterm, f(U1,"" un), where f occurs in t but not in S1.
The more general situation is treated similarly.

Let x be a new free variable, and let Z* be like Z but with the occur
rence of f(U1, ... ,un) replaced by x, so Z = Z* {xl f(U1, ... ,Un)}'
We claim (::Ix)Z* is an interpolant for S1, S2.

First, all constant, function, and relation symbols of (::Ix)Z* are
common to both S1 and S2, because we have removed the only
one that was a problem. Next, S2 U {-.Z} is not satisfiable, hence,
neither is S2 U {-.(::Ix)Z*}. This follows from the validity of

Z* {xl f(U1,"" un)} ::J (::Ix)Z*.

Finally, S1 U {Z} is not satisfiable, and it follows that S1 U {(::Ix)Z*}
is also not satisfiable. This argument needs a little more discussion
than the others. (Its similarity to the proof of Lemma 8.3.1 is no
coincidence.)

Suppose S1 U {(::Ix)Z*} is satisfiable, we show S1 U {Z} also is. Sup
pose the members of S1 U {(::Ix) Z*} are true in the model (D, I).
Then in particular, Z*I,A is true for some assignment A. Now de
fine a new interpretation J to be like I on all symbols except f,
and set fJ to be the same as P on all members of D except

I,A I,A F' 11 t fJ(I,A I,A) - I S· I d u1 , ... , un . Ina y, se Ul , ... , Un - x. lnce an
J differ only on f, and that does not occur in S1, the members
of this set will have the same truth values using either interpre
tation. Consequently, the members of S1 are true in (D, J). Using
Proposition 5.3.7, [Z*{xl f(U1,'" ,un)}]J,A = Z*J,A = Z.I,A = t.

8-case This time suppose 8 E S but for each parameter p, SU{ 8(p)}
is not Craig-consistent. We show S is also not Craig-consistent. Let
S1, S2 be a partition of S; we show it has an interpolant. And once
again, we suppose 8 E S1; if it is in S2, the argument is similar.

Let p be a parameter that does not occur in S (there must be one,
since S is finite). SU {8(p)} is not Craig-consistent, so its partition
S1 U {8(p)}, S2 has an interpolant, say, Z. We claim Z is also an
interpolant for S I, S2.

All constant, function, and relation symbols of Z are common to
both S1 U {8(p)} and S2. Since p was new to S, it does not occur in
S2, and hence not in Z either. It follows that all constant, function,
and relation symbols of Z are common to S1 and S2.

S2 U {-.Z} is not satisfiable. Also S1 U {8(p)} U {Z} is not satisfiable,
and it follows that S1 U {Z} is not satisfiable either. This is shown

256 8. Further First-Order Features

o

by a 'redefining interpretations' argument much like in the I'-case.
We omit it. But the conclusion is that Z is an interpolant for 8 1 ,

8 2 .

Now we come to Craig's Theorem itself [12J.

Definition 8.11.4 The sentence Z is an interpolant for the sentence X ~ Y if every relation
symbol, function symbol, and constant symbol of Z is common to X and
Y, and both X ~ Z and Z ~ Yare valid.

Theorem 8.11.5 (First-Order Craig Interpolation)
then it has an interpolant.

If X ~ Y is a valid sentence,

Exercises

Proof We show the contrapositive. Suppose X ~ Y lacks an inter
polant. Let 8 = {X, -,Y}, and consider the partition 8 1 = {-'Y} and
8 2 = {X}. If Z were an interpolant for 8 1 ,82 , it follows directly that Z
would also be an interpolant for X ~ Y. Thus, 8 1 , 8 2 has no interpolant,
so 8 is Craig-consistent. Then by the Model Existence Theorem, 8 is
satisfiable, and so X ~ Y is not valid. 0

8.11.1. We said in the proof of Lemma 8.11.3, in doing the I'-case, that
the sub case where l' E 8 2 was similar to that where l' E 8 1 . Nonetheless,
there are some notable differences. Do this sub case in detail.

8.12
Craig's

Interpolation
Theorem

Constructively

8.12. Craig's Interpolation Theorem-Constructively 257

The proof of Craig's Theorem in the previous section used the Model
Existence Theorem and was nonconstructive. Now we give a construc
tive proof, showing how to extract an interpolant from a closed tab
leau. (The previous sentence mentions an important point---one that is
easy to miss. An interpolant for a valid sentence X :J Y is not con
structed just from the sentences X and Y. It is constructed from a proof
of X :J Y ---different proofs can give different interpolants.) We use a
modified version of the symmetric Gentzen system method introduced
by Smullyan [48].

In proving X :J Y, we start a tableau with ...,(X :J Y), then apply the
a-rule, adding X and ...,Y. After this, any sentence added to the tableau
must be either a descendant of X or of ...,Y. We begin by enhancing the
usual tableau machinery to keep track of the ancestor of each sentence.
Think of X as "left" and ...,y as "right," which are respective positions
of X and Y in X :J Y. We symbolize this by writing L(X) and R(...,Y)
and systematically use the "L" and "R" notation throughout. In effect,
"L" and "R" are bookkeeping devices that record a sentence's ancestry;
they play no other role.

Definition 8.12.1 A biased sentence is an expression of one of the forms L(Z) or R(Z),
where Z is a sentence.

Next, the usual tableau rules are extended to biased sentences in a
straightforward way. For instance, the standard a-rule yields the fol
lowing two biased rules:

The other tableau rules are treated in a similar way. We call a tableau
that is constructed using these rules a biased tableau. A branch of a
biased tableau is closed if it contains a syntactic contradiction, ignoring
the L and R symbols. Thus, a branch is closed if it contains L(Z) and
R(...,Z) or if it contains L(Z) and L(...,Z), and so on.

If the sentence X :J Y has a tableau proof, it can be converted into a
closed biased tableau for {L(X), R(...,Y)}. Simply take the closed tableau
beginning with ...,(X :J Y), drop the first line, thus getting a tableau
beginning with X and ...,Y; replace X by L(X) and ...,y with R(...,Y) ,
then continue the insertion of Land R symbols downward through the
tableau, in the obvious way. We extract an interpolant from this closed
biased tableau.

258 8. Further First-Order Features

Essentially, the idea is this. We begin with each closed branch, assign an
interpolant (to be defined shortly) to it, then, one by one, we undo each
tableau rule application, calculating interpolants for the resulting short
ened branches from those for the original longer ones. Thus, for instance,
suppose the last rule applied on a branch is one of the biased a-rules
say the set of biased sentences on the branch is SU {L(a), L(aI)' L(a2)}'
and we have an interpolant for this set. Using it, we say how to calcu
late an interpolant for the smaller set S U {L(an, corresponding to the
branch before the a-rule was applied. Continuing in this way, we work
our way back to the beginning, thus producing an interpolant for the
set {L(X), R(--,Yn, and we will see this is also an interpolant for the
sentence X ~ Y. Now to define the terminology precisely.

Definition 8.12.2 We say the sentence Z is an interpolant for the finite set {L(AJ), ... ,
L(An), R(BI)' . .. , R(Bkn, provided Z is an interpolant, in the sense of
Definition 8.11.4, for the sentence (AI 1\ ... I\An) ~ (--,BI V ... V--,Bk).
(Take the empty conjunction to be T and the empty disjunction to be
L)

We use the notation S .is Z to symbolize that Z is an interpolant for
the finite set S of biased sentences.

Note that by this definition, an interpolant for the set {L(X),R(--,Yn
will be an interpolant for the sentence X ~ --,--,Y, and hence for X ~ Y.

Now we give calculation rules, starting with those for closed branches.

S U {L(A), L(--,An int
..1 --+

S U {R(A), R(--,An int T --+

S U {L(A), R(--,An int A --+

SU {R(A),L(--,An int --,A --+

S U {L(..ln int
..1 --+

S U {R(..ln int
T --+

Next the easy propositional cases.

S U {L(Tn .is A

SU {L(--,..ln.iS A

S U {L(..ln .is A

S U {L(--, Tn .is A

8.12. Craig's Interpolation Theorem-Constructively 259

SU {R(T)} ~ A

S U {R(-,~)} ~ A

SU{L(Z)}~A
S U {L(-,-,Z)} ~ A

Su {R(~)} ~ A

S U {R(-, T)} ~ A

Su {R(Z)} ~ A

S U {R(-,-,Z)} ~ A
The a-cases are also straightforward.

(int
S U {L ad, L(a2)} ----7 A

Su {L(a)} ~ A

S U {R(ad, R(a2)} ~ A

Su {R(a)} ~ A

Finally the ,6-cases, which are the most interesting of the propositional
rules, follow:

S U {L(,61)} ~ A S U {L(,62)} ~ B

SU{L(,6)}~AVB

S U {R(,61)} ~ A S U {R(,62)} ~ B

S U {R(,6)} ~ A /\ B
This completes the set of propositional rules. Before moving to those for
quantifiers, we verify one of the rules and give an example. The rule we
verify is the one for R(,6).

Verification Suppose S = {L(X1), ... , L(Xn), R(Y1), ... , R(Yk)} , and
we have both

S U {R(,6d} ~ A and S U {R(,62)} ~ B.

Then A is an interpolant for the sentence (Xl /\ . . . /\ X n) =:> (-, Y1 V
... V -'Yk V -,,61), so all the relation, function, and constant symbols of A
appear in both Xl /\ ... /\ Xn and -'Y1 V ... V -'Yk V -,,61. It follows that
they also appear in -'Y1 V ... V -'Yk V -,,6, since every relation, constant,
and function symbol of ,61 appears in ,6. A similar observation applies to
B. It follows that all relation, constant, and function symbols of A /\ B
are common to both Xl /\ ... /\ Xn and -'Y1 V ... V -'Yk V -,,6.

Next, A =:> (-'Y1 V ... V -'Yk V -,,61) and B =:> (-'Y1 V ... V -'Yk V -,,62) are
both valid. Then we have the following:

A /\ B =:> (-'Y1 V ... V -'Yk V -,,6d /\ (-'Y1 V ... V -'Yk V -,,62)
(-'Y1 V ... V -'Yk V (-,,61 /\ -,,62))
(-'Y1 V ... V -'Yk V -,(,61 V,62))
(-'Y1 V ... V -'Yk V -,,6)

260 8. Further First-Order Features

In a similar (and simpler) way, we have the validity of (Xl /\ ... /\Xn) ~
(A /\ B). Consequently,

S U {R(,6)} E!:!. A /\ B.

Example We compute an interpolant for the tautology [A /\ ((B /\ D) V e)] ~
-.[(A V E) ~ -.(-.B ~ e)]. First, here is a closed biased tableau for
{L(A /\ ((B /\ D) V e»,R(-.-.[(A V E) ~ -.(-.B ~ em}. At the end
of each branch, we give in square brackets an interpolant for the set of
biased sentences on that branch, computed using the rules just given.

L(A /\ ((B /\ D) ve»
R(-.-.[(A V E) ~ -.(-.B ~ em

R((A V E) ~ -.(-.B ~ e»
L(A)

L((B /\ D) ve)

/~
R(-.(A V E»

R(-.A)
R(-.E)

[A]

R(-.(-.B ~ e»
R(-.B)
R(-.e)

/~
L(B /\ D) L(e)

L(B) [e]
L(D)
[B]

Now we progressively undo tableau rule applications. For reasons of
space, we concentrate on the subtree beginning with the biased sentence
R(-.(-.B ~ e», displaying only it. Progressively, it becomes:

R(-.(-.B ~ e»
R(-.B)
R(-.e)

/~
L(B /\ D) L(e)

[B] [e]

R(-.(-.B ~ e»
R(-.B)
R(-.e)
[Bve]

R(-.(-.B ~ e»
[Bve]

We leave it to you to continue the process fully. When complete, A /\
(B V e) is the computed interpolant.

8.12. Craig's Interpolation Theorem-Constructively 261

Next we give the first-order rules, which are the most complicated. We
assume the language has no function symbols-a treatment of these can
be added, but it obscures the essential ideas. Once again, we suppose S =
{L(XI), ... , L(Xn), R(Yd, ... , R(Yk)}. The first two rules are simple.
Let p be a parameter that does not occur in S or in 8.

S U {L(8(p))} i!!1 A

S U {L(8)} i!!1 A

S U {R(8(p))} i!!1 A

S U {R(8)} i!!1 A

This leaves the I'-cases, each of which splits in two, giving four rules. In
the following, c is some constant symbol (the only kind of closed term we
have now), and A {c/ x} is the result of replacing all occurrences of c in
A with occurrences of the variable x. We assume x is a "new" variable,
one that does not appear in S or in 1'.

S U {L(!'(c))} i!!1 A

S U {L(!')} i!!1 A
if c occurs in {Xl"'" Xn}

S U {L(!'(c))} i!!1 A
int SU{L(!')} -+ (Vx)A{c/x}

otherwise

S U {R(!'(c))} i!!1 A

S U {R(!')} i!!1 A
if c occurs in {YI , ... , Yd

S U {R(!'(c))} i!!1 A
int S U {R(!,)} -+ (:3x)A{c/x}

otherwise

Once again we verify the correctness of one of these rules, that for R(1'),
leaving the other to you.

Verification Suppose SU{R(!'(c))} i!!1 A. Then both (Xl A .. . AXn) ~
A and A ~ (, YI V ... V 'Yk V 'I'(c)) are valid, and all constant and rela
tion symbols of A are common to {XI, ... ,Xn } and {YI , ... , Yk'I'(C)}.

First, assume we are in the case where c occurs in one of the sentences
of {YI , ... , Yd. Since I' ~ I'(c) is valid, so is 'I'(c) ~ 'I', and it follows
that A ~ (, YI V ... V 'Yk V 'I') is valid. Also, all relation and constant
symbols of A occur in both {X I, ... , Xn} and {YI , ... , Yk, I' }, since the
only one that might have been a problem was c, which appeared in I'(c)
and does not appear in 1'. This causes no difficulties, however, since
we are assuming that c is in one of {YI , ... , Yd. Thus, A is still an
interpolant.

Next, assume c does not occur in {YI , ... , Yd. We have that (Xl A
... A Xn) ~ A is valid. Also A ~ (:3x)A{c/x} is valid, consequently,

262 8. Further First-Order Features

(XI /\ .. . /\Xn) :::> (3x)A{ c/x} is valid. Further, all constant and relation
symbols of (3x)A{c/x} also appear in A and hence in {Xl, ... ,Xn}.

On the right hand side, A :::> (-'YI V ... V Yk V -.')'(c)) is valid, hence
so is (YI /\ ... /\ Yk /\ ')'(c)) :::> -.A. For a new variable x, the validity of
(Yx)[YI /\ ... /\ Yk /\')'(c)]{c/x}:::> (Yx)-.A{c/x} follows. But c does not
occur in {YI , ... , Yd, so (YX)[YI /\ ... /\ Yk /\ ')'(c)]{ c/x} == [YI /\ ... /\
Yk /\ (Yx)-y(c)(c/x)] == [YI /\ ... /\ Yk /\ ')']. Thus, we have the validity of
-.(Yx)-.A{c/x} :::> (-'YI V ... V -'Yk V')'), or (3x)A{c/x} :::> (-'YI V ... V

-'Yk V')').

Finally, the constant and relation symbols of (3x)A {c/ x} are those of
A except for c. (In fact, if c does not actually appear in A, the quantifi
cation is vacuous, and (3x)A{c/x} and A have the same constant and
relation symbols.) The constant and relation symbols of {Xl, ... , Xn}
include those of A, hence trivially those of (3x) A { c/ x}. The constant and
relation symbols of {Yl, ... , Yk, ')'(c)} include those of A, so the constant
and relation symbols of {Yl, . .. , Yk, ')'} also include those of (3x)A.{ c/x}.

We have thus verified that (3x)A {c/ x} is an interpolant.

Craig's Theorem was strengthened by Lyndon [32]. Recall from Defini
tion 8.2.3 the notion of positive and negative formula occurrence. Say
a relation symbol R occurs positively in a formula X if it appears in
a positive atomic subformula of X -similarly for negative occurrences.
Note that a relation symbol may appear both positively and negatively
in the same formula.

Theorem 8.12.3 (Lyndon Interpolation) If X:::> Y is a valid sentence, then it has
an interpolant Z such that every relation symbol occurring positively in
Z has a positive occurrence in both X and Y, and every relation symbol
occurring negatively in Z has a negative occurrence in both X and Y.

Lyndon's result cannot be extended to account for positive and negative
occurrences of constant or function symbols. Consider the valid sentence
[(Yx)(P(x) :::> -.Q(x)) /\P(c)] :::> -.Q(c). The constant symbol c will occur
in any interpolant for this sentence, but it occurs positively on the left
and negatively on the right.

In effect, Lyndon's interpolation theorem has already been proved. That
is, the two proofs we gave actually verify the stronger version. We leave
it to you to check this, as an exercise.

Here is a different strengthening of Craig's theorem. As usual, we need
some terminology first.

Exercises 263

Definition 8.12.4 A formula is universal if every quantifier occurrence in it is essentially
universal, in the sense of Definition 8.5.1. Likewise, a formula is existen
tial if every quantifier occurrence in it is essentially existential.

Theorem 8.12.5 Suppose X ::J Y is a valid sentence. IfY is universal, there is an inter
polant that is also universal. Similarly, if X is existential, there is an
existential interpolant. Finally, if X is existential and Y is universal,
there is a quantifier-free interpolant.

Exercises 8.12.1. Use the procedure of this section to compute an interpolant
for the valid sentence [(V'x)(P(x) ::J -,Q(x)) 1\ P(c)] ::J -,Q(c).

8.13
Beth's

Definability
Theorem

Definition 8.13.1

8.12.2. Show that the procedure of this section actually verifies Lyn
don's strengthening of the Craig Interpolation Theorem.

8.12.3. Prove Theorem 8.12.5 using the procedures of this section.

8.12.4P • Implement the propositional part of the procedure of this
section in Prolog, producing a propositional theorem prover for implica
tions that computes interpolants.

8.12.5P • Extend the Prolog implementation of the previous exercise
to a full first-order version.

Sometimes information is explicit: "The murderer is John Smith." Often
we find an implicit characterization instead, as in "The murderer is the
only person in town who wears glasses, has red hair, and owns a dog and
a canary." Puzzles often involve turning implicit characterizations into
explicit ones. Beth's Definability Theorem [4] essentially says that in
classical logic such puzzles can always be solved. This is a fundamental
result that says that classical logic has a kind of completeness where
definability is concerned. We begin this section with some terminology,
then we state and prove Beth's Theorem. The proof we give is not Beth's
original one but is based on Craig's Theorem and comes from Craig's
1957 paper [12].

Let R be an n-place relation symbol, and cI>(Xl, •.. ,xn) be a formula
with free variables among Xl, ••. ,Xn , and with no occurrences of R. We
say cI> is an explicit definition of R, with respect to a set S of sentences,
provided

264 8. Further First-Order Features

Example In a group, y is the conjugate of x under conjugation by a if y = a-lxa.
Conjugation is a three-place relation, between a, x, and y that has an
explicit definition (we just gave it informally) with respect to the set S
of axioms for a group. Of course, to properly present this as an example,
we need a first-order language with equality. Equality will be investigated
in the next chapter, and it can be shown that the results of this section
do carryover.

Definition 8.13.2 Again, let R be an n-place relation symbol. We say R is implicitly de
fined by a set S of sentences, provided S determines R uniquely, in the
following sense. Let R* be an n-place relation symbol different from R,
that does not occur in S, and let S* be like S except that every occur
rence of R has been replaced by an occurrence of R* . Then S determines
R uniquely if

Example Let S = ((\fx)(R(x) ~ A(x)), (\fx) (R(x) ~ B(x)), (\fx) (A(x) ~ (B(x) ~
R(x)))}. It is easy to check that S determines R uniquely, and so R
is implicitly defined by S. In fact, R also has the explicit definition
(\fx)[R(x) == (A(x) /\ B(x))].

Theorem 8.13.3 (Beth Definability) If R is implicitly defined by a set S, then R
has an explicit definition with respect to S.

Proof Suppose R is implicitly defined by S. Let R* be a new relation
symbol, and let S* be like S but with occurrences of R replaced by
occurrences of R*. Then

so by Theorem 5.10.2,

where So and So are finite subsets of Sand S* , respectively. Let /\ So be
the conjunction of the members of So, and let /\ So be the conjunction
of the members of So, so that both /\ So and /\ So are sentences. Then
(Exercise 5.10.3, part 7),

is valid. Choose n distinct parameters, Pl, . .. , Pn. Then the following is
also valid:

8.13. Beth's Definability Theorem 265

and from this follows the validity of

[/\ So 1\ R(p!, ... ,Pn)] ~ [/\ So ~ R*(p!, ... ,Pn)]'

Now by Craig's Theorem 8.11.5, there is an interpolant for this. The
interpolant may contain some or all of the parameters we introduced,
so we denote it by Il>(Pl, ... ,Pn)' Since it is an interpolant, all constant,
function, and relation symbols of Il>(p!, ... ,Pn) are common to [A SO 1\

R(p!, ... ,Pn)] and [A So ~ R*(P!, ... ,Pn)], and both

[/\ So 1\ R(Pl, ... ,Pn)] ~ ll>(Pl,'" ,Pn)

and

Il>(Pl,'" ,Pn) ~ [/\ So ~ R*(p!, ... ,Pn)]

are valid.

The relation symbol R* does not occur in [A SO 1\ R(Pl, ... ,Pn)], and the
relation symbol R does not occur in [A So ~ R*(p!, ... ,Pn)], and so nei-
ther R nor R* can occur in Il>(p!, ... ,Pn)' Also, Il>(p!, ... ,Pn) ~ [A So ~
R*(p!, ... ,Pn)] is valid, hence so is the result of replacing all occurrences
of R* by a relation symbol that does not appear in this sentence. Since R*
does not occur in Il>(Pl,'" ,Pn), replacing occurrences of R* with occur
rences of R yields the validity of ll>(Pl,'" ,Pn) ~ [A SO ~ R(p!, ... ,Pn)],
from which the validity of A So ~ [Il>(pl'''' ,Pn) ~ R(Pl,'" ,Pn)] fol
lows. We also have the validity of [A SO 1\ R(Pl,." ,Pn)] ~ ll>(Pl,'" ,Pn)
from which the validity of A So ~ [R(p!, ... ,Pn) ~ Il>(pl, ... ,Pn)] fol
lows. Combining these two, we have the validity of

/\ So ~ [R(Pl, .. ' ,Pn) = Il>(Pl,'" ,Pn)],

from which we immediately obtain

SO PI [R(p!, ... ,Pn) = ll>(Pl,'" ,Pn)]

and hence

S PI [R(p!, ... ,Pn) = Il>(Pl,'" ,Pn)]'

Finally, from this (Exercise 8.13.1) we have the validity of

S PI ('v'Xl)'" ('v'Xn) [R(x!, ... , xn) = Il>(Xl, ... , xn)].

Since Il>(Xl, ... ,xn) contains no occurrences of R, it is an explicit defi
nition of R. 0

The proof of Beth's Theorem given above is entirely constructive, pro
vided we have a constructive method of finding interpolants. Our first
proof of Craig's Theorem was not constructive, but our second was.
Also Craig's original proof [12] was constructive by design. It follows
that the conversion from implicit to explicit definition is a constructive
one, suitable for mechanization, at least in principle.

266 8. Further First-Order Features

Exercises

8.14
Lyndon's Ho

momorphism

Theorem

Example

Definition 8.14.1

8.13.1. Suppose <I> is a formula with only x free, and p is a parameter
that does not occur in <I> , or in any member of the set S of sentences.
Show that if S 1=1 <I>{x/p} then S 1=1 (Vx)<I>. Hint: see Exercises 5.3.2
and 5.10.2.

Let L be a first-order language with no constant or function symbols,
and let M = (D, I; and N = (E, J; be two models for the language
L. A mapping h : D ----> E is a homomorphism, provided the following:
For each n-place relation symbol R of L and for each b1 , ... , bn ED, if
R1 (b1 , ... , bn) is true in M then R J (h(bd, ... , h(bn)) is true in N.

Suppose L has a single three-place relation symbol, R. Let M be the
model whose domain is the integers and in which R is interpreted by the
addition relation; that is, RI(a, b, c) is true in M just in case a + b = c.
Let N have domain {O, I}, and interpret R by the addition modulo 2
relation; R J (a, b, c) is true in N if a+b = c (mod 2). If h is the function
mapping the evens to 0 and the odds to 1, h is a homomorphism from
MtoN.

A sentence X of L is preserved under homomorphisms, provided, when
ever X is true in a model M, and there is a homomorphism from M to
N, then X is also true in N.

Being preserved under homomorphisms is a semantic notion-the def
inition talks about models and truth. The question for this section is,
Does this semantic notion have a syntactic counterpart? We will see that
it does-being a positive sentence.

Definition 8.14.2 Let L be a first-order language (with or without constant and function
symbols). The positive formulas of L are the members of the smallest
set S such that:

1. If A is atomic, A E S.

2. Z E S ==} ---.---.Z E S.

3. 0;1 E Sand 0;2 E S==}o; E S.

4. /31 E Sand /32 E S ==} /3 E S.

5. ')'(t) E S ==} ')' E S.

6. 8(t) E S ==} 8 E S.

8.14. Lyndon's Homomorphism Theorem 267

Informally, the positive formulas are those that can be rewritten us
ing only conjunctions and disjunctions as propositional connectives (in
particular without negation symbols). You are asked to show this as
Exercise 8.14.1. Equivalently, the positive formulas are those in which
every relation symbol appears only positively.

Now, here is the easy half of the semantic/syntactic connection we are
after; we leave its proof to you. (It generalizes considerably-see Exer
cise 9.2.3.)

Proposition 8.14.3 Let L be a language with no constant or function symbols. Every positive
sentence of L is preserved under homomorphisms.

The hard half is Lyndon's Homomorphism Theorem. It asserts the con
verse.

Theorem 8.14.4 (Lyndon Homomorphism) Let L be a language with no constant
or function symbols. If the sentence X is preserved under all homomor
phisms, then X is equivalent to some positive sentence.

Proof Without loss of generality, we assume L has a finite number of
relation symbols, since it is only necessary to consider those that actually
appear in X. For each (n-place) relation symbol R of L, let R' be another
relation symbol (also n-place) that is new to the language. Let L' be
the result of enlarging L with these additional relation symbols. By the
homomorphism sentence for R, we mean the sentence

Now, let H be the conjunction of all the homomorphism sentences for
the relation symbols of L. Also, let X' be the sentence that is like X,
except that each relation symbol R has been replaced by its counterpart
R'. (More generally, for any sentence Z, let Z' be the result of replacing
each R by the corresponding R'.)

N ow assume that X is preserved under homomorphisms. We claim the
following sentence is valid:

X ~ (H ~ X').

Suppose this is not so. Let Mo = (Do, 10 ; be a model for L' in which it is
not true, hence in which X and H are true, but X' is false. We construct
two new models Ml = (D1,11; and M2 = (D2,12;, for the original
language L, by "pulling apart" this one. First, set Dl = D2 = Do, so
all models have the same domain. Next, for each relation symbol R of
L, set RII = RIo and RI2 = R'lo.

268 8. Further First-Order Features

In effect, Ml acts like the "unprimed" part of M, and M2 acts like the
"primed" part. This can be made more precise, as follows (we leave the
proof as an exercise):

Pulling Apart Assertion For any sentence Z of L:

1. Z is true in M o if and only if Z is true in M l .

2. Z is true in M o if and only if Z' is true in M 2 •

Now, let al, ... , an be in Do, and suppose RII (al,"" an) is true in M l ·

By definition, RIo (al' ... ,an) is true in Mo. But the sentence H is true
in Mo, so in particular (\ixI) ... (\ixn) [R(Xl' ... ,xn) :::J R' (Xl, ... ,xn)] is
true. It follows that R,Io (al' ... , an) is true in Mo, and hence RI2 (al' ... ,
an) is true in M 2. Then the identity map is a homomorphism from Ml
to M2!

Finally, X is true in Mo, hence X is true in Ml by the Pulling Apart As
sertion. But we are assuming that X is preserved under homomorphisms,
hence X is true in M 2 • Then by the Pulling Apart Assertion again, X'
must be true in Mo, but it is not. This contradiction establishes the
validity of X :::J (H :::J X').

Now, by Lyndon's Interpolation Theorem 8.12.3, there is a sentence Z
such that

1. X :::J Z is valid.

2. Z:::J (H :::J X') is valid.

3. Every relation symbol that occurs positively (negatively) in Z oc
curs positively (negatively) in both X and H :::J X'.

No primed relation symbol R' occurs in X, hence it cannot occur in
Z. Also, R does not occur in X', and the only occurrence of R in H
is in the homomorphism sentence for R, (\iXl)'" (\ixn)[R(Xl, ... , xn) :::J
R'(Xl, ... , xn)], where it occurs negatively. Consequently, the only oc
currence of R in H :::J X' is positive, and hence any occurrence of R in
Z must be positive. It follows that Z itself is a positive sentence of L.

We have established that Z :::J (H :::J X') is valid. For each relation
symbol R of L, if every occurrence of R' in this sentence is replaced by an
occurrence of R, the sentence remains valid. This does not affect Z, since
no R' occurs in Z. Making the replacement turns X' into X. And finally,
replacing R' by R converts H into a tautology, since the homomorphism
sentence for R becomes (\iXl)'" (\ixn)[R(Xl, ... , xn) :::J R(Xl,"" xn)].
Consequently, Z :::J X must be valid. We also know that X :::J Z is valid,
hence we have the validity of X == Z for a positive sentence Z of L. 0

Exercises

Exercises 269

We note that the Interpolation Theorem 8.12.5 can also be used to prove
a "preservation" result. It can be used to show that a sentence is pre
served under passage to submodels if and only if it is equivalent to a
universal sentence. We do not give the argument here.

8.14.1. Show that if X is a positive formula then there is a formula
X* in which there are no negation symbols and in which the only binary
propositional connectives are /\ and V, such that X == X* is valid.

8.14.2. Prove Proposition 8.14.3. Hint: You need to prove a more gen
eral result, about formulas, not just sentences. Let h be a homomorphism
from the model M = (D, I) to the model N = (E, J). For each assign
ment A in M, let hA be the assignment in N given by xhA = h(xA).
Now show by structural induction that, for each positive formula X, and
any assignment A in M, if XI,A is true in M, then XJ,hA is true in N.

8.14.3. Verify the Pulling Apart Assertion in the proof of Lyndon's
Theorem. Hint: As in the previous exercise, you need to establish a
stronger result about formulas.

8.14.4. Let L be the language with R as a binary relation symbol
and no function or constant symbols. Being a reflexive relation can be
characterized by a positive sentence: (l;fx)R(x,x). The obvious charac
terization of being a symmetric relation is (l;fx)(l;fy)[R(x,y) ::) R(y, x)],
but this is not a positive sentence.

1. Show there is no positive sentence that characterizes the symmetric
relations.

2. Show the same for transitivity.

9 __________________________________ _

Equality

9.1
I ntrod uction

Most relations are meaningful only in restricted circumstances. Big
ger_than makes no sense when applied to colors; to_the_left_of makes no
sense when applied to smells. But the relation of equality has the univer
sality that is shared by logical connectives and quantifiers. It is meaning
ful no matter what the domain. Consequently, the study of equality is
generally considered to be part of logic, and formal rules for it have been
developed. (For a wonderful discussion of what constitutes the subject
matter of logic, see Tarski [52]). Treating equality as a part of formal
logic makes sense from a practical point of view as well. Virtually every
mathematical theory of interest uses the equality relation in its formula
tion, so efficient rules for it should be incorporated into theorem provers
at a deep level.

When we moved from propositional to first-order logic, we gained power
of expression, but our theorem provers became more complex and run
ning them became more time costly. Adding equality rules has a similar
effect, much intensified. With equality rules present, complete theorem
provers have so many paths to explore in attempting to produce proofs
that they can generally only succeed with simple, not very interesting
theorems. It is here that good heuristics, and even machine/human inter
action, becomes critical. We will provide only the theoretical foundation.
Going beyond that is a matter for experimentation and psychology, not
just mathematics.

Before we start on a formal treatment, we should consider, informally,
what properties of equality are fundamental. It is, of course, an equiv
alence relation: reflexive, symmetric, and transitive. It obeys a substi-

272 9. Equality

tutivity principle, one can 'substitute equals for equals.' That is, if we
know that a = b, then the truth value of a statement is preserved if
we replace some occurrences of a by occurrences of b. We will refer to
this as the replacement property of equality. Further, in domains where
it makes sense, one can add the same thing to both sides of an equality,
and get another equality, and similarly for other operations. It turns out
that some of these principles follow easily from others.

Transitivity. Suppose we know that a = band b = c. Since b = c,
using the replacement principle we could replace occurrences of b with
occurrences of c without affecting truth values. We are given that a = b
is true; replacing the occurrence of b in this with c we get that a = c
is true. Thus, the transitivity of equality follows from the replacement
property of equality.

Symmetry. Suppose we know that a = b. Again, by the replacement
property of equality, we can replace occurrences of a with occurrences
of b. Also by the reflexive property of equality, a = a. If we replace the
first occurrence of a here by an occurrence of b, we get b = a. Thus, the
symmetry of equality follows from the replacement property, together
with reflexivity.

Operation application. Say we are talking about numbers, we are told
a = b, and we would like to conclude that a + c = b + c; that is, we can
add c to both sides and preserve equality. Well, by the reflexive principle,
a + c = a + c. If we use the replacement property with a = b, and replace
the second occurrence of a by an occurrence of b we get a + c = b + c.
Thus, again we need only replacement and reflexivity.

In fact, all the basic properties of equality can be deduced from replace
ment and reflexivity alone. In what follows we will simply build these
notions into formal logic systems in direct ways. Of course, we must es
tablish that when we do so we really have captured equality, that the
informal arguments did not mislead us.

9.2. Syntax and Semantics 273

9.2
Syntax and

Semantics

The syntax of first-order logic with equality is the same as that of first
order logic in the previous chapters, except that now we assume there
is a designated two-place relation symbol that we think of as standing
for the equality relation. We will not use the symbol = for this purpose;
we prefer to keep that for its standard mathematical role of representing
the equality relation in informal arguments. The formal symbol we use
is ~. Thus, for the rest of this chapter all languages will include the two
place relation symbol ~. Also, to make reading easier, we will generally
write t ~ u instead of the official ~ (t, u) for atomic formulas involving
this relation symbol.

Semantics is straightforward. We have already defined the basic notion of
first-order logic model. Now we simply restrict ourselves to those models
in which the symbol we have chosen to represent equality really does so.

Definition 9.2.1 A model M = (D, I) is called normal provided ~I is the equality relation
onD.

The goal of this chapter is now easily stated. We want to create proof
procedures that prove exactly those sentences that are true in all normal
models.

The notion of logical consequence adapts in a straightforward manner.
Recall we have been writing S FIX to denote that X is a first-order
consequence of the set S, meaning that X is true in every model in which
the members of S are true.

Definition 9.2.2 Let X be a sentence, and S be a set of sentences. We write S F,;e X,
provided X is true in every normal model in which the members of S
are true.

Then S F,;e X is like S FIX, except that it takes equality into account.
Trivially, if S FI X, then S F,;e X. The converse is not true, however.
Suppose S = {a ~ b, Pea)}. Then S F,;e PCb), but it is not the case that
S FI PCb).

Many mathematical structures can be easily characterized now, by just
writing down a few defining axioms. For example, let G be the following
set of sentences:

1. (V'x)(V'y) (V'z) [x 0 (y 0 z) ~ (x 0 y) 0 z]

2. (V'x) [(x 0 e ~ x) 1\ (e 0 x ~ x)]

3. (V'x) [(x 0 i(x) ~ e) 1\ (i(x) 0 x ~ e)]

274 9. Equality

Exercises

A group is simply a normal model in which the members of G are true.
Then a sentence X is true in all groups just in case G F'" X. In a
similar way notions of ring, field, integral domain, vector space, etc. can
be captured.

Sometimes working with an infinite set of sentences is useful. Consider
the following list:

1. E>l = (:JXI)(:JX2)-'(XI ~ X2)

2. E>2 = (:JXI)(:JX2)(::3X3)[-'(XI ~ X2) 1\ -'(XI ~ X3) 1\ -'(X2 ~ X3)]

3. etc.

The pattern being followed is straightforward. E>3 would say there are
things, Xl, X2, X3, and X4, no two of which are equal. Then E>n is true in
a normal model if and only if the domain of the model has more than n

members. Let Inf be the set {E>l' E>2, .. . }. All the members of Infare
true in a normal model if and only if the model has an infinite domain.
Now, GUInf F'" X if and only if X is true in all infinite groups. Likewise
Gu {E>4' -.E>5} F'" X if and only if X is true in all five element groups,
and so on.

On the other hand, the notion of finite group, or finite structure of any
kind, can not be captured this way. Corollary 5.9.2 implied it could
not be done using the machinery of first-order logic. This corollary was
proved using the Compactness Theorem, and we will see that the Com
pactness Theorem carries over to first-order logic with equality, the same
argument applies, and so a characterization of finiteness is still not pos
sible.

9.2.1. Which of the following sentences are true in all normal models?
Which are true in all models?

1. (:Jx)(Vy)(x ~ y) ~ (Vx)(Vy)(x ~ y).

2. (:Jx)(:Jy)(x ~ y) ~ (Vx) (Vy) (x ~ y).

3. (Vx)(Vy)(x ~ y) ~ (:Jx)(Vy)(x ~ y).

4. (\fx) (:Jy) (x ~ y).

9.2.2. Let L be a first-order language with equality, and let M = (D, I)
and N = (E, J) be two models for the language L. A mapping h : D --+ E
is a homomorphism if:

1. For each constant symbol c of L, h(cI) = cJ .

Exercises 275

2. For each n-place function symbol I of L and for each d l , ... ,dn ED,
h(P(dl , ... , dn)) = I J (h(dd,···, h(dn)).

3. For each n-place relation symbol R of L and for each d l , ... , dn E D,
RI(dl , ... , dn) true =? R J (h(dd, ... , h(dn)) true.

If h is a homomorphism from the model M = (D, I) to the model N =
(E, J), its action is extended to assignments as follows: For an assignment
A in M, let hA be the assignment in N such that, for each variable x,
xhA = h(xA).

Now, let h be a homomorphism from M to N. Show the following:

1. For each term t of the language L, and for each assignment A in
M, h(tI,A) = tJ,hA.

2. If h is onto, then for each assignment A * in the model N, there is
an assignment A in M such that A * = hA.

9.2.3. As in the previous exercise, suppose L is a first-order language
with equality, and h is a homomorphism from the model M = (D, I)
onto the model N = (E, J). Show that for each positive sentence X
(Definition 8.14.2), if X is true in M, then X is true in N. Hint: You
will have to prove the following more general result: For any positive
formula X and any assignment A in M, if XI,A is true in M, then
XJ,hA is true in N. Show it follows that the homomorphic image of a
group is a group.

9.2.4. Suppose L is a first-order language with equality. Also suppose
M = (D M, 1M) and N = (D N, IN) are two normal models for this lan
guage. We use the following shorthand notation: For a constant symbol
c of L, CM is the member assigned to C by 1M . For a function symbol I,
1M is the function assigned to I by 1M. For a relation symbol R, RM is
the relation assigned to R by 1M . Similarly for N. Call M a substructure
of N if

1. The domain D M is a subset of the domain D N.

2. For every constant symbol c of L, CM = CN·

3. For every n-place function symbol I of L, 1M is IN restricted to
(DM)n.

4. For every n-place relation symbol R of L, RM is the restriction of
RN to (DM)n.

Note that if M is a substructure of N, then an assignment A in M is
also an assignment in N. Now, assume M is a substructure of Nand
prove the following:

276 9. Equality

9.3

1. For each term t of L, tIM,A = tIN,A.

2. For each quantifier-free formula q, of L, q,IM ,A = q,IN ,A.

3. An existential formula is one of the form (::IXI) ... (::Ixn)q" where q,

is quantifier free. If X is existential and XIM,A = t, then XIN,A = t.

4. A universal formula is one of the form (\lxl) ... (\lxn)q" where q, is
quantifier free. If X is universal and XIN,A = t, then XIM,A = t.

5. Show it follows from the previous item that if S is a subset of a group
and S contains the identity, is closed under the group operation, and
is closed under inverses, then S is a itself a group.

The Equality
Axioms

We mentioned earlier that the reflexivity and replacement properties of
equality were basic; other important features of equality followed from
them. It is possible to express these properties by sentences of first-order
logic; such sentences are often called equality axioms. In a sense that we
will make precise later on, these equality axioms tell us everything we
need to know about the equality relation.

Definition 9.3.1 ref is the sentence (\lx)(x ~ x).

The sentence ref captures the reflexive property of equality in a single
sentence. The replacement property takes more effort.

Definition 9.3.2 Let f be an n-place function symbol. The following sentence is a replace
ment axiom for f: (\lVI)··· (\lvn) (\lwt) ... (\lWn){[(VI ~ WI) /\ ... /\ (Vn ~
Wn)] ::J [f(vI, ... ,Vn) ~ f(w!, ... ,Wn)]}.

For example, if + is a two-place function symbol (which we write in infix
position), (\lx)(\ly)(\lz)(\lw){[(x ~ z) /\ (y ~ w)] ::J [x + Y ~ z + wn.
Suppose we call this replacement axiom A for the moment. If c is a
constant symbol, it is easy to see that {A} I=f (\lx)(\lz){[(x ~ z) /\ (c ~
c)] ::J [x + c ~ z + cn, and so {A, ref} I=f (\lx)(\lz){(x ~ z) ::J [x + c ~
z + cn.

Definition 9.3.3 For a language L, fun(L) is the set of replacement axioms for all the func
tion symbols of L. Members of fun(L) are called function replacement
axioms.

9.3. The Equality Axioms 277

Function replacement axioms are language dependent; there is one for
each function symbol of the language. If the language has infinitely many
function symbols, the set of function replacement axioms will also be in
finite. In effect, these equality axioms allow replacements in the simplest
kind of terms; replacement in more complicated terms follows, however.
That is, if these axioms are true in a model, whether or not the model is
normal, then replacing equals by equals can be done in arbitrary terms.

Proposition 9.3.4 Suppose t is a term of the language L, with free variables Vl, ... , Vn . Let
u be the term t{ VdWl,"" vn/wn } where Wl, ... , Wn are distinct new
variables. Then

{ref} U fun(L) 1=1
('v'vd'" ('v'Vn)('v'Wl)'" ('v'Wn){[(Vl ~ Wl) /\ ... /\ (vn ~ wn)] => (t ~ un.
Having dealt with function symbols and terms, we turn to the replace
ment property for relation symbols and formulas.

Definition 9.3.5 Let R be an n-place relation symbol. The following sentence is a replace
ment axiom for R:

('v'vd'" ('v'Vn)('v'Wl)'" ('v'Wn){[(Vl ~ Wl) /\ ... /\ (vn ~ wn)]
=> [R(vl, ... ,vn) => R(Wl,'" ,wn)]}'

For example, suppose> is a two-place relation symbol of the language.
The replacement axiom for it is ('v'Vl)('v'V2)('v'wd('v'W2){[(Vl ~ Wd/\(V2 ~
W2)] => [(Vl > V2) => (Wl > W2)])' Further, ~ itself is a two-place
relation symbol. Its replacement axiom is ('v'Vd('v'V2)('v'Wl)('v'W2){[(Vl ~
wd /\ (V2 ~ W2)] => [(Vl ~ V2) => (Wl ~ W2)])' Suppose we denote this
sentence by B for now. It is easy to see that {B} 1=1 ('v'x)('v'y){[(x ~
y) /\ (x ~ x)] => [(x ~ x) => (y ~ x)]), and so {B, ref} 1=1 ('v'x)('v'y)[(x ~
y) => (y ~ x)]. That is, symmetry of equality is a logical consequence
of the replacement axiom for ~ together with ref Transitivity is also a
consequence. And once again, more general replacement also follows.

Definition 9.3.6 For a language L, rel(L) is the set of replacement axioms for all the
relation symbols of L. Members of rel(L) are called relation replacement
axioms.

Proposition 9.3.7 Suppose X is a sentence of the language L, with free variables Vl,···,
Vn . Let Y be the sentence X{Vl/Wl,""Vn/wn } where Wl, ... , Wn are
distinct new variable~.. Then

{ref} Ufun(L) U rel(L) 1=1 ('v'vd'" ('v'Vn)('v'Wl)'" ('v'wn)

{[(Vl ~ wd /\ ... /\ (vn ~ wn)] => (X => Yn·

278 9. Equality

Definition 9.3.8 For a language L, by eq(L) we mean the set {rej} U fun(L) U rel(L).
Members of this set are called equality axioms for L.

We have now described all the equality axioms for a given language.
Propositions 9.3.4 and 9.3.7 say they seem to have the power we need.
In fact, they are exactly what we need; they suffice to reduce problems
about logic with equality to more general questions about first-order
logic. The following makes this precise:

Theorem 9.3.9 Let L be a first-order language. Then

Exercises

SF'" Xif and only if S U eq(L) Ff X.

This theorem can be given a direct proof, but with little more work we
can prove a version of the Model Existence Theorem that will have this
as an easy consequence and that will be of use for other purposes as well.
Consequently, we postpone the proof until Section 9.6. Note, however,
the importance of this result. It implies that our earlier proof procedures
can be used directly for logic with equality, provided only that we add the
equality axioms. Whether this is always the most efficient way to proceed
is another matter, however. It also implies that many theoretical results
carryover rather directly to take equality into account.

9.3.1. Give a proof by structural induction of Proposition 9.3.4.

9.3.2. Let B be the sentence ('v'Vd('v'V2)('v'WI)('v'W2){[(VI ~ wI) A (V2 ~
W2)] ~ [(VI ~ V2) ~ (WI ~ W2)]}, the replacement axiom for ~. Show
{B, rej} Ff ('v'x)('v'y)('v'z)[x ~ Y ~ (y ~ z ~ x ~ z)].

9.3.3. Give a proof by structural induction of Proposition 9.3.7.

9.3.4. Use Theorem 9.3.9 and show the Compactness Theorem carries
over to first-order logic with equality. Show it in the following form:
SF", X if and only if SO F'" X for some finite subset So of S.

9.4
Hintikka's
Lemma

9.4. Hintikka's Lemma 279

As usual in our proofs of various versions of the Model Existence The
orem, we will prove Hintikka's Lemma first to get details of the model
construction out of the way. The version we prove now is a direct exten
sion of the one we proved earlier for first-order logic without equality.
Later we will prove an alternative, strengthened version. The version
proved here will not be superseded, however. We will use it in proving
the stronger one.

In dealing with first-order logic without equality, we found that Herbrand
models played an important role. We can not expect this now. After
all, if the language L has infinitely many closed terms, any Herbrand
model will have an infinite domain, but the sentence (V'x)(V'y)(x ~ y),
which is satisfiable, is never satisfiable in such a domain, assuming ~ is
interpreted as equality. Still, a relatively simple class of models plays the
role that Herbrand models did when we were not considering equality.
These are the canonical models. The idea is that in a canonical model
every member of the domain has a name in the language. Herbrand
models are also canonical, since members of the domain are closed terms
of the language and name themselves. But there are canonical models
that are not Herbrand.

Definition 9.4.1 A model M = (D, I) for the language L is a canonical model, provided,
for each member d ED, there is some closed term t of L such that
t I = d.

In Section 5.3 we proved some useful results concerning Herbrand mod
els. In fact, they extend readily to canonical models. The statements
become a little more complicated because in canonical models assign
ments are not generally substitutions as well. But assignments give to
variables values in the domain of the model, and those members of the
domain have names in the language, names that can be used by a sub
stitution.

Definition 9.4.2 Let M = (D, I) be a model for L; let a be a grounding substitution,
replacing variables by closed terms of L; and let A be an assignment
in M. We say a and A correspond, provided, for each variable x, x A =
(xa)I. (Informally, for each variable x, xa is a name for the member xA
of D.)

Proposition 9.4.3 Suppose M = (D, I) is a canonical model for the language L, and as
signment A and substitution a correspond. Then for every term t, we
have tI,A = (ta)I.

Proof By structural induction on t.

280 9. Equality

o

Basis cases If t is a variable, say x, then tI,A = xI,A = x A =

(xa)I = (ta)I. Likewise, ift is a constant symbol, say c, then tI,A =
cI,A = cI = (ca)I = (ta)I.

Induction step Suppose the result known for each term tl,'" ,tn,
and t = f(h, ... , tn). Then

tI,A = [f(t l , ... , tnW,A
= fI(t1,A tI,A) 1 , ... , n

= fI((ha)I, ... , (tna)I)

= [f(tw, ... , tna)Y
= [J(h, ... , tn)a]I
= (ta)I.

Proposition 9.4.4 Suppose M = (D, I) is a canonical model for the language L, and
assignment A and substitution a correspond. For a formula <I> of L,
<I>1,A = (<I>a)I.

Now we have established the basic properties of canonical models, and
we turn to Hintikka's Lemma itself. An example should help clarify the
basic ideas of the proof.

It is entirely possible to have a model in which all members of eq(L) are
true, but which is not normal. The following is a simple, and probably
familiar, example. Let L be the first-order language with ;::::: as the only
relation symbol, and with the two-place function symbol +. Let M =
(Z, I) be the model in which Z is the set of signed integers, +1 is addition,
and ;:::::1 is congruence modulo 2. When interpreted in this model, the
equality axiom for + says that the addition of congruences produces
another congruence, which is true. Likewise, the equality axiom for ;:::::
is true, because ;:::::1 is an equivalence relation. Still, the model is not
normal.

Even though we do not have a normal model, there is a standard pro
cedure for constructing a normal model from it. Partition Z into con
gruence classes, and use these as the domain of a new model. In this
new model, interpret + to be addition modulo 2. The resulting model is
usually designated Z2. Note that its domain is Z / ;:::::1. This construction
generalizes and forms the basis for the proof of Hintikka's Lemma.

Definition 9.4.5 Let L be a first-order language. A set H of sentences of L is a first
order Hintikka set with equality, provided H is a first-order Hintikka set
(meeting the conditions of Definitions 3.5.1 and 5.6.1), and in addition:

9.4. Hintikka's Lemma 281

8. t::::::: t E H for every closed term t of L.

9. iI::::::: Ul, .. ·,tn::::::: Un E H ==;. f(tl, ... ,tn)::::::: f(ul, ... ,Un) E H for
every n-place function symbol f of L.

10. tl ::::::: Ul, ... , tn ::::::: Un, R(tl"'" tn) E H ==;. R(Ul"'" Un) E H for
every n-place relation symbol R of L.

Now we state and prove a version of Hintikka's Lemma that takes equal
ity into account. In the proof we first construct a model that may not
be normal, but in which::::::: is interpreted by some equivalence relation.
Then this model is used to produce a 'factor' model, where the mem
bers of the domain are equivalence classes from the old domain. This
construction is common throughout mathematics. You may have seen it
used to produce factor groups in a course on group theory. The princi
pal items about equivalence classes that we will need are contained in
Exercise 9.4.3.

Proposition 9.4.6 (Hintikka's Lemma) Suppose L is a language with a nonempty set
of closed terms. If H is a first-order Hintikka set with equality with
respect to L, then H is satisfiable in a normal model. More precisely, H
is satisfiable in a normal model that is canonical with respect to L.

Proof We can think of the equality requirements on a Hintikka set H as
saying that, as far as H is concerned, ::::::: is reflexive and has the replace
ment property. In fact, a Hintikka set H also 'thinks' ::::::: is symmetric
and transitive, by the following argument. First, suppose t ::::::: U E H.
We also have t ::::::: t E H (one of the Hintikka set conditions), so by re
placement with respect to relation symbols (another of the Hintikka set
conditions), we can derive that U ::::::: t E H by replacing the first occur
rence of t in t ::::::: t by u. Similarly, if t ::::::: U and U ::::::: v are both in H, we
will also have t ::::::: v E H. Incidentally, the similarity of this reasoning to
the informal arguments presented in the introduction to this chapter is
not a coincidence.

Now, let H be a Hintikka set with equality, with respect to the language
L. We will produce a canonical, normal model in which the members of
H are true.

Ignoring the role of equality for the moment, H is a first-order Hintikka
set according to Definition 5.6.1 so by the first-order version of Hintikka's
Lemma 5.6.2, H is satisfiable in a Herbrand model. The problem is that
this model may not be normal. But we can use it as a basis for the
construction of one that is normal.

For the rest of this proof, M = (D, I) is the Herbrand model that was
constructed in the earlier proof of Hintikka's Lemma 5.6.2: D is the set

282 9. Equality

of closed terms of L; I is such that, for each closed term t, t I = t; and
for an atomic sentence A, A is true in M if and only if A E H. (The
first two of these conditions just say the model is Herbrand. The third
condition is more special.)

R:; is a two-place relation symbol, so R:;I is a two-place relation on D.
t R:;I U is true if and only if t R:; u E H. Since H 'thinks' R:; is reflexive,
symmetric, and transitive, R:;I actually is an equivalence relation on the
domain D. An equivalence relation partitions its domain into disjoint
equivalence classes. We denote the equivalence class containing t by ((t».
Formally, ((t» = {u E D I t R:;I u}. As usual, ((t» = ((u» if and only if
t R:;I U (see Exercise 9.4.3). Finally, we let D* be the set of equivalence
classes, {((d» IdE D}. We take D* to be the domain of a new model.

A new interpretation 1* must also be defined. For a constant symbol c
we simply set cI* = ((c». For a function symbol J, we set

It must be shown that this is well-defined, since the behavior of P*
on the class ((ti» depends on ti, a member of the class, and the class
generally will have many members. We leave it to you to verify that our
definition of 1* on function symbols is well-defined, in Exercise 9.4.4.

As a consequence of the definitions so far, for any closed term t, t I * =
((t». This can be proved by structural induction and is left to you as
Exercise 9.4.5. This implies the model we are constructing is canonical;
the member ((t» of the domain D will have the closed term t as a name.

Finally, for a relation symbol R, we set RI* (((h», ... , ((tn ») to have the
same truth value as RI(h, ... , t n). That is, (((tl»' ... ' ((tn ») E RI* ifand
only if (tI' ... ' t n) E RI. In particular, ((t» R:;I* ((u» if and only if t R:;I u.
Once again it must be established that our definition is proper, since
whether or not RI* holds of equivalence classes depends on whether or
not RI holds of particular members. We leave it to you, in Exercise 9.4.6,
to show that the choice of members makes no difference.

Now the interpretation 1* has been completely defined. Let M* be the
model (D*, 1*). We claim M* is the desired model.

First, M* is normal because ((t» R:;I* ((u» if and only if t R:;I u if and
only if ((t» = ((u». Also, as we observed earlier, M* is canonical. Finally,
we will show that the same sentences of L are true in M and M* , which
will complete the proof, since all members of H are true in M. To show
this we must show something a bit stronger, allowing formulas with free
variables. And for this we need some notation.

Let A be an assignment in the model M. We denote by A * the assign
ment in M* such that xA * = ((xA ». A proof by structural induction

Exercises

Exercises 283

will show that for any term t, not necessarily closed, tI* ,A * = ((tI,A)).
We leave this to you, as Exercise 9.4.7.

We show the following: For any formula <]> and any assignment A in M,
<]>1* ,A * = <]>I,A. Then in particular, each sentence has the same truth
values in M and in M*.

Basis Case Say <]> = R(tl, ... , tn). Then

[R(h, ... , tn)P* ,A*

Induction Cases The propositional cases are straightforward and are
left to you. We consider one of the quantifier cases; the other is similar.
Suppose <]> is (3x)w, the result is known for formulas simpler than <]>,
and A is an assignment in M.

Suppose [(3x)wjI,A = t. Then for some x-variant B of A, WI,B = t. By
the induction hypothesis, wI* ,B* = t. But B* must be an x-variant of
A*, and so [(3x)W]I*,A* = t.

Suppose [(3x)W]I*,A* = t. Then for some x-variant V of A*, wI*,V =
t. Define an assignment B in M as follows: On variables other than
x, B agrees with A. And on x, xA is some arbitrary member of xv.
(x v is a member of D* and hence is an equivalence class; choose any
member.) Then B is an x-variant of A, and it is easy to see that B* = V.
Then wI' ,B* = t, so by the induction hypothesis WI,B = t, and hence
[(3X)W]I,A = t.

This concludes the proof of Hintikka's Lemma. 0

9.4.1. Show that if M is any model, then for every substitution, there
is a corresponding assignment, and if M is canonical, then for every
assignment, there is also a corresponding substitution.

9.4.2. Show that condition 8 of Definition 9.4.5 can be replaced by
c ~ c E H for every constant symbol c of L. (Note that this is actually
a special case of condition 9.)

9.4.3. (Standard facts about equivalence relations.) Suppose ~ is an
equivalence relation on a set D. For each dE D, let ((d)) = {x E D I x ~
d}. These subsets are called equivalence classes. Show the following:

1. Every member of D belongs to some equivalence class.

284 9. Equality

9.5

2. No member of D belongs to more than one equivalence class. More
precisely, show that if C E ((dl)) and C E ((d2)), then ((dl)) = ((d2)).

3. dl ~ d2 if and only if ((dl)) = ((d2)).

9.4.4. Show that if ((h)) = ((Ul))"'" ((tn)) = ((un)) then

((f(h, ... ,tn))) = ((f(Ul, ... ,Un))).

9.4.5. Show that for any closed term t of L, tI* = ((t)).

9.4.6. Show that if ((h)) = ((Ul))"'" ((tn)) = ((un)) then RI(tl , ... , tn)
and RI(ul,"" un) have the same truth values.

9.4.7. Show that for a term t, not necessarily closed, tI*,A* = ((tI,A)).

The Model
Existence

Theorem

The Model Existence Theorem for first-order logic easily extends to en
compass equality, now that we have done the work of proving a suitable
version of Hintikka's Lemma.

Definition 9.5.1 Let L be a first-order language, and let C be a collection of sets of sen
tences of Lpar. We call C a first-order consistency property with equality
(with respect to L) if it is a first-order consistency property (Defini
tions 3.6.1 and 5.8.1) and, in addition, for each SEC:

8. S u {t r:::; t} E C for every closed term t of Lpar.

9. tl r:::; Ul, ... , tn r:::; Un E S =? S U {f(tl,"" tn) r:::; f(ul, ... , un)} E C
for every n-place function symbol f of L.

10. tl r:::; Ul, ... , tn r:::; Un, R(tl, ... , tn) E S =? S U {R(ul"'" un)} E C
for every n-place relation symbol R of L.

Theorem 9.5.2 (Model Existence Theorem With Equality)
If C is a first-order consistency property with equality with respect to L
and SEC, then S is satisfiable in a normal model; in fact S is satisfiable
in a normal model that is canonical with respect to Lpar.

Exercises

9.6
Consequences

Exercises 285

Proof In Chapter 5 we proved a version of the Model Existence Theo
rem 5.8.2 that did not take equality into account. We showed that if a
set S was a member of a first-order consistency property, then S could
be extended to a first-order Hintikka set. That proof, with no essential
changes, also shows that if S is a member of a first-order consistency
property with equality, then S can be extended to a Hintikka set with
equality. We leave it to you to verify this. You should show that if one
starts with a first-order consistency property C meeting the conditions
for equality, at each stage of the construction used in the proof of The
orem 5.8.2, one produces a consistency property, or an alternate consis
tency property, that also meets these equality conditions, and hence the
resulting Hintikka set will also be one with equality.

Now if SEC, where C is a first-order consistency property with equality,
S extends to a Hintikka set with equality, and this is satisfiable in a
normal, canonical model by Hintikka's Lemma 9.4.6, completing the
argument. D

9.5.1. Supply the missing steps of the proof for Theorem 9.5.2.

Earlier we introduced the equality axioms and stated a result that said
they did what they were supposed to do, Theorem 9.3.9. Now we have
the machinery available to prove that result. For convenience we begin
by restating it.

Theorem 9.3.9 Let L be a first-order language. Then S F"" X if and
only if S U eq(L) Ff X.

Proof One direction is trivial. Suppose S U eq(L) Ff X. Let M be
any normal model in which the members of S are true. The members of
eq(L) are trivially true in every normal model, M in particular. Then X
is true in M as well. Since M was an arbitrary normal model, S F"" X.

For the converse direction, we use the Model Existence Theorem. Form
a collection C of sets of sentences of Lpar as follows: Put W in C if
infinitely many parameters are new to W, and W U eq(L) is satisfiable
in some, not necessarily normal, model. We leave it to you to check that
C is a first-order consistency property with equality. Now, suppose we
do not have that S U eq(L) F f X. Since S and X are from the language
L, they have no parameters. It follows that S U {...,X} E C. Then by
Theorem 9.5.2, this set is satisfiable in a normal model, and hence we
do not have S F"" X. D

286 9. Equality

We conclude this section by rounding up the usual consequences of
the Model Existence Theorem. These can also be derived from Theo
rem 9.3.9.

Theorem 9.6.1 (Compactness With Equality) Let S be a set of sentences of L.
If every finite subset of S is satisfiable in a normal model, so is S.

Proof Exactly as we proved Theorem 5.9.1. 0

Theorem 9.6.2 (Lowenheim-Skolem) Let S be a set of sentences of L.

1. If S is satisfiable in a normal model, S is satisfiable in a normal
model that is finite or countable.

2. If S is satisfiable in an infinite normal model, S is satisfiable in a
normal model that is countable.

Proof For part 1 we follow the proof of the version of the Lowenheim
Skolem Theorem that did not take equality into account, Theorem 5.9.3.
Form a collection C of sets of sentences of Lpar as follows: Put a set W in
C, provided infinitely many parameters are new to Wand W is satisfiable
in a normal model. It is easy to verify that C is a consistency property
with equality. If S is satisfiable in a normal model, SEC, so by the
Model Existence Theorem, S will be satisfiable in a canonical normal
model. Since every member of the domain of a canonical model is named
by some closed term, and the collection of closed terms is countable, the
domain must be countable or finite.

Part 2 follows from part 1 with a little extra work. Suppose S is satis
fiable in an infinite normal model. In Section 9.2 we defined sentences
E>n for each n, so that E>n is true in a normal model if and only if
the model has more than n members in its domain. Since S is satisfiable
in an infinite normal model, so is S U {E>l' E>2," .}. Then by part 1,
this set is satisfiable in a normal model that is finite or countable. Since
each E>n must be true in it, the model can not be finite, so S must be
satisfiable in a countable normal model. 0

Theorem 9.6.3 (Canonical Model) Let S be a set of sentences of L. If S is satis-
fiable in a normal model, then S is satisfiable in a normal model that is
canonical with respect to Lpar.

The Compactness Theorem makes it possible to construct nonstandard
versions of several standard mathematical structures. We illustrate this
with arithmetic. Suppose we take for L a language suitable for discussing
the natural numbers. Say it has constant symbols co, Cl, C2, ... , which we

9.6. Consequences 287

can take as names for the natural numbers. It should also have function
symbols +, x, and whatever others you may find useful. It should have
relation symbols R;, >, and so on. The standard model for this language
is the normal model (N, I), where N is the set {O, 1,2, ... }, c~ = i, +1 is
the addition operation, >1 is the greater-than relation, and so on. Let
T be the set of all sentences of L that are true in this standard model.
T is the truth set of arithmetic.

Now, let L' be the language that is like L but with d added as a new
constant symbol. Consider the set S = T U {d > Co, d > Cl, ... }. Every
finite subset of S is satisfiable. Indeed, any finite subset of S can be made
true in the standard model once a suitable interpretation for d is given,
and that is easy. A finite subset of S will contain only finitely many
sentences of the form d > Ci; simply interpret d to be any integer that is
bigger than each of the finitely many c~. Since every finite subset of S is
satisfiable, by the Compactness Theorem, the entire of S is satisfiable,
say in the normal model (M, J).

The model (M, J) is a nonstandard model for arithmetic. Suppose X is
a sentence of L. If X is true in the standard model (N, I), X will be
a member of T, hence a member of S, and so true in the nonstandard
model (M, J). On the other hand, if X is not true in the standard
model oX will be, so by the same argument, oX will be true in the
nonstandard model, and X will be false. It follows that the standard
model and the nonstandard model agree on the truth values of every
sentence that does not involve the constant symbol d; they agree on all
of arithmetic. Indeed, it is even possible to show the nonstandard model
has a natural submodel that is isomorphic to the standard one.

On the other hand, in the nonstandard model, there must be a member
dJ in the domain. Since every sentence of S is true in this model, this
member must be >J any standard integer, anything of the form cI.
In effect, there must be an 'infinite integer'. But all the usual laws of
arithmetic apply to this infinite integer. For example, (V'x)(x+co R; x) is
true in the standard model, hence in the nonstandard model, and hence
dJ +J cJ = dJ , and so on.

Nonstandard models for arithmetic were first created by Skolem [46,
47], using different machinery. In 1961 Abraham Robinson showed that
nonstandard models of the real numbers had remarkable properties [39,
40J. Since the early days of the calculus, infinitesimals have played an
important role, though their use could not be justified. Robinson showed
there are nonstandard models of the reals in which infinitesimals exist
and in which they can be used to help establish the truth of assertions.
Then, if the sentence whose truth has been established does not mention
infinitesimals, it will be true in the standard model as well, for much the
same reasons that a sentence that does not involve d will have the same

288 9. Equality

Exercises

9.7
Tableau and

Resolution

Systems

truth value in the two models for arithmetic we considered earlier. Since
then, nonstandard analysis has become a subject of considerable general
mathematical interest. This is as far as we can take the discussion here,
however.

9.6.1. Prove Theorem 9.6.3.

9.6.2. Use the results ofthis section and show that the Craig Interpola
tion Theorem for first-order logic, Theorem 8.11.5, extends to first-order
logic with equality, in the following form.

If the sentence X ~ Y is valid in all normal models, then there is a
sentence Z such that

1. X ~ Z and Z ~ Yare both valid in all normal models.

2. Every relation, constant, and function symbol of Z except possibly
for;::::; occurs in both X and Y.

9.6.3. Using the previous exercise, show that Beth's Definability The
orem 8.13.3 extends to first-order logic with equality.

Theorem 9.3.9 tells us that adding the equality axioms to a proof pro
cedure for first-order logic is sufficient to fully capture the notion of
equality. For Hilbert systems this is the best way to proceed. For tab
leau and resolution, however, it is not as appropriate. It is better to
formulate additional Tableau or Resolution Expansion Rules to capture
the essential properties of equality. We do so in this section, produc
ing proof procedures that use parameters and are best suited for hand
calculation. Later we will modify these systems, producing free-variable
versions better adapted to implementation.

The simplest essential property of equality is reflexivity, but there are
different ways we might build this into a proof procedure. We could
take reflexivity to be the assertion that we always have t ;::::; t, or the
assertion that we never have ,(t ;::::; t). The first version sounds like it
could be a tableau expansion rule; the second sounds more like a branch
closure condition. In a formal proof procedure, these two might behave
differently, and so care must be exercised in our formulations.

The replacement principle of equality could say that, given t ;::::; u we can
replace t occurrences by u occurrences, or it could also say we can replace
u occurrences by t occurrences, thus building in symmetry. It turns out
that whether we must build in symmetry this way is not independent of
how we treat reflexivity. In this section we take one route; in the next
we explore another.

9.7. Tableau and Resolution Systems 289

For the rest of this section, we assume L is a first-order language (with
~) and Lpar is the usual extension with a countable set of new constant
symbols, parameters.

To start, we need convenient notation with which to state a Replacement
Rule. Suppose <p(x) is a formula containing free occurrences of x. Then
we will write <p(t) for <p(x){x/t}, where t is a term. The notation <p(t)
by itself is really incomplete, because it does not specify the variable for
which t has been substituted, but generally we will use such notation,
leaving it to context to supply the missing information. Now, suppose
<p(x) is a formula and t and u are two distinct terms. Then <p(u) differs
from <P (t) in that <P (u) has occurrences of u at some of the places that
<p(t) has occurrences of t. It need not be the case that all occurrences
of t have been replaced by u. For instance, say <p(x) = R(x, a); then
<p(a) = R(a, a) but <p(b) = R(b, a). In effect, R(b, a) is R(a, a) with only
the first occurrence of a replaced by b. Generally, we will leave <p(x)
unspecified, write <p(t), and later write <p(u); the intention is that it is
like <p(t) except that some occurrences oft, not necessarily all, have been
replaced by occurrences of u.

Tableau Equality Rules We build on the first-order tableau system
with quantifier rules given in Chapter 6. Free-variable occurrences are
not allowed; only sentences appear in proofs; strictness is not required.

Tableau Reflexivity Rule The sentence t ~ t can be added to the
end of any branch of a tableau for S, producing another tableau for S.
Here t is any closed term of Lpar. Schematically:

t~t

Tableau Replacement Rule If t ~ u and <p(t) occur on a branch
of a tableau for S (in either order), <p(u) can be added to the end,
producing another tableau for S. Here t and u are any closed terms of
Lpar. Schematically:

t~ u
<p(t)
<p(u)

Notice that the Replacement Rule is directional. It allows us to replace
terms on the left-hand side of an equality by terms on the right-hand side,
but not conversely. Also Reflexivity has been treated as an expansion,
rather than as a closure rule.

Here are some examples of tableau proofs using these rules (and of course
the propositional and first-order rules from earlier).

Transitivity: (\ix)(\iy)(\iz)((x ~ y /\ Y ~ z) :=J x ~ z)

290 9. Equality

1. -{v'x)(\iy)(\iz)((x ;::::; y 1\ Y ;::::; z) ~ x ;::::; z)
2. -,(\iy) (\iz)((a ;::::; y 1\ Y ;::::; z) ~ a ;::::; z)
3. -,(\iz) ((a ;::::; b 1\ b;::::; z) ~ a;::::; z)
4. -'((a;::::;bl\b;::::;c) ~a;::::;c)
5. a;::::; b 1\ b;::::; c
6. -,(a ;::::; c)
7. a;::::; b
8. b;::::; c
9. -,(b ;::::; c)

In this example, 2 through 4 are by the 8-rule, 5 through 8 are by the (X

rule. Finally, 9 is by Replacement, using 7 to replace a by b in 6. Closure
is by 8 and 9. This is not the only way of giving a proof. We could have
used 8 to replace b by c in 7 instead.

Symmetry: (\ix)(\iy)(x ;::::; y ~ y;::::; x)

1. -,(\ix)(\iy)(x ;::::; y ~ y ;::::; x)
2. -,(\iy)(a ;::::; y ~ y ;::::; a)
3.-'(a;::::;b~b;::::;a)
4. a;::::; b
5. -,(b ;::::; a)
6.-,(b;::::;b)
7. b;::::; b

Here 6 is by Replacement, using 4 to replace a by b in 5; 7 is by the
Reflexive Rule. Closure is by 6 and 7.

Resolution Equality Rules Here too, we build on the first-order res
olution system of Chapter 6. Free variables are not allowed; strictness is
not required.

Resolution Reflexivity Rule Adding the clause [t ;::::; t] to a resolu
tion expansion for S produces another resolution expansion for S, for
any closed term t of Lpar. Schematically:

[t ;::::; t]

Resolution Replacement Rule Suppose we have a resolution expan
sion for S containing the generalized disjunctions Dl and D 2 , where Dl
contains t ;::::; u and D2 contains ~(t). Then we produce a new resolu
tion expansion for S if we add a new generalized disjunction D to the
resolution expansion, where D consists of the members of Dl except for
t ;::::; u, the members of D2 except for ~(t), and also ~(u). Schematically:

[Al' ... ,An' t ;::::; u]
[B l , ... , B k , ~(t)]

9.7. Tableau and Resolution Systems 291

Here is an example, giving a resolution proof of transitivity. Symmetry
has a similar proof.

Transitivity: (Vx) (Vy) (Vz) ((x ~ y /\ Y ~ z) -:J x ~ z).

1. [-.(Vx) (Vy) (Vz)((x ~ Y /\ Y ~ z) -:J x ~ z)]

2. [-.(Vy) (Vz) ((a ~ y /\ Y ~ z) -:J a ~ z)]

3. [-.(Vz)((a ~ b /\ b ~ z) -:J a ~ z)]

4. [-.((a ~ b /\ b ~ c) -:J a ~ c)]

5. [a ~ b /\ b ~ c]

6. [-.(a ~ c)]

7. [a ~ b]

8. [b ~ c]

9. [-.(b ~ c)]

10. []

Here 2 through 4 are by the 8-rule; 5 and 6 are from 4 by the a-rule; 7
and 8 are from 5, again by a. Now 9 is by the Replacement Rule, applied
to 6 and 7. Then 10 is from 8 and 9.

Theorem 9.7.1 (Soundness) If the sentence X of L has a tableau or resolution proof,
using the systems of this section, X is true in all normal models.

Proof When soundness of the first-order tableau and resolution systems
without equality was shown, Lemma 6.3.2 was used. It said the appli
cation of a Tableau or Resolution Rule will not affect satisfiability. This
time we need a slightly different result: The application of a Tableau
Expansion Rule, or an Equality Rule, to a tableau that is satisfiable in
a normal model will produce another tableau that is satisfiable in a nor
mal model, and similarly for resolution. It is easy to check that this is so.
With this modified Lemma used in place of Lemma 6.3.2, the soundness
proof itself is exactly the same as the proof of Theorem 6.3.3. 0

Theorem 9.7.2 (Completeness) If the sentence X of L is true in all normal models,
X has a resolution and a tableau proof, using the systems of this section.

292 9. Equality

Proof Call a finite set of sentences of Lpar tableau consistent if no tab
leau for it closes, even allowing the equality rules. It must be shown that
the collection of tableau-consistent sets is a first-order consistency prop
erty with equality. Much of this is exactly as in the proof of Lemma 6.4.2.
What is new is the equality conditions. We check one of these. Sup
pose S is a finite set of sentences, tl ~ u!, ... , tn ~ Un E S, but
S U {J(t!, ... , tn) ~ J(Ul, ... , Un)} is not tableau consistent; we show S
itself is not tableau consistent. By assumption, there is a closed tableau
T for S U {J(tl, ... , tn) ~ J(u!, ... , un)}; we convert that into a closed
tableau for S as follows:

First, begin a tableau with the members of S, giving a one-branch tab
leau. Next, add the sentence J(tl, ... , tn) ~ J(tl, ... , tn) to the branch
end, which is allowed by the reflexive rule. Each sentence h ~ U!, ... ,
tn ~ Un is in S and hence is on the tableau branch, so n applications of
the Tableau Replacement Rule starting with J(h, ... , tn) ~ J(t!, ... , tn)
will allow us to add J(t!, ... , tn) ~ J(Ul, ... , un) to the branch. Finally,
complete the construction of a closed tableau by copying the steps of
tableau T.

Once it is known that tableau consistency is a first-order consistency
property with equality, completeness of the tableau system follows from
the Model Existence Theorem 9.5.2 in the usual way.

Completeness of the resolution system has a similar proof. D

Although certain tableau rules are taken as official, other rules may be
allowed without harm. These are the derived rules. A derived rule is
one such that any application of it can be translated into a sequence of
applications of the official rules. For instance, the following is a derived
tableau rule: If X and X ::l Y occur on a branch, Y may be added. Any
application of this rule can be translated away as follows: Suppose X
and X ::l Y both occur on (), and we want to add Y using only official
rules. Well, since X ::l Y occurs, using the ,B-rule we can split () into two
branches, call them ()l and ()2, each like () except that ()l ends with -,X
and ()2 ends with Y. Since X occurs on (), hence on ()1, the branch ()l

is closed, and we are left with only ()2 open, which is, indeed, () with Y
added at the end.

The way the Replacement Rule was stated for tableaux, it allowed only
left-right replacements. In fact right-left replacements can be allowed, as
a derived rule. We leave it to you to verify this, as an exercise. Similar
remarks apply to the resolution system as well, of course.

Exercises

Exercises 293

9.7.1. Give tableau proofs of the following:

1. (Vx)(:3y)(x::::: y)

2. (Vx)(Vy)(Vz)(Vw)«x::::: y 1\ z::::: w) :J (R(x,z) :J R(y,w)))

3. (Vx)(Vy)«x::::: y 1\ f(y) ::::: g(y)) :J h(f(x)) ::::: h(g(y)))

9.7.2. Suppose the language L also includes the two-place function
symbol n and the two-place relation symbols E and <::::;. For reading
ease we will write all of these in infix form, t n u instead of n(t, u),
and so on. Let A = (Vx)(Vy)[(Vz)(z E x :J z E y) :J x <::::; y]. Let
B = (Vx)(Vy)(Vz)[(x E y n z) :J (x E Y 1\ x E z)]. Finally, let C =
(Vx) (Vy) [(x ::::: x n y) :J x <::::; y]. Give a tableau proof of (A 1\ B) :J C.

9.7.3. A cancellation law for groups is usually the first thing one proves
when beginning the study of group theory. To formalize this we need the
following machinery: Suppose L is a language with constant symbol e
(for the group identity), the one-place function symbol i (for the group
inverse), and the two-place function symbol 0 (for the group operation).
For reading ease we will write 0 using infix notation. Let

assoc = (Vx)(Vy)(Vz)(x 0 (y 0 z) ::::: (x 0 y) 0 z)

id = (Vx) (x 0 e ::::: x 1\ e 0 x::::: x)

inv = (Vx) (x 0 i(x) ::::: e 1\ i(x) 0 x::::: e)

canc = (Vx)(Vy)(Vz)(x 0 z ::::: yo z :J x ::::: y)

Give a tableau proof of « assoc 1\ iff) 1\ inv) :J canc.

9.7.4. Use the resolution system to redo Exercises 9.7.1, 9.7.2, and
9.7.3.

9.7.5. Formulate a version of tableaux or resolution with equality that
includes an S-introduction Rule. Then prove a Strong Completeness
Theorem.

9.7.6. Show the tableau system is complete if the Tableau Replacement
Rule is restricted by requiring that <:P(t) be atomic, and similarly for the
resolution system.

9.7.7. Show the following are derived Tableau Rules:

1. If t ::::: u occurs on a branch then u ::::: t can be added to the end.

2. If u ::::: t and <:P(t) occur on a branch (in either order), <:P(u) can be
added to the end, where t and u are any closed terms of Lpar.

9.7.8. Show that the following is a derived resolution rule: A resolution
expansion containing [AI, ... , An, t::::: u] can have added the disjunction
[AI,'" ,An,u::::: t].

294 9. Equality

9.8
Alternate
Tableau and
Resolution
Systems

The Tableau and Resolution Rules for equality are rather delicate and
become especially so when free-variable versions are considered. To get
a feeling for their sensitivity to modification before free variables com
plicate matters, in this section we consider alternate versions of the
systems presented in Section 9.7. We will see how changes can affect one
another and how apparently small changes can greatly increase the effort
of proving completeness. We begin with tableaux and consider resolution
afterward.

In Section 9.7 we chose to treat reflexivity via a branch extension rule:
t ~ t could be added to branch ends. We remarked that a branch closure
version was also reasonable: A branch containing ,(t ~ t) could be
closed. Suppose we try adding this in place of the original reflexivity
rule.

Alternate Tableau Reflexivity Rule A branch can be closed if it
contains ,(t ~ t), for any closed term t.

If you go through the tableau examples from Section 9.7, you will find
that they are all easily converted into tableaux using the Alternate Tab
leau Reflexivity Rule. Still, the Alternate Rule is not as powerful as the
one it replaces. Using either version, the sentence expressing the sym
metric property of equality is provable: (l;fx)(l;fy)(x ~ y ~ y ~ x). But
in Exercise 9.7.7, we asked you to show that a rule incorporating the
symmetry principle was derivable for the tableau system. This rule is
no longer derivable if we modify the reflexive rule as proposed. This has
the consequence of making completeness proofs break down.

We can compensate for the problem with symmetry by building it into
the Replacement Rule. As formulated in Section 9.7, it only allowed left
right replacements. We could allow right-left replacements as well. This
is a simple solution, although it can increase the difficulty of finding a
proof.

The tableau and resolution systems we gave earlier remain complete
even if the Replacement Rules are restricted to allow replacements only
in atomic sentences. You were asked to prove this in Exercise 9.7.6. If
we make the modifications we have discussed, such a severe restriction
no longer gives us a complete proof procedure. As it happens, though, a
slightly weaker restriction can still be imposed.

Definition 9.8.1 A formula is simple if it is atomic or if it is the negation of an atomic
formula whose relation symbol is ~.

Alternate Tableau Replacement Rules If t ~ u or u ~ t, and also
<I>(t) occur on a branch of a tableau for S, where <I>(t) is simple, then

9.S. Alternate Tableau and Resolution Systems 295

<p(u) can be added to the end, producing another tableau for S. Here t
and u are any terms of Lpar. Schematically:

t ~ u
<p(t)
<p(u)

u~t

<p(t)
<p(u)

We have now proposed many changes in the tableau equality rules. Each
of the changes is comparatively small, but they are interrelated. Rules
for equality are not robust, and care must be exercised when making
modifications.

Soundness of the tableau system with the alternate equality rules is easy
to establish, by the usual methods. We skip over this and move directly
to completeness, which is quite another matter. In Section 9.4 we gave
a version of Hintikka's Lemma with equality that allowed us to prove a
Model Existence Theorem. To prove completeness of the tableau system
with the alternate equality rules, we need something a bit stronger. We
achieve this by weakening the notion of Hintikka set.

Definition 9.8.2 Let L be a first-order language. A set H of sentences of L is an alternate
first-order Hintikka set with equality, provided H is a first-order Hintikka
set, and in addition

8. t ~ u E H, <p(t) E H, <p simple =? <p(u) E H.

9. u ~ t E H, <p(t) E H, <p simple =? <p(u) E H.

10. -,(t ~ t) 7'. H for every closed term t of L.

Proposition 9.8.3 (Hintikka's Lemma) Suppose L is a language with a non-empty
set of closed terms. If H is an alternate first-order Hintikka set with
equality with respect to L, then H is satisfiable in a canonical normal
model.

Proof Let H be an alternate Hintikka set with equality. We show that
H can be extended to a Hintikka set with equality, and then appeal to
the earlier version of Hintikka's Lemma 9.4.6.

Suppose the closed term t' results from the closed term t by replacing a
subterm u by a subterm u', where either u ~ u' E H or u' ~ u E H. Then
we say t' results from t by an H-rewriting. We say the closed terms u
and v are H-equivalent provided, u can be turned into v via a sequence
of H-rewritings (possibly 0). By repeated applications of conditions 8
and 9, if u and v are H-equivalent, <p(u) is simple, and <p(u) E H, then
<p(v) E H. A similar result holds for terms as well as formulas. Suppose

296 9. Equality

a(u) is a closed term containing occurrences of u as a subterm, and a(v)
is like a(u) except that some occurrences of u have been replaced by v. If
u and v are H-equivalent, so are a(u) and a(v), because we can transform
occurrences of u in a(u) into occurrences of v by H-rewritings. Finally,
it is easy to see that H-equivalence is an equivalence relation, that is,
transitive, reflexive, and symmetric.

Let H* be the result of adding to H all atomic sentences of the form
u ~ v where u and v are H-equivalent. It follows that u and v are H
equivalent if and only if u ~ v E H*. In one direction, this is by the
definition of H*. For the other direction, suppose u ~ v E H*. If u ~ v
was added to H in forming H*, then trivially u and v are H-equivalent.
But if u ~ v was in H to begin with, we are allowed to change u to v
with a single H-rewriting, so u is still H-equivalent with v.

We claim H* is a Hintikka set with equality according to Definition 9.4.5.
Once we verify this claim, the proof is finished.

We begin by checking that H* is a first-order Hintikka set according
to Definition 5.6.1. Since all the sentences added to H are atomic, the
various closure conditions such as the (t- or the ,8-condition trivially
continue to hold for H*. The only condition that is problematic is that
of consistency. If consistency is violated, it must be because both u ~ v
and -.(u ~ v) belong to H*, where -.(u ~ v) belonged to H, and u and v
are H-equivalent. But -.(u ~ v) is simple, so if u and v were H-equivalent
and -.(u ~ v) were in H, -.(v ~ v) would also be in H, contradicting
condition 8. Consequently, H* meets the consistency condition and is a
first-order Hintikka set.

Next we show that H* meets the same replacement condition as H: If
one of u ~ v or v ~ u is in H*, and if <I>(u) E H*, then <I>(v) E H*, for
simple <1>. So, suppose <1>(u) E H*, where <1>(u) is simple, and u ~ v E H*;
we must show <I>(v) E H*. We consider two cases.

First, suppose <I>(u) E H. Since u ~ v E H*, u and v are H-equivalent,
so if <1>(u) is in H, <1>(v) is also, and hence <1>(v) is in H*.

Next, suppose <I>(u) is in H* but not H. Then <I>(u) must be of the form
a ~ b where a and bare H-equivalent, and the occurrences of u being
replaced are subterms of a, or of b, or both. To symbolize this we write
<I>(u) as a(u) ~ b(u). Then <I>(v) is a(v) ~ b(v). As we observed earlier,
since u and v are H-equivalent, so are a(u) and a(v), and so are b(u)
and b(v). Also, a(u) and b(u) are H-equivalent, since a(u) ~ b(u) is in
H*. Then, since H-equivalence is an equivalence relation, a(v) and b(v)
are H-equivalent, and hence a(v) ~ b(v) E H*, that is, <I> (v) E H*.

Now we can easily finish the verification that H* is a first-order Hintikka
set with equality. First, t ~ t E H* for every closed term t, because H-

9.8. Alternate Tableau and Resolution Systems 297

equivalence is reflexive. The remaining conditions require slightly more
work.

Suppose tl r::::o UI, ... , tn r::::o Un E H* and R(tl,".' tn) E H*. Then since
R(h, ... , t n) is atomic, it is simple, and we showed that H* meets a
replacement condition for simple sentences, so by repeated application
of it, we have R(UI, ... , un) E H* as well.

Finally, suppose tl r::::o UI, ... ,tn r::::o Un E H*. We know f(tl, ... ,tn) r::::o

f(t l , ... , tn) E H*, since H-equivalence is reflexive. Then using the re
placement condition again, f (tl, ... , tn) r::::o f (UI, ... , un) E H*.

We have verified that H* is a first-order Hintikka set with equality,
extending H. Now by Proposition 9.4.6, we are done. 0

Now that we have this version of Hintikka's Lemma, a similar modified
version of the Model Existence Theorem is straightforward. We leave
the proof to you.

Definition 9.8.4 Let L be a first-order language, and let C be a collection of sets of
sentences of Lpar. We call C an alternate first-order consistency property
with equality (with respect to L) if it is a first-order consistency property
(Definitions 3.6.1 and 5.8.1) and, in addition, for each SEC, and for all
closed terms t and u of Lpar,

8. t r::::o U E Sand <p(t) E S, where <p(t) is simple ==} S U {<p(un E C.

9. u r::::o t E Sand <p(t) E S, where <p(t) is simple ==} S U {<p(un E C.

10. ,(t r::::o t) tf. S.

Theorem 9.8.5 (Alternate Model Existence Theorem)
If C is an alternate first-order consistency property with equality with
respect to Land SEC, then S is satisfiable in a normal model; in fact
S is satisfiable in a normal model that is canonical with respect to Lpar.

Theorem 9.8.6 (Completeness) If the sentence X of L is true in all normal models,
X has a tableau proof using the alternate rules for equality.

Similar changes can be made to the resolution rules, of course.

Alternate Resolution Reflexivity Rule The sentence -,(t r::::o t) can
be dropped from a disjunction of a resolution expansion for S to produce
another resolution expansion for S. Schematically:

[AI, .. " An, -,(t r::::o t)]
[AI, ... ,An]

298 9. Equality

Exercises

9.9
A
Free-Variable
Tableau
System With
Equality

Alternate Resolution ReplaceIllent Rule Suppose we have a reso
lution expansion for S containing the generalized disjunctions DI and
D 2, where DI contains t ;::;; u or u ;::;; t, and D2 contains <I>(t) where <I>(t)
is simple. Then we produce a new resolution expansion for S if we add
a new generalized disjunction D to the resolution expansion, where D
consists of the members of DI except for t ;::;; u or u ;::;; t, the members
of D2 except for <I>(t), and also <I>(u). Schematically:

[AI, ... ,An, t ;::;; u]
[B I , ••• , B k , <I>(t)]

[AI, .. ' ,An,u;::;; t]
[BI , ... , Bk, <I> (t)]

Soundness and completeness of resolution, using these rules for equality,
are left to you.

9.S.1. Use the tableau system of this section to prove the sentences of
Exercise 9.7.1.

9.S.2. Prove Theorem 9.8.5, then use it to prove Theorem 9.8.6.

9.S.3. Prove soundness and completeness for the resolution system us
ing the alternate rules for equality.

The tableau systems that we gave earlier, incorporating equality rules,
are not well suited to implementation for reasons that are familiar by
now. There are several ways of dealing with this problem. See Reeves [38]
for one version, together with a discussion of other possibilities. The ap
proach we take is to adopt devices similar to those of Chapter 7: Use
free variables in l'-rule applications, introduce Skolem function symbols
in 6-rule applications, and allow free substitutions of terms for variables.
Then we can add rules for equality to this mechanism. But as we have
seen, the exact form of equality rules is important, and the rules are not
independent of each other. This sensitivity becomes more pronounced
when free variables are present and unification plays a role. We will
build on the system of Section 9.7, rather than on the alternate version
of Section 9.8. Thus, we will have only left-right replacement, and reflex
ivity will be treated as a branch extension rule. Even so, reflexivity holds
surprises for us, so we begin with the more straightforward replacement
rule.

Free-Variable Tableau Rules for Equality We use the first-order
free-variable tableau system as presented in Section 7.4, together with
the following Replacement and Reflexivity Rules.

9.9. A Free-Variable Tableau System With Equality 299

Free-Variable Tableau Replacement Rule If t R:: U and also q>(t)
occur on a branch of a tableau for S, then q>(u) can be added to the
end, producing another tableau for S, provided q>(x) is atomic and t and
U are any terms, not necessarily closed, of Lpar. Schematically:

tR::U

q>(t)
q>(u)

For reflexivity, the following should certainly be expected:

Free-Variable Tableau Reflexivity Rule Adding the formula x R::

x, where x is a free variable, to the end of a branch of a tableau for S
produces another tableau for S. Schematically:

As it happens, this is not enough to ensure completeness once restrictions
are imposed, as we will do shortly. We also adopt the following:

Tableau Function Reflexivity Rule f(XI, ... , xn) R:: f(xl, ... , xn)
can be added to the end of a branch of a tableau for S to produce an
other tableau for S, where f is any function symbol of Lpar and Xl, ..• ,

Xn are free variables. Schematically:

Example Figure 9.1 contains a tableau proof of (\ix)(3y){y R:: f(x) /\ (\iz)[z R::

f(x) ::> y R:: z]}. In it 2 is from 1 by 15, with a as a zero-place Skolem
function symbol (a parameter); 3 is from 2 by')'; and 4 and 5 are from 3
by {3. Next 6 is from 5 by 6, introducing the one-place Skolem function
symbol g; 7 and 8 are froni 6 by O!. Finally, 9 is from 7 and 8 by a
Replacement and 10 and 11 are by Reflexivity. The free substitution
{vIff(a),v2/f(a)} produces a closed tableau.

Soundness of this system can be established along the same lines as
earlier. You should review the proof in Section 7.7. There, we used the
notion of ground satisfiable. Now we need something a little more re
stricted.

Definition 9.9.1 A tableau T allowing free variables is ground normal satisfiable if TT is
satisfiable in a normal model in the sense of Definition 6.3.1, for every
grounding substitution T.

300 9. Equality

1. -{v'x)(::Jy) (y ~ f(x) 1\ (\iz)[z ~ f(x) ::> y ~ z])
2.,(::Jy) (y ~ f(a) 1\ (\iz)[z ~ f(a) ::> y ~ z])
3, (VI ~ f(a) 1\ (\iZ)[Z ~ f(a) ::> VI ~ Z])

4. ""'(VI ~ f(a»
10. V2 ~ V2

5,(\iz)[z ~ f(a) ::> VI ~ z]
6,[g(VI) ~ f(a) ::> VI ~ g(VI)]
7. g(VI) ~ f(a)
8. ""'(VI ~ g(VI»
9. ""'(VI ~ f(a»

11. V2 ~ V2

FIGURE 9.1. Proof of (\ix)(::Jy){y ~ f(x) 1\ (\iz)[z ~ f(x) ::> y ~ z]}

Lemma 9.9.2 If any propositional Tableau Expansion Rule, the free-variable "(- or 0-
rule, or a free-variable Tableau Equality Rule is applied to a ground
normal satisfiable tableau, the result is another ground normal satisfiable
tableau.

Theorem 9.9.3 (Tableau Soundness) If the sentence <P has a free-variable tableau
proof with equality, <P is true in all normal models.

The tableau rules we have given are nondeterministic. Many determin
istic implementations of them are possible, and no single one is likely
to be best under all circumstances. The Free Substitution Rule, as al
ways, is somewhat problematic: What substitutions will be most useful
to make? A general principle we followed earlier is to make only those
substitutions that enable some other rule to be applied. The following
combination of free substitution and equality is particularly useful:

MGU Tableau Replacement Rule Suppose T is a tableau for S,
and () is a branch of T. Then if t ~ u and <p(t') occurs on () where <P is
atomic, and a is a most general unifier of t and t', then apply the Free
Variable Tableau Replacement Rule to <p(t')a and (t ~ u)a on ()a in
Ta. The result is another tableau for S.

Example Suppose we have a tableau T with a branch () containing the formulas
f(x, a) ~ g(y, b) and k(f(h(z), y» ~ k(f(h(z), y». The term f(x, a) uni
fies with a subterm f(h(z),y), with a = {x/h(z),y/a} as most general

9.9. A Free-Variable Tableau System With Equality 301

unifier. Consequently, we apply a throughout, to get Ta, in which branch
(}a contains f(h(z), a) :::::: g(a, b) and k(f(h(z), a)) :::::: k(f(h(z), a)). Fi
nally, we add k(g(a, b)) :::::: k(f(h(z), a)) to the end of (}a.

The MGV Tableau Replacement Rule still only allows us to prove sen
tences that are valid in all normal models, because it is a combination
of rules we already know to have this property. We will show we have
completeness even if all free substitutions are restricted to those in MGV
Tableau Replacement Rules and MGV Atomic Closure substitutions. As
a key step in the completeness proof, we need a version of Lemma 7.8.2
that takes equality into account.

Lemma 9.9.4 (Lifting Lemma) Suppose T is a tableau, T is a grounding sub-
stitution, and TT can be closed using only applications of the Tableau
Replacement Rule. Then T can be closed using Free- Variable Reflexivity
and Function Reflexivity, MGU Tableau Replacement, and MGU Atomic
Closure Rules.

Proof The argument is by induction on the number of applications of
Tableau Replacement needed to close TT. If 0 applications are needed,
the result reduces to Lemma 7.8.2.

For the induction step assume the result is known whenever n applica
tions of Replacement are needed, and suppose TT can be closed using
n + 1 applications of Replacement. We must show T can be closed using
Free-Variable Reflexivity, Function Reflexivity, MGV Tableau Replace
ment, and MGV Atomic Closure Rules.

Pick a branch of TT that needs Replacement for closure, say (}T where
() is a branch of T. Say (}T needs k + 1 applications of Replacement
to close. Consider the first application of Replacement made here. To
keep the notation manageable, we work with a particular example of
Replacement; the ideas are general though. So, let us assume () is:

An
P(f(x))
h(y) :::::: b.

And suppose T is such that XT = g(h(a)) and yT = a. Then (}T is

302 9. Equality

AnT
P(J(g(h(a))))
h(a) ;:::; b.

Say Replacement was used to add P(J(g(b))), producing the branch

AnT
P(J(g(h(a))))
h(a) ;:::; b
P(J(g(b))).

Let us designate this branch extending (17 by ()*. Since one application
of Replacement has been made, only k further applications are needed
to turn ()* into a closed branch.

We would like to lift this application of Replacement from ()T to () itself.
The problem is, no application ofMGU Tableau Replacement to P(J(x))
and h(y) ;:::; b can introduce an occurrence of the function symbol g. We
must drag such an occurrence in by brute force.

In the tableau T we can extend branch () using Function Reflexivity,
adding g(z) ;:::; g(z), where z is a free variable new to the tableau. After
this both h(y) ;:::; band g(z) ;:::; g(z) are on the branch, and MGU Tableau
Replacement allows us to carry out the substitution {z/h(y)} and then
add g(h(y)) ;:::; g(b). (Note that since z was new to the tableau, no
formulas are affected by the substitution {z/h(y)} except for g(z) ;:::;
g(z).)

At this point we have a tableau that is like T except that branch () has
been modified to the following:

An
P(J(x))
h(y);:::;b
g(h(y)) ;:::; g(h(y))
g(h(y)) ;:::; g(b).

9.9. A Free-Variable Tableau System With Equality 303

We have both P(f(x)) and g(h(y)) ::::; g(b) on the branch displayed
and once again MGU Tableau Replacement applies. We carry out the
substitution {x j g(h(y))} throughout T, giving us a branch with both
P(f(g(h(y)))) and g(h(y)) ::::; g(b), to which we add P(f(g(b))).

The situation now is as follows: We have a tableau, call it T', in which
every branch except one arises from a corresponding branch of T by
the substitution {xjg(h(y))}. And the branch 0 of T has become the
following, which we call 0':

Al {xjg(h(y))}

An{xjg(h(y))}
P(f(g(h(y))))
h(y) ::::; b
g(h(y)) ::::; g(h(y))
g(h(y)) ::::; g(b)
P(f(g(b))).

It is easy to check that {x j g(h(Y))}T = T. Consequently, for every branch
B of T' other than 0', BT is a branch of TT. And finally, O'T is the
following:

AnT
P(f(g(h(a))))
h(a) ::::; b
g(h(a)) ::::; g(h(a))
g(h(a)) ::::; g(b)
P(f(g(b))).

Now, every formula on O'T also occurs on 0*, and 0* requires only k
applications of Replacement to close, so the same is true of 0' T. Con
sequently T'T requires n applications of Replacement, and the induc
tion hypothesis applies: T' can be closed using Free-Variable Reflexiv
ity, Function Reflexivity, MGU Tableau Replacement, and MGU Atomic
Closure Rules. Since we passed from T to T' using only these rules, T
itself closes using them. This completes the induction step. D

Now we can prove completeness in a form strong enough to cover the
implementation presented in the next section. First, we carryover the

304 9. Equality

notion of a fair tableau construction rule from Definition 7.8.5, but we
modify it slightly to build in reflexive rule applications. From now on
we require that a fair rule also (1) eventually introduce onto each open
tableau branch x ~ x for each free variable x; (2) eventually introduce
onto each open tableau branch f(xI," . ,xn) ~ f(xI,"" xn) for each
function symbol f and all free variables Xl, .. ·, X n ·

Theorem 9.9.5 (Tableau Completeness) Let R be a fair tableau construction rule.

Exercises

If X is a valid sentence of L, X has a tableau proof in which

1. All Tableau Expansion Rule, Reflexivity, and Function Reflexivity
Rule applications come first and are according to rule R.

2. All replacement applications and branch closure substitutions come
next and are according to the MGU Tableau Replacement and MGU
Atomic Closure Rules.

We gave a proof of completeness for the free-variable tableau system
without equality, Theorem 7.8.6. Essentially, the idea was to show a
'ground' proof existed, then to use the Lifting Lemma 7.8.2 to establish
the existence of a proof using free variables and most general unifiers.
The same ideas apply here, now that we have a version of the Lifting
Lemma taking equality into account. Consequently, we leave the details
of the Completeness proof to you in Exercise 9.9.4. Incidentally, notice
that no order is specified in the Completeness Theorem for applications
of replacement and closure rules. Intermingling of these must be allowed
to ensure completeness.

9.9.1. Give free-variable tableau proofs of

1. (Vx)(:3y)(:3z)(z ~ g(y) /\ Y ~ f(x)).

2. (Vx)(Vy)(Vz)((y ~ f(x) /\ z ~ f(x)) ~ y ~ z).

9.9.2. Let L be a language with constant symbols 0 and 1, a one-place
function symbol s, and a two-place function symbol + (which we write
in infix position). Let

id be the formula (Vx)(x + 0 ~ x)

suc be the formula (Vx)(Vy) (x + s(y) ~ sex + y))

def be the formula 1 ~ s(O)

addl be the formula (Vx) (x + 1 ~ sex))

Give a free-variable tableau proof of ((id /\ suc) /\ defJ ~ add1.

9.9.3. Prove Lemma 9.9.2.

9.9.4. Prove Theorem 9.9.5. Use the proof of Theorem 7.8.6 as a guide.

9.10
A Tableau Im

plementation

With Equality

9.10. A Tableau Implementation With Equality 305

In Section 7.5 we gave an implementation of a tableau-based first-order
theorem prover. Now we modify and extend it to incorporate equality
rules. The resulting theorem prover is complete, at least in principle, but
it is not very useful. The rules for equality generally allow for so many
possibilities that nothing very interesting can be proved before available
time and space are exhausted. Heuristics of some kind are essential.
In replacing equals by equals, some replacements will be more useful
than others, and much work has gone into the development of general
principles for deciding which. Such heuristics are beyond our scope here;
we are treating the logical foundations only. We leave it to you to try
incorporating experimental rules of thumb into the system that follows.

The Prolog clauses that follow generally are additions to the first-order
program of Section 7.5, occasionally replacements. We give them in
groups, preceding each with a discussion of its purpose.

In Section 7.5 we gave operator declarations for the propositional con
nectives. Now we add one more declaration, for eq, allowing it to be used
in infix position. The intention, of course, is that it represents the equal
ity relation. (We can not use the usual equality symbol, as it already has
a meaning in Prolog.)

?-op(120, xfy, eq).

We begin with a utility predicate to get it out of the way, a test for
being a non-member of a list. This is different from simply negating
the member relation from Section 7.5, though. member (X, L) is true if
X unifies with something in the list L. not...1llember (X, L) is true if X is
not a member of the list L, with no unification allowed. We will use this
later on to ensure we do not add redundant items to a tableau branch.

1* not_member(Item, List) :-
Item does not occur in List, where an
occurrence must be via identity, not
via unification.

not_member(_, []).
not_member (Item, [Head I Tail]) :-

Item \== Head, not_member (Item, Tail).

306 9. Equality

As we have seen, the basic idea in dealing with the equality relation is
to build in rules allowing the replacing of equals by equals. So, we begin
with Prolog clauses that do just this. The relation replace_term (T ,
Term, U, NewTerm) is true just in case NewTerm is the result of replacing
exactly one occurrence of a subterm T in Term by an occurrence of U.
It is important to note that T itself need not occur as a subterm of
Term, but rather there should be a subterm that unifies with T. This
is in accordance with the MGU Tableau Replacement Rule from the
previous section. On backtracking, replace_term will run through all
single replacements. For example, the query

replace_term(p(A,B),p(X,p(Y,Z)),p(B,A),W)

will, on backtracking, produce the following as values for W:

p(p(Y,Z),X)
p(p(B,A),p(Y,Z))
p(X, p(z, Y))
p(x, p(p(B, A), z))
p(x, p(Y, pCB, A))).

Now, the clauses for replace_term.

1* replace_term(T, Term, U, NewTerm) :-
NewTerm is the result of replacing one
occurrence of T in Term (after a unification)
with an occurrence of U.

replace_term(T, Term, U, NewTerm)
unify (T, Term),
unify(U, NewTerm).

replace_term(T, Term, U, NewTerm)
compound (Term) ,
Term =.. [F I ArgsJ,
replace_term_list(T, Args, U, NewArgs),
NewTerm = .. [F I NewArgsJ.

1* replace_term_list(T, OldList, U, NewList) :
OldList is a list of terms, and NewList
is the result of applying replace_term
to one of them, replacing T by U.

9.10. A Tableau Implementation With Equality 307

replace_term_list(T, [First I Rest],
U, [NewFirst I Rest]) :

replace_term(T, First, U, NewFirst).

replace_term_list(T, [First I Rest],
U, [First I NewRest]) :

replace_term_list(T, Rest, U, NewRest).

Next we have similar predicates that carry out single equality replace
ments in atomic formulas and in literals.

1* replace_atomic(T, Atomic, U, NewAtomic) :
NewAtomic is the result of replacing one
occurrence of the term T in the atomic formula
Atomic with an occurrence of U.

replace_atomic(T, Atomic, U, NewAtomic):
atomicfmla(Atomic),
Atomic = .. [F I Args] ,
replace_term_list(T, Args, U, NewArgs),
NewAtomic = .. [F I NewArgs].

1* replace_literal(T, Literal, U, NewLiteral) :
NewLiteral is the result of replacing one
occurrence of the term T in the literal
Literal with an occurrence of U.

replace_literal(T, Atomic, U, NewAtomic) :
replace_atomic(T, Atomic, U, NewAtomic).

replace_literal(T, neg Atomic, U, neg NewAtomic)
replace_atomic(T, Atomic, U, NewAtomic).

The first-order tableau system is complete even if we require all branch
closures to be atomic. This continues to be the case when we add equal
ity. Also, replacements of equals by equals need be done only in atomic
formulas. We are a little more generous and allow replacements in liter
als, which often makes it easier to find a proof. It will simplify things if
we purge branches of everything but literals before we start testing for

308 9. Equality

closure or replacing equals by equals. Thus, there is a certain amount of
branch preprocessing to be done.

One serious problem with replacing equals by equals is that the process
might never stop. For example, if we have a = f(a) and P(a,g(a))
we can replace the first occurrence of a, getting P(f(a), g(a)); then
we can replace in this, getting P(f(f(a)), g(a)); once again, getting
P(f(f(f(a))),g(a)), and so on forever. We can also run into infinite
replacement with the second occurrence of a in P(a, g(a)), and endless
alternating patterns are also possible. To avoid a similar runaway prob
lem involving the 1'-rule, we introduced a Q-depth parameter, to limit
the number of rule applications. We use a similar idea here. We intro
duce an R-Depth parameter, intended to bound the number of times
we are allowed to replace equals by equals. Any given valid formula will
have a proof of some R-Depth, but the nonexistence of a proof at a given
R-Depth does not ensure nonvalidity.

As we implemented it, Q-Depth was a global bound; it limited the num
ber of 1'-rule applications in the entire tableau. This time, for reasons
of both variety and convenience, we implement R-Depth locally; each
formula has its own counter. The tableau system allowing equality re
mains complete if all equality replacements are made after all Tableau
Expansion Rule applications, and we will make use of this fact. In par
ticular, by the time we start making equality replacements, the list of
variables that are free in a formula no longer has any use for us. This
list was stored as the notation part of a notated formula. We can reuse
this notation part to store the R-Depth available for that formula. At
the start, the available R-Depth will be the same for each literal. Each
time a replacement is carried out on a literal, the R-Depth associated
with it will be reduced by 1; this will also be the R-depth of the literal
resulting from the replacement.

The predicate reorganize modifies a tableau in accordance with the
ideas just discussed. Each branch of a tableau is purged of all notated
formulas except for notated literals, and for these the notation part is
changed to the value of R-depth.

1* reorganize (OldTableau, RDepth, NewTableau) :
NewTableau is OldTableau with each branch
purged of all non-literals, and for each
notated literal, the notation is changed
to RDepth.

reorganize ([], _, []).

9.lD. A Tableau Implementation With Equality 309

reorganize([OldBranch I Rest], RDepth,
[NewBranch I NewRest]) :

modifybranch(OldBranch, RDepth, NewBranch),
reorganize (Rest , RDepth, NewRest).

1* modifybranch(OldBranch, RDepth, NewBranch)
NewBranch is OldBranch with each non-literal
removed, and for each notated literal, the
notation is changed to RDepth.

modifybranch([], _, []).

modifybranch([NotatedLiteral I Rest], RDepth,
[NewNotatedLiteral I NewRest])

fmla(NotatedLiteral, Literal),
literal (Literal) ,
fmla(NewNotatedLiteral, Literal),
notation (NewNotatedLiteral, RDepth),
modifybranch(Rest, RDepth, NewRest).

modifybranch([NonNotatedLiteral I Rest], RDepth,
NewRest) :-

modifybranch(Rest, RDepth, NewRest).

The tableau system we are supposed to be implementing treats reflex
ivity as a branch extension, rather than as a branch closure rule. Still,
the system remains sound if we add a rule allowing us to close a branch
that says some term does not equal itself. This rule is particularly sim
ple and quite useful. We add such a rule, both for its own sake and as
a convenient first approximation to the implementation we really want.
(You might guess that we are going to leave some of the work to you.)

In the first-order tableau system, a branch was closed if it contained a
falsehood or an obvious contradiction. We now add additional rules for
closure. These rules for closed are intended to immediately follow the
earlier ones for closed, from Section 7.5. The first rule embodies the
version of Reflexivity just discussed: A branch is closed if it contains a
formula asserting some term does not equal itself.

closed([Branch I Rest]) :
member (Notated, Branch),

310 9. Equality

fmla(Notated, neg X eq V),
unify(X, Y),
closed(Rest).

The second rule is more complicated and embodies the principle of re
placing equals by equals. Roughly, it says a tableau can be considered
closed if the result of applying a single equality replacement leads to a
closed tableau. Recall that notated formulas now contain R-Depth in
formation. The rule we give applies only to a notated formula that has
not exhausted its allowed quota of replacements, and when it is applied,
R-Depth is reduced by 1 (also the new notated formula added to the
branch has this same reduced R-depth).

closed([OldBranch I Rest])
member (NotatedEquality, OldBranch),
fmla(NotatedEquality, X eq V),
member(NotatedLiteral, OldBranch),
notation(NotatedLiteral, RDepth),
RDepth > 0,
fmla(NotatedLiteral, Literal),
replace_literal(X, Literal, Y, NewLiteral),
NewRDepth is RDepth - 1,
fmla(NewNotatedLiteral, NewLiteral),
notation(NewNotatedLiteral, NewRDepth),
fmla(RevisedNotatedLiteral, Literal),
notation(RevisedNotatedLiteral, NewRDepth),
remove (NotatedLiteral, OldBranch, TempBranch),
NewBranch = [NewNotatedLiteral, RevisedNotatedLiteral

TempBranch] ,
closed([NewBranch I Rest]).

Finally, we have the driver, the test predicate. It has one more argument
than it did in Section 7.5, to take R-Depth into account. The following
should replace the clauses for test, yes, and no from the earlier program.

1* test(X, Qdepth, RDepth) :- create a complete tableau
expansion for neg X, allowing Qdepth applications
of the gamma rule, but no equality rules. Then
reorganize the tableau and test for closure,
allowing the equality replacement rule to be

9.10. A Tableau Implementation With Equality 311

used RDepth times on each formula.

Note that this replaces the earlier test predicate.

test(X, Qdepth, RDepth) :-
reset,
notation(NotatedFormula, []),
fmla(NotatedFormula, neg X),
expand([[NotatedFormula]], Qdepth, Tree), !,
reorganize(Tree, RDepth, NewTree), !,
if_then_else(closed(NewTree),

yes(Qdepth, RDepth), no (Qdepth, RDepth)),
!, fail.

yes (Qdepth, RDepth) :
write('Theorem at Q-depth ,),
write (Qdepth) ,
write(' and R-depth '),
write (RDepth),
write('. '),
nl.

no (Qdepth, RDepth) :-
write('Not a theorem at Q-depth '),
write (Qdepth),
write(' and R-depth '),
write (RDepth),
write (, . ') ,
nl.

This completes our implementation. But of course, we have cheated:
We used the wrong version of reflexivity. Correcting this takes some
care. The Free-Variable Tableau Reflexivity Rule is easy to deal with.
It says we can add x ~ x to a branch, and we might want to do
this several times, using different free variables. The easiest way is to
add a quantified version, (Vx)(x ~ x) and then let the mechanism for
ry-formulas take care of adding instances. We can do a similar thing
with the Tableau Function Reflexivity Rules: Add formulas of the form
(Vxd ... (VXn)[J(Xl, ... ,xn) ~ f(Xl, ... ,xn)] for every function symbol
f. There may be infinitely many function symbols in the language, but
fortunately it is easy to see we only need to introduce these formulas
for function symbols that have already appeared in the tableau, on the
branch in question. Unfortunately, we do not know at the start of a proof

312 9. Equality

Exercises

9.11
Para

modulation

what function symbols these will be, because new Skolem function sym
bols may be introduced from time to time. Basically, there are two ways
around this. We might modify the 8-rule so that every time a new Skolem
function symbol is introduced on a branch the corresponding Function
Reflexivity Rule application is made. But probably a simpler technique
is to begin by Skolemizing (see Section 8.3) so that all function symbols
are known at the start, and then make all Function Reflexivity Rule
applications in one step, at the beginning of the tableau construction.
We leave it to you to decide which of these is better and to implement
the version you choose. But, remember, the resulting system, while com
plete, may take years to prove anything interesting. Good heuristics are
vital now.

9.10.1 p. Modify the program of this section to incorporate the Free
Variable Reflexive Rule and some version of the Function Reflexivity
Rule.

It was necessary to modify the tableau system with equality by introduc
ing free variables to get a version suitable for implementation. We must
do a similar thing with the resolution system. The result is a variation
of what is known in the literature as paramodulation [41]. This is not
the only way a treatment of equality can be added to an implementable
resolution system; there are also E-Resolution [33] and RUE (resolution
with unification and equality) [15]' among others. But paramodulation
is the best developed of the approaches, and it is all we consider here.

We use the first-order free-variable resolution system of Section 7.6.
Equality rules are added to that. Reflexivity rules are built in directly,
as Expansion Rules.

Resolution Reflexivity Rule Adding the clause [x i'::j x] to a resolu
tion expansion for S produces another resolution expansion for S, where
x is a free variable. Schematically:

[x i'::jx].

Resolution Function Reflexivity Rule
[f(XI,'" ,xn) i'::j f(XI,'" ,xn)] can be added to a resolution expansion
for S to produce another resolution expansion for S, where f is a function
symbol and Xl, ... , Xn are free variables. Schematically:

Exercises 313

Next, a rule allowing the replacement of equals by equals is added. As
with tableaux, it is combined with an application of Free Substitution,
where the substitution is a most general one that enables a replacement
to be carried out.

Paramodulation Rule Suppose R is a resolution expansion for S con
taining the generalized disjunctions Dl and D 2, where Dl contains u ~ v
and D2 contains the literal <I>(t). Also suppose a is a most general unifier
for t and u. Let D be the generalized disjunction consisting of <I> (v) , the
members of Dl except for u ~ v, and the members of D2 except for <I>(t).
Then R*a is also a resolution expansion for S, where R* is R with D
added.

Example Suppose R is a resolution expansion for S containing only the disjunc
tions [P(f(a), x), QJ and [f(x) ~ g(x), RJ. The substitution a = {x/a} is
a most general unifier for f(a) and f(x). Then R*a is a resolution expan
sion for S, where R* is like R but with [P(g(x), x), Q, RJ added. That
is, R*a contains [P(f(a), a), Q], [f(a) ~ g(a)J and [P(g(a), a), Q, RJ.

Exercises

Soundness of this system is straightforward to prove. We leave it as an
exercise. Completeness, as usual, is more work. A proof along the lines
of that in Section 9.9 is possible. First, prove a generalization of the
Lifting Lemma for Resolution 7.9.2, modified like Lemma 9.9.4. Then
completeness can be lifted from the completeness of the system of reso
lution in Section 9.7, much as we did with tableaux. We omit the work;
a proof can be found in Loveland [31 J. In Section 8.4 we pointed out that
most implemented resolution theorem provers begin with a preprocess
ing step that converts to prenex form, eliminates existential quantifiers
by introducing Skolem functions, and puts a matrix into clause form.
The completeness proof in Loveland [31 J begins from this point.

9.11.1. Give a resolution proof, using the system of this section, of the
formula in Exercise 9.9.2.

9.11.2. Prove the soundness of the system we gave.

9.11.3P • Write an implementation of the resolution system we gave.

References

[1] AJTAI, M. J. The complexity of the pigeonhole principle. In 29th Annual
Symposium on the Foundations of Computer Science (FOCS) (1988),
IEEE Computer Society Press, pp. 346-355.

[2] ANDREWS, P. B. An Introduction to Mathematical Logic and Type The
ory: To Truth Through Proof Academic Press, New York, 1986.

[3] BARWISE, J., AND ETCHEMENDY, J. The Language of First-order Logic.
CSLI, 1990. (second, revised edition, 1992), distributed by Cambridge
University Press.

[4] BETH, E. W. On Padoa's method in the theory of definition. Indag. Math.
15 (1953), 330-339.

[5] BETH, E. W. The Foundations of Mathematics. North-Holland, Amster
dam, 1959.

[6] BooLos, G. Don't eliminate cut. Journal of Philosophical Logic 13
(1984), 373-378.

[7] CARNIELLI, W. A. Systematization of finite many-valued logics through
the method of tableaux. Journal of Symbolic Logic 52 (1987), 473-493.

[8] CHURCH, A. A note on the Entscheidungsproblem. Journal of Symbolic
Logic 1 (1936), 40-41. Reprinted in The Undecidable, M. Davis Ed., pp.
110-115, Raven Press, New York 1965.

[9] CHV.ATAL, V., AND SZEMEREDI, E. Many hard examples for resolution.
Journal of the ACM 35 (1988), 759-768.

[10] CLOCKSIN, W. F., AND MELLISH, C. S. Programming in Prolog, Third
Edition. Springer-Verlag, Berlin, 1987.

[11] COOK, S. A., AND RECKHOW, R. A. The relative efficiency of proposi
tional proof systems. Journal of Symbolic Logic 44 (1979), 36-50.

[12] CRAIG, W. Linear reasoning. A new form of the Herbrand-Gentzen the
orem. Journal of Symbolic Logic 22 (1957), 250-268.

[13] D'AGOSTINO, M., GABBAY, D., HAHNLE, R., AND POSEGGA, J., Eds.
Handbook of Tableau Methods. Kluwer, Dordrecht, 19967

316 References

[14J DAVIS, M., AND PUTNAM, H. A computing procedure for quantification
theory. Journal of the ACM 7 (1960), 201-215.

[15J DIGRICOLI, V. J., AND HARRISON, M. C. Equality-based binary resolu
tion. Journal of the ACM .'1.'1 (1986), 253-289.

[16J FITTING, M. C. Proof Methods for Modal and Intuitionistic Logics. D.
Reidel Publishing Co., Dordrecht, 1983.

[17J FITTING, M. C. Resolution for intuitionistic logic. In Proceedings of the
ACM SIGART International Symposium on Methodologies for Intelligent
Systems 1987 (Amsterdam, 1987), Z. W. Ras and M. Zemankova, Eds.,
North-Holland, pp. 400-407.

[18J FITTING, M. C. First-order modal tableaux. Journal of Automated Rea
soning 4 (1988), 191-213.

[19J FITTING, M. C. Negation as refutation. In Proceedings of the Fourth
Annual Symposium on Logic in Computer Science (1989), R. Parikh,
Ed., IEEE, pp. 63-70.

[20J GABBAY, D. M., HOGGER, C. J., AND ROBINSON, J. A., Eds. Handbook
of Logic in AI and Logic Programming. Oxford University Press, Oxford,
1993.

[21J GALLIER, J. H. Logic for Computer Science, Foundations of Automatic
Theorem Proving. Harper Row, New York, 1986.

[22] GENTZEN, G. Investigation into logical deduction. In The Collected
Papers of Gerhard Gentzen, M. E. Szabo, Ed. North-Holland, 1969,
pp. 68-131. Originally published as 'Untersuchungen iiber das logische
Schliessen', in Mathematische Zeitschrijt .'19 (1935), 176-210 and 405-
431.

[23J HAHNLE, R., AND SCHMITT, P. H. The liberalized 8-rule in free variable
semantic tableaux. Journal of Automated Reasoning is, 2 (1994), 211-
221.

[24J HAKEN, A. The intractability of resolution. Theoretical Computer Science
Sg (1985), 297-308.

[25] HERBRAND, J. Investigations in proof theory. 1930. English translation
in [26J and in [54].

[26J HERBRAND, J. Logical Writings. Harvard University Press, Cambridge,
MA, 1971. Translation of Ecrits logiques, Jean Van Heijenoort, Ed.,
Presses Universitaires de France, Paris.

[27J HINTIKKA, K. J. J. Form and content in quantification theory. Acta
Philosophica Fennica 8 (1955), 7-55.

[28J HOPCROFT, J. E., AND ULLMAN, J. D. Introduction to Automata Theory.
Addison-Wesley, Reading, MA, 1979.

[29J LASSEZ, J.-L., MAHER, M. J., AND MARRIOTT, K. Unification revisited.
In Foundations of Deductive Databases and Logic Programming (Los Al
tos, CA, 1988), J. Minker, Ed., Morgan Kauffman, pp. 587-625.

[30J LIS, Z. Wynikanie semantyczne a wynikanie formalne (logical conse
quence, semantic and formal). Studia Logica 10 (1960), 39-60. Polish,
with Russian and English summaries.

[31] LOVELAND, D. W. Automated Theorem Proving: A Logical Bases. North
Holland, Amsterdam, 1978.

[32] LYNDON, R. C. An interpolation theorem in the predicate calculus. Pa
cific Journal of Mathematics 9 (1959), 155-164.

References 317

[33] MORRIS, J. R. E-resolution: An extension of resolution to include the
equality relation. In Proceedings of the International Joint Conference on
Artificial Intelligence (Washington, D.C.) (1969), D. E. Walker and J. M.
Norton, Eds., pp. 287-294.

[34] OPPACHER, F., AND SUEN, E. HARP: A tableau-based theorem prover.
Journal of Automated Reasoning 4 (1988),69-100.

[35] POPPLESTONE, R. J. Beth-tree methods in automatic theorem-proving.
In Machine Intelligence (1967), N. L. Collins and D. Michie, Eds., Amer
ican Elsevier, New York, pp. 31-46.

[36] PRAWITZ, D. Natural Deduction, A Proof-Theoretical Study. Acta Uni
versitatis Stockholmiensis, Stockholm Studies in Philosophy 3. Almqvist
& Wiksell, Stockholm, 1965.

[37] RECKHOW, R. On the lengths of proofs in the propositional calculus. PhD
thesis, Univ. of Toronto, Dept. of Computer Science, Toronto, Ontario,
Canada, 1975.

[38] REEvEs, s. V. Adding equality to semantic tableaux. Journal of Auto
mated Reasoning 3 (1987), 225-246.

[39] ROBINSON, A. Non-standard analysis. Proc. Royal Acad Amsterdam Ser.
A 64 (1961), 432-440.

[40] ROBINSON, A. Non-Standard Analysis. North-Holland, Amsterdam, 1974.
Revised edition.

[41] ROBINSON, G. A., AND WOS, L. A. Paramodulation and theorem prov
ing in first-order theories with equality. In Machine Intelligence (1969),
B. Meltzer and D. Michie, Eds., vol. 4, Edinburgh University Press,
pp. 135-150.

[42] ROBINSON, J. A. A machine-oriented logic based on the resolution prin
ciple. Journal of the ACM 12 (1965), 23-41.

[43] ROBINSON, J. A. The generalized resolution principle. In Machine In
telligence (1968), Dale and D. Michie, Eds., vol. 3, Oliver and Boyd,
pp.77-93.

[44] ROBINSON, J. A. Logic: Form and Function. Elsevier, North-Holland,
Amsterdam, 1979.

[45] SIEG, W., AND KAUFFMANN, B. Unification for quantified formulae.
Tech. rep., Carnegie Mellon, 1993. Technical Report PHIL-44, Philos
ophy, Methodology, and Logic.

[46] SKOLEM, T. Uber die Nicht-charakterisierbarkeit der Zahlenreihe mit
tels endlich oder abziihlbar unendlich vieler Aussagen mit ausschliesslich
Zahlenvariablen. Fundamenta Mathematica 23 (1934), 150-16l.

[47] SKOLEM, T. Peano's axioms and models of arithmetic. In Mathemati
cal Interpretations of Formal Systems. North-Holland, Amsterdam, 1955,
pp.I-14.

[48] SMULLYAN, R. M. First-Order Logic. Springer-Verlag, Berlin, 1968. Re
vised Edition, Dover Press, New York, 1994.

[49] SMULLYAN, R. M. Trees and ball games. Annals of the New York Academy
of Sciences 321 (1979), 86-90.

[50] STATMAN, R. Bounds for proof-search and speed-up in the predicate cal
culus. Annals of Mathematical Logic 15, 3 (1978), 225-287.

[51] STERLING, L., AND SHAPIRO, E. The Art of Prolog. The MIT Press,
Boston, 1986.

318 References

[52] TARSKI, A. What are logical notions? History and Philosophy of Logic 7
(1986), 143-154. J. Corcoran, Ed.

[53] URQUHART, A. Hard examples for resolution. Journal of the ACM 34-
(1987), 209-219.

[54] VAN HEIJENOORT, J. Prom Prege to Godel. Harvard University Press,
Cambridge, MA, 1967.

[55] WANG, H. Toward mechanical mathematics. IBM Journal for Research
and Development 4- (1960). Reprinted in A Survey of Mathematical Logic.
Hao Wang, North-Holland, 1963, pp. 224-268.

[56] WHITEHEAD, A. N., AND RUSSELL, B. Principia Mathematica, 2nd ed.
Cambridge University Press, Cambridge, England, 1927.

[57] Wos, L., OVERBEEK, R., LUSK, E., AND BOYLE, J. Automated Reason
ing, Introduction and Applications. Prentice-Hall, Englewood Cliffs, NJ,
1984.

Index

active, 86
AE formula, see formula, AE
AE tableau, 213
Affirmative-Negative Rule, 100
a formula, see formula, a
Alternate

Resolution
Reflexivity Rule, see

Reflexivity Rule,
Alternate Resolution

Replacement Rule, see
Replacement Rule,
Alternate Resolution

Tableau
Replacement Rule, see

Replacement Rule,
Alternate Tableau

Tableau
Reflexivity Rule, see

Reflexivity Rule,
Alternate Tableau

alternate first-order consistency
property, see
consistency property,
alternate first-order

analytic cut, see cut, analytic
assignment, 11 7
associated sequent, 95
atomic formula, see formula,

atomic

atomically closed, see closed,
atomically

augmented tree representation,
154

automata theory, 12
axiom, 78
axiom scheme, 79

B compatible, 64
f3 formula, see formula, f3
Beth Definability Theorem, 264,

288
biased

sentence, 257
tableau, 257

binary connective, see connective,
binary

Binary Literal Resolution Rule,
see resolution, Rule,
Binary Literal

binary unification, see unification,
binary

binding, 161
block, 98
Boolean valuation, 16
bound variable occurrence, 112

canonical model, 279
Canonical Model Theorem, 286
clause, 28

form, 28

320 Index

Clause Form Algorithm, 30
clause set, 28

reduction rules, see reduction
rules, clause set

closed, 43, 53
atomically, 43
formula, 112
term, 110, 118

Compactness Theorem
First-Order, 132
Propositional, 62
With Equality, 286

completeness, 144, 195, 200
Hilbert system, 148

strong, 83
natural deduction, 91
resolution, 145
sequent calculus, 95
tableau, 144

Completeness Theorem, 291, 297,
304

propositional resolution, 67
propositional tableaux, 65
strong, 75

component, 23
composition, 113
computational complexity, 104
concurrent unification, see

unification, concurrent
conjunction

generalized, 28
conjunctive normal form,

see normal form,
conjunctive

Conjunctive Rewrite Lemma, 30
connective

binary, 14
complete set, 15
primary, 14
secondary, 14

consequence
first-order, 135
Hilbert system, 78
logical, 135
propositional, 74

consistency property
alternate first-order, 130
alternate first-order with

equality, 297

first-order, 129
first-order with equality, 284
propositional, 59
strict propositional, 68

consistent
X-tableau, 75
resolution, 66
tableau, 64

constant symbol, 110
context free language, 12
correctness, 31
correspond, 279
Craig consistent, 254
Craig Interpolation Theorem, 63,

256,288
cut

analytic, 253
minimal, 232
rank,231
weight, 231

Cut Elimination Theorem, 229
Cut Rule

Sequent, 227
Tableau, 227

Davis-Putnam
derivation, 101
procedure, 98

Deduction Theorem
First-Order, 147
Propositional, 80

degree, 13
depth,25
derivation

Hilbert system, 78
natural deduction, 90

derived rule, 88, 292
directly involved, 247
disagreement pair, 155
disjunction

generalized, 28
disjunctive normal form, see

normal form, disjunctive
Disjunctive Rewrite Lemma, 33
domain, 117
dual, 17
dual clause, 28
dual clause form, 28

Program, 36

Algorithm, 33
dual clause set, 28

reduction rules, see reduction
rules, dual clause set

duality, 17

E-Resolution, 312
environment list, 161
equality axiom, 278
equivalence class, 282, 283
essentially existential formula,

see formula, essentially
existential

essentially universal formula, see
formula, essentially
universal

existential formula, see formula,
existential

explicit definition, 263

Factoring Rule, 187
fair, 76, 194, 199
finite branch, 26
finite character, 60, 131
finite support, 114
finite tree, 26
finitely branching, 26
first-order

consequence, see
consequence, first-order

Compactness Theorem, see
Compactness Theorem,
First-Order

consistency property, see
consistency property,
first-order

Hilbert system, see Hilbert
system, first-order

Hintikka set, see Hintikka
set, first-order

Hintikka's Lemma, see
Hintikka's Lemma

language, 110
Model Existence Theorem,

see Model Existence
Theorem, First-Order

natural deduction, see
natural deduction,
first-order

Index 321

Resolution Expansion
Rules, see resolution,
Expansion Rules,
First-Order

sequent calculus, see sequent
calculus, first-order

Tableau Expansion Rules,
see tableau, Expansion
Rules, First-Order

formula, 111
n,23
(3, 23
8,124
'Y, 124
atomic, 11, 111
essentially existential, 212
essentially universal, 212
existential, 263
notated, 176
ordinary, 28
positive, 266
propositional, 11
restricted, 12
signed, 96

formula
AE,212

free substitution, 115, 167, 184
free variable

occurrence, 112
free-variable

Resolution, see resolution,
Free-Variable

Tableau Reflexivity Rule,
see Reflexivity Rule,
Free-Variable Tableau

Tableau Replacement Rule,
see Replacement Rule,
Free-Variable Tableau

Resolution Expansion
Rules, see resolution,
Expansion Rules,
Free-Variable

semantic tableaux, see
semantic tableaux,
free-variable

Tableau Expansion Rules,
see tableau, Expansion
Rules, Free-Variable

322 Index

function replacement axiom, see
replacement axiom,
function

function symbol, 110

G derivation, 197
General Literal Resolution Rule,

see resolution, Rule,
General Literal

generalized
conjunction, see conjunction,

generalized
disjunction, see disjunction,

generalized
graph, 134
ground normal satisfiable, see

satisfiable, ground
normal

H-equivalent, 295
H-rewriting, 295
Herbrand

consistent, 218
domain, 216
expansion, 216, 220
universe, 215

Herbrand model, 123
Herbrand Model Theorem, 134
Herbrand's Theorem, 216, 221
Hilbert system

completeness, see
completeness, Hilbert
system

soundness, see soundness,
Hilbert system

theorem, see theorem,
Hilbert system

derivation, see derivation,
Hilbert system

first-order, 146
proof, see proof, Hilbert

system
propositional, 77

Hintikka set
alternate with equality, 295
first-order, 127
first-order with equality, 280
propositional, 58

Hintikka's Lemma, 58, 127, 281,
295

homomorphism, 266, 274
Horn clause, 19

idempotent, 157
immediate subformula, see

subformula, immediate
Implicational Replacement

Theorem, see
Replacement Theorem,
Implicational

implicit definition, 264
improper subformula, see

subformula, improper
instance, 124
interpolant, 63, 254, 256, 258
interpretation, 11 7
intuitionistic logic, 85

Konig's Lemma, 26

Lowenheim-Skolem Theorem, 133,
286

Lifting Lemma, 192, 197, 301
literal, 28
logical consequence, see

consequence, logical,
139

loop invariant, 31
Lyndon Homomorphism Theorem,

267
Lyndon Interpolation Theorem,

262

matrix, 210
MGU Atomic Closure Rule, 168
MGU Tableau Replacement Rule,

300
model,117
Model Existence Theorem

Alternate, 297
First-Order, 130
Propositional, 60
with equality, 284

Modus Ponens, 79
modus ponens, 89
modus tollens, 89
more general substitution, 152

most general atomic closure
substitution, 192

most general solution, 160
most general unifier, see unifier,

most general
multiple unification, see

unification, multiple

named apart, 209
natural deduction

completeness, see
completeness, natural
deduction

derivation, see derivation,
natural deduction

first-order, 149
propositional, 86
soundness, see soundness,

natural deduction
negation normal form, see normal

form, negation
negative, 205
new, 129, 137
nonstandard analysis, 288
nonstandard model, 287
normal form

conjunctive, 28
disjunctive, 28
negation, 21

Normal Form Theorem, 29
normal model, 273
notation

substitution, 114

One-Literal Rule, 99
op, 35
ordinary formula, see formula,

ordinary

parameter free, 222
parameter substitution, 130
parameters, 129, 137
paramodulation, 312
Paramodulation Rule, 313
Pierce's law, 85
pigeonhole principle, 105
positive, 204
positive formula, see formula,

positive

Index 323

predicate symbol, 110
prenex form, 209
primary connective, see

connective, primary
Principia Mathematica, 212
Prolog, 35
proof

Hilbert system, 78, 146
resolution, 54
sequent calculus, 94
tableau, 43

proof scheme, 80
propositional

consequence, see
consequence,
propositional

formula, see formula,
propositional

compactness, 62
consistency property, see

consistency property,
propositional

Hintikka set, see Hintikka
set, propositional

letters, 10
Model Existence Theorem,

see Model Existence
Theorem, propositional

Resolution Rule, see
Resolution Rule,
Propositional

Robinson set, see Robinson
set, propositional

Q-depth, 177
Quantifier Rewrite Rules, 209
quantifiers, 110

R-depth, 308
rank, 25, 112
reduction rules

clause set, 30
dual clause set, 33

ref,276
Reflexivity Rule

Alternate Resolution, 297
Alternate Tableau, 294
Free Variable Tableau, 299
Tableau Function, 299

324 Index

relation replacement axiom, see
replacement axiom,
relation

relation symbol, 110
replacement axiom

function, 276
relation, 277

replacement property, 272
Replacement Rule

Alternate Resolution, 298
Alternate Tableau, 294
Free-Variable Tableau, 299

Replacement Theorem, 20, 21,
204

Implicational, 205
resolution

S-introduction rule, see
S-introduction rule,
resolution

completeness, see
completeness, resolution

consistent, see consistent,
resolution, 145

construction rule, 199
derivable, 65
derivation, 65
Equality Rules, 290
Expansion, 53
Expansion Rules, 51

First-Order, 141
Free-Variable, 184

Free-Variable, 184
Function Reflexivity Rule,

312
proof, see proof, resolution
Reflexivity Rule, 290, 312
refutation, 105
Replacement Rule, 290
Rule

Binary Literal, 187
General Literal, 186
Propositional, 53

saturated, 70
soundness, see soundness,

resolution
Substitution Rule, 184
theorem, see theorem,

resolution
resolvent, 53

trivial, 53
restricted formula, see formula,

restricted
Robinson set

propositional, 72
RUE,312
rule

of derivation, 78
of inference, 78
of substitution, 79

S-Introduction Rule, 142
S-introduction rule

S-introduction rule
resolution, 74

S-introduction rule
tableaux, 74

S-introduction rule, 139
S-satisfiable, 75
satisfiable, 17, 55, 57, 119, 142

'if, 188
ground normal, 299

satisfying assignment, 119
secondary connective, see

connective, secondary
semantic tableaux

free-variable, 166
semantic tree, see tree, semantic
sentence, 112
sequent, 92
sequent calculus

theorem, see theorem,
sequent calculus

completeness, see
completeness, sequent
calculus

first-order, 149
proof, see proof, sequent

calculus
propositional, 92
soundness, see soundness,

sequent calculus
sequent consistent, 95
side information, 193
signed

formula, see formula, signed
tableau, see tableau, signed

simple, 294
simultaneous solution, 160

Skolem function symbol, 166
Skolemization, 206
solution, 160
soundness

Hilbert system, 148
strong, 82

natural deduction, 90
propositional resolution, 57
propositional tableau, 56
resolution, 143
sequent calculus, 95
tableau, 143

Soundness Theorem, 190, 291, 300
Strong, 75

Splitting Rule, 101
standard model, 287
strict, 45, 52, 139, 246
strict propositional consistency

property, see
consistency property,
strict propositional

strong termination, 32
structural induction, 11, 24, 125
structural recursion, 12, 25, 126
structure, 117
subformula, 13

immediate, 13
improper, 13

subordinate proof, 86
subset closed, 60, 130
substitution, 113
substructure, 275
Subsumption Rule, 100
subterm, 111
support, 114

tableau, 42
S-introduction rule, see

S-introduction rule,
tableau

completeness, see
completeness, tableau

consistent, see consistent,
tableau, 143

construction rule, 194
Equality Rules, 289
Expansion Rules, 41

First-Order, 138
Free Variable, 167

Index 325

Function Reflexivity Rule,
see Reflexivity Rule,
Tableau Function

proof, see proof, tableau
Reflexivity Rule, 289
Replacement Rule, 289
signed,96
soundness, see soundness,

tableau
Substitution Rule, 167
theorem, see theorem,

tableau
tautology, 17
term, 110
termination, 31
theorem

Hilbert system, 78, 146
resolution, 54
sequent calculus, 94
tableau, 43

3-tautology, 84
3-valid, 92
3-valuation, 84
tree, 26

semantic, 71
trivial resolvent, see resolvent,

trivial
true in a model, 119
truth set, 287
truth values, 14

unifiable, 153
unification, 152

Algorithm, 156
binary, 158
concurrent, 160
multiple, 158
Theorem, 156

unifier, 153, 158
most general, 153, 158

uniform notation, 23, 124
unique parsing, 12
universal formula, 263
Universal Generalization, 146
upward closed, 68
upward closure, 68
used,69

valid, 119

326 Index

validity functional form, 215
variable range, 153
variable renaming, 153
variables, 110

weak termination, 32
well-founded, 35

X-enlargement, 65
X-Hilbert consistent, 82
X-natural deduction consistent,

91
X-tableau consistent, see

consistent, X -tableau
x-variant, 118

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

