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Preface

I n writing this book, 1 was guided by my long-standing experience and interest in teaching

discrete mathematics. For the student, my purpose was to present material in a precise,
readable manner, with the concepts and techniques of discrete mathematics clearly presented
and demonstrated. My goal was to show the relevance and practicality of discrete mathematics
to students, who are often skeptical. | wanted to give students studying computer science all of
the mathematical foundations they need for their future studies. | wanted to give mathematics
students an understanding of important mathematical concepts together with a sense of why
these concepts are important for applications. And most importantly, | wanted to accomplish
these goals without watering down the material.

For the instructor, my purpose was to design a flexible, comprehensive teaching tool using
proven pedagogical techniques in mathematics. | wanted to provide instructors with a package
of materials that they could use to teach discrete mathematics effectively and efficiently in the
most appropriate manner for their particular set of students. | hope that | have achieved these
goals.

I have been extremely gratified by the tremendous success of this text. The many improve-
ments in the seventh edition have been made possible by the feedback and suggestions of a large
number of instructors and students at many of the more than 600 North American schools, and
at any many universities in parts of the world, where this book has been successfully used.

This text is designed for a one- or two-term introductory discrete mathematics course taken
by students in a wide variety of majors, including mathematics, computer science, and engineer-
ing. College algebra is the only explicit prerequisite, although a certain degree of mathematical
maturity is needed to study discrete mathematics in a meaningful way. This book has been de-
signed to meet the needs of almost all types of introductory discrete mathematics courses. It is
highly flexible and extremely comprehensive. The book is designed not only to be a successful
textbook, but also to serve as valuable resource students can consult throughout their studies
and professional life.

Goals of a Discrete Mathematics Course

A discrete mathematics course has more than one purpose. Students should learn a particular
set of mathematical facts and how to apply them; more importantly, such a course should teach
students how to think logically and mathematically. To achieve these goals, this text stresses
mathematical reasoning and the different ways problems are solved. Five important themes
are interwoven in this text: mathematical reasoning, combinatorial analysis, discrete structures,
algorithmic thinking, and applications and modeling. A successful discrete mathematics course
should carefully blend and balance all five themes.

1. Mathematical Reasoning: Students must understand mathematical reasoning in order to
read, comprehend, and construct mathematical arguments. This text starts with a discussion
of mathematical logic, which serves as the foundation for the subsequent discussions of
methods of proof. Both the science and the art of constructing proofs are addressed. The
technique of mathematical induction is stressed through many different types of examples
of such proofs and a careful explanation of why mathematical induction is a valid proof
technique.

vii
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2. Combinatorial Analysis. An important problem-solving skill is the ability to count or enu-
merate objects. The discussion of enumeration in this book begins with the basic techniques
of counting. The stress is on performing combinatorial analysis to solve counting problems
and analyze algorithms, not on applying formulae.

3. Discrete Sructures: A course in discrete mathematics should teach students how to work
with discrete structures, which are the abstract mathematical structures used to represent
discrete objects and relationships between these objects. These discrete structures include
sets, permutations, relations, graphs, trees, and finite-state machines.

4. Algorithmic Thinking: Certain classes of problems are solved by the specification of an
algorithm. After an algorithm has been described, a computer program can be constructed
implementing it. The mathematical portions of this activity, which include the specification
of the algorithm, the verification that it works properly, and the analysis of the computer
memory and time required to perform it, are all covered in this text. Algorithms are described
using both English and an easily understood form of pseudocode.

5. Applications and Modeling: Discrete mathematics has applications to almost every conceiv-
able area of study. There are many applications to computer science and data networking
in this text, as well as applications to such diverse areas as chemistry, biology, linguistics,
geography, business, and the Internet. These applications are natural and important uses of
discrete mathematics and are not contrived. Modeling with discrete mathematics is an ex-
tremely important problem-solving skill, which students have the opportunity to develop by
constructing their own models in some of the exercises.

Changes in the Seventh Edition

Although the sixth edition has been an extremely effective text, many instructors, including
longtime users, have requested changes designed to make this book more effective. | have
devoted a significant amount of time and energy to satisfy their requests and | have worked hard
to find my own ways to make the book more effective and more compelling to students.

The seventh edition is a major revision, with changes based on input from more than 40
formal reviewers, feedback from students and instructors, and author insights. The result is a
new edition that offers an improved organization of topics making the book a more effective
teaching tool. Substantial enhancements to the material devoted to logic, algorithms, number
theory, and graph theory make this book more flexible and comprehensive. Numerous changes
in the seventh edition have been designed to help students more easily learn the material.
Additional explanations and examples have been added to clarify material where students often
have difficulty. New exercises, both routine and challenging, have been added. Highly relevant
applications, including many related to the Internet, to computer science, and to mathematical
biology, have been added. The companion website has benefited from extensive development
activity and now provides tools students can use to master key concepts and explore the world
of discrete mathematics, and many new tools under development will be released in the year
following publication of this book.

I hope that instructors will closely examine this new edition to discover how it might meet
their needs. Although it is impractical to list all the changes in this edition, a brief list that
highlights some key changes, listed by the benefits they provide, may be useful.

More Flexible Organization

m Applications of propositional logic are found in a new dedicated section, which briefly
introduces logic circuits.

m Recurrence relations are now covered in Chapter 2.
B Expanded coverage of countability is now found in a dedicated section in Chapter 2.
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B Separate chapters now provide expanded coverage of algorithms (Chapter 3) and number
theory and cryptography (Chapter 4).

B More second and third level heads have been used to break sections into smaller coherent
parts.

Tools for Easier Learning

m Difficultdiscussions and proofs have been marked with the famous Bourbaki “dangerous
bend” symbol in the margin.

m New marginal notes make connections, add interesting notes, and provide advice to
students.

® More details and added explanations, in both proofs and exposition, make it easier for
students to read the book.

B Many new exercises, both routine and challenging, have been added, while many ex-
isting exercises have been improved.

Enhanced Coverage of Logic, Sets, and Proof

m The satisfiability problem is addressed in greater depth, with Sudoku modeled in terms
of satisfiability.

m Hilbert’s Grand Hotel is used to help explain uncountability.

m Proofsthroughout the book have been made more accessible by adding steps and reasons
behind these steps.

m A template for proofs by mathematical induction has been added.

B The step that applies the inductive hypothesis in mathematical induction proof is now
explicitly noted.

Algorithms

m The pseudocode used in the book has been updated.

m Explicit coverage of algorithmic paradigms, including brute force, greedy algorithms,
and dynamic programing, is now provided.

m Useful rules for big- O estimates of logarithms, powers, and exponential functions have
been added.

Number Theory and Cryptography

B Expanded coverage allows instructors to include just a little or a lot of number theory
in their courses.

B The relationship between the mod function and congruences has been explained more
fully.

m The sieve of Eratosthenes is now introduced earlier in the book.
m Linear congruences and modular inverses are now covered in more detail.

m Applications of number theory, including check digits and hash functions, are covered
in great depth.

B A new section on cryptography integrates previous coverage, and the notion of a cryp-
tosystem has been introduced.

m Cryptographic protocols, including digital signatures and key sharing, are now covered.
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Graph Theory

m A structured introduction to graph theory applications has been added.
B More coverage has been devoted to the notion of social networks.

m Applications to the biological sciences and motivating applications for graph isomor-
phism and planarity have been added.

m Matchings in bipartite graphs are now covered, including Hall’s theorem and its proof.

m Coverage of vertex connectivity, edge connectivity, and n-connectedness has been
added, providing more insight into the connectedness of graphs.

Enrichment Material

B Many biographies have been expanded and updated, and new biographies of Bellman,
Bézout Bienyamé, Cardano, Catalan, Cocks, Cook, Dirac, Hall, Hilbert, Ore, and Tao
have been added.

m Historical information has been added throughout the text.
B Numerous updates for latest discoveries have been made.

Expanded Media

B Extensive effort has been devoted to producing valuable web resources for this book.
m Extra examples in key parts of the text have been provided on companion website.

| Interactive algorithms have been developed, with tools for using them to explore topics
and for classroom use.

E A new online ancillary, The Virtual Discrete Mathematics Tutor, available in fall 2012,
will help students overcome problems learning discrete mathematics.

B A new homework delivery system, available in fall 2012, will provide automated home-
work for both numerical and conceptual exercises.

m Student assessment modules are available for key concepts.
B Powerpoint transparencies for instructor use have been developed.

m Asupplement Exploring Discrete Mathematicshas been developed, providing extensive
support for using Maple™ or Mathematica™ in conjunction with the book.

B An extensive collection of external web links is provided.

Features of the Book

ACCESSIBILITY This text has proved to be easily read and understood by beginning
students. There are no mathematical prerequisites beyond college algebra for almost all the
content of the text. Students needing extra help will find tools on the companion website for
bringing their mathematical maturity up to the level of the text. The few places in the book
where calculus is referred to are explicitly noted. Most students should easily understand the
pseudocode used in the text to express algorithms, regardless of whether they have formally
studied programming languages. There is no formal computer science prerequisite.

Each chapter begins at an easily understood and accessible level. Once basic mathematical

concepts have been carefully developed, more difficult material and applications to other areas
of study are presented.
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FLEXIBILITY This text has been carefully designed for flexible use. The dependence
of chapters on previous material has been minimized. Each chapter is divided into sections of
approximately the same length, and each section is divided into subsections that form natural
blocks of material for teaching. Instructors can easily pace their lectures using these blocks.

WRITING STYLE The writing style in this book is direct and pragmatic. Precise mathe-
matical language is used without excessive formalism and abstraction. Care has been taken to
balance the mix of notation and words in mathematical statements.

MATHEMATICAL RIGORAND PRECISION All definitions and theorems in this text
are stated extremely carefully so that students will appreciate the precision of language and
rigor needed in mathematics. Proofs are motivated and developed slowly; their steps are all
carefully justified. The axioms used in proofs and the basic properties that follow from them
are explicitly described in an appendix, giving students a clear idea of what they can assume in
a proof. Recursive definitions are explained and used extensively.

WORKED EXAMPLES Over 800 examples are used to illustrate concepts, relate different
topics, and introduce applications. In most examples, a question is first posed, then its solution
is presented with the appropriate amount of detail.

APPLICATIONS The applications included in this text demonstrate the utility of discrete
mathematics in the solution of real-world problems. This text includes applications to a wide va-
riety of areas, including computer science, data networking, psychology, chemistry, engineering,
linguistics, biology, business, and the Internet.

ALGORITHMS Results in discrete mathematics are often expressed in terms of algo-
rithms; hence, key algorithms are introduced in each chapter of the book. These algorithms
are expressed in words and in an easily understood form of structured pseudocode, which is
described and specified in Appendix 3. The computational complexity of the algorithms in the
text is also analyzed at an elementary level.

HISTORICAL INFORMATION The background of many topics is succinctly described
in the text. Brief biographies of 83 mathematicians and computer scientists are included as foot-
notes. These biographies include information about the lives, careers, and accomplishments of
these important contributors to discrete mathematics and images, when available, are displayed.

In addition, numerous historical footnotes are included that supplement the historical in-
formation in the main body of the text. Efforts have been made to keep the book up-to-date by
reflecting the latest discoveries.

KEY TERMSAND RESULTS A list of key terms and results follows each chapter. The
key terms include only the most important that students should learn, and not every term defined
in the chapter.

EXERCISES There are over 4000 exercises in the text, with many different types of
questions posed. There is an ample supply of straightforward exercises that develop basic skills,
a large number of intermediate exercises, and many challenging exercises. Exercises are stated
clearly and unambiguously, and all are carefully graded for level of difficulty. Exercise sets
contain special discussions that develop new concepts not covered in the text, enabling students
to discover new ideas through their own work.

Exercises that are somewhat more difficult than average are marked with a single star *;
those that are much more challenging are marked with two stars **. Exercises whose solutions
require calculus are explicitly noted. Exercises that develop results used in the text are clearly
identified with the right pointing hand symbol ts=. Answers or outlined solutions to all odd-
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numbered exercises are provided at the back of the text. The solutions include proofs in which
most of the steps are clearly spelled out.

REVIEW QUESTIONS A set of review questions is provided at the end of each chapter.
These questions are designed to help students focus their study on the most important concepts
and techniques of that chapter. To answer these questions students need to write long answers,
rather than just perform calculations or give short replies.

SUPPLEMENTARY EXERCISE SETS Each chapter is followed by a rich and varied
set of supplementary exercises. These exercises are generally more difficult than those in the
exercise sets following the sections. The supplementary exercises reinforce the concepts of the
chapter and integrate different topics more effectively.

COMPUTER PROJECTS Each chapter is followed by a set of computer projects. The
approximately 150 computer projects tie together what students may have learned in computing
and in discrete mathematics. Computer projects that are more difficult than average, from both
a mathematical and a programming point of view, are marked with a star, and those that are
extremely challenging are marked with two stars.

COMPUTATIONSAND EXPLORATIONS A set of computations and explorations is
included at the conclusion of each chapter. These exercises (approximately 120 in total) are de-
signed to be completed using existing software tools, such as programs that students or instruc-
tors have written or mathematical computation packages such as Maple™ or Mathematica™.
Many of these exercises give students the opportunity to uncover new facts and ideas through
computation. (Some of these exercises are discussed in the Exploring Discrete Mathematics
companion workbooks available online.)

WRITING PROJECTS Each chapter is followed by a set of writing projects. To do these
projects students need to consult the mathematical literature. Some of these projects are historical
in nature and may involve looking up original sources. Others are designed to serve as gateways
to new topics and ideas. All are designed to expose students to ideas not covered in depth in
the text. These projects tie mathematical concepts together with the writing process and help
expose students to possible areas for future study. (Suggested references for these projects can
be found online or in the printed Student’s Solutions Guide.)

APPENDIXES There are three appendixes to the text. The first introduces axioms for real
numbers and the positive integers, and illustrates how facts are proved directly from these axioms.
The second covers exponential and logarithmic functions, reviewing some basic material used
heavily in the course. The third specifies the pseudocode used to describe algorithms in this text.

SUGGESTED READINGS A list of suggested readings for the overall book and for each
chapter is provided after the appendices. These suggested readings include books at or below
the level of this text, more difficult books, expository articles, and articles in which discoveries
in discrete mathematics were originally published. Some of these publications are classics,
published many years ago, while others have been published in the last few years.

How to Use This Book

This text has been carefully written and constructed to support discrete mathematics courses
at several levels and with differing foci. The following table identifies the core and optional
sections. An introductory one-term course in discrete mathematics at the sophomore level can
be based on the core sections of the text, with other sections covered at the discretion of the
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instructor. A two-term introductory course can include all the optional mathematics sections in
addition to the core sections. A course with a strong computer science emphasis can be taught
by covering some or all of the optional computer science sections. Instructors can find sample
syllabi for a wide range of discrete mathematics courses and teaching suggestions for using each
section of the text can be found in the Instructor’s Resource Guide available on the website for
this book.

Chapter Core Optional CS Optional Math
1 1.1-1.8 (as needed)
2 2.1-2.4, 2.6 (as needed) 2.5
3 3.1-3.3 (as needed)
4 4.1-4.4 (as needed) 45,4.6
5 5.1-5.3 54,55
6 6.1-6.3 6.6 6.4,6.5
7 7.1 7.4 72,73
8 8.1,8.5 8.3 8.2,8.4,8.6
9 9.1,9.3,95 9.2 9.4,9.6
10 10.1-10.5 10.6-10.8
11 11.1 11.2,11.3 11.4,115
12 12.1-12.4
13 13.1-13.5

Instructors using this book can adjust the level of difficulty of their course by choosing
either to cover or to omit the more challenging examples at the end of sections, as well as
the more challenging exercises. The chapter dependency chart shown here displays the strong
dependencies. A star indicates that only relevant sections of the chapter are needed for study of a
later chapter. Weak dependencies have been ignored. More details can be found in the Instructor
Resource Guide.

Chapter 1

\ \
Chapter 2*
‘ Chapter 12
Aapter 3*
Chapter 9* ‘
\ Chapterzl*\

Chapter 10* | Chapter 13
\ Chapter 5*
Chapter 11
Chapter 6*
Chapter 7 Chapter 8

STUDENT’S SOLUTIONS GUIDE This student manual, available separately, contains
full solutions to all odd-numbered problems in the exercise sets. These solutions explain why
a particular method is used and why it works. For some exercises, one or two other possible
approaches are described to show that a problem can be solved in several different ways. Sug-
gested references for the writing projects found at the end of each chapter are also included in
this volume. Also included are a guide to writing proofs and an extensive description of common
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mistakes students make in discrete mathematics, plus sample tests and a sample crib sheet for
each chapter designed to help students prepare for exams.

(ISBN-10: 0-07-735350-1) (ISBN-13: 978-0-07-735350-6)

INSTRUCTOR’'S RESOURCE GUIDE This manual, available on the website and in
printed form by request for instructors, contains full solutions to even-numbered exercises in
the text. Suggestions on how to teach the material in each chapter of the book are provided,
including the points to stress in each section and how to put the material into perspective. It
also offers sample tests for each chapter and a test bank containing over 1500 exam questions to
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The Companion Website

T he extensive companion website accompanying this text has been substantially enhanced
for the seventh edition This website is accessible at www.mhhe.corm/rosen. The homepage
shows the Information Center, and contains login links for the site’s Student Ste and Instructor
Ste. Key features of each area are described below:

THE INFORMATION CENTER

The Information Center contains basic information about the book including the expanded
table of contents (including subsection heads), the preface, descriptions of the ancillaries, and
a sample chapter. It also provides a link that can be used to submit errata reports and other
feedback about the book.

STUDENT SITE

The Student site contains a wealth of resources available for student use, including the
following, tied into the text wherever the special icons displayed below are found in the text:

Extra & B ExtraExamples You can find a large number of additional examples on the site, covering
Examples all chapters of the book. These examples are concentrated in areas where students often
ask for additional material. Although most of these examples amplify the basic concepts,

more-challenging examples can also be found here.

B [nteractive Demonstration Applets  These applets enable you to interactively explore
Demo BN how important algorithms work, and are tied directly to material in the text with linkages to
examples and exercises. Additional resources are provided on how to use and apply these

applets.

B Self Assessments  These interactive guides help you assess your understanding of 14 key

Assessment B concepts, providing a question bank where each question includes a brief tutorial followed
by a multiple-choice question. If you select an incorrect answer, advice is provided to help
you understand your error. Using these Self Assessments, you should be able to diagnose
your problems and find appropriate help.

m \Web ResourcesGuide  Thisguide provides annotated links to hundreds of external websites
Links B containing relevant material such as historical and biographical information, puzzles and
problems, discussions, applets, programs, and more. These links are keyed to the text by page

number.

é

Additional resources in the Student site include:

= Exploring Discrete Mathematics — This ancillary provides help for using a computer alge-
bra system to do a wide range of computations in discrete mathematics. Each chapter provides
a description of relevant functions in the computer algebra system and how they are used, pro-
grams to carry out computations in discrete mathematics, examples, and exercises that can be
worked using this computer algebra system. Two versions, Exploring Discrete Mathematics
with Maple™ and Exploring Discrete Mathematics with Mathematica™ will be available.

= Applications of Discrete Mathematics — This ancillary contains 24 chapters—each with
its own set of exercises—presenting a wide variety of interesting and important applications
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The Companion Website  xvii

covering three general areas in discrete mathematics: discrete structures, combinatorics, and
graph theory. These applications are ideal for supplementing the text or for independent study.

= A Guide to Proof-Writing  This guide provides additional help for writing proofs, a skill
that many students find difficult to master. By reading this guide at the beginning of the
course and periodically thereafter when proof writing is required, you will be rewarded as
your proof-writing ability grows. (Also available in the Student’s Solutions Guide.)

= Common Mistakes in Discrete Mathematics — This guide includes a detailed list of com-
mon misconceptions that students of discrete mathematics often have and the kinds of errors
they tend to make. You are encouraged to review this list from time to time to help avoid these
common traps. (Also available in the Sudent’s Solutions Guide.)

= Adviceon Writing Projects  This guide offers helpful hints and suggestions for the Writing
Projects in the text, including an extensive bibliography of helpful books and articles for
research; discussion of various resources available in print and online; tips on doing library
research; and suggestions on how to write well. (Also available in the Sudent’s Solutions
Guide)

= TheVirtual Discrete Mathematics Tutor — This extensive ancillary provides students with
valuable assistance as they make the transition from lower-level courses to discrete mathemat-
ics. The errors students have made when studying discrete mathematics using this text has been
analyzed to design this resource. Students will be able to get many of their questions answered
and can overcome many obstacles via this ancillaries. The Virtual Discrete Mathematics Tutor
is expected to be available in the fall of 2012.

INSTRUCTOR SITE

This part of the website provides access to all of the resources on the Student Site, as well as
these resources for instructors:

= Suggested Syllabi  Detailed course outlines are shown, offering suggestions for courses
with different emphases and different student backgrounds and ability levels.

= Teaching Suggestions  This guide contains detailed teaching suggestions for instructors,
including chapter overviews for the entire text, detailed remarks on each section, and comments
on the exercise sets.

= Printable Tests  Printable tests are offered in TeX and Word format for every chapter, and
can be customized by instructors.

= PowerPointsLecture Slidesand Power Point Figuresand Tables  An extensive collection
of PowerPoint slides for all chapters of the text are provided for instructor use. In addition,
images of all figures and tables from the text are provided as PowerPoint slides.

= Homework Delivery System  An extensive homework delivery system, under development
for availability in fall 2012, will provide questions tied directly to the text, so that students
will be able to do assignments on-line. Moreover, they will be able to use this system in a
tutorial mode. This system will be able to automatically grade assignments, and deliver free-
form student input to instructors for their own analysis. Course management capabilities will
be provided that will allow instructors to create assignments, automatically assign and grade
homework, quiz, and test questions from a bank of questions tied directly to the text, create
and edit their own questions, manage course announcements and due dates, and track student
progress.



To the Student

W hat i s discrete mathematics? Discrete mathematics is the part of mathematics devoted to
the study of discrete objects. (Here discrete means consisting of distinct or unconnected
elements.) The kinds of problems solved using discrete mathematics include:

® How many ways are there to choose a valid password on a computer system?
What is the probability of winning a lottery?
Is there a link between two computers in a network?
How can | identify spam e-mail messages?
How can | encrypt a message so that no unintended recipient can read it?
What is the shortest path between two cities using a transportation system?

How many steps are required to do such a sorting?
How can it be proved that a sorting algorithm correctly sorts a list?
How can a circuit that adds two integers be designed?

[ ]
[ ]
[ ]
[ ]
[ ]
B How can a list of integers be sorted so that the integers are in increasing order?
[ ]
[ ]
[ ]
B How many valid Internet addresses are there?

You will learn the discrete structures and techniques needed to solve problems such as these.

More generally, discrete mathematics is used whenever objects are counted, when relation-
ships between finite (or countable) sets are studied, and when processes involving a finite number
of steps are analyzed. A key reason for the growth in the importance of discrete mathematics is
that information is stored and manipulated by computing machines in a discrete fashion.

WHY STUDY DISCRETE MATHEMATICS? There are several important reasons for
studying discrete mathematics. First, through this course you can develop your mathematical
maturity: that is, your ability to understand and create mathematical arguments. You will not get
very far in your studies in the mathematical sciences without these skills.

Second, discrete mathematics is the gateway to more advanced courses in all parts of
the mathematical sciences. Discrete mathematics provides the mathematical foundations for
many computer science courses including data structures, algorithms, database theory, automata
theory, formal languages, compiler theory, computer security, and operating systems. Students
find these courses much more difficult when they have not had the appropriate mathematical
foundations from discrete math. One student has sent me an e-mail message saying that she
used the contents of this book in every computer science course she took!

Math courses based on the material studied in discrete mathematics include logic, set theory,
number theory, linear algebra, abstract algebra, combinatorics, graph theory, and probability
theory (the discrete part of the subject).

Also, discrete mathematics contains the necessary mathematical background for solving
problems in operations research (including many discrete optimization techniques), chemistry,
engineering, biology, and so on. In the text, we will study applications to some of these areas.

Many students find their introductory discrete mathematics course to be significantly more
challenging than courses they have previously taken. One reason for this is that one of the
primary goals of this course is to teach mathematical reasoning and problem solving, rather
than a discrete set of skills. The exercises in this book are designed to reflect this goal. Although
there are plenty of exercises in this text similar to those addressed in the examples, a large
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percentage of the exercises require original thought. This is intentional. The material discussed
in the text provides the tools needed to solve these exercises, but your job is to successfully
apply these tools using your own creativity. One of the primary goals of this course is to learn
how to attack problems that may be somewhat different from any you may have previously
seen. Unfortunately, learning how to solve only particular types of exercises is not sufficient for
success in developing the problem-solving skills needed in subsequent courses and professional
work. This text addresses many different topics, but discrete mathematics is an extremely diverse
and large area of study. One of my goals as an author is to help you develop the skills needed
to master the additional material you will need in your own future pursuits.

THE EXERCISES I would like to offer some advice about how you can best learn discrete
mathematics (and other subjects in the mathematical and computing sciences). You will learn the
most by actively working exercises. | suggest that you solve as many as you possibly can. After
working the exercises your instructor has assigned, | encourage you to solve additional exercises
such as those in the exercise sets following each section of the text and in the supplementary
exercises at the end of each chapter. (Note the key explaining the markings preceding exercises.)

Key to the Exercises

no marking A routine exercise

* A difficult exercise

o An extremely challenging exercise

= An exercise containing a result used in the book (Table 1 on the

following page shows where these exercises are used.)

(Requires calculus)  An exercise whose solution requires the use of limits or concepts
from differential or integral calculus

The best approach is to try exercises yourself before you consult the answer section at the
end of this book. Note that the odd-numbered exercise answers provided in the text are answers
only and not full solutions; in particular, the reasoning required to obtain answers is omitted in
these answers. The Student’s Solutions Guide, available separately, provides complete, worked
solutions to all odd-numbered exercises in this text. When you hit an impasse trying to solve an
odd-numbered exercise, | suggest you consult the Sudent’s Solutions Guide and look for some
guidance as to how to solve the problem. The more work you do yourself rather than passively
reading or copying solutions, the more you will learn. The answers and solutions to the even-
numbered exercises are intentionally not available from the publisher; ask your instructor if you
have trouble with these.

WEB RESOURCES You are strongly encouraged to take advantage of additional re-
sources available on the Web, especially those on the companion website for this book found
at www.mhhe.com/rosen. You will find many Extra Examples designed to clarify key concepts;
Self Assessments for gauging how well you understand core topics; Interactive Demonstration
Applets exploring key algorithms and other concepts; a Web Resources Guide containing an
extensive selection of links to external sites relevant to the world of discrete mathematics; extra
explanations and practice to help you master core concepts; added instruction on writing proofs
and on avoiding common mistakes in discrete mathematics; in-depth discussions of important
applications; and guidance on utilizing Maple™ software to explore the computational aspects
of discrete mathematics. Places in the text where these additional online resources are available
are identified in the margins by special icons. You will also find (after fall 2012) the Virtual
Discrete Mathematics Tutor, an on-line resource that provides extra support to help you make
the transition from lower level courses to discrete mathematics. This tutorial should help answer
many of your questions and correct errors that you may make, based on errors other students
using this book, have made. For more details on these and other online resources, see the
description of the companion website immediately preceding this “To the Student” message.
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TABLE 1 Hand-lcon Exercisesand Where They Are Used
Section Exercise Section Where Used PagesWhere Used
11 40 1.3 31
11 41 13 31
1.3 9 1.6 71
13 10 1.6 70,71
1.3 15 1.6 71
1.3 30 16 71,74
13 42 12.2 820
1.7 16 17 86
2.3 72 2.3 144
2.3 79 2.5 170
25 15 25 174
25 16 25 173
3.1 43 3.1 197
3.2 72 11.2 761
4.2 36 4.2 270
4.3 37 4.1 239
4.4 2 4.6 301
4.4 44 7.2 464
6.4 17 7.2 466
6.4 21 7.4 480
7.2 15 7.2 466
9.1 26 9.4 598
104 59 111 747
11.1 15 111 750
11.1 30 111 755
11.1 48 11.2 762
12.1 12 12.3 825
A2 4 8.3 531

THE VALUE OF THISBOOK My intention is to make your substantial investment in
this text an excellent value. The book, the associated ancillaries, and companion website have
taken many years of effort to develop and refine. | am confident that most of you will find that
the text and associated materials will help you master discrete mathematics, just as so many
previous students have. Even though it is likely that you will not cover some chapters in your
current course, you should find it helpful—as many other students have—to read the relevant
sections of the book as you take additional courses. Most of you will return to this book as a
useful tool throughout your future studies, especially for those of you who continue in computer
science, mathematics, and engineering. | have designed this book to be a gateway for future
studies and explorations, and to be comprehensive reference, and | wish you luck as you begin
your journey.

Kenneth H. Rosen
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The Foundations:
Logic and Proofs

T he rules of logic specify the meaning of mathematical statements. For instance, these rules
help us understand and reason with statements such as “There exists an integer that is
not the sum of two squares” and “For every positive integer n, the sum of the positive integers
not exceeding n is n(n 4+ 1)/2.” Logic is the basis of all mathematical reasoning, and of all
automated reasoning. It has practical applications to the design of computing machines, to the
specification of systems, to artificial intelligence, to computer programming, to programming
languages, and to other areas of computer science, as well as to many other fields of study.

To understand mathematics, we must understand what makes up a correct mathematical
argument, that is, a proof. Once we prove a mathematical statement is true, we call itatheorem. A
collection of theorems on a topic organize what we know about this topic. To learn a mathematical
topic, a person needs to actively construct mathematical arguments on this topic, and not just
read exposition. Moreover, knowing the proof of a theorem often makes it possible to modify
the result to fit new situations.

Everyone knows that proofs are important throughout mathematics, but many people find
it surprising how important proofs are in computer science. In fact, proofs are used to verify
that computer programs produce the correct output for all possible input values, to show that
algorithms always produce the correct result, to establish the security of a system, and to create
artificial intelligence. Furthermore, automated reasoning systems have been created to allow
computers to construct their own proofs.

In this chapter, we will explain what makes up a correct mathematical argument and intro-
duce tools to construct these arguments. We will develop an arsenal of different proof methods
that will enable us to prove many different types of results. After introducing many different
methods of proof, we will introduce several strategies for constructing proofs. We will intro-
duce the notion of a conjecture and explain the process of developing mathematics by studying
conjectures.

Propositional Logic

Introduction

The rules of logic give precise meaning to mathematical statements. These rules are used to
distinguish between valid and invalid mathematical arguments. Because a major goal of this book
is to teach the reader how to understand and how to construct correct mathematical arguments,
we begin our study of discrete mathematics with an introduction to logic.

Besides the importance of logic in understanding mathematical reasoning, logic has numer-
ous applications to computer science. These rules are used in the design of computer circuits,
the construction of computer programs, the verification of the correctness of programs, and in
many other ways. Furthermore, software systems have been developed for constructing some,
but not all, types of proofs automatically. We will discuss these applications of logic in this and
later chapters.
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Propositions

Our discussion begins with an introduction to the basic building blocks of logic—propositions.
A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true
or false, but not both.

All the following declarative sentences are propositions.

1. Washington, D.C., is the capital of the United States of America.
2. Toronto is the capital of Canada.

3.1+1=2
4. 2+2=3.
Propositions 1 and 3 are true, whereas 2 and 4 are false. |

Some sentences that are not propositions are given in Example 2.

Consider the following sentences.

1. What time is it?

2. Read this carefully.
3. x+1=2

4. x+y=z

Sentences 1 and 2 are not propositions because they are not declarative sentences. Sentences 3
and 4 are not propositions because they are neither true nor false. Note that each of sentences 3
and 4 can be turned into a proposition if we assign values to the variables. We will also discuss
other ways to turn sentences such as these into propositions in Section 1.4. <

We use letters to denote propositional variables (or statement variables), that is, vari-
ables that represent propositions, just as letters are used to denote numerical variables. The

ARISTOTLE (384 B.c.E.—322 B.C.E.) Aristotle was born in Stagirus (Stagira) in northern Greece. His father was
the personal physician of the King of Macedonia. Because his father died when Aristotle was young, Aristotle
could not follow the custom of following his father’s profession. Aristotle became an orphan at a young age
when his mother also died. His guardian who raised him taught him poetry, rhetoric, and Greek. At the age of
17, his guardian sent him to Athens to further his education. Aristotle joined Plato’s Academy, where for 20
years he attended Plato’s lectures, later presenting his own lectures on rhetoric. When Plato died in 347 B.cE,
Aristotle was not chosen to succeed him because his views differed too much from those of Plato. Instead,
Aristotle joined the court of King Hermeas where he remained for three years, and married the niece of the
King. When the Persians defeated Hermeas, Aristotle moved to Mytilene and, at the invitation of King Philip

of Macedonia, he tutored Alexander, Philip’s son, who later became Alexander the Great. Aristotle tutored Alexander for five years
and after the death of King Philip, he returned to Athens and set up his own school, called the Lyceum.

Aristotle’s followers were called the peripatetics, which means “to walk about,” because Aristotle often walked around as he
discussed philosophical questions. Aristotle taught at the Lyceum for 13 years where he lectured to his advanced students in the
morning and gave popular lectures to a broad audience in the evening. When Alexander the Great died in 323 B.ce,, a backlash against
anything related to Alexander led to trumped-up charges of impiety against Aristotle. Aristotle fled to Chalcis to avoid prosecution.
He only lived one year in Chalcis, dying of a stomach ailment in 322 s.cke.

Aristotle wrote three types of works: those written for a popular audience, compilations of scientific facts, and systematic
treatises. The systematic treatises included works on logic, philosophy, psychology, physics, and natural history. Aristotle’s writings
were preserved by a student and were hidden in a vault where a wealthy book collector discovered them about 200 years later. They
were taken to Rome, where they were studied by scholars and issued in new editions, preserving them for posterity.
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1.1 Propositional Logic 3

conventional letters used for propositional variables are p, g, r, s, ... . The truth value of a
proposition is true, denoted by T, if it is a true proposition, and the truth value of a proposition
is false, denoted by F, if it is a false proposition.

The area of logic that deals with propositions is called the propositional calculus or propo-
sitional logic. It was first developed systematically by the Greek philosopher Aristotle more
than 2300 years ago.

We now turn our attention to methods for producing new propositions from those that
we already have. These methods were discussed by the English mathematician George Boole
in 1854 in his book The Laws of Thought. Many mathematical statements are constructed by
combining one or more propositions. New propositions, called compound propositions, are
formed from existing propositions using logical operators.

Let p be a proposition. The negation of p, denoted by —p (also denoted by p), is the statement

“It is not the case that p.”

The proposition —p is read “not p.” The truth value of the negation of p, —p, is the opposite
of the truth value of p.

Find the negation of the proposition
“Michael’s PC runs Linux”

and express this in simple English.

Solution: The negation is
“It is not the case that Michael’s PC runs Linux.”
This negation can be more simply expressed as

“Michael’s PC does not run Linux.”

Find the negation of the proposition
“Vandana’s smartphone has at least 32GB of memory”

and express this in simple English.

Solution: The negation is

“It is not the case that Vandana’s smartphone has at least 32GB of memory.”
This negation can also be expressed as

“Vandana’s smartphone does not have at least 32GB of memory”
or even more simply as

“Vandana’s smartphone has less than 32GB of memory.”
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Table 1 displays the truth table for the negation of a proposition p. This table has a row
for each of the two possible truth values of a proposition p. Each row shows the truth value of
—p corresponding to the truth value of p for this row.

The negation of a proposition can also be considered the result of the operation of the
negation operator on a proposition. The negation operator constructs a new proposition from
a single existing proposition. We will now introduce the logical operators that are used to form
new propositions from two or more existing propositions. These logical operators are also called
connectives.

Let p and ¢ be propositions. The conjunction of p and ¢, denoted by p A g, is the proposition
“p and ¢.” The conjunction p A ¢ is true when both p and ¢ are true and is false otherwise.

Table 2 displays the truth table of p A ¢. This table has a row for each of the four possible
combinations of truth values of p and ¢. The four rows correspond to the pairs of truth values
TT, TF, FT, and FF, where the first truth value in the pair is the truth value of p and the second
truth value is the truth value of 4.

Note that in logic the word “but” sometimes is used instead of “and” in a conjunction. For
example, the statement “The sun is shining, but it is raining” is another way of saying “The sun
is shining and it is raining.” (In natural language, there is a subtle difference in meaning between
“and” and “but”; we will not be concerned with this nuance here.)

Find the conjunction of the propositions p and ¢ where p is the proposition “Rebecca’s PC has
more than 16 GB free hard disk space” and ¢ is the proposition “The processor in Rebecca’s
PC runs faster than 1 GHz.”

Solution: The conjunction of these propositions, p A g, is the proposition “Rebecca’s PC has
more than 16 GB free hard disk space, and the processor in Rebecca’s PC runs faster than 1
GHz.” This conjunction can be expressed more simply as “Rebecca’s PC has more than 16 GB
free hard disk space, and its processor runs faster than 1 GHz.” For this conjunction to be true,
both conditions given must be true. It is false, when one or both of these conditions are false. <

Let p and ¢ be propositions. The disjunction of p and ¢, denoted by p Vv ¢, is the proposition
“p or g.” The disjunction p Vv ¢ is false when both p and ¢ are false and is true otherwise.

Table 3 displays the truth table for p v g.

TABLE 2 The Truth Table for TABLE 3 The Truth Table for
the Conjunction of Two the Disjunction of Two
Propositions. Propositions.

p pPAg p pVvVq

mm—H H
m4H4 7|
m T T
mm A A
e e s I I IS
m— - -
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The use of the connective or in a disjunction corresponds to one of the two ways the word
or is used in English, namely, as an inclusive or. A disjunction is true when at least one of the
two propositions is true. For instance, the inclusive or is being used in the statement

“Students who have taken calculus or computer science can take this class.”

Here, we mean that students who have taken both calculus and computer science can take the
class, as well as the students who have taken only one of the two subjects. On the other hand,
we are using the exclusive or when we say

“Students who have taken calculus or computer science, but not both, can enroll in this
class.”

Here, we mean that students who have taken both calculus and a computer science course cannot
take the class. Only those who have taken exactly one of the two courses can take the class.

Similarly, when a menu at a restaurant states, “Soup or salad comes with an entrée,” the
restaurant almost always means that customers can have either soup or salad, but not both.
Hence, this is an exclusive, rather than an inclusive, or.

What is the disjunction of the propositions p and ¢ where p and ¢ are the same propositions as
in Example 5?

Solution: The disjunction of p and ¢, p V ¢, is the proposition

“Rebecca’s PC has at least 16 GB free hard disk space, or the processor in Rebecca’s PC
runs faster than 1 GHz.”

This proposition is true when Rebecca’s PC has at least 16 GB free hard disk space, when the
PC’s processor runs faster than 1 GHz, and when both conditions are true. It is false when both
of these conditions are false, that is, when Rebecca’s PC has less than 16 GB free hard disk
space and the processor in her PC runs at 1 GHz or slower. <4

As was previously remarked, the use of the connective or in a disjunction corresponds
to one of the two ways the word or is used in English, namely, in an inclusive way. Thus, a
disjunction is true when at least one of the two propositions in it is true. Sometimes, we use or
in an exclusive sense. When the exclusive or is used to connect the propositions p and ¢, the
proposition “p or ¢ (but not both)” is obtained. This proposition is true when p is true and g is
false, and when p is false and ¢ is true. It is false when both p and ¢ are false and when both
are true.

GEORGE BOOLE (1815-1864) George Boole, the son of a cobbler, was born in Lincoln, England, in
November 1815. Because of his family’s difficult financial situation, Boole struggled to educate himself while
supporting his family. Nevertheless, he became one of the most important mathematicians of the 1800s. Although
he considered a career as a clergyman, he decided instead to go into teaching, and soon afterward opened a
school of his own. In his preparation for teaching mathematics, Boole—unsatisfied with textbooks of his day—
decided to read the works of the great mathematicians. While reading papers of the great French mathematician
Lagrange, Boole made discoveries in the calculus of variations, the branch of analysis dealing with finding
curves and surfaces by optimizing certain parameters.

In 1848 Boole published The Mathematical Analysis of Logic, the first of his contributions to symbolic logic.

In 1849 he was appointed professor of mathematics at Queen’s College in Cork, Ireland. In 1854 he published The Laws of Thought,
his most famous work. In this book, Boole introduced what is now called Boolean algebra in his honor. Boole wrote textbooks
on differential equations and on difference equations that were used in Great Britain until the end of the nineteenth century. Boole
married in 1855; his wife was the niece of the professor of Greek at Queen’s College. In 1864 Boole died from pneumonia, which
he contracted as a result of keeping a lecture engagement even though he was soaking wet from a rainstorm.
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TABLE 4 The Truth Table for TABLE 5 The Truth Table for
the Exclusive Or of Two the Conditional Statement
Propositions. pP—q.

p q pOgq p q pP—4q

T T F T T T

T F T T F F

F T T F T T

F F F F F T

DEFINITION 4  Let p and ¢ be propositions. The exclusive or of p and ¢, denoted by p & ¢, is the proposition
that is true when exactly one of p and ¢ is true and is false otherwise.

The truth table for the exclusive or of two propositions is displayed in Table 4.

Conditional Statements

We will discuss several other important ways in which propositions can be combined.

DEFINITION 5  Let p and ¢ be propositions. The conditional statement p — ¢ is the proposition “if p, then
q.” The conditional statement p — ¢ is false when p is true and ¢ is false, and true otherwise.
In the conditional statement p — ¢, p is called the hypothesis (or antecedent or premise)
and ¢ is called the conclusion (or consequence).

The statement p — ¢ is called a conditional statement because p — ¢ asserts that g is true
Assessment B on the condition that p holds. A conditional statement is also called an implication.

The truth table for the conditional statement p — ¢ is shown in Table 5. Note that the
statement p — ¢ is true when both p and ¢ are true and when p is false (no matter what truth
value ¢ has).

Because conditional statements play such an essential role in mathematical reasoning, a
variety of terminology is used to express p — ¢. You will encounter most if not all of the
following ways to express this conditional statement:

“if p, then ¢” “p implies ¢”

“if p,q” “ponlyifgq”

“p is sufficient for ¢” *a sufficient condition for ¢ is p”
“g if p” “g whenever p”

“g when p” “g is necessary for p”

“a necessary condition for p is g” “g follows from p”

“g unless —p”

A useful way to understand the truth value of a conditional statement is to think of an
obligation or a contract. For example, the pledge many politicians make when running for office
is

“If I am elected, then | will lower taxes.”



You might have trouble

understanding how
“unless” is used in
conditional statements
unless you read this
paragraph carefully.

EXAMPLE 7

Extra
Examples

Q

1.1 Propositional Logic 7

If the politician is elected, voters would expect this politician to lower taxes. Furthermore, if the
politician is not elected, then voters will not have any expectation that this person will lower
taxes, although the person may have sufficient influence to cause those in power to lower taxes.
It is only when the politician is elected but does not lower taxes that voters can say that the
politician has broken the campaign pledge. This last scenario corresponds to the case when p
is true but ¢ is false in p — q.

Similarly, consider a statement that a professor might make:

“If you get 100% on the final, then you will get an A.”

If you manage to get a 100% on the final, then you would expect to receive an A. If you do not
get 100% you may or may not receive an A depending on other factors. However, if you do get
100%, but the professor does not give you an A, you will feel cheated.

Of the various ways to express the conditional statement p — ¢, the two that seem to cause
the most confusion are “p only if ¢g” and “g unless —p.” Consequently, we will provide some
guidance for clearing up this confusion.

To remember that “p only if g expresses the same thing as “if p, then ¢,” note that “p only
if ¢” says that p cannot be true when ¢ is not true. That is, the statement is false if p is true,
but ¢ is false. When p is false, ¢ may be either true or false, because the statement says nothing
about the truth value of ¢. Be careful not to use “g only if p” to express p — ¢ because this is
incorrect. To see this, note that the true values of “g only if p” and p — ¢ are different when
p and ¢ have different truth values.

To remember that “g unless —p” expresses the same conditional statement as “if p, then
g,” note that “4 unless —p” means that if —p is false, then ¢ must be true. That is, the statement
“g unless —p” is false when p is true but ¢ is false, but it is true otherwise. Consequently,
“g unless —p” and p — ¢ always have the same truth value.

We illustrate the translation between conditional statements and English statements in Ex-
ample 7.

Let p be the statement “Maria learns discrete mathematics” and ¢ the statement “Maria will
find a good job.” Express the statement p — ¢ as a statement in English.

Solution: From the definition of conditional statements, we see that when p is the statement
“Maria learns discrete mathematics” and ¢ is the statement “Maria will find a good job,” p — ¢
represents the statement

“If Maria learns discrete mathematics, then she will find a good job.”

There are many other ways to express this conditional statement in English. Among the most
natural of these are:

“Maria will find a good job when she learns discrete mathematics.”
“For Maria to get a good job, it is sufficient for her to learn discrete mathematics.”
and
“Maria will find a good job unless she does not learn discrete mathematics.” <

Note that the way we have defined conditional statements is more general than the meaning
attached to such statements in the English language. For instance, the conditional statement in
Example 7 and the statement

“If it is sunny, then we will go to the beach.”

are statements used in normal language where there is a relationship between the hypothesis
and the conclusion. Further, the first of these statements is true unless Maria learns discrete
mathematics, but she does not get a good job, and the second is true unless it is indeed sunny,
but we do not go to the beach. On the other hand, the statement
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EXAMPLE 8

Remember that the
contrapositive, but neither
the converse or inverse, of
a conditional statement is
equivalent to it.

“If Juan has a smartphone, then 2 4+ 3 = 5”

is true from the definition of a conditional statement, because its conclusion is true. (The truth
value of the hypothesis does not matter then.) The conditional statement

“If Juan has a smartphone, then 2 + 3 = 6”

is true if Juan does not have a smartphone, even though 2 + 3 = 6 is false. We would not use
these last two conditional statements in natural language (except perhaps in sarcasm), because
there is no relationship between the hypothesis and the conclusion in either statement. In math-
ematical reasoning, we consider conditional statements of a more general sort than we use in
English. The mathematical concept of a conditional statement is independent of a cause-and-
effect relationship between hypothesis and conclusion. Our definition of a conditional statement
specifies its truth values; it is not based on English usage. Propositional language is an artificial
language; we only parallel English usage to make it easy to use and remember.

The if-then construction used in many programming languages is different from that used
in logic. Most programming languages contain statements such as if p then S, where p is a
propositionand S isa program segment (one or more statements to be executed). When execution
of a program encounters such a statement, S is executed if p is true, but S is not executed if p
is false, as illustrated in Example 8.

What is the value of the variable x after the statement

if24+2=4thenx:=x+1

if x = 0 before this statement is encountered? (The symbol := stands for assignment. The
statement x := x + 1 means the assignment of the value of x + 1 to x.)

Solution: Because 2 + 2 = 4 is true, the assignment statement x := x + 1 is executed. Hence,
x has the value 0 4+ 1 = 1 after this statement is encountered. |

CONVERSE, CONTRAPOSITIVE, AND INVERSE We can form some new conditional
statements starting with a conditional statement p — ¢. In particular, there are three related
conditional statements that occur so often that they have special names. The proposition g — p
is called the converse of p — ¢. The contrapositive of p — ¢ is the proposition —g — —p.
The proposition —p — —gq is called the inverse of p — ¢g. We will see that of these three
conditional statements formed from p — ¢, only the contrapositive always has the same truth
value as p — gq.

We first show that the contrapositive, —g — —p, of a conditional statement p — ¢ always
has the same truth value as p — ¢. To see this, note that the contrapositive is false only when
—p is false and —q is true, that is, only when p is true and ¢ is false. We now show that neither
the converse, ¢ — p, nor the inverse, —p — —g, has the same truth value as p — ¢ for all
possible truth values of p and ¢. Note that when p is true and ¢ is false, the original conditional
statement is false, but the converse and the inverse are both true.

When two compound propositions always have the same truth value we call them equiv-
alent, so that a conditional statement and its contrapositive are equivalent. The converse and
the inverse of a conditional statement are also equivalent, as the reader can verify, but neither is
equivalent to the original conditional statement. (We will study equivalent propositions in Sec-
tion 1.3.) Take note that one of the most common logical errors is to assume that the converse
or the inverse of a conditional statement is equivalent to this conditional statement.

We illustrate the use of conditional statements in Example 9.
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EXAMPLE 9 What are the contrapositive, the converse, and the inverse of the conditional statement

“The home team wins whenever it is raining?”

Extra &= Solution: Because “g whenever p” is one of the ways to express the conditional statement

Examples

DEFINITION 6

p — q, the original statement can be rewritten as
“If it is raining, then the home team wins.”
Consequently, the contrapositive of this conditional statement is
“If the home team does not win, then it is not raining.”
The converse is
“If the home team wins, then it is raining.”
The inverse is
“If it is not raining, then the home team does not win.”

Only the contrapositive is equivalent to the original statement. <

BICONDITIONALS We now introduce another way to combine propositions that expresses
that two propositions have the same truth value.

Let p and ¢ be propositions. The biconditional statement p <> ¢ is the proposition “p if
and only if ¢.” The biconditional statement p <> ¢ is true when p and ¢ have the same truth
values, and is false otherwise. Biconditional statements are also called bi-implications.

The truth table for p <> ¢ is shown in Table 6. Note that the statement p <> ¢ is true when both
the conditional statements p — ¢ and ¢ — p are true and is false otherwise. That is why we use
the words “if and only if” to express this logical connective and why it is symbolically written
by combining the symbols — and <. There are some other common ways to express p < g:

“p is necessary and sufficient for ¢”
“if p then ¢, and conversely”
“piffg”

The last way of expressing the biconditional statement p <> ¢ uses the abbreviation “iff” for
“if and only if.” Note that p <> ¢ has exactly the same truth value as (p — ¢) A (¢ — p).

TABLE 6 The Truth Table for the
Biconditional p < ¢q.

mmH4H|x
o+ T AR
4 mm 4|3
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EXAMPLE 10

Extra g>
Examples <

Demo

EXAMPLE 11

Let p be the statement “You can take the flight,” and let ¢ be the statement “You buy a ticket.”
Then p < ¢ is the statement

“You can take the flight if and only if you buy a ticket.”

This statement is true if p and ¢ are either both true or both false, that is, if you buy a ticket and
can take the flight or if you do not buy a ticket and you cannot take the flight. It is false when
p and ¢ have opposite truth values, that is, when you do not buy a ticket, but you can take the
flight (such as when you get a free trip) and when you buy a ticket but you cannot take the flight
(such as when the airline bumps you). <

IMPLICIT USE OF BICONDITIONALS You should be aware that biconditionals are not
always explicit in natural language. In particular, the “if and only if” construction used in
biconditionals is rarely used in common language. Instead, biconditionals are often expressed
using an “if, then” or an “only if” construction. The other part of the “if and only if” is implicit.
That is, the converse is implied, but not stated. For example, consider the statement in English
“If you finish your meal, then you can have dessert.” What is really meant is “You can have
dessert if and only if you finish your meal.” This last statement is logically equivalent to the
two statements “If you finish your meal, then you can have dessert” and “You can have dessert
only if you finish your meal.” Because of this imprecision in natural language, we need to
make an assumption whether a conditional statement in natural language implicitly includes its
converse. Because precision is essential in mathematics and in logic, we will always distinguish
between the conditional statement p — ¢ and the biconditional statement p < g.

Truth Tables of Compound Propositions

We have now introduced four important logical connectives—conjunctions, disjunctions, con-
ditional statements, and biconditional statements—as well as negations. We can use these con-
nectives to build up complicated compound propositions involving any number of propositional
variables. We can use truth tables to determine the truth values of these compound propositions,
as Example 11 illustrates. We use a separate column to find the truth value of each compound
expression that occurs in the compound proposition as it is built up. The truth values of the
compound proposition for each combination of truth values of the propositional variables in it
is found in the final column of the table.

Construct the truth table of the compound proposition

(pVv—q)— (pNAg).

Solution: Because this truth table involves two propositional variables p and ¢, there are four
rows in this truth table, one for each of the pairs of truth values TT, TF, FT, and FF. The first
two columns are used for the truth values of p and ¢, respectively. In the third column we find
the truth value of —¢, needed to find the truth value of p v —¢, found in the fourth column. The
fifth column gives the truth value of p A ¢. Finally, the truth value of (p v —g) — (p A gq) is
found in the last column. The resulting truth table is shown in Table 7. <

TABLE 7 The Truth Tableof (p v =¢) — (p A q).
p q -q pv—q PAg (pv=q)— (pArq)
T T F T T T
T F T T F F
F T F F F T
F F T T F F
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Precedence of Logical Operators

We can construct compound propositions using the negation operator and the logical operators
defined so far. We will generally use parentheses to specify the order in which logical operators
in a compound proposition are to be applied. For instance, (p v g¢) A (—=r) is the conjunction
of p v ¢ and —r. However, to reduce the number of parentheses, we specify that the negation
operator is applied before all other logical operators. This means that —=p A ¢ is the conjunction
of =p and ¢, namely, (—p) A ¢, notthe negation of the conjunction of p and ¢, namely —(p A g).

Another general rule of precedence is that the conjunction operator takes precedence over
the disjunction operator, so that p A ¢ v r means (p A g) V r rather than p A (¢ Vv r). Because
this rule may be difficult to remember, we will continue to use parentheses so that the order of
the disjunction and conjunction operators is clear.

Finally, it is an accepted rule that the conditional and biconditional operators — and <>
have lower precedence than the conjunction and disjunction operators, A and \v. Consequently,
p Vv q — risthe same as (p v g) — r. We will use parentheses when the order of the con-
ditional operator and biconditional operator is at issue, although the conditional operator has
precedence over the biconditional operator. Table 8 displays the precedence levels of the logical
operators, =, A, V, —, and <.

Logic and Bit Operations

Computers represent information using bits. A bit is a symbol with two possible values, namely,
0 (zero) and 1 (one). This meaning of the word bit comes from binary digit, because zeros and
ones are the digits used in binary representations of numbers. The well-known statistician John
Tukey introduced this terminology in 1946. A bit can be used to represent a truth value, because
there are two truth values, namely, true and false. As is customarily done, we will use a 1 bit to
represent true and a O bit to represent false. That is, 1 represents T (true), O represents F (false). A
variable is called a Boolean variable if its value is either true or false. Consequently, a Boolean
variable can be represented using a bit.

Computer bit operations correspond to the logical connectives. By replacing true by a one
and false by a zero in the truth tables for the operators A, v, and @, the tables shown in Table 9
for the corresponding bit operations are obtained. We will also use the notation OR, AND, and
XOR for the operators v, A, and @, as is done in various programming languages.

JOHN WILDER TUKEY (1915-2000) Tukey, born in New Bedford, Massachusetts, was an only child. His
parents, both teachers, decided home schooling would best develop his potential. His formal education began
at Brown University, where he studied mathematics and chemistry. He received a master’s degree in chemistry
from Brown and continued his studies at Princeton University, changing his field of study from chemistry to
mathematics. He received his Ph.D. from Princeton in 1939 for work in topology, when he was appointed an
instructor in mathematics at Princeton. With the start of World War 1, he joined the Fire Control Research Office,
where he began working in statistics. Tukey found statistical research to his liking and impressed several leading
statisticians with his skills. In 1945, at the conclusion of the war, Tukey returned to the mathematics department
at Princeton as a professor of statistics, and he also took a position at AT&T Bell Laboratories. Tukey founded

the Statistics Department at Princeton in 1966 and was its first chairman. Tukey made significant contributions to many areas of
statistics, including the analysis of variance, the estimation of spectra of time series, inferences about the values of a set of parameters
from a single experiment, and the philosophy of statistics. However, he is best known for his invention, with J. W. Cooley, of the fast
Fourier transform. In addition to his contributions to statistics, Tukey was noted as a skilled wordsmith; he is credited with coining
the terms bit and software.

Tukey contributed his insight and expertise by serving on the President’s Science Advisory Committee. He chaired several
important committees dealing with the environment, education, and chemicals and health. He also served on committees working
on nuclear disarmament. Tukey received many awards, including the National Medal of Science.

HISTORICAL NOTE  There were several other suggested words for a binary digit, including binit and bigit, that never were widely
accepted. The adoption of the word bit may be due to its meaning as a common English word. For an account of Tukey’s coining
of the word bit, see the April 1984 issue of Annals of the History of Computing.
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EXAMPLE 12

EXAMPLE 13

Exercises

TABLE 9 Table for the Bit Operators OR,
AND, and XOR.
X y xXVy XAy xX®y
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

Information is often represented using bit strings, which are lists of zeros and ones. When
this is done, operations on the bit strings can be used to manipulate this information.

A bit string is a sequence of zero or more bits. The length of this string is the number of bits
in the string.

101010011 is a bit string of length nine. <

We can extend bit operations to bit strings. We define the bitwise OR, bitwise AND, and
bitwise XOR of two strings of the same length to be the strings that have as their bits the OR,
AND, and XOR of the corresponding bits in the two strings, respectively. We use the symbols
V, A, and @ to represent the bitwise OR, bitwise AND, and bitwise XOR operations, respectively.
We illustrate bitwise operations on bit strings with Example 13.

Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 0110110110 and
110001 1101. (Here, and throughout this book, bit strings will be split into blocks of four
bits to make them easier to read.)

Solution: The bitwise OR, bitwise AND, and bitwise XOR of these strings are obtained by taking
the OR, AND, and XOR of the corresponding bits, respectively. This gives us

011011 0110
11 0001 1101

111011 1111
01 0001 0100
10 1010 1011

bitwise OR
bitwise AND
bitwise XOR <

1. Which of these sentences are propositions? What are the

d) 4+x=5.

truth values of those that are propositions?
a) Boston is the capital of Massachusetts.
b) Miami is the capital of Florida.

c) 24+3="5.
d) 5+7 = 10.
e) x+2=11

f) Answer this question.

2. Which of these are propositions? What are the truth values

of those that are propositions?

a) Do not pass go.

b) What time is it?

¢) There are no black flies in Maine.

e) The moon is made of green cheese.
f) 2" > 100.
3. What is the negation of each of these propositions?
a) Mei has an MP3 player.
b) There is no pollution in New Jersey.
c) 2+1=3.
d) The summer in Maine is hot and sunny.
4. What is the negation of each of these propositions?
a) Jennifer and Teja are friends.
b) There are 13 items in a baker’s dozen.
c) Abby sent more than 100 text messages every day.
d) 121 is a perfect square.



5. What is the negation of each of these propositions?

a) Steve has more than 100 GB free disk space on his
laptop.

b) Zach blocks e-mails and texts from Jennifer.

c) 7-11-13 =999.

d) Diane rode her bicycle 100 miles on Sunday.

. Suppose that Smartphone A has 256 MB RAM and 32 GB

ROM, and the resolution of its camera is 8 MP; Smart-

phone B has 288 MB RAM and 64 GB ROM, and the

resolution of its camera is 4 MP; and Smartphone C has

128 MB RAM and 32 GB ROM, and the resolution of

its camera is 5 MP. Determine the truth value of each of

these propositions.

a) Smartphone B hasthe most RAM of these three smart-
phones.

b) Smartphone C has more ROM or a higher resolution
camera than Smartphone B.

c) Smartphone B has more RAM, more ROM, and a
higher resolution camera than Smartphone A.

d) If Smartphone B has more RAM and more ROM than
Smartphone C, then it also has a higher resolution
camera.

e) Smartphone A has more RAM than Smartphone B if
and only if Smartphone B has more RAM than Smart-
phone A.

. Suppose that during the most recent fiscal year, the an-

nual revenue of Acme Computer was 138 billion dollars

and its net profit was 8 billion dollars, the annual revenue

of Nadir Software was 87 billion dollars and its net profit

was 5 billion dollars, and the annual revenue of Quixote

Media was 111 billion dollars and its net profit was

13 billion dollars. Determine the truth value of each of

these propositions for the most recent fiscal year.

a) Quixote Media had the largest annual revenue.

b) Nadir Software had the lowest net profit and Acme
Computer had the largest annual revenue.

c) Acme Computer had the largest net profit or Quixote
Media had the largest net profit.

d) If Quixote Media had the smallest net profit, then
Acme Computer had the largest annual revenue.

e) Nadir Software had the smallest net profit if and only
if Acme Computer had the largest annual revenue.

. Let p and ¢ be the propositions

p : | bought a lottery ticket this week.

q : 1 won the million dollar jackpot.
Express each of these propositions as an English sen-
tence.

a) —p b) pvg ) p—gq
d) pAg e) p<gq f) =p— —q
9) —pA—q h) =pvpA q)

. Let p and ¢ be the propositions “Swimming at the New
Jersey shore is allowed” and “Sharks have been spotted
near the shore,” respectively. Express each of these com-
pound propositions as an English sentence.

a) —¢q b) pAg c) —pVgq
d) p—> —¢q e) ~q—>p f) =p— —q
9) pe—q h) =pA(pv —q)

10.

11.

12.

13.

14.
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Let p and g be the propositions “The election is decided”
and “The votes have been counted,” respectively. Express
each of these compound propositions as an English sen-
tence.

a) —p b) pvgq

C) =pAg dg—>p

€) —q = —p f) =p——q

9) pogq h) =g Vv (=p A q)
Let p and ¢ be the propositions

p : Itis below freezing.
q : It is snowing.
Write these propositions using p and ¢ and logical con-
nectives (including negations).
a) Itis below freezing and snowing.
b) It is below freezing but not snowing.
c¢) Itis not below freezing and it is not snowing.
d) Itis either snowing or below freezing (or both).
e) Ifitis below freezing, it is also snowing.
f) Either it is below freezing or it is snowing, but it is
not snowing if it is below freezing.
g) That it is below freezing is necessary and sufficient
for it to be snowing.
Let p, ¢, and r be the propositions
p :You have the flu.
g :You miss the final examination.
r :You pass the course.
Express each of these propositions as an English sen-
tence.
a) p—yq
c) g — —r
e) (p—>—r)Vvig— —r)
f) (pAg) V(=g A1)
Let p and ¢ be the propositions
p :You drive over 65 miles per hour.
q : You get a speeding ticket.
Write these propositions using p and ¢ and logical con-
nectives (including negations).
a) You do not drive over 65 miles per hour.
b) You drive over 65 miles per hour, but you do not get
a speeding ticket.
¢) You will get a speeding ticket if you drive over
65 miles per hour.
d) If you do not drive over 65 miles per hour, then you
will not get a speeding ticket.
e) Driving over 65 miles per hour is sufficient for getting
a speeding ticket.
f) You get a speeding ticket, but you do not drive over
65 miles per hour.
g) Whenever you get a speeding ticket, you are driving
over 65 miles per hour.
Let p, ¢, and r be the propositions
p :You get an A on the final exam.
g :You do every exercise in this book.
r - You get an A in this class.
Write these propositions using p, ¢, and » and logical
connectives (including negations).

b) =g < r
d pvgvr
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17.

18.

19.
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a) You get an A in this class, but you do not do every
exercise in this book.

b) You get an A on the final, you do every exercise in this
book, and you get an A in this class.

¢) Togetan A in this class, it is necessary for you to get
an A on the final.

d) You get an A on the final, but you don’t do every ex-
ercise in this book; nevertheless, you get an A in this
class.

e) Getting an A on the final and doing every exercise in
this book is sufficient for getting an A in this class.

f) Youwill get an A in this class if and only if you either
do every exercise in this book or you get an A on the
final.

Let p, g, and r be the propositions

p : Grizzly bears have been seen in the area.
q : Hiking is safe on the trail.
r : Berries are ripe along the trail.

Write these propositions using p, ¢, and r and logical
connectives (including negations).

a) Berries are ripe along the trail, but grizzly bears have
not been seen in the area.

b) Grizzly bears have not been seen in the area and hik-
ing on the trail is safe, but berries are ripe along the
trail.

c) If berries are ripe along the trail, hiking is safe if and
only if grizzly bears have not been seen in the area.

d) Itis notsafe to hike on the trail, but grizzly bears have
not been seen in the area and the berries along the trail
are ripe.

e) Forhiking on the trail to be safe, it is necessary but not
sufficient that berries not be ripe along the trail and
for grizzly bears not to have been seen in the area.

f) Hiking is not safe on the trail whenever grizzly bears
have been seen in the area and berries are ripe along
the trail.

Determine whether these biconditionals are true or

false.

a) 2+2=4ifandonlyifl+1=2.

b) 1+1=2ifandonlyif2+3 =4.

c) 141 = 3ifand only if monkeys can fly.

d) 0> 1ifandonlyif2 > 1.

Determine whether each of these conditional statements

is true or false.

a) If1+1=2then2+4+2=5.

b) f14+1=3,then2+2=4.

c) Ifl1+1=3,then2+4+2=>5.

d) If monkeys can fly, then1+ 1 = 3.

Determine whether each of these conditional statements

is true or false.

a) If1+ 1 = 3, then unicorns exist.

b) If 14+ 1 = 3, then dogs can fly.

c) If1+ 1 =2, then dogs can fly.

d) If2+2=4,thenl+2=3.

For each of these sentences, determine whether an in-

clusive or, or an exclusive or, is intended. Explain your

answer.

20.

21.

22.

23.

a) Coffee or tea comes with dinner.

b) A password must have at least three digits or be at
least eight characters long.

c) The prerequisite for the course is a course in number
theory or a course in cryptography.

d) You can pay using U.S. dollars or euros.

For each of these sentences, determine whether an in-

clusive or, or an exclusive or, is intended. Explain your

answer.

a) Experience with C++ or Java is required.

b) Lunch includes soup or salad.

c) To enter the country you need a passport or a voter
registration card.

d) Publish or perish.

For each of these sentences, state what the sentence means

if the logical connective or is an inclusive or (that is, a dis-

junction) versus an exclusive or. Which of these meanings

of or do you think is intended?

a) To take discrete mathematics, you must have taken
calculus or a course in computer science.

b) When you buy a new car from Acme Motor Company,
you get $2000 back in cash or a 2% car loan.

c) Dinner for two includes two items from column A or
three items from column B.

d) School is closed if more than 2 feet of snow falls or if
the wind chill is below —100.

Write each of these statements in the form “if p, then ¢”

in English. [Hint: Refer to the list of common ways to ex-

press conditional statements provided in this section.]

a) Itis necessary to wash the boss’s car to get promoted.

b) Winds from the south imply a spring thaw.

c) A sufficient condition for the warranty to be good is
that you bought the computer less than a year ago.

d) Willy gets caught whenever he cheats.

e) You can access the website only if you pay a subscrip-
tion fee.

f) Getting elected follows from knowing the right peo-
ple.

g) Carol gets seasick whenever she is on a boat.

Write each of these statements in the form “if p, then ¢”

in English. [Hint: Refer to the list of common ways to

express conditional statements.]

a) Itsnows whenever the wind blows from the northeast.

b) The apple trees will bloom if it stays warm for a week.

c) That the Pistons win the championship implies that
they beat the Lakers.

d) It is necessary to walk 8 miles to get to the top of
Long’s Peak.

e) Togettenure asa professor, it is sufficient to be world-
famous.

f) If you drive more than 400 miles, you will need to buy
gasoline.

g) Your guarantee is good only if you bought your CD
player less than 90 days ago.

h) Jan will go swimming unless the water is too cold.



24. Write each of these statements in the form “if p, then ¢”

25.

in English. [Hint: Refer to the list of common ways to ex-
press conditional statements provided in this section.]

a) | will remember to send you the address only if you
send me an e-mail message.

b) To be a citizen of this country, it is sufficient that you
were born in the United States.

c) Ifyou keep your textbook, it will be a useful reference
in your future courses.

d) The Red Wings will win the Stanley Cup if their goalie
plays well.

e) That you get the job implies that you had the best
credentials.

f) The beach erodes whenever there is a storm.

g) It is necessary to have a valid password to log on to
the server.

h) You will reach the summitunless you begin your climb
too late.

Write each of these propositions in the form “p if and

only if ¢” in English.

a) Ifitis hot outside you buy an ice cream cone, and if
you buy an ice cream cone it is hot outside.

b) Foryoutowin the contest it is necessary and sufficient
that you have the only winning ticket.

c) You get promoted only if you have connections, and
you have connections only if you get promoted.

d) Ifyouwatch television your mind will decay, and con-
versely.

e) The trains run late on exactly those days when | take
it.

26. Write each of these propositions in the form “p if and

217.

28.

29.

only if ¢” in English.

a) Foryou to getan A in this course, it is necessary and
sufficient that you learn how to solve discrete mathe-
matics problems.

b) If you read the newspaper every day, you will be in-
formed, and conversely.

c) ltrainsifitis a weekend day, and it is a weekend day
if it rains.

d) You can see the wizard only if the wizard is not in,
and the wizard is not in only if you can see him.

State the converse, contrapositive, and inverse of each of
these conditional statements.

a) If it snows today, | will ski tomorrow.

b) 1 come to class whenever there is going to be a quiz.

c) A positive integer is a prime only if it has no divisors
other than 1 and itself.

State the converse, contrapositive, and inverse of each of

these conditional statements.

a) If it snows tonight, then I will stay at home.

b) 1 go to the beach whenever it is a sunny summer day.

c) When | stay up late, it is necessary that | sleep until
noon.

How many rows appear in a truth table for each of these

compound propositions?

a) p—>—p

b) (pVv—=r)A(gV—s)

30.

31.

32.

33.

34.

35.

36.

3r.

38.
39.
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C) gVpV-sV—rVv-tVu

d (pArat) < (gnte)

How many rows appear in a truth table for each of these
compound propositions?

a) (g —> —p)V(=p—>—q)

b) (pv—=t)A(pV—s)

C) (p—>r)V(=ms— =)V (—u —> V)

d) (pArAs)V(@AL V(T A-L)

Construct a truth table for each of these compound propo-
sitions.

a) pA—p b) pv—p

¢) (pVvV—q) —>gq d (pvg) = (pArg)

e) (p— q) < (=g — —p)

f) p—>q9) —(@q@—>p

Construct a truth table for each of these compound propo-
sitions.

a) p—>—p

) p®(pvay)

e) (g —>—p) <o (poqg
f) peopepo—q
Construct a truth table for each of these compound propo-
sitions.

a) (pvg = (pdq)

) (pvae)®(pArg)

&) (poq)®(—p < —r)
f) p®q9) — (p®—9q)
Construct a truth table for each of these compound propo-
sitions.

a pop

b) p<—-p
d) (prg) = (pVa)

b) (p®qg)— (prq)
d) (peg)®(p<o g

b) p®—p

) p®—q d —p®—q

e) pdVvipd—~q) f) pOPA(PD—q)
Construct a truth table for each of these compound propo-
sitions.

a) p—>—q

) p—=>qV(Ep—>q
&) (P g V(=p<q)
f) (=p<—q) < (p<q
Construct a truth table for each of these compound propo-
sitions.

a) (pvg)vr
) (prgVvr d (prg) AT

e) (pVag)A—r f) (pAg) v —r
Construct a truth table for each of these compound propo-
sitions.

a p—(=qVvr)

b) -p—>(@—r

Q) (p—>q@V(=p—r)

d (p—>g@A(E=p—>r)

&) (pq)V(~g<r)

f) (=p < —g) < (g <)

Construct a truth table for ((p — ¢) — r) — s.
Construct a truth table for (p < g) < (r < s).

b) —p<g¢q
d (p > A(=p—q

b) (pvag)nr
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Explain, without using a truth table, why (p v —g) A
(g v —=r) A (r v —p)is true when p, g, and r have the
same truth value and it is false otherwise.

Explain, without using a truth table, why (p v g v r) A
(—p Vv —q Vv —r) is true when at least one of p, ¢, and r
is true and at least one is false, but is false when all three
variables have the same truth value.

What is the value of x after each of these statements is
encountered in a computer program, if x = 1 before the
statement is reached?

a) ifx+2=3thenx:=x+1

b) if(x+1=3)OR(2x+2=3)thenx:=x+1

c) if2x+3=5AND Bx+4=7)thenx :=x+1
d ifx+1=2)XOR(x+2=3)thenx :=x+1

e) ifx <2thenx:=x+1

Find the bitwise OR, bitwise AND, and bitwise XOR of
each of these pairs of bit strings.

a) 1011110, 010 0001

b) 11110000, 1010 1010

c) 0001110001, 10 0100 1000
d) 1111111111, 00 0000 0000

Evaluate each of these expressions.

a) 11000 A (01011 v 11011)

b) (01111 A 10101) v 0 1000

c) (01010 11011) @ 01000

d) (11011 v 01010) A (10001 v 11011)

Fuzzy logic is used in artificial intelligence. In fuzzy logic, a
proposition has a truth value that is a number between 0 and 1,
inclusive. A proposition with a truth value of 0 is false and one
with a truth value of 1 is true. Truth values that are between 0
and 1 indicate varying degrees of truth. For instance, the truth
value 0.8 can be assigned to the statement “Fred is happy,”

because Fred is happy most of the time, and the truth value
0.4 can be assigned to the statement “John is happy,” because
John is happy slightly less than half the time. Use these truth
values to solve Exercises 45-47.

45.

46.

47.

#48.
#49.

50.

The truth value of the negation of a proposition in fuzzy
logic is 1 minus the truth value of the proposition. What
are the truth values of the statements “Fred is not happy”
and “John is not happy?”

The truth value of the conjunction of two propositions in
fuzzy logic is the minimum of the truth values of the two
propositions. What are the truth values of the statements
“Fred and John are happy” and “Neither Fred nor John is
happy?”

The truth value of the disjunction of two propositions in
fuzzy logic is the maximum of the truth values of the two
propositions. What are the truth values of the statements
“Fred is happy, or John is happy” and “Fred is not happy,
or John is not happy?”

Is the assertion “This statement is false” a proposition?

The nth statement in a list of 100 statements is “Exactly
n of the statements in this list are false.”

a) What conclusions can you draw from these state-
ments?

b) Answer part (a) if the nth statement is “At least n of
the statements in this list are false.”

c) Answer part (b) assuming that the list contains 99
statements.

An ancient Sicilian legend says that the barber in a remote

town who can be reached only by traveling a dangerous

mountain road shaves those people, and only those peo-

ple, who do not shave themselves. Can there be such a

barber?

Applications of Propositional Logic

Introduction

Logic has many important applications to mathematics, computer science, and numerous other
disciplines. Statements in mathematics and the sciences and in natural language often are im-
precise or ambiguous. To make such statements precise, they can be translated into the language
of logic. For example, logic is used in the specification of software and hardware, because these
specifications need to be precise before development begins. Furthermore, propositional logic
and its rules can be used to design computer circuits, to construct computer programs, to verify
the correctness of programs, and to build expert systems. Logic can be used to analyze and
solve many familiar puzzles. Software systems based on the rules of logic have been developed
for constructing some, but not all, types of proofs automatically. We will discuss some of these
applications of propositional logic in this section and in later chapters.

Translating English Sentences

There are many reasons to translate English sentences into expressions involving propositional
variables and logical connectives. In particular, English (and every other human language) is
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often ambiguous. Translating sentences into compound statements (and other types of logical
expressions, which we will introduce later in this chapter) removes the ambiguity. Note that
this may involve making a set of reasonable assumptions based on the intended meaning of the
sentence. Moreover, once we have translated sentences from English into logical expressions
we can analyze these logical expressions to determine their truth values, we can manipulate
them, and we can use rules of inference (which are discussed in Section 1.6) to reason about
them.

To illustrate the process of translating an English sentence into a logical expression, consider
Examples 1 and 2.

EXAMPLE 1 How can this English sentence be translated into a logical expression?

“You can access the Internet from campus only if you are a computer science major or you
are not a freshman.”

Extra 229 Solution: There are many ways to translate this sentence into a logical expression. Although it is
Examples possible to represent the sentence by a single propositional variable, such as p, this would not be
useful when analyzing its meaning or reasoning with it. Instead, we will use propositional vari-
ables to represent each sentence part and determine the appropriate logical connectives between
them. In particular, we let a, ¢, and f represent “You can access the Internet from campus,”
“You are a computer science major,” and *“You are a freshman,” respectively. Noting that “only

if” is one way a conditional statement can be expressed, this sentence can be represented as

a— (cVv~—f). <

EXAMPLE 2 How can this English sentence be translated into a logical expression?

“You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16
years old.”

Solution: Let ¢, r, and s represent *“You can ride the roller coaster,” “You are under 4 feet tall,”
and “You are older than 16 years old,” respectively. Then the sentence can be translated to

(r A—s) - —q.

Of course, there are other ways to represent the original sentence as a logical expression,
but the one we have used should meet our needs. <

System Specifications

Translating sentences in natural language (such as English) into logical expressions is an essential
part of specifying both hardware and software systems. System and software engineers take
requirements in natural language and produce precise and unambiguous specifications that can
be used as the basis for system development. Example 3 shows how compound propositions
can be used in this process.

EXAMPLE 3 Express the specification “The automated reply cannot be sent when the file system is full”
using logical connectives.

Solution: One way to translate this is to let p denote “The automated reply can be sent” and

E)(aIIIEI)l(Il;g S| 4 denote “The file system is full.” Then —p represents “It is not the case that the automated
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EXAMPLE 4

EXAMPLE 5

Links

EXAMPLE 6

Extra g2
Examples <

reply can be sent,” which can also be expressed as “The automated reply cannot be sent.”
Consequently, our specification can be represented by the conditional statement g — —p. <

System specifications should be consistent, that is, they should not contain conflicting
requirements that could be used to derive a contradiction. When specifications are not consistent,
there would be no way to develop a system that satisfies all specifications.

Determine whether these system specifications are consistent:

“The diagnostic message is stored in the buffer or it is retransmitted.”
“The diagnostic message is not stored in the buffer.”
“If the diagnostic message is stored in the buffer, then it is retransmitted.”

Solution: To determine whether these specifications are consistent, we first express them using
logical expressions. Let p denote “The diagnostic message is stored in the buffer” and let ¢
denote “The diagnostic message is retransmitted.” The specifications can then be written as
pVq,—p,and p — g. An assignment of truth values that makes all three specifications true
must have p false to make —p true. Because we want p Vv ¢ to be true but p must be false,
g must be true. Because p — ¢ is true when p is false and ¢ is true, we conclude that these
specifications are consistent, because they are all true when p is false and ¢ is true. We could
come to the same conclusion by use of a truth table to examine the four possible assignments

of truth values to p and g. <
Do the system specifications in Example 4 remain consistent if the specification “The diagnostic
message is not retransmitted” is added?

Solution: By the reasoning in Example 4, the three specifications from that example are true
only in the case when p is false and ¢ is true. However, this new specification is —¢, which is
false when ¢ is true. Consequently, these four specifications are inconsistent. <

Boolean Searches

Logical connectives are used extensively in searches of large collections of information, such
as indexes of Web pages. Because these searches employ techniques from propositional logic,
they are called Boolean searches.

In Boolean searches, the connective AND is used to match records that contain both of
two search terms, the connective OR is used to match one or both of two search terms, and the
connective NOT (sometimes written as AND NOT ) is used to exclude a particular search term.
Careful planning of how logical connectives are used is often required when Boolean searches
are used to locate information of potential interest. Example 6 illustrates how Boolean searches
are carried out.

Web Page Searching Most Web search engines support Boolean searching techniques, which
usually can help find Web pages about particular subjects. For instance, using Boolean searching
to find Web pages about universities in New Mexico, we can look for pages matching NEW
AND MEXICO AND UNIVERSITIES. The results of this search will include those pages that
contain the three words NEW, MEXICO, and UNIVERSITIES. This will include all of the
pages of interest, together with others such as a page about new universities in Mexico. (Note
that in Google, and many other search engines, the word “AND” is not needed, although it is
understood, because all search terms are included by default. These search engines also support
the use of quotation marks to search for specific phrases. So, it may be more effective to search
for pages matching “New Mexico” AND UNIVERSITIES.)
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Next, to find pages that deal with universities in New Mexico or Arizona, we can search
for pages matching (NEW AND MEXICO OR ARIZONA) AND UNIVERSITIES. (Note: Here
the AND operator takes precedence over the OR operator. Also, in Google, the terms used for
this search would be NEW MEXICO OR ARIZONA.) The results of this search will include
all pages that contain the word UNIVERSITIES and either both the words NEW and MEXICO
or the word ARIZONA. Again, pages besides those of interest will be listed. Finally, to find
Web pages that deal with universities in Mexico (and not New Mexico), we might first look
for pages matching MEXICO AND UNIVERSITIES, but because the results of this search will
include pages about universities in New Mexico, as well as universities in Mexico, it might be
better to search for pages matching (MEXICO AND UNIVERSITIES) NOT NEW. The results
of this search include pages that contain both the words MEXICO and UNIVERSITIES but
do not contain the word NEW. (In Google, and many other search engines, the word “NOT” is
replaced by the symbol “-”. In Google, the terms used for this last search would be MEXICO
UNIVERSITIES -NEW.) |

Logic Puzzles

Puzzles that can be solved using logical reasoning are known as logic puzzles. Solving logic
puzzles is an excellent way to practice working with the rules of logic. Also, computer programs
designed to carry out logical reasoning often use well-known logic puzzles to illustrate their
capabilities. Many people enjoy solving logic puzzles, published in periodicals, books, and on
the Web, as a recreational activity.

We will discuss two logic puzzles here. We begin with a puzzle originally posed by Raymond
Smullyan, a master of logic puzzles, who has published more than a dozen books containing
challenging puzzles that involve logical reasoning. In Section 1.3 we will also discuss the
extremely popular logic puzzle Sudoku.

In [Sm78] Smullyan posed many puzzles about an island that has two kinds of inhabitants,
knights, who always tell the truth, and their opposites, knaves, who always lie. You encounter
two people A and B. What are A and B if A says “B is a knight” and B says “The two of us are
opposite types?”

Solution: Let p and ¢ be the statements that A is a knight and B is a knight, respectively, so that
—p and —q are the statements that A is a knave and B is a knave, respectively.

We first consider the possibility that A is a knight; this is the statement that p is true. If A is
a knight, then he is telling the truth when he says that B is a knight, so that ¢ is true, and A and B
are the same type. However, if B is a knight, then B’s statement that A and B are of opposite
types, the statement (p A —g) V (—=p A g), would have to be true, which it is not, because A
and B are both knights. Consequently, we can conclude that A is not a knight, that is, that p is
false.

If A is a knave, then because everything a knave says is false, A’s statement that B is
a knight, that is, that ¢ is true, is a lie. This means that ¢ is false and B is also a knave.
Furthermore, if B is a knave, then B’s statement that A and B are opposite types is a lie,
which is consistent with both A and B being knaves. We can conclude that both A and B are
knaves. <

We pose more of Smullyan’s puzzles about knights and knaves in Exercises 19-23. In
Exercises 24-31 we introduce related puzzles where we have three types of people, knights and
knaves as in this puzzle together with spies who can lie.

Next, we pose a puzzle known as the muddy children puzzle for the case of two children.
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EXAMPLE 8 A father tells his two children, a boy and a girl, to play in their backyard without getting dirty.

In Chapter 12 we design
some useful circuits.

Links

However, while playing, both children get mud on their foreheads. When the children stop
playing, the father says “At least one of you has a muddy forehead,” and then asks the children
to answer “Yes” or “No” to the question: “Do you know whether you have a muddy forehead?”
The father asks this question twice. What will the children answer each time this question is
asked, assuming that a child can see whether his or her sibling has a muddy forehead, but cannot
see his or her own forehead? Assume that both children are honest and that the children answer
each question simultaneously.

Solution: Let s be the statement that the son has a muddy forehead and let d be the statement that
the daughter has a muddy forehead. When the father says that at least one of the two children
has a muddy forehead, he is stating that the disjunction s v d is true. Both children will answer
“No” the first time the question is asked because each sees mud on the other child’s forehead.
That is, the son knows that d is true, but does not know whether s is true, and the daughter
knows that s is true, but does not know whether d is true.

After the son has answered “No” to the first question, the daughter can determine that d
must be true. This follows because when the first question is asked, the son knows that s v/ d is
true, but cannot determine whether s is true. Using this information, the daughter can conclude
that d must be true, for if d were false, the son could have reasoned that because s Vv d is true,
then s must be true, and he would have answered “Yes” to the first question. The son can reason
in a similar way to determine that s must be true. It follows that both children answer “Yes” the
second time the question is asked. <

Logic Circuits

Propositional logic can be applied to the design of computer hardware. This was first observed
in 1938 by Claude Shannon in his MIT master’s thesis. In Chapter 12 we will study this topic
in depth. (See that chapter for a biography of Shannon.) We give a brief introduction to this
application here.

A logic circuit (or digital circuit) receives input signals p1, p2, ..., p,, €ach a bit [either
0 (off) or 1 (on)], and produces output signals s1, s2, . .., s,, €ach a bit. In this section we will
restrict our attention to logic circuits with a single output signal; in general, digital circuits may
have multiple outputs.

RAYMOND SMULLYAN (BORN 1919) Raymond Smullyan dropped out of high school. He wanted to study
what he was really interested in and not standard high school material. After jumping from one university to
the next, he earned an undergraduate degree in mathematics at the University of Chicago in 1955. He paid
his college expenses by performing magic tricks at parties and clubs. He obtained a Ph.D. in logic in 1959 at
Princeton, studying under Alonzo Church. After graduating from Princeton, he taught mathematics and logic at
Dartmouth College, Princeton University, Yeshiva University, and the City University of New York. He joined
the philosophy department at Indiana University in 1981 where he is now an emeritus professor.

Smullyan has written many books on recreational logic and mathematics, including Satan, Cantor, and
Infinity; What Is the Name of This Book?; The Lady or the Tiger?; Alice in Puzzleland; To Mock a Mockingbird;

Forever Undecided; and The Riddle of Scheherazade: Amazing Logic Puzzles, Ancient and Modern. Because his logic puzzles are
challenging, entertaining, and thought-provoking, he is considered to be a modern-day Lewis Carroll. Smullyan has also written
several books about the application of deductive logic to chess, three collections of philosophical essays and aphorisms, and several
advanced books on mathematical logic and set theory. He is particularly interested in self-reference and has worked on extending
some of Gddel’s results that show that it is impossible to write a computer program that can solve all mathematical problems. He is
also particularly interested in explaining ideas from mathematical logic to the public.

Smullyan is a talented musician and often plays piano with his wife, who is a concert-level pianist. Making telescopes is one
of his hobbies. He is also interested in optics and stereo photography. He states “I’ve never had a conflict between teaching and
research as some people do because when I’m teaching, I’m doing research.” Smullyan is the subject of a documentary short film
entitled This Film Needs No Title.
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FIGURE 1 Basic logic gates.
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FIGURE 2 A combinatorial circuit.

Complicated digital circuits can be constructed from three basic circuits, called gates, shown
in Figure 1. The inverter, or NOT gate, takes an input bit p, and produces as output —p. The
OR gate takes two input signals p and ¢, each a bit, and produces as output the signal p v g.
Finally, the AND gate takes two input signals p and ¢, each a bit, and produces as output the
signal p A g. We use combinations of these three basic gates to build more complicated circuits,
such as that shown in Figure 2.

Given a circuit built from the basic logic gates and the inputs to the circuit, we determine
the output by tracing through the circuit, as Example 9 shows.

Determine the output for the combinatorial circuit in Figure 2.

Solution: In Figure 2 we display the output of each logic gate in the circuit. We see that the AND
gate takes input of p and —¢, the output of the inverter with input ¢, and produces p A —g.
Next, we note that the OR gate takes input p A —g and —r, the output of the inverter with
input r, and produces the final output (p A —g) Vv —r. <

Suppose that we have a formula for the output of a digital circuit in terms of negations,
disjunctions, and conjunctions. Then, we can systematically build a digital circuit with the
desired output, as illustrated in Example 10.

Build a digital circuit that produces the output (p v —=r) A (=p V (g vV —r)) when given input
bits p, g, and r.

Solution: To construct the desired circuit, we build separate circuits for p v —r and for —p v
(g v —r) and combine them using an AND gate. To construct a circuit for p v —r, we use an
inverter to produce —r from the input . Then, we use an OR gate to combine p and —r. To
build a circuit for —p v (g v —r), we first use an inverter to obtain —r. Then we use an OR gate
with inputs ¢ and —r to obtain ¢ v —r. Finally, we use another inverter and an OR gate to get
—p V (g v —r) from the inputs p and g v —r.

To complete the construction, we employ a final AND gate, with inputs p v —r and —p v
(g v —r). The resulting circuit is displayed in Figure 3. <

We will study logic circuits in great detail in Chapter 12 in the context of Boolean algebra,
and with different notation.
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FIGURE 3 Thecircuitfor (p v =r) A (=p Vv (g Vv =r)).

Exercises

In Exercises 1-6, translate the given statement into proposi-
tional logic using the propositions provided.

1

You cannot edit a protected Wikipedia entry unless you
are an administrator. Express your answer in terms of e:
“You can edit a protected Wikipedia entry” and a: “You
are an administrator.”

. You can see the movie only if you are over 18 years old

or you have the permission of a parent. Express your an-
swer in terms of m: “You can see the movie,” e: “You are
over 18 years old,” and p: “You have the permission of a
parent.”

. You can graduate only if you have completed the require-

ments of your major and you do not owe money to the
university and you do not have an overdue library book.
Express your answer in terms of g: “You can graduate,”
m: *You owe money to the university,” r: “You have com-
pleted the requirements of your major,” and b: “You have
an overdue library book.”

. To use the wireless network in the airport you must pay

the daily fee unless you are a subscriber to the service.
Express your answer in terms of w: “You can use the wire-
less network in the airport,” d: “You pay the daily fee,”
and s: “You are a subscriber to the service.”

. You are eligible to be President of the U.S.A. only if you

are at least 35 years old, were born in the U.S.A, or at the
time of your birth both of your parents were citizens, and
you have lived at least 14 years in the country. Express
your answer in terms of e: “You are eligible to be Pres-
ident of the U.S.A.,” a: “You are at least 35 years old,”
b: “You were born in the U.S.A,” p: “At the time of your
birth, both of your parents where citizens,” and r: “You
have lived at least 14 years in the U.S.A.”

. 'You can upgrade your operating system only if you have

a 32-bit processor running at 1 GHz or faster, at least
1 GB RAM, and 16 GB free hard disk space, or a 64-
bit processor running at 2 GHz or faster, at least 2 GB
RAM, and at least 32 GB free hard disk space. Express
you answer in terms of «: “You can upgrade your oper-
ating system,” b3p: “You have a 32-bit processor,” bga:

“You have a 64-bit processor,” g1: “Your processor runs
at 1 GHz or faster,” g2: “Your processor runs at 2 GHz or
faster,” r1: “Your processor has at least 1 GB RAM,” ry:
“Your processor has at least 2 GB RAM,” h1g: “You have
at least 16 GB free hard disk space,” and k3z: “You have
at least 32 GB free hard disk space.”

. Express these system specifications using the proposi-

tions p “The message is scanned for viruses” and g “The
message was sent from an unknown system” together
with logical connectives (including negations).

a) “The message is scanned for viruses whenever the
message was sent from an unknown system.”

b) “The message was sent from an unknown system but
it was not scanned for viruses.”

c) “Itisnecessary to scan the message for viruses when-
ever it was sent from an unknown system.”

d) “Whenamessage is not sent from an unknown system
it is not scanned for viruses.”

. Express these system specifications using the proposi-

tions p “The user enters a valid password,” g “Access is
granted,” and » “The user has paid the subscription fee”
and logical connectives (including negations).

a) “The user has paid the subscription fee, but does not
enter a valid password.”

b) “Access is granted whenever the user has paid the
subscription fee and enters a valid password.”

c) “Access is denied if the user has not paid the subscrip-
tion fee.”

d) “If the user has not entered a valid password but has
paid the subscription fee, then access is granted.”

9. Are these system specifications consistent? “The system

is in multiuser state if and only if it is operating normally.
If the system is operating normally, the kernel is func-
tioning. The kernel is not functioning or the system is
in interrupt mode. If the system is not in multiuser state,
then it is in interrupt mode. The system is not in interrupt
mode.”
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Are these system specifications consistent? “Whenever
the system software is being upgraded, users cannot ac-
cess the file system. If users can access the file system,
then they can save new files. If users cannot save new
files, then the system software is not being upgraded.”

Are these system specifications consistent? “The router
can send packets to the edge system only if it supports the
new address space. For the router to support the new ad-
dress space it is necessary that the latest software release
be installed. The router can send packets to the edge sys-
tem if the latest software release is installed, The router
does not support the new address space.”

Are these system specifications consistent? “If the file
system is not locked, then new messages will be queued.
If the file system is not locked, then the system is func-
tioning normally, and conversely. If new messages are not
queued, then they will be sent to the message buffer. If
the file system is not locked, then new messages will be
sent to the message buffer. New messages will not be sent
to the message buffer.”

What Boolean search would you use to look for Web
pages about beaches in New Jersey? What if you wanted
to find Web pages about beaches on the isle of Jersey (in
the English Channel)?

What Boolean search would you use to look for Web
pages about hiking in West Virginia? What if you wanted
to find Web pages about hiking in Virginia, but not in West
Virginia?

Each inhabitant of a remote village always tells the truth
or always lies. A villager will give only a “Yes” or a “No”
response to a question a tourist asks. Suppose you are a
tourist visiting this area and come to a fork in the road.
One branch leads to the ruins you want to visit; the other
branch leads deep into the jungle. A villager is standing
at the fork in the road. What one question can you ask the
villager to determine which branch to take?

An explorer is captured by a group of cannibals. There are
two types of cannibals—those who always tell the truth
and those who always lie. The cannibals will barbecue
the explorer unless he can determine whether a particu-
lar cannibal always lies or always tells the truth. He is
allowed to ask the cannibal exactly one question.

a) Explain why the question “Are you a liar?” does not
work.

b) Find a question that the explorer can use to determine
whether the cannibal always lies or always tells the
truth.

When three professors are seated in a restaurant, the host-
ess asks them: “Does everyone want coffee?” The first
professor says: “I do not know.” The second professor
then says: “I do not know.” Finally, the third professor
says: “No, not everyone wants coffee.” The hostess comes
back and gives coffee to the professors who want it. How
did she figure out who wanted coffee?

When planning a party you want to know whom to in-

vite. Among the people you would like to invite are three
touchy friends. You know that if Jasmine attends, she will
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become unhappy if Samir is there, Samir will attend only
if Kanti will be there, and Kanti will not attend unless Jas-
mine also does. Which combinations of these three friends
can you invite so as not to make someone unhappy?

Exercises 19-23 relate to inhabitants of the island of knights
and knaves created by Smullyan, where knights always tell
the truth and knaves always lie. You encounter two people,
A and B. Determine, if possible, what A and B are if they
address you in the ways described. If you cannot determine
what these two people are, can you draw any conclusions?

19. A says “At least one of us is a knave” and B says nothing.

20. A says “The two of us are both knights” and B says “A
is a knave.”

21. Asays“lamaknave or B isaknight” and B says nothing.
22. Both A and B say “l am a knight.”

23. A says “We are both knaves” and B says nothing.
Exercises 24-31 relate to inhabitants of an island on which
there are three kinds of people: knights who always tell the
truth, knaves who always lie, and spies (called normals by
Smullyan [Sm78]) who can either lie or tell the truth. You
encounter three people, A, B, and C. You know one of these
people is a knight, one is a knave, and one is a spy. Each of the
three people knows the type of person each of other two is. For
each of these situations, if possible, determine whether there
is a unique solution and determine who the knave, knight, and
spy are. When there is no unique solution, list all possible
solutions or state that there are no solutions.

24. A says “C is the knave,” B says, “A is the knight,” and C
says “l am the spy.”

25. A says “l am the knight,” B says “I am the knave,” and
C says “B is the knight.”

26. A says “l am the knave,” B says “l am the knave,” and C
says “l am the knave.”

27. A says “l am the knight,” B says “A is telling the truth,”
and C says “l am the spy.”

28. A says “l am the knight,” B says, “A is not the knave,”
and C says “B is not the knave.”

29. A says “l am the knight,” B says “l am the knight,” and
C says “l am the knight.”

30. A says “lI am not the spy,” B says “l am not the spy,” and
C says “A is the spy.”

31. A says “l am not the spy,” B says “l am not the spy,” and
C says “l am not the spy.”

Exercises 32-38 are puzzles that can be solved by translating
statements into logical expressions and reasoning from these
expressions using truth tables.

32. The police have three suspects for the murder of Mr.
Cooper: Mr. Smith, Mr. Jones, and Mr. Williams. Smith,
Jones, and Williams each declare that they did not kill
Cooper. Smith also states that Cooper was a friend of
Jones and that Williams disliked him. Jones also states
that he did not know Cooper and that he was out of town
the day Cooper was killed. Williams also states that he
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saw both Smith and Jones with Cooper the day of the
killing and that either Smith or Jones must have killed
him. Can you determine who the murderer was if

a) one of the three men is guilty, the two innocent men
are telling the truth, but the statements of the guilty
man may or may not be true?

b) innocent men do not lie?

Steve would like to determine the relative salaries of three

coworkers using two facts. First, he knows that if Fred

is not the highest paid of the three, then Janice is. Sec-
ond, he knows that if Janice is not the lowest paid, then

Maggie is paid the most. Is it possible to determine the

relative salaries of Fred, Maggie, and Janice from what

Steve knows? If so, who is paid the most and who the

least? Explain your reasoning.

Five friends have access to a chat room. Is it possible to

determine who is chatting if the following information is

known? Either Kevin or Heather, or both, are chatting.

Either Randy or Vijay, but not both, are chatting. If Abby

is chatting, so is Randy. Vijay and Kevin are either both

chatting or neither is. If Heather is chatting, then so are

Abby and Kevin. Explain your reasoning.

A detective has interviewed four witnesses to a crime.

From the stories of the witnesses the detective has con-

cluded that if the butler is telling the truth then so is the

cook; the cook and the gardener cannot both be telling the
truth; the gardener and the handyman are not both lying;
and if the handyman is telling the truth then the cook is
lying. For each of the four witnesses, can the detective de-
termine whether that person is telling the truth or lying?

Explain your reasoning.

Four friends have been identified as suspects for an unau-

thorized access into a computer system. They have made

statements to the investigating authorities. Alice said

“Carlos did it.” John said “I did not do it.” Carlos said

“Diana did it.” Diana said “Carlos lied when he said that

I did it.”

a) If the authorities also know that exactly one of the
four suspects is telling the truth, who did it? Explain

your reasoning.
b) If the authorities also know that exactly one is lying,

who did it? Explain your reasoning.

Suppose there are signs on the doors to two rooms. The
sign on the first door reads “In this room there is a lady,
and in the other one there is a tiger”; and the sign on the
second door reads “In one of these rooms, there is a lady,
and in one of them there is a tiger.” Suppose that you
know that one of these signs is true and the other is false.
Behind which door is the lady?

Solve this famous logic puzzle, attributed to Albert Ein-
stein, and known as the zebra puzzle. Five men with
different nationalities and with different jobs live in con-
secutive houses on a street. These houses are painted dif-
ferent colors. The men have different pets and have dif-
ferent favorite drinks. Determine who owns a zebra and

39.

40.

41.

42.

43.

whose favorite drink is mineral water (which is one of the
favorite drinks) given these clues: The Englishman lives
in the red house. The Spaniard owns a dog. The Japanese
man is a painter. The Italian drinks tea. The Norwegian
lives in the first house on the left. The green house is
immediately to the right of the white one. The photogra-
pher breeds snails. The diplomat lives in the yellow house.
Milk is drunk in the middle house. The owner of the green
house drinks coffee. The Norwegian’s house is next to the
blue one. The violinist drinks orange juice. The fox is in
a house next to that of the physician. The horse is in a
house next to that of the diplomat. [Hint: Make a table
where the rows represent the men and columns represent
the color of their houses, their jobs, their pets, and their
favorite drinks and use logical reasoning to determine the
correct entries in the table.]

Freedonia has fifty senators. Each senator is either honest
or corrupt. Suppose you know that at least one of the Free-
donian senators is honest and that, given any two Free-
donian senators, at least one is corrupt. Based on these
facts, can you determine how many Freedonian senators
are honest and how many are corrupt? If so, what is the
answer?

Find the output of each of these combinatorial circuits.

a p

Find the output of each of these combinatorial circuits.

a) P

q
r

b) p%
q%[>of>

p——P
r——————p

Construct a combinatorial circuit using inverters,
OR gates, and AND gates that produces the output
(p A=) Vv (—g A r) from input bits p, ¢, and r.
Construct a combinatorial circuit using inverters,
OR gates, and AND gates that produces the output
(=p Vv =r)A—=qg)V (—=p A (qVr)) from input bits p,
q,and r.
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Propositional Equivalences

DEFINITION 1

EXAMPLE 1

Demo

DEFINITION 2

Introduction

An important type of step used in a mathematical argument is the replacement of a statement
with another statement with the same truth value. Because of this, methods that produce propo-
sitions with the same truth value as a given compound proposition are used extensively in the
construction of mathematical arguments. Note that we will use the term “compound proposi-
tion” to refer to an expression formed from propositional variables using logical operators, such
aspAgq.

We begin our discussion with a classification of compound propositions according to their
possible truth values.

A compound proposition that is always true, no matter what the truth values of the proposi-
tional variables that occur in it, is called a tautology. A compound proposition that is always
false is called a contradiction. A compound proposition that is neither a tautology nor a
contradiction is called a contingency.

Tautologies and contradictions are often important in mathematical reasoning. Example 1 illus-
trates these types of compound propositions.

We can construct examples of tautologies and contradictions using just one propositional vari-
able. Consider the truth tables of p v —p and p A —p, shown in Table 1. Because p v —p is
always true, it is a tautology. Because p A —p is always false, it is a contradiction.

Logical Equivalences

Compound propositions that have the same truth values in all possible cases are called logically
equivalent. We can also define this notion as follows.

The compound propositions p and ¢ are called logically equivalent if p <> ¢ is a tautology.
The notation p = ¢ denotes that p and ¢ are logically equivalent.

Remark: The symbol = is not a logical connective, and p = ¢ is not a compound proposition
but rather is the statement that p <> ¢ is a tautology. The symbol < is sometimes used instead
of = to denote logical equivalence.

One way to determine whether two compound propositions are equivalent is to use a truth
table. In particular, the compound propositions p and g are equivalent if and only if the columns

TABLE 1 Examples of a Tautology
and a Contradiction.

-pP pvy-p pA—p

F T F
F T T F
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Extra gZ
Examples <

EXAMPLE 2

TABLE 2 De
Morgan’s Laws.

—(pAg)=—pV—q

—(pVvg)=—-pA—q

giving their truth values agree. Example 2 illustrates this method to establish an extremely
important and useful logical equivalence, namely, that of —(p Vv ¢g) with —=p A —g. This logical
equivalence is one of the two De Morgan laws, shown in Table 2, named after the English
mathematician Augustus De Morgan, of the mid-nineteenth century.

Show that =(p Vv ¢g) and —=p A —q are logically equivalent.

Solution: The truth tables for these compound propositions are displayed in Table 3. Because
the truth values of the compound propositions —(p Vv ¢) and —p A —g agree for all possible
combinations of the truth values of p and ¢, it followsthat —(p Vv ¢) <> (—p A —¢g) isatautology
and that these compound propositions are logically equivalent. |

TABLE 3 Truth Tables for =(p v ¢) and =p A —q.
b4 q rvaq =(pVvyq -p —q “PA—q
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

EXAMPLE 3 Show that p — ¢ and —p Vv ¢ are logically equivalent.

Solution: We construct the truth table for these compound propositions in Table 4. Because the

truth values of —=p v ¢ and p — ¢ agree, they are logically equivalent. <
TABLE 4 Truth Tables for =p v q and
p—q.
b4 q -p AL P—q
T T F T T
T F F F F
F T T T T
F F T T T

We will now establish a logical equivalence of two compound propositions involving three
different propositional variables p, ¢, and r. To use a truth table to establish such a logical
equivalence, we need eight rows, one for each possible combination of truth values of these
three variables. We symbolically represent these combinations by listing the truth values of p,
g, and r, respectively. These eight combinations of truth values are TTT, TTF, TFT, TFF, FTT,
FTF, FFT, and FFF; we use this order when we display the rows of the truth table. Note that we
need to double the number of rows in the truth tables we use to show that compound propositions
are equivalent for each additional propositional variable, so that 16 rows are needed to establish
the logical equivalence of two compound propositions involving four propositional variables,
and so on. In general, 2" rows are required if a compound proposition involves »n propositional
variables.



EXAMPLE 4

The identities in Table 6
are a special case of
Boolean algebra identities
found in Table 5 of
Section 12.1. See Table 1
in Section 2.2 for
analogous set identities
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TABLE 5 A Demonstration That p v (g Ar)and (p v q) A (p Vv r) Are Logically

Equivalent.
p q r qAT pVi(gAr) pPvyq pvr (v A(pvr)
T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

Show that p v (g Ar) and (p Vv g) A (p Vv r) are logically equivalent. This is the distributive
law of disjunction over conjunction.

Solution: We construct the truth table for these compound propositions in Table 5. Because
the truth values of p v (¢ Ar) and (p Vv ¢) A (p Vv r) agree, these compound propositions are
logically equivalent.

Table 6 contains some important equivalences. In these equivalences, T denotes the com-
pound proposition that is always true and F denotes the compound proposition that is always

TABLE 6 Logical Equivalences.

Equivalence Name

pAT=p Identity laws
pVFE=p

pvT=T Domination laws
pAF=F

pVp=p Idempotent laws
PADP=P

=(=p)=p Double negation law
pVg=qVp Commutative laws
PANG=qAp

(pvg)vVr=pv(qgVr) Associative laws

(pA@)ANr=pA(gAT)

pV@Ar)=(pVg)A(pVr) Distributive laws
pA@@VI)=(pAqV(pAT)

~(pAg)=—pV—q De Morgan’s laws
—~(pvVg)=—pAr—g

pV(pAg)=p Absorption laws
pA(pVg)=p

pv-p=T Negation laws

pA—-p=F
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When using De Morgan’s
laws, remember to change
the logical connective
after you negate.

TABLE 7 Logical Equivalences TABLE 8 Logical
Involving Conditional Statements. Equivalences Involving
Biconditional Statements.

p—>q=-pVgq
P> qg=—g— —p p<qg=((p—>q9) ANq—p)
pPVqg=-p—gq p=a==r=mq

<> = A V (—=p A
PAG=—(p— —q) poqg=(pAqV(—pA—q)

—(p<g)=p < —

p—=>g9NpP—>r)=p—>(gAr)
(p—=>rN(g—>r)=(pVvg) —r
p—>q¢v(p—>r)=p—>(qVvr)

(p—=>nr)vg—-r)=(pnrg) —>r

false. We also display some useful equivalences for compound propositions involving condi-
tional statements and biconditional statements in Tables 7 and 8, respectively. The reader is
asked to verify the equivalences in Tables 6-8 in the exercises.

The associative law for disjunction shows that the expression p v g Vv r is well defined,
in the sense that it does not matter whether we first take the disjunction of p with ¢ and then
the disjunction of p v g with r, or if we first take the disjunction of ¢ and r and then take the
disjunction of p withg v r. Similarly, the expression p A g A r iswell defined. By extending this
reasoning, itfollowsthat p1 v p2 v --- Vv p,and p1 A p2 A -+ A py, are well defined whenever
P1, P2, ..., pn @re propositions.

Furthermore, note that De Morgan’s laws extend to

=(p1V p2V -V pp) =(pLA—p2 A ATpn)
and
—“(PLAP2A--App)=(mp1V-op2V---V-opy).

We will sometimes use the notation Vi1 pj for py V p2 V-V py and Nj=1 pj for
p1 A p2 A--+ A py. Using this notation, the extended version of De Morgan’s laws can be
written concisely as .—-( Viz pj} = N\}=1—pjand ~(Aj=1pj) = V'j=1 —p;. (Methods for
proving these identities will be given in Section 5.1.)

Using De Morgan’s Laws

The two logical equivalences known as De Morgan’s laws are particularly important. They tell
us how to negate conjunctions and how to negate disjunctions. In particular, the equivalence
—(p VvV q) = —p A —q tells us that the negation of a disjunction is formed by taking the con-
junction of the negations of the component propositions. Similarly, the equivalence —(p A q) =
—p Vv —q tells us that the negation of a conjunction is formed by taking the disjunction of the
negations of the component propositions. Example 5 illustrates the use of De Morgan’s laws.
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Use De Morgan’s laws to express the negations of “Miguel has a cellphone and he has a laptop
computer” and “Heather will go to the concert or Steve will go to the concert.”

Solution: Let p be “Miguel has a cellphone” and ¢ be “Miguel has a laptop computer.” Then
“Miguel has a cellphone and he has a laptop computer” can be represented by p A ¢g. By the
first of De Morgan’s laws, —(p A g) is equivalent to —p v —¢g. Consequently, we can express
the negation of our original statement as “Miguel does not have a cellphone or he does not have
a laptop computer.”

Let  be “Heather will go to the concert” and s be “Steve will go to the concert.” Then
“Heather will go to the concert or Steve will go to the concert” can be represented by r Vv s.
By the second of De Morgan’s laws, —(r Vv s) is equivalent to —r A —s. Consequently, we can
express the negation of our original statement as “Heather will not go to the concert and Steve
will not go to the concert.” <

Constructing New Logical Equivalences

The logical equivalences in Table 6, as well as any others that have been established (such as
those shown in Tables 7 and 8), can be used to construct additional logical equivalences. The
reason for this is that a proposition in a compound proposition can be replaced by a compound
proposition that is logically equivalent to it without changing the truth value of the original
compound proposition. This technique is illustrated in Examples 6-8, where we also use the
fact that if p and ¢ are logically equivalent and ¢ and r are logically equivalent, then p and r
are logically equivalent (see Exercise 56).

Show that —=(p — ¢) and p A —q are logically equivalent.

Solution: We could use a truth table to show that these compound propositions are equivalent
(similar to what we did in Example 4). Indeed, it would not be hard to do so. However, we want
to illustrate how to use logical identities that we already know to establish new logical identities,
something that is of practical importance for establishing equivalences of compound propositions
with a large number of variables. So, we will establish this equivalence by developing a series of

AUGUSTUS DE MORGAN (1806-1871) Augustus De Morgan was born in India, where his father was a
colonel in the Indian army. De Morgan’s family moved to England when he was 7 months old. He attended
private schools, where in his early teens he developed a strong interest in mathematics. De Morgan studied
at Trinity College, Cambridge, graduating in 1827. Although he considered medicine or law, he decided on
mathematics for his career. He won a position at University College, London, in 1828, but resigned after the
college dismissed a fellow professor without giving reasons. However, he resumed this position in 1836 when
his successor died, remaining until 1866.

De Morgan was a noted teacher who stressed principles over techniques. His students included many famous
mathematicians, including Augusta Ada, Countess of Lovelace, who was Charles Babbage’s collaborator in his

work on computing machines (see page 31 for biographical notes on Augusta Ada). (De Morgan cautioned the countess against
studying too much mathematics, because it might interfere with her childbearing abilities!)

De Morgan was an extremely prolific writer, publishing more than 1000 articles in more than 15 periodicals. De Morgan also
wrote textbooks on many subjects, including logic, probability, calculus, and algebra. In 1838 he presented what was perhaps the first
clear explanation of an important proof technique known as mathematical induction (discussed in Section 5.1 of this text), a term
he coined. In the 1840s De Morgan made fundamental contributions to the development of symbolic logic. He invented notations
that helped him prove propositional equivalences, such as the laws that are named after him. In 1842 De Morgan presented what
is considered to be the first precise definition of a limit and developed new tests for convergence of infinite series. De Morgan was
also interested in the history of mathematics and wrote biographies of Newton and Halley.

In 1837 De Morgan married Sophia Frend, who wrote his biography in 1882. De Morgan’s research, writing, and teaching left
little time for his family or social life. Nevertheless, he was noted for his kindness, humor, and wide range of knowledge.
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EXAMPLE 7

EXAMPLE 8

logical equivalences, using one of the equivalences in Table 6 at a time, starting with —=(p — ¢)
and ending with p A —q. We have the following equivalences.

—(p—>q)=—-(—pVgq) by Example 3
= —(—p) A—g by the second De Morgan law
=pA—q by the double negation law

Show that —=(p v (—p A q)) and —p A —g are logically equivalent by developing a series of
logical equivalences.

Solution: We will use one of the equivalences in Table 6 at atime, starting with—(p v (—=p A ¢))
and ending with —p A —¢. (Note: we could also easily establish this equivalence using a truth
table.) We have the following equivalences.

—(pV(=pAg)=—-pA—-(=pAq) by the second De Morgan law
==p A [=(=p)V —q] by the first De Morgan law
=-=-pA(pV—-q) by the double negation law
= (=p A p)V(—=p A—g) bythesecond distributive law
=FV(=pA—q) because =p A p =F
=(—pA—-q)VF by the commutative law for disjunction
=-pA—q by the identity law for F

Consequently =(p v (—=p A q)) and —=p A —g are logically equivalent. <

Show that (p A ¢) — (p V g) is a tautology.

Solution: To show that this statement is a tautology, we will use logical equivalences to demon-
strate that it is logically equivalent to T. (Note: This could also be done using a truth table.)

(pAg) > (pVvg)=—(pAg)V(pVg)  byExample3
=(—pV—q)V(pVg) bythefirst De Morgan law
=(—pV p)V(—gVg) bytheassociative and commutative

laws for disjunction

=TvT by Example 1 and the commutative
law for disjunction

T by the domination law

Propositional Satisfiability

A compound proposition is satisfiable if there is an assignment of truth values to its variables that
makes it true. When no such assignments exists, that is, when the compound proposition is false
for all assignments of truth values to its variables, the compound proposition is unsatisfiable.
Note that a compound proposition is unsatisfiable if and only if its negation is true for all
assignments of truth values to the variables, that is, if and only if its negation is a tautology.
When we find a particular assignment of truth values that makes a compound proposition
true, we have shown that it is satisfiable; such an assignment is called a solution of this particular
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satisfiability problem. However, to show that a compound proposition is unsatisfiable, we need
to show that every assignment of truth values to its variables makes it false. Although we can
always use a truth table to determine whether a compound proposition is satisfiable, it is often
more efficient not to, as Example 9 demonstrates.

EXAMPLE 9 Determine whether each of the compound propositions (pV —g)A(gV —r)A
(r v —p), (pvgVvr)AN(—=pV—qgV —r), and (pV—=g)AN(q@V —Fr)ANFNV—-p)A
(pVvagVvr)A(—pV—gVv-r)issatisfiable.

Solution: Instead of using truth table to solve this problem, we will reason about truth values.
Note that (p v —g) A (g vV —r) A (r vV —p) is true when the three variable p, ¢, and r have
the same truth value (see Exercise 40 of Section 1.1). Hence, it is satisfiable as there is at
least one assignment of truth values for p, g, and » that makes it true. Similarly, note that
(pVvqgVvr)A(—=pVv—qg\Vv-r)istrue when at least one of p, ¢, and r is true and at least one
is false (see Exercise 41 of Section 1.1). Hence, (p vV g vV r) A (—=p vV —g Vv —r) is satisfiable,
as there is at least one assignment of truth values for p, ¢, and r that makes it true.

Finally, note that for (p v —=g) A(gV —=r)A(r NV =p)A(pVgVr)A(=pV —gV —r)
to be true, (pv—=g)A(gV—-r)A(rVv=p)and (pVgVr)A(—pV—gV-r)must both
be true. For the first to be true, the three variables must have the same truth values, and
for the second to be true, at least one of three variables must be true and at least one must
be false. However, these conditions are contradictory. From these observations we conclude
that no assignment of truth values to p, ¢, and r makes (p vV —=q) A (g V =r) A (r V =p) A
(pVvgVvr)A(=pV—gVv—r)true. Hence, it is unsatisfiable. <

Links @

AUGUSTA ADA, COUNTESS OF LOVELACE (1815-1852)  Augusta Ada was the only child from the
marriage of the famous poet Lord Byron and Lady Byron, Annabella Millbanke, who separated when Ada
was 1 month old, because of Lord Byron’s scandalous affair with his half sister. The Lord Byron had quite a
reputation, being described by one of his lovers as “mad, bad, and dangerous to know.” Lady Byron was noted for
her intellect and had a passion for mathematics; she was called by Lord Byron “The Princess of Parallelograms.”
Augusta was raised by her mother, who encouraged her intellectual talents especially in music and mathematics,
to counter what Lady Byron considered dangerous poetic tendencies. At this time, women were not allowed to
attend universities and could not join learned societies. Nevertheless, Augusta pursued her mathematical studies
independently and with mathematicians, including William Frend. She was also encouraged by another female
mathematician, Mary Somerville, and in 1834 at a dinner party hosted by Mary Somerville, she learned about Charles Babbage’s
ideas for a calculating machine, called the Analytic Engine. In 1838 Augusta Ada married Lord King, later elevated to Earl of
Lovelace. Together they had three children.

Augusta Ada continued her mathematical studies after her marriage. Charles Babbage had continued work on his Analytic
Engine and lectured on this in Europe. In 1842 Babbage asked Augusta Ada to translate an article in French describing Babbage’s
invention. When Babbage saw her translation, he suggested she add her own notes, and the resulting work was three times the
length of the original. The most complete accounts of the Analytic Engine are found in Augusta Ada’s notes. In her notes, she
compared the working of the Analytic Engine to that of the Jacquard loom, with Babbage’s punch cards analogous to the cards used
to create patterns on the loom. Furthermore, she recognized the promise of the machine as a general purpose computer much better
than Babbage did. She stated that the “engine is the material expression of any indefinite function of any degree of generality and
complexity.” Her notes on the Analytic Engine anticipate many future developments, including computer-generated music. Augusta
Ada published her writings under her initials A.A.L. concealing her identity as a woman as did many women at a time when women
were not considered to be the intellectual equals of men. After 1845 she and Babbage worked toward the development of a system
to predict horse races. Unfortunately, their system did not work well, leaving Augusta Ada heavily in debt at the time of her death
at an unfortunately young age from uterine cancer.

In 1953 Augusta Ada’s notes on the Analytic Engine were republished more than 100 years after they were written, and after
they had been long forgotten. In his work in the 1950s on the capacity of computers to think (and his famous Turing Test), Alan
Turing responded to Augusta Ada’s statement that “The Analytic Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform.” This “dialogue” between Turing and Augusta Ada is still the subject of controversy.
Because of her fundamental contributions to computing, the programming language Ada is named in honor of the Countess of
Lovelace.
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FIGURE 1 A9 x 9 Sudoku puzzle.

Applications of Satisfiability

Many problems, in diverse areas such as robotics, software testing, computer-aided design,
machine vision, integrated circuit design, computer networking, and genetics, can be modeled
in terms of propositional satisfiability. Although most of these applications are beyond the
scope of this book, we will study one application here. In particular, we will show how to use
propositional satisfiability to model Sudoku puzzles.

SUDOKU A Sudoku puzzle is represented by a 9 x 9 grid made up of nine 3 x 3 subgrids,
known as blocks, as shown in Figure 1. For each puzzle, some of the 81 cells, called givens,
are assigned one of the numbers 1, 2, ..., 9, and the other cells are blank. The puzzle is solved
by assigning a number to each blank cell so that every row, every column, and every one of the
nine 3 x 3 blocks contains each of the nine possible numbers. Note that instead of usinga9 x 9
grid, Sudoku puzzles can be based on n? x n? grids, for any positive integer n, with the n2 x n?
grid made up of n2 n x n subgrids.

The popularity of Sudoku dates back to the 1980s when it was introduced in Japan. It
took 20 years for Sudoku to spread to rest of the world, but by 2005, Sudoku puzzles were a
worldwide craze. The name Sudoku is short for the Japanese suuji wa dokushin ni kagiru, which
means “the digits must remain single.” The modern game of Sudoku was apparently designed
in the late 1970s by an American puzzle designer. The basic ideas of Sudoku date back even
further; puzzles printed in French newspapers in the 1890s were quite similar, but not identical,
to modern Sudoku.

Sudoku puzzles designed for entertainment have two additional important properties. First,
they have exactly one solution. Second, they can be solved using reasoning alone, that is, without
resorting to searching all possible assignments of numbers to the cells. As a Sudoku puzzle is
solved, entries in blank cells are successively determined by already known values. For instance,
in the grid in Figure 1, the number 4 must appear in exactly one cell in the second row. How
can we determine which of the seven blank cells it must appear? First, we observe that 4 cannot
appear in one of the first three cells or in one of the last three cells of this row, because it already
appears in another cell in the block each of these cells is in. We can also see that 4 cannot appear
in the fifth cell in this row, as it already appears in the fifth column in the fourth row. This means
that 4 must appear in the sixth cell of the second row.

Many strategies based on logic and mathematics have been devised for solving Sudoku
puzzles (see [Dal0], for example). Here, we discuss one of the ways that have been developed
for solving Sudoku puzzles with the aid of a computer, which depends on modeling the puzzle as
a propositional satisfiability problem. Using the model we describe, particular Sudoku puzzles
can be solved using software developed to solve satisfiability problems. Currently, Sudoku
puzzles can be solved in less than 10 milliseconds this way. It should be noted that there are
many other approaches for solving Sudoku puzzles via computers using other techniques.
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To encode a Sudoku puzzle, let p(i, j, n) denote the proposition that is true when the number
n is in the cell in the ith row and jth column. There are 9 x 9 x 9 = 729 such propositions, as
i, j,and n all range from 1 to 9. For example, for the puzzle in Figure 1, the number 6 is given
as the value in the fifth row and first column. Hence, we see that p(5, 1, 6) is true, but p(5, j, 6)
is false for j =2,3,...,9.

Given a particular Sudoku puzzle, we begin by encoding each of the given values. Then,
we construct compound propositions that assert that every row contains every number, every
column contains every number, every 3 x 3 block contains every number, and each cell contains
no more than one number. It follows, as the reader should verify, that the Sudoku puzzle is solved
by finding an assignment of truth values to the 729 propositions p(i, j, n) with i, j, and n each
ranging from 1 to 9 that makes the conjunction of all these compound propositions true. After
listing these assertions, we will explain how to construct the assertion that every row contains
every integer from 1 to 9. We will leave the construction of the other assertions that every column
contains every number and each of the nine 3 x 3 blocks contains every number to the exercises.

m For each cell with a given value, we assert p(i, j, n) when the cell in row i and column
J has the given value n.

® We assert that every row contains every number:

9 9 9
AVARYRZNRD

i=ln=1j=1
m We assert that every column contains every number:

9 9 9

AVARYZ I RD

j=1ln=1i=1

® We assert that each of the nine 3 x 3 blocks contains every number:

2 2 9 3 3
/\/\/\\/\/p(3r+i,3s+j,n)

r=0s=0n=1i=1 j=1

B To assert that no cell contains more than one number, we take the conjunction over all
values of n, n’, i, and j where each variable ranges from 1to9and n # n’ of p(i, j, n) —

=p(@, j,n").

We now explain how to construct the assertion that every row contains every number.
First, to assert that row i contains the number n, we form \/?:l p(i, j,n). To assert that
row i contains all » numbers, we form the conjunction of these disjunctions over all nine
possible values of n, giving us /\2:1 \/3:1 p(i, j, n). Finally, to assert that every row contains

every number, we take the conjunction of /\2=1 \/?=1 p(i, j, n) over all nine rows. This gives

us Ay A, \/3’-:1 p(i, j, n). (Exercises 65 and 66 ask for explanations of the assertions that
every column contains every number and that each of the nine 3 x 3 blocks contains every
number.)

Given a particular Sudoku puzzle, to solve this puzzle we can find a solution to the satisfia-
bility problems that asks for a set of truth values for the 729 variables p(i, j, n) that makes the
conjunction of all the listed assertions true.
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Links a

Solving Satisfiability Problems

A truth table can be used to determine whether a compound proposition is satisfiable, or equiv-
alently, whether its negation is a tautology (see Exercise 60). This can be done by hand for
a compound proposition with a small number of variables, but when the number of variables
grows, this becomes impractical. For instance, there are 220 — 1,048,576 rows in the truth ta-
ble for a compound proposition with 20 variables. Clearly, you need a computer to help you
determine, in this way, whether a compound proposition in 20 variables is satisfiable.

When many applications are modeled, questions concerning the satisfiability of compound
propositions with hundreds, thousands, or millions of variables arise. Note, for example, that
when there are 1000 variables, checking every one of the 219%0 (a number with more than 300
decimal digits) possible combinations of truth values of the variables in a compound proposition
cannot be done by a computer in even trillions of years. No procedure is known that a com-
puter can follow to determine in a reasonable amount of time whether an arbitrary compound
proposition in such a large number of variables is satisfiable. However, progress has been made
developing methods for solving the satisfiability problem for the particular types of compound
propositions that arise in practical applications, such as for the solution of Sudoku puzzles.
Many computer programs have been developed for solving satisfiability problems which have
practical use. In our discussion of the subject of algorithms in Chapter 3, we will discuss this
question further. In particular, we will explain the important role the propositional satisfiability
problem plays in the study of the complexity of algorithms.

Exercises

1. Use truth tables to verify these equivalences. b) (pAg)ATr=pA(gnr).
a) pAT=p b) pvF=p 5. Use a truth table to verify the distributive law
c) pAF=F d pvT=T pA@VEr)=(pAq)V(pAT).
e) pvp=p f) pAp=p 6. Use a truth table to verify the first De Morgan law

2. Show that —(—p) and p are logically equivalent. —~(pAg)=—pV —q.

3. Use truth tables to verify the commutative laws 7. Use De Morgan’s laws to find the negation of each of the
a) pvqg=qVp. b) pAg=qgAp. following statements.

4. Use truth tables to verify the associative laws a) Jan isrich and happy.
a) (pvgvVr=pVvi(gVvr). b) Carlos will bicycle or run tomorrow.

Links E

HENRY MAURICE SHEFFER (1883-1964) Henry Maurice Sheffer, born to Jewish parents in the western
Ukraine, emigrated to the United States in 1892 with his parents and six siblings. He studied at the Boston Latin
School before entering Harvard, where he completed his undergraduate degree in 1905, his master’s in 1907,
and his Ph.D. in philosophy in 1908. After holding a postdoctoral position at Harvard, Henry traveled to Europe
on a fellowship. Upon returning to the United States, he became an academic nomad, spending one year each
at the University of Washington, Cornell, the University of Minnesota, the University of Missouri, and City
College in New York. In 1916 he returned to Harvard as a faculty member in the philosophy department. He
remained at Harvard until his retirement in 1952.

Sheffer introduced what is now known as the Sheffer stroke in 1913; it became well known only after its use

in the 1925 edition of Whitehead and Russell’s Principia Mathematica. In this same edition Russell wrote that Sheffer had invented
a powerful method that could be used to simplify the Principia. Because of this comment, Sheffer was something of a mystery man
to logicians, especially because Sheffer, who published little in his career, never published the details of this method, only describing
it in mimeographed notes and in a brief published abstract.

Sheffer was a dedicated teacher of mathematical logic. He liked his classes to be small and did not like auditors. When strangers
appeared in his classroom, Sheffer would order them to leave, even his colleagues or distinguished guests visiting Harvard. Sheffer
was barely five feet tall; he was noted for his wit and vigor, as well as for his nervousness and irritability. Although widely liked, he
was quite lonely. He is noted for a quip he spoke at his retirement: “Old professors never die, they just become emeriti.” Sheffer is
also credited with coining the term “Boolean algebra” (the subject of Chapter 12 of this text). Sheffer was briefly married and lived
most of his later life in small rooms at a hotel packed with his logic books and vast files of slips of paper he used to jot down his
ideas. Unfortunately, Sheffer suffered from severe depression during the last two decades of his life.
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c) Mei walks or takes the bus to class.
d) Ibrahim is smart and hard working.

. Use De Morgan’s laws to find the negation of each of the

following statements.

a) Kwame will take a job in industry or go to graduate
school.

b) Yoshiko knows Java and calculus.

¢) James is young and strong.

d) Rita will move to Oregon or Washington.

9. Show that each of these conditional statements is a tau-

11.
12.

13.

14.

515,

tology by using truth tables.
a) (pAg)—>p

¢) ~p—>(p—>q

e) ~(p—>q)—>p

b) p— (pVvaq)
d) (pAg) = (p—9q)
f) =(p = q9) > —¢

. Show that each of these conditional statements is a tau-

tology by using truth tables.

a) [CpA(pVal—>q

b) [(p—>q)A(g—>n]—(p—>1)

¢) [pA(p—>q@l—gq

d) [(pve) A(p—=>1r)A(@—>1]—>r

Show that each conditional statement in Exercise 9 is a
tautology without using truth tables.

Show that each conditional statement in Exercise 10 is a
tautology without using truth tables.

Use truth tables to verify the absorption laws.

8 pV(prg)=p by pApVa)=p
Determine whether (—p A (p — ¢q)) — —¢ is a tautol-
ogy.

Determine whether (—g A (p — ¢)) — —p is a tautol-
ogy.

Each of Exercises 16—28 asks you to show that two compound
propositions are logically equivalent. To do this, either show
that both sides are true, or that both sides are false, for exactly
the same combinations of truth values of the propositional
variables in these expressions (whichever is easier).

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
217.

28.

Showthat p <> gand (p A q¢) V (—p A —g) are logically
equivalent.

Show that —=(p <> ¢) and p <> —q are logically equiva-
lent.

Showthat p — g and —g — —p arelogically equivalent.
Showthat—p <> g and p <> —q are logically equivalent.
Show that —=(p @ ¢) and p < ¢ are logically equivalent.
Show that —=(p <> ¢) and —p < ¢ are logically equiva-
lent.

Showthat (p — g) A (p — r)and p — (g A r) arelog-
ically equivalent.

Showthat (p — r) A (g — r)and (p v q) — r arelog-
ically equivalent.

Showthat (p — q) v (p — r)and p — (g Vv r) arelog-
ically equivalent.

Showthat (p — r) Vv (g — r)and (p A q) — r are log-
ically equivalent.

Showthat—p — (¢ — r)andg — (p Vv r) arelogically
equivalent.

Show that p <> g and (p — q) A (¢ — p) are logically
equivalent.

Showthat p <> g and —p <> —q are logically equivalent.

29.

32.

33.

5730.
31.
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Show that (p = g) A (g = r) — (p — r) is a tautol-
ogy.

Show that (p v ¢) A (=p vV r) — (g V r) is a tautology.
Show that (p — ¢) — r and p — (¢ — r) are not log-
ically equivalent.

Show that (p A g) — rand (p — r) A (¢ — r) are not
logically equivalent.

Show that (p >¢q)—> (r—s) and (p > r) >
(g — s) are not logically equivalent.

The dual of a compound proposition that contains only the
logical operators v, A, and — is the compound proposition
obtained by replacing each v by A, each A by v, each T
by F, and each F by T. The dual of s is denoted by s*.

34.

35.

36.
37.
38.

*% 30,

40.

41.

Find the dual of each of these compound propositions.

a) pVvV—q b) pAlgV (rAT)

¢) (pA—q)V (g AF)

Find the dual of each of these compound propositions.
a) pA—g AT b) (pAgAr)Vs

) (pvEHA@VT

When does s* = s, where s is a compound proposition?
Show that (s*)* = s when s is a compound proposition.

Show that the logical equivalences in Table 6, except for
the double negation law, come in pairs, where each pair
contains compound propositions that are duals of each
other.

Why are the duals of two equivalent compound proposi-
tions also equivalent, where these compound propositions
contain only the operators A, v, and —?

Find a compound proposition involving the propositional
variables p, ¢, and r that is true when p and ¢ are true
and r is false, but is false otherwise. [Hint: Use a con-
junction of each propositional variable or its negation.]

Find a compound proposition involving the propositional
variables p, ¢, and r that is true when exactly two of p, ¢,
and r are true and is false otherwise. [Hint: Form a dis-
junction of conjunctions. Include a conjunction for each
combination of values for which the compound proposi-
tion is true. Each conjunction should include each of the
three propositional variables or its negations.]

. Suppose that a truth table in n propositional variables is

specified. Show that a compound proposition with this
truth table can be formed by taking the disjunction of
conjunctions of the variables or their negations, with one
conjunction included for each combination of values for
which the compound proposition is true. The resulting
compound proposition is said to be in disjunctive nor-
mal form.

A collection of logical operators is called functionally com-
plete if every compound proposition is logically equivalent to
a compound proposition involving only these logical opera-

tors.
43.

Show that —, A, and v form a functionally complete col-
lection of logical operators. [Hint: Use the fact that every
compound proposition is logically equivalent to one in
disjunctive normal form, as shown in Exercise 42.]



36

*44,

*45.

1/ The Foundations: Logic and Proofs

Show that — and A form a functionally complete col-
lection of logical operators. [Hint: First use a De Mor-
gan law to show that p v ¢ is logically equivalent to
=(=p A—q)]

Show that — and v form a functionally complete collec-
tion of logical operators.

The following exercises involve the logical operators NAND
and NOR. The proposition p NAND q is true when either p
or g, or both, are false; and it is false when both p and ¢ are
true. The proposition p NOR q is true when both p and ¢ are
false, and it is false otherwise. The propositions p NAND ¢
and p NOR q are denoted by p | ¢ and p | g, respectively.
(The operators | and | are called the Sheffer stroke and the
Peirce arrow after H. M. Sheffer and C. S. Peirce, respec-
tively.)

46.
47.
48.
49,
50.

*51.
52.
53.
54.

*55.

56.

57.

Predicates and Quantifiers

Construct a truth table for the logical operator NAND.

Show that p | ¢ is logically equivalent to —(p A gq).

Construct a truth table for the logical operator NOR.

Show that p | ¢ is logically equivalent to =(p Vv q).

In this exercise we will show that {|} is a functionally

complete collection of logical operators.

a) Showthat p | p is logically equivalent to —p.

b) Show that (p | q) | (p | ¢) is logically equivalent
topvyg.

¢) Conclude from parts (a) and (b), and Exercise 49, that
{4} is a functionally complete collection of logical
operators.

Find a compound proposition logically equivalent to

p — q using only the logical operator | .

Show that {|} is a functionally complete collection of log-

ical operators.

Show that p | ¢ and ¢ | p are equivalent.

Show that p | (g | ») and (p | ¢) | r are not equivalent,

so that the logical operator | is not associative.

How many different truth tables of compound proposi-

tions are there that involve the propositional variables p

and g?

Show that if p, ¢, and r are compound propositions such

that p and ¢ are logically equivalent and ¢ and r are log-

ically equivalent, then p and r are logically equivalent.

The following sentence is taken from the specification of

a telephone system: “If the directory database is opened,

then the monitor is put in a closed state, if the system is

not in its initial state.” This specification is hard to under-

58.

59.

60.

61.

62.

63.

64.

65.

*66.

stand because it involves two conditional statements. Find
an equivalent, easier-to-understand specification that in-
volves disjunctions and negations but not conditional
statements.

How many of the disjunctions p v =g, =pVv g, g vV r,
q v —r,and —g v —r can be made simultaneously true
by an assignment of truth values to p, ¢, and r?

How many of the disjunctions pv —gvVvs, —p Vv
—rVvs, —pVvV-orv-os, opVgvos, gVrvoos,
gV —rV=s,mpV-ogVos,pVrVvs,and pvr v-s
can be made simultaneously true by an assignment of
truth values to p, g, r, and s?

Show that the negation of an unsatisfiable compound
proposition is a tautology and the negation of acompound
proposition that is a tautology is unsatisfiable.

Determine whether each of these compound propositions

is satisfiable.

a) (pV=g)A(=pVq)A(=pV—q)

b) (p = @) A (p = —q) A (=p— q) A (=p— —q)

) (po@A(p<q)

Determine whether each of these compound propositions

is satisfiable.

a) (pvVgV-r)A(pV—gV-s)A(pV—rVv-s)A
(=pV—=gV=os)A(pVgqgV—s)

P) (=pV—=gVr)A(=pVgV=s)A(pV—qV
—“S)AN(pVrVas)A(pVgV-r)A(pV
—r VvV —s)

C) (pVgVrIA(pV—gV—-s)A(GV—FrVs) A
(=pVrVvs)A(=pVgV-s)A(pV—gV—r) A
(=pV—=gVs)A(—pV-rV-s)

Show how the solution of a given 4 x 4 Sudoku puzzle

can be found by solving a satisfiability problem.

Construct a compound proposition that asserts that ev-
ery cell of a 9 x 9 Sudoku puzzle contains at least one
number.

Explain the steps in the construction of the compound
proposition given in the text that asserts that every col-
umn of a 9 x 9 Sudoku puzzle contains every number.

Explain the steps in the construction of the compound
proposition given in the text that asserts that each of the
nine 3 x 3 blocks of a 9 x 9 Sudoku puzzle contains ev-
ery number.

Introduction

Propositional logic, studied in Sections 1.1-1.3, cannot adequately express the meaning of all
statements in mathematics and in natural language. For example, suppose that we know that

“Every computer connected to the university network is functioning properly.”
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No rules of propositional logic allow us to conclude the truth of the statement
“MATHS3 is functioning properly,”

where MATH3 is one of the computers connected to the university network. Likewise, we cannot
use the rules of propositional logic to conclude from the statement

“CS2 is under attack by an intruder,”
where CS2 is a computer on the university network, to conclude the truth of
“There is a computer on the university network that is under attack by an intruder.”

In this section we will introduce a more powerful type of logic called predicate logic. We
will see how predicate logic can be used to express the meaning of a wide range of statements
in mathematics and computer science in ways that permit us to reason and explore relationships
between objects. To understand predicate logic, we first need to introduce the concept of a
predicate. Afterward, we will introduce the notion of quantifiers, which enable us to reason with
statements that assert that a certain property holds for all objects of a certain type and with
statements that assert the existence of an object with a particular property.

Predicates
Statements involving variables, such as

“x >3, “x=y+3” “x4+y=2z~
and

“computer x is under attack by an intruder,”
and

“computer x is functioning properly,”

are often found in mathematical assertions, in computer programs, and in system specifications.
These statements are neither true nor false when the values of the variables are not specified. In
this section, we will discuss the ways that propositions can be produced from such statements.

The statement “x is greater than 3” has two parts. The first part, the variable x, is the subject
of the statement. The second part—the predicate, “is greater than 3”—refers to a property that
the subject of the statement can have. We can denote the statement “x is greater than 3” by P (x),
where P denotes the predicate “is greater than 3” and x is the variable. The statement P (x) is
also said to be the value of the propositional function P at x. Once a value has been assigned
to the variable x, the statement P(x) becomes a proposition and has a truth value. Consider
Examples 1 and 2.

Let P(x) denote the statement “x > 3.” What are the truth values of P(4) and P(2)?

Solution: We obtain the statement P(4) by setting x = 4 in the statement “x > 3.” Hence,
P (4), which is the statement “4 > 3,” is true. However, P(2), which is the statement “2 > 3,”
is false. <
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EXAMPLE 2 Let A(x) denote the statement “Computer x is under attack by an intruder.” Suppose that of the
computers on campus, only CS2 and MATH1 are currently under attack by intruders. What are
truth values of A(CS1), A(CS2), and A(MATH1)?

Solution: We obtain the statement A(CS1) by setting x = CS1 in the statement “Computer x
is under attack by an intruder.” Because CS1 is not on the list of computers currently under
attack, we conclude that A(CS1) is false. Similarly, because CS2 and MATH1 are on the list of
computers under attack, we know that A(CS2) and A(MATH1) are true. <

We can also have statements that involve more than one variable. For instance, consider the
statement “x = y + 3.” We can denote this statement by Q(x, y), where x and y are variables
and Q is the predicate. When values are assigned to the variables x and y, the statement Q (x, y)
has a truth value.

EXAMPLE 3 Let Q(x, y) denote the statement “x = y + 3.” What are the truth values of the propositions
0(1,2)and 0(3,0)?

Exlra Solution: To obtain Q(1, 2), set x = 1 and y = 2 in the statement Q(x, y). Hence, Q(1, 2) is

Examples the statement “1 = 2 + 3,” which is false. The statement Q (3, 0) is the proposition “3 = 0 + 3,”
which is true. <

Links

CHARLES SANDERS PEIRCE (1839-1914) Many consider Charles Peirce, born in Cambridge, Mas-
sachusetts, to be the most original and versatile American intellect. He made important contributions to an
amazing number of disciplines, including mathematics, astronomy, chemistry, geodesy, metrology, engineer-
ing, psychology, philology, the history of science, and economics. Peirce was also an inventor, a lifelong student
of medicine, a book reviewer, a dramatist and an actor, a short story writer, a phenomenologist, a logician, and a
metaphysician. He is noted as the preeminent system-building philosopher competent and productive in logic,
mathematics, and a wide range of sciences. He was encouraged by his father, Benjamin Peirce, a professor of
mathematics and natural philosophy at Harvard, to pursue a career in science. Instead, he decided to study logic
and scientific methodology. Peirce attended Harvard (1855-1859) and received a Harvard master of arts degree
(1862) and an advanced degree in chemistry from the Lawrence Scientific School (1863).

In 1861, Peirce became an aide in the U.S. Coast Survey, with the goal of better understanding scientific methodology. His service
for the Survey exempted him from military service during the Civil War. While working for the Survey, Peirce did astronomical and
geodesic work. He made fundamental contributions to the design of pendulums and to map projections, applying new mathematical
developments in the theory of elliptic functions. He was the first person to use the wavelength of light as a unit of measurement.
Peirce rose to the position of Assistant for the Survey, a position he held until forced to resign in 1891 when he disagreed with the
direction taken by the Survey’s new administration.

While making his living from work in the physical sciences, Peirce developed a hierarchy of sciences, with mathematics at the
top rung, in which the methods of one science could be adapted for use by those sciences under it in the hierarchy. During this time,
he also founded the American philosophical theory of pragmatism.

The only academic position Peirce ever held was lecturer in logic at Johns Hopkins University in Baltimore (1879-1884). His
mathematical work during this time included contributions to logic, set theory, abstract algebra, and the philosophy of mathematics.
His work is still relevant today, with recent applications of this work on logic to artificial intelligence. Peirce believed that the study
of mathematics could develop the mind’s powers of imagination, abstraction, and generalization. His diverse activities after retiring
from the Survey included writing for periodicals, contributing to scholarly dictionaries, translating scientific papers, guest lecturing,
and textbook writing. Unfortunately, his income from these pursuits was insufficient to protect him and his second wife from abject
poverty. He was supported in his later years by a fund created by his many admirers and administered by the philosopher William
James, his lifelong friend. Although Peirce wrote and published voluminously in a vast range of subjects, he left more than 100,000
pages of unpublished manuscripts. Because of the difficulty of studying his unpublished writings, scholars have only recently started
to understand some of his varied contributions. A group of people is devoted to making his work available over the Internet to bring
a better appreciation of Peirce’s accomplishments to the world.
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Let A(c, n) denote the statement “Computer c is connected to network n,” where ¢ is a variable
representing a computer and » is a variable representing a network. Suppose that the computer
MATH1 is connected to network CAMPUS?2, but not to network CAMPUS1. What are the
values of A(MATH1, CAMPUSL1) and A(MATH1, CAMPUS2)?

Solution: Because MATHL is not connected to the CAMPUS1 network, we see that A(MATHL,
CAMPUSL) is false. However, because MATH1 is connected to the CAMPUS2 network, we
see that A(MATH1, CAMPUS2) is true. <

Similarly, we can let R(x, y, z) denote the statement x + y = z.” When values are assigned
to the variables x, y, and z, this statement has a truth value.

What are the truth values of the propositions R(1, 2, 3) and R(0, 0, 1)?

Solution: The proposition R(1,2, 3) is obtained by setting x =1, y =2, and z = 3 in the
statement R(x, y, z). We see that R(1, 2, 3) is the statement “1 + 2 = 3,” which is true. Also

note that R(0, 0, 1), which is the statement “0 + 0 = 1,” is false. <
In general, a statement involving the n variables x1, x2, ..., x,, can be denoted by
P(x1,x2,...,xy,).

A statement of the form P(x1, x2, ..., x,) is the value of the propositional function P at the

n-tuple (x1, x2, ..., x,), and P is also called an n-place predicate or a n-ary predicate.

Propositional functions occur in computer programs, as Example 6 demonstrates.

Consider the statement
if x >0thenx :=x+1.

When this statement is encountered in a program, the value of the variable x at that point in the
execution of the program is inserted into P (x), which is “x > 0.” If P(x) is true for this value
of x, the assignment statement x := x + 1 is executed, so the value of x is increased by 1. If
P (x) is false for this value of x, the assignment statement is not executed, so the value of x is
not changed. <

PRECONDITIONS AND POSTCONDITIONS Predicates are also used to establish the
correctness of computer programs, that is, to show that computer programs always produce the
desired output when given valid input. (Note that unless the correctness of a computer program
is established, no amount of testing can show that it produces the desired output for all input
values, unless every input value is tested.) The statements that describe valid input are known
as preconditions and the conditions that the output should satisfy when the program has run
are known as postconditions. As Example 7 illustrates, we use predicates to describe both
preconditions and postconditions. We will study this process in greater detail in Section 5.5.

Consider the following program, designed to interchange the values of two variables x and y.

tenp := x
X 1=y
y 1= tenp

Find predicates that we can use as the precondition and the postcondition to verify the correctness
of this program. Then explain how to use them to verify that for all valid input the program does
what is intended.



40 1/ The Foundations: Logic and Proofs

Assessment

Assessment

DEFINITION 1

Solution: For the precondition, we need to express that x and y have particular values before
we run the program. So, for this precondition we can use the predicate P (x, y), where P(x, y)
is the statement “x = a and y = b,” where a and b are the values of x and y before we run the
program. Because we want to verify that the program swaps the values of x and y for all input
values, for the postcondition we can use Q(x, y), where Q(x, y) is the statement “x = b and
y =a.

To verify that the program always does what it is supposed to do, suppose that the precon-
dition P(x, y) holds. That is, we suppose that the statement “x = a and y = b” is true. This
means that x = a and y = b. The first step of the program, temp := x, assigns the value of x to
the variable temp, so after this step we know that x = a, temp = a, and y = b. After the second
step of the program, x := y, we know that x = b, temp = a, and y = b. Finally, after the third
step, we know that x = b, temp = a, and y = a. Consequently, after this program is run, the
postcondition Q(x, y) holds, that is, the statement “x = b and y = a” is true.

Quantifiers

When the variables in a propositional function are assigned values, the resulting statement
becomes a proposition with a certain truth value. However, there is another important way, called
quantification, to create a proposition from a propositional function. Quantification expresses
the extent to which a predicate is true over a range of elements. In English, the words all, some,
many, none, and few are used in quantifications. We will focus on two types of quantification
here: universal quantification, which tells us that a predicate is true for every element under
consideration, and existential quantification, which tells us that there is one or more element
under consideration for which the predicate is true. The area of logic that deals with predicates
and quantifiers is called the predicate calculus.

THE UNIVERSAL QUANTIFIER Many mathematical statements assert that a property is
true for all values of a variable in a particular domain, called the domain of discourse (or
the universe of discourse), often just referred to as the domain. Such a statement is expressed
using universal quantification. The universal quantification of P (x) for a particular domain is the
proposition that asserts that P (x) is true for all values of x in this domain. Note that the domain
specifies the possible values of the variable x. The meaning of the universal quantification
of P(x) changes when we change the domain. The domain must always be specified when a
universal quantifier is used; without it, the universal quantification of a statement is not defined.

The universal quantification of P(x) is the statement
“P(x) for all values of x in the domain.”
The notation Vx P (x) denotes the universal quantification of P(x). Here V is called the

universal quantifier. We read Vx P (x) as “for all x P(x)” or “for every x P(x).” An element
for which P (x) is false is called a counterexample of Vx P (x).

The meaning of the universal quantifier is summarized in the first row of Table 1. We
illustrate the use of the universal quantifier in Examples 8-13.
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TABLE 1 Quantifiers.

Statement When True? When False?
Vx P (x) P (x) is true for every x. There is an x for which P(x) is false.
Ax P(x) There is an x for which P (x) is true. P(x) is false for every x.

Let P(x) be the statement “x 4+ 1 > x.” What is the truth value of the quantification Vx P (x),
where the domain consists of all real numbers?

Solution: Because P (x) is true for all real numbers x, the quantification
VxP(x)
is true. |

Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers
are nonempty. Note that if the domain is empty, then Vx P(x) is true for any propositional
function P (x) because there are no elements x in the domain for which P (x) is false.

Besides “for all” and “for every,” universal quantification can be expressed in many other
ways, including “all of,” “for each,” “given any,” “for arbitrary,” “for each,” and “for any.”

Remark: Itis best to avoid using “for any x” because it is often ambiguous as to whether “any”
means “every” or “some.” In some cases, “any” is unambiguous, such as when it is used in
negatives, for example, “there is not any reason to avoid studying.”

Astatement Vx P (x) is false, where P (x) isapropositional function, ifand only if P (x) isnot
always true when x is in the domain. One way to show that P (x) is not always true when x is in the
domain isto find a counterexample to the statement Vx P (x). Note that a single counterexample is
all we need to establish that Vx P (x) is false. Example 9 illustrates how counterexamples are used.

Let Q(x) be the statement “x < 2.” What is the truth value of the quantification Vx Q (x), where
the domain consists of all real numbers?

Solution: Q(x) is not true for every real number x, because, for instance, Q(3) is false. That is,
x = 3 is a counterexample for the statement Vx Q(x). Thus

VxQ(x)
is false. <
Suppose that P(x) is “x< > 0.” To show that the statement Vx P (x) is false where the uni-

verse of discourse consists of all integers, we give a counterexample. We see that x =0 is a
counterexample because x2 = 0 when x = 0, so that x? is not greater than 0 when x = 0. <«

Looking for counterexamples to universally quantified statements is an important activity
in the study of mathematics, as we will see in subsequent sections of this book.

When all the elements in the domain can be listed—say, x1, x2, . . ., x,—it follows that the
universal quantification Vx P (x) is the same as the conjunction

P(x1) A Px2) A= A P(xp),

because this conjunction is true if and only if P(x1), P(x2), ..., P(x,) are all true.
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DEFINITION 2

What is the truth value of Vx P (x), where P(x) is the statement “x< < 10” and the domain
consists of the positive integers not exceeding 4?

Solution: The statement Vx P (x) is the same as the conjunction
P(A) A P2)AP@B)A P(D),

because the domain consists of the integers 1, 2, 3, and 4. Because P (4), which is the statement
“42 < 10,” is false, it follows that Vx P (x) is false. |

What does the statement Vx N (x) mean if N(x) is “Computer x is connected to the network”
and the domain consists of all computers on campus?

Solution: The statement Vx N (x) means that for every computer x on campus, that computer x
is connected to the network. This statement can be expressed in English as “Every computer on
campus is connected to the network.”

As we have pointed out, specifying the domain is mandatory when quantifiers are used. The
truth value of a quantified statement often depends on which elements are in this domain, as
Example 13 shows.

What is the truth value of Vx(x2 > x) if the domain consists of all real numbers? What is the
truth value of this statement if the domain consists of all integers?

Solution: The universal quantification Vx(x2 > x), where the domain consists of all real num-
bers, is false. For example, (3)? # 3. Note that x? > x if and only if x2 — x = x(x — 1) > 0.
Consequently, x2 > x if and only if x < 0 or x > 1. It follows that Vx(x? > x) is false if the
domain consists of all real numbers (because the inequality is false for all real numbers x with
0 < x < 1). However, if the domain consists of the integers, Vx(x2 > x) is true, because there
are no integers x with0 < x < 1. <

THE EXISTENTIAL QUANTIFIER Many mathematical statements assert that there is an
element with a certain property. Such statements are expressed using existential quantification.
With existential quantification, we form a proposition that is true if and only if P (x) is true for
at least one value of x in the domain.

The existential quantification of P (x) is the proposition
“There exists an element x in the domain such that P (x).”

We use the notation 3x P (x) for the existential quantification of P (x). Here 3 is called the
existential quantifier.

A domain must always be specified when a statement 3x P (x) is used. Furthermore, the
meaning of 3x P(x) changes when the domain changes. Without specifying the domain, the
statement Jx P (x) has no meaning.

Besides the phrase “there exists,” we can also express existential quantification in many other
ways, such as by using the words “for some,” “for at least one,” or “there is.” The existential
quantification 3x P (x) is read as

“There is an x such that P(x),”
“There is at least one x such that P(x),”

or

“For some x P (x).”
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The meaning of the existential quantifier is summarized in the second row of Table 1. We
illustrate the use of the existential quantifier in Examples 14-16.

Let P(x) denote the statement “x > 3.” What is the truth value of the quantification 3x P (x),
where the domain consists of all real numbers?

Solution: Because “x > 3" is sometimes true—for instance, when x = 4—the existential quan-
tification of P (x), which is 3x P (x), is true. |

Observe that the statement 3x P (x) is false if and only if there is no element x in the domain
for which P (x) is true. That is, 3x P (x) is false if and only if P (x) is false for every element of
the domain. We illustrate this observation in Example 15.

Let O (x) denote the statement “x = x + 1.” What is the truth value of the quantification 3x Q (x),
where the domain consists of all real numbers?

Solution: Because Q(x) is false for every real number x, the existential quantification of Q(x),
which is 3x Q(x), is false. <

Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers
are nonempty. If the domain is empty, then 3x Q(x) is false whenever Q(x) is a propositional
function because when the domain is empty, there can be no element x in the domain for which
Q(x) is true.

When all elements in the domain can be listed—say, x1, x2, ..., x,— the existential quan-
tification 3x P (x) is the same as the disjunction

P(x1) vV P(x2) V-V P(xy),
because this disjunction is true if and only if at least one of P(x1), P(x2), ..., P(x;,) istrue.

What is the truth value of 3x P (x), where P (x) is the statement “x“ > 10” and the universe of
discourse consists of the positive integers not exceeding 4?

Solution: Because the domain is {1, 2, 3, 4}, the proposition 3x P (x) is the same as the disjunc-
tion

P()v P(2) Vv P(3)V P4).
Because P (4), which is the statement “42 > 10,” is true, it follows that 3x P (x) is true. <

It is sometimes helpful to think in terms of looping and searching when determining the
truth value of a quantification. Suppose that there are n objects in the domain for the variable x.
To determine whether Vx P (x) is true, we can loop through all n values of x to see whether
P (x) is always true. If we encounter a value x for which P (x) is false, then we have shown that
Vx P(x) is false. Otherwise, Vx P (x) is true. To see whether 3x P (x) is true, we loop through
the n values of x searching for a value for which P(x) is true. If we find one, then 3x P (x) is
true. If we never find such an x, then we have determined that 3x P (x) is false. (Note that this
searching procedure does not apply if there are infinitely many values in the domain. However,
it is still a useful way of thinking about the truth values of quantifications.)
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EXAMPLE 17

THE UNIQUENESS QUANTIFIER We have now introduced universal and existential quan-
tifiers. These are the most important quantifiers in mathematics and computer science. However,
there is no limitation on the number of different quantifiers we can define, such as “there are
exactly two,” “there are no more than three,” “there are at least 100,” and so on. Of these other
quantifiers, the one that is most often seen is the uniqueness quantifier, denoted by 3! or 3.
The notation 3'x P(x) [or 31x P(x)] states “There exists a unique x such that P(x) is true.”
(Other phrases for uniqueness quantification include “there is exactly one” and “there is one and
only one.”) For instance, 3!x(x — 1 = 0), where the domain is the set of real numbers, states
that there is a unique real number x such that x — 1 = 0. This is a true statement, as x = 1 is the
unique real number such that x — 1 = 0. Observe that we can use quantifiers and propositional
logic to express uniqueness (see Exercise 52 in Section 1.5), so the uniqueness quantifier can
be avoided. Generally, it is best to stick with existential and universal quantifiers so that rules
of inference for these quantifiers can be used.

Quantifiers with Restricted Domains

An abbreviated notation is often used to restrict the domain of a quantifier. In this nota-
tion, a condition a variable must satisfy is included after the quantifier. This is illustrated in
Example 17. We will also describe other forms of this notation involving set membership in
Section 2.1.

What do the statements Vx < 0 (x2 > 0), Vy = 0(y3 # 0), and 3z > 0 (z2 = 2) mean, where
the domain in each case consists of the real numbers?

Solution: The statementVx < 0 (x2 > 0) states that for every real number x withx < 0, x2 > 0.
That is, it states “The square of a negative real number is positive.” This statement is the same
asVx(x <0 — x2 > 0).

The statement Vy # 0 (y2 = 0) states that for every real number y with y # 0, we have
y3 # 0. That is, it states “The cube of every nonzero real number is nonzero.” Note that this
statement is equivalent to Vy(y # 0 — y3 # 0).

Finally, the statement 3z > 0 (z? = 2) states that there exists a real number z with z > 0
such that z2 = 2. That is, it states “There is a positive square root of 2.” This statement is
equivalentto 3z(z > 0 A z2 = 2). <

Note that the restriction of a universal quantification is the same as the universal quantifi-
cation of a conditional statement. For instance, Vx < 0 (x? > 0) is another way of expressing
Vx(x <0 — x2 > 0). On the other hand, the restriction of an existential quantification is the
same as the existential quantification of a conjunction. For instance, 3z > 0 (z? = 2) is another
way of expressing 3z(z > 0 A z2 = 2).

Precedence of Quantifiers

The quantifiers V and 3 have higher precedence than all logical operators from propositional
calculus. For example, Vx P (x) v Q(x) is the disjunction of Vx P (x) and Q(x). In other words,
it means (Vx P(x)) v Q(x) rather than Vx (P (x) v Q(x)).

Binding Variables

When a quantifier is used on the variable x, we say that this occurrence of the variable is bound.
An occurrence of a variable that is not bound by a quantifier or set equal to a particular value
is said to be free. All the variables that occur in a propositional function must be bound or set
equal to a particular value to turn it into a proposition. This can be done using a combination of
universal quantifiers, existential quantifiers, and value assignments.
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The part of a logical expression to which a quantifier is applied is called the scope of this
quantifier. Consequently, a variable is free if it is outside the scope of all quantifiers in the
formula that specify this variable.

In the statement 3x(x 4+ y = 1), the variable x is bound by the existential quantification 3x, but
the variable y is free because it is not bound by a quantifier and no value is assigned to this
variable. This illustrates that in the statement 3x (x + y = 1), x is bound, but y is free.

In the statement 3x (P (x) A Q(x)) Vv VxR(x), all variables are bound. The scope of the first
quantifier, x, is the expression P(x) A Q(x) because 3x is applied only to P(x) A Q(x), and
not to the rest of the statement. Similarly, the scope of the second quantifier, Vx, is the expression
R(x). That is, the existential quantifier binds the variable x in P(x) A Q(x) and the universal
quantifier Vx binds the variable x in R(x). Observe that we could have written our statement
using two different variables x and y, as 3x(P(x) A Q(x)) VvV VyR(y), because the scopes of
the two quantifiers do not overlap. The reader should be aware that in common usage, the same
letter is often used to represent variables bound by different quantifiers with scopes that do not
overlap. <

Logical Equivalences Involving Quantifiers

In Section 1.3 we introduced the notion of logical equivalences of compound propositions. We
can extend this notion to expressions involving predicates and quantifiers.

Statements involving predicates and quantifiers are logically equivalent if and only if they
have the same truth value no matter which predicates are substituted into these statements
and which domain of discourse is used for the variables in these propositional functions.
We use the notation S = T to indicate that two statements S and 7' involving predicates and
quantifiers are logically equivalent.

Example 19 illustrates how to show that two statements involving predicates and quantifiers
are logically equivalent.

Show that Vx (P (x) A Q(x)) and Vx P(x) A Vx Q(x) are logically equivalent (where the same
domain is used throughout). This logical equivalence shows that we can distribute a universal
quantifier over a conjunction. Furthermore, we can also distribute an existential quantifier over
a disjunction. However, we cannot distribute a universal quantifier over a disjunction, nor can
we distribute an existential quantifier over a conjunction. (See Exercises 50 and 51.)

Solution: To show that these statements are logically equivalent, we must show that they always
take the same truth value, no matter what the predicates P and Q are, and no matter which
domain of discourse is used. Suppose we have particular predicates P and Q, with a common
domain. We can show that Vx(P(x) A Q(x)) and Vx P(x) A VxQ(x) are logically equivalent
by doing two things. First, we show that if Vx(P(x) A Q(x)) is true, then Vx P(x) A Vx Q(x)
is true. Second, we show that if Vx P(x) A VxQ(x) is true, then Vx (P (x) A Q(x)) is true.

So, suppose that Vx(P(x) A Q(x)) is true. This means that if « is in the domain, then
P(a) A Q(a) is true. Hence, P(a) is true and Q(a) is true. Because P (a) is true and Q(a) is
true for every element in the domain, we can conclude that Vx P (x) and Vx Q (x) are both true.
This means that Vx P(x) A Vx Q(x) is true.

Next, suppose that Vx P (x) A Vx Q(x) is true. It follows that Vx P (x) is true and Vx Q (x) is
true. Hence, if @ is in the domain, then P(a) is true and Q(a) is true [because P(x) and Q(x)
are both true for all elements in the domain, there is no conflict using the same value of a here].
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It follows that for all a, P(a) A Q(a) is true. It follows that Vx (P (x) A Q(x)) is true. We can
now conclude that

Vx(P(x) A Q(x)) =VxP(x) AVxQ(x). <

Negating Quantified Expressions

We will often want to consider the negation of a quantified expression. For instance, consider
the negation of the statement

“Every student in your class has taken a course in calculus.”
This statement is a universal quantification, namely,
Vx P (x),

where P (x) is the statement “x has taken a course in calculus” and the domain consists of the
students in your class. The negation of this statement is “It is not the case that every student in
your class has taken a course in calculus.” This is equivalent to “There is a student in your class
who has not taken a course in calculus.” And this is simply the existential quantification of the
negation of the original propositional function, namely,

dx =P (x).
This example illustrates the following logical equivalence:
—VxP(x) = 3dx - P(x).

To show that —=Vx P (x) and 3x P(x) are logically equivalent no matter what the propositional
function P (x) is and what the domain is, first note that —=Vx P (x) is true if and only if Vx P (x) is
false. Next, note that Vx P (x) is false if and only if there is an element x in the domain for which
P(x) is false. This holds if and only if there is an element x in the domain for which =P (x) is
true. Finally, note that there is an element x in the domain for which — P (x) is true if and only
if Ix =P (x) is true. Putting these steps together, we can conclude that —Vx P (x) is true if and
only if 3x — P (x) is true. It follows that —Vx P (x) and 3x — P (x) are logically equivalent.

Suppose we wish to negate an existential quantification. For instance, consider the propo-
sition “There is a student in this class who has taken a course in calculus.” This is the existential
quantification

I Q(x),

where Q(x) is the statement “x has taken a course in calculus.” The negation of this statement
is the proposition “It is not the case that there is a student in this class who has taken a course in
calculus.” This is equivalent to “Every student in this class has not taken calculus,” which is just
the universal quantification of the negation of the original propositional function, or, phrased in
the language of quantifiers,

Vx —=Q(x).
This example illustrates the equivalence
—IxQ(x) = Vx =0 (x).

To show that —3x Q(x) and Vx —Q(x) are logically equivalent no matter what Q (x) is and what
the domain is, first note that —3x Q(x) is true if and only if 3x Q(x) is false. This is true if and
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TABLE 2 De Morgan’s Laws for Quantifiers.
Negation Equivalent Statement When Is Negation True? When False?
—3x P(x) Vx—=P(x) For every x, P(x) is false. There is an x for which
P(x) is true.
=VxP(x) IAx—P(x) There is an x for which P(x) is true for every x.
P(x) is false.

only if no x exists in the domain for which Q(x) is true. Next, note that no x exists in the domain
for which Q(x) is true if and only if Q(x) is false for every x in the domain. Finally, note that
Q(x) is false for every x in the domain if and only if =Q(x) is true for all x in the domain,
which holds if and only if Vx—Q(x) is true. Putting these steps together, we see that —=3x Q (x)
is true if and only if Vx—Q(x) is true. We conclude that —=3x Q (x) and Vx —Q(x) are logically
equivalent.

The rules for negations for quantifiers are called De Morgan’s laws for quantifiers. These
rules are summarized in Table 2.

Remark: When the domain of a predicate P(x) consists of n elements, where n is a positive
integer greater than one, the rules for negating quantified statements are exactly the same as
De Morgan’s laws discussed in Section 1.3. This is why these rules are called De Morgan’s
laws for quantifiers. When the domain has n elements x1, x2, ..., x,, it follows that =Vx P (x)
is the same as —(P(x1) A P(x2) A --- A P(xy)), which is equivalent to =P (x1) V =P (x2) V

.-V = P(x,) by De Morgan’s laws, and this is the same as Ix—P(x). Similarly, =3x P (x)
is the same as —=(P(x1) V P(x2) V --- VvV P(x,)), which by De Morgan’s laws is equivalent to
=P(x1) A=P(x2) A--- A—=P(x,), and this is the same as Vx—P (x).

We illustrate the negation of quantified statements in Examples 20 and 21.

What are the negations of the statements “There is an honest politician” and “All Americans eat
cheeseburgers”?

Solution: Let H(x) denote “x is honest.” Then the statement “There is an honest politician”
is represented by JxH (x), where the domain consists of all politicians. The negation of this
statement is —3xH (x), which is equivalent to Vx—H (x). This negation can be expressed as
“Every politician is dishonest.” (Note: In English, the statement “All politicians are not honest”
is ambiguous. In common usage, this statement often means “Not all politicians are honest.”
Consequently, we do not use this statement to express this negation.)

Let C(x) denote “x eats cheeseburgers.” Then the statement “All Americans eat cheese-
burgers” is represented by VxC (x), where the domain consists of all Americans. The negation
of this statement is =Vx C (x), which is equivalent to 3x—C (x). This negation can be expressed
in several different ways, including “Some American does not eat cheeseburgers” and “There
is an American who does not eat cheeseburgers.” <

What are the negations of the statements Vx (x2 > x) and 3x(x2 = 2)?

Solution: The negation of Vx(x2 > x) is the statement —Vx(x2 > x), which is equivalent to
Jx—(x? > x). This can be rewritten as 3x (x? < x). The negation of 3x (x? = 2) is the statement
—3x(x? = 2), which is equivalent to Vx—(x? = 2). This can be rewritten as Vx (x? # 2). The
truth values of these statements depend on the domain.

We use De Morgan’s laws for quantifiers in Example 22.
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EXAMPLE 22 Show that =Vx (P (x) — Q(x)) and 3x(P(x) A —=Q(x)) are logically equivalent.

EXAMPLE 23

Q

Solution: By De Morgan’s law for universal quantifiers, we know that =Vx(P(x) — Q(x))
and Ix(—(P(x) — Q(x))) are logically equivalent. By the fifth logical equivalence in Table 7
in Section 1.3, we know that —(P(x) — Q(x)) and P(x) A —Q(x) are logically equivalent
for every x. Because we can substitute one logically equivalent expression for another in a
logical equivalence, it follows that =Vx(P(x) — Q(x)) and Ix(P(x) A =Q(x)) are logically
equivalent. <

Translating from English into Logical Expressions

Translating sentences in English (or other natural languages) into logical expressions is a crucial
task in mathematics, logic programming, artificial intelligence, software engineering, and many
other disciplines. We began studying this topic in Section 1.1, where we used propositions to
express sentences in logical expressions. In that discussion, we purposely avoided sentences
whose translations required predicates and quantifiers. Translating from English to logical ex-
pressions becomes even more complex when quantifiers are needed. Furthermore, there can
be many ways to translate a particular sentence. (As a consequence, there is no “cookbook”
approach that can be followed step by step.) We will use some examples to illustrate how to
translate sentences from English into logical expressions. The goal in this translation is to pro-
duce simple and useful logical expressions. In this section, we restrict ourselves to sentences
that can be translated into logical expressions using a single quantifier; in the next section, we
will look at more complicated sentences that require multiple quantifiers.

Express the statement “Every student in this class has studied calculus” using predicates and
quantifiers.

Solution: First, we rewrite the statement so that we can clearly identify the appropriate quantifiers
to use. Doing so, we obtain:

“For every student in this class, that student has studied calculus.”
Next, we introduce a variable x so that our statement becomes
“For every student x in this class, x has studied calculus.”

Continuing, we introduce C (x), which is the statement “x has studied calculus.” Consequently,
if the domain for x consists of the students in the class, we can translate our statement as VxC (x).

However, there are other correct approaches; different domains of discourse and other
predicates can be used. The approach we select depends on the subsequent reasoning we want
to carry out. For example, we may be interested in a wider group of people than only those in
this class. If we change the domain to consist of all people, we will need to express our statement
as

“For every person x, if person x is a student in this class then x has studied calculus.”

If S(x) represents the statement that person x is in this class, we see that our statement can be
expressed as Vx(S(x) — C(x)). [Caution! Our statement cannot be expressed as Vx(S(x) A
C(x)) because this statement says that all people are students in this class and have studied
calculus!]

Finally, when we are interested in the background of people in subjects besides calculus,
we may prefer to use the two-variable quantifier Q(x, y) for the statement “student x has
studied subject y.” Then we would replace C(x) by Q(x, calculus) in both approaches to obtain
Vx Q(x, calculus) or Vx(S(x) — Q(x, calculus)). |
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In Example 23 we displayed different approaches for expressing the same statement using
predicates and quantifiers. However, we should always adopt the simplest approach that is
adequate for use in subsequent reasoning.

Express the statements “Some student in this class has visited Mexico” and “Every student in
this class has visited either Canada or Mexico” using predicates and quantifiers.

Solution: The statement “Some student in this class has visited Mexico” means that
“There is a student in this class with the property that the student has visited Mexico.”
We can introduce a variable x, so that our statement becomes
“There is a student x in this class having the property that x has visited Mexico.”

We introduce M (x), which is the statement “x has visited Mexico.” If the domain for x consists
of the students in this class, we can translate this first statement as 3x M (x).

However, if we are interested in people other than those in this class, we look at the statement
a little differently. Our statement can be expressed as

“There is a person x having the properties that x is a student in this class and x has visited
Mexico.”

In this case, the domain for the variable x consists of all people. We introduce S(x) to represent
“x is a student in this class.” Our solution becomes Jx(S(x) A M (x)) because the statement is
that there is a person x who is a student in this class and who has visited Mexico. [Caution! Our
statement cannot be expressed as 3x(S(x) — M (x)), which is true when there is someone not
in the class because, in that case, for such a person x, S(x) — M (x) becomes either F — T or
F — F, both of which are true.]

Similarly, the second statement can be expressed as

“For every x in this class, x has the property that x has visited Mexico or x has visited
Canada.”

(Note that we are assuming the inclusive, rather than the exclusive, or here.) We let C(x) be “x
has visited Canada.” Following our earlier reasoning, we see that if the domain for x consists of
the students in this class, this second statement can be expressed as Vx (C (x) v M (x)). However,
if the domain for x consists of all people, our statement can be expressed as

“For every person x, if x is a student in this class, then x has visited Mexico or x has visited
Canada.”

In this case, the statement can be expressed as Vx(S(x) — (C(x) vV M(x))).

Instead of using M (x) and C(x) to represent that x has visited Mexico and x has visited
Canada, respectively, we could use a two-place predicate V (x, y) to represent “x has visited
country y.” In this case, V (x, Mexico) and V (x, Canada) would have the same meaning as M (x)
and C(x) and could replace them in our answers. If we are working with many statements that
involve people visiting different countries, we might prefer to use this two-variable approach.
Otherwise, for simplicity, we would stick with the one-variable predicates M (x) and C(x). <



50 1/ The Foundations: Logic and Proofs

EXAMPLE 25
Extra g
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Remember the rules of
precedence for quantifiers
and logical connectives!

EXAMPLE 26

(

Links BN

Using Quantifiers in System Specifications

In Section 1.2 we used propositions to represent system specifications. However, many system
specifications involve predicates and quantifications. This is illustrated in Example 25.

Use predicates and quantifiers to express the system specifications “Every mail message larger
than one megabyte will be compressed” and “If a user is active, at least one network link will
be available.”

Solution: Let S(m, y) be “Mail message m is larger than y megabytes,” where the variable x has
the domain of all mail messages and the variable y is a positive real number, and let C (m) denote
“Mail message m will be compressed.” Then the specification “Every mail message larger than
one megabyte will be compressed” can be represented as Vi (S(m, 1) — C(m)).

Let A(u) represent “User u is active,” where the variable u has the domain of all users,
let S(n, x) denote “Network link » is in state x,” where n has the domain of all network
links and x has the domain of all possible states for a network link. Then the specifica-
tion “If a user is active, at least one network link will be available” can be represented by
JuA(u) — AnS(n, available). |

Examples from Lewis Carroll

Lewis Carroll (really C. L. Dodgson writing under a pseudonym), the author of Alice in Wonder-
land, is also the author of several works on symbolic logic. His books contain many examples
of reasoning using quantifiers. Examples 26 and 27 come from his book Symbolic Logic; other
examples from that book are given in the exercises at the end of this section. These examples
illustrate how quantifiers are used to express various types of statements.

Consider these statements. The first two are called premises and the third is called the conclusion.
The entire set is called an argument.

“All lions are fierce.”
“Some lions do not drink coffee.”
“Some fierce creatures do not drink coffee.”

(In Section 1.6 we will discuss the issue of determining whether the conclusion is a valid conse-
quence of the premises. In this example, itis.) Let P(x), Q(x), and R(x) be the statements “x is
alion,” “x is fierce,” and “x drinks coffee,” respectively. Assuming that the domain consists of all
creatures, express the statements in the argument using quantifiers and P (x), Q(x), and R(x).

CHARLES LUTWIDGE DODGSON (1832-1898) We know Charles Dodgson as Lewis Carroll—the
pseudonym he used in his literary works. Dodgson, the son of a clergyman, was the third of 11 children,
all of whom stuttered. He was uncomfortable in the company of adults and is said to have spoken without
stuttering only to young girls, many of whom he entertained, corresponded with, and photographed (sometimes
in poses that today would be considered inappropriate). Although attracted to young girls, he was extremely
puritanical and religious. His friendship with the three young daughters of Dean Liddell led to his writing Alice
in Wonderland, which brought him money and fame.

Dodgson graduated from Oxford in 1854 and obtained his master of arts degree in 1857. He was appointed
lecturer in mathematics at Christ Church College, Oxford, in 1855. He was ordained in the Church of England

in 1861 but never practiced his ministry. His writings published under this real name include articles and books on geometry,
determinants, and the mathematics of tournaments and elections. (He also used the pseudonym Lewis Carroll for his many works
on recreational logic.)
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Solution: We can express these statements as:

Vx(P(x) = Q(x)).
x(P(x) A =R(x)).
Ix(Q(x) A =R(x)).

Notice that the second statement cannot be written as 3x(P(x) — —R(x)). The reason is that
P(x) — —R(x) is true whenever x is not a lion, so that 3x (P (x) — —R(x)) is true as long as
there is at least one creature that is not a lion, even if every lion drinks coffee. Similarly, the
third statement cannot be written as

Ix(Q(x) — —R(x)). <

Consider these statements, of which the first three are premises and the fourth is a valid conclu-
sion.

“All hummingbirds are richly colored.”

“No large birds live on honey.”

“Birds that do not live on honey are dull in color.”
“Hummingbirds are small.”

LIS

Let P(x), Q(x), R(x),and S(x) be the statements “x isa hummingbird,” “x is large,” “x lives on
honey,” and “x is richly colored,” respectively. Assuming that the domain consists of all birds,
express the statements in the argument using quantifiers and P(x), Q(x), R(x), and S(x).

Solution: We can express the statements in the argument as

Vx(P(x) = S(x)).
—3x(Q(x) A R(x)).
Vx(—R(x) — —=S(x)).
Vx(P(x) — =0 (x)).

(Note we have assumed that “small” is the same as “not large” and that “dull in color” is the
same as “not richly colored.” To show that the fourth statement is a valid conclusion of the first
three, we need to use rules of inference that will be discussed in Section 1.6.) <

Logic Programming

An important type of programming language is designed to reason using the rules of predicate
logic. Prolog (from Programming in Logic), developed in the 1970s by computer scientists
working in the area of artificial intelligence, is an example of such a language. Prolog programs
include a set of declarations consisting of two types of statements, Prolog facts and Prolog
rules. Prolog facts define predicates by specifying the elements that satisfy these predicates.
Prolog rules are used to define new predicates using those already defined by Prolog facts.
Example 28 illustrates these notions.

Consider a Prolog program given facts telling it the instructor of each class and in which classes
students are enrolled. The program uses these facts to answer queries concerning the professors
who teach particular students. Such a program could use the predicates instructor(p, ¢) and
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enrolled (s, ¢) to represent that professor p is the instructor of course ¢ and that student s
is enrolled in course ¢, respectively. For example, the Prolog facts in such a program might
include:

i nstructor(chan, mat h273)

i nstructor(patel, ee222)

i nstructor(grossman, cs301)
enrol | ed(kevi n, mat h273)
enrol | ed(j uana, ee222)
enrol | ed(j uana, cs301)
enrol | ed( ki ko, mat h273)
enrol | ed(ki ko, cs301)

(Lowercase letters have been used for entries because Prolog considers names beginning with
an uppercase letter to be variables.)

A new predicate teaches(p, s), representing that professor p teaches student s, can be
defined using the Prolog rule

teaches(P,S) :- instructor(P,C, enrolled(S, C

which means that teaches(p, s) is true if there exists a class ¢ such that professor p is the
instructor of class ¢ and student s is enrolled in class ¢. (Note that a comma is used to represent
a conjunction of predicates in Prolog. Similarly, a semicolon is used to represent a disjunction
of predicates.)

Prolog answers queries using the facts and rules it is given. For example, using the facts
and rules listed, the query

?enrol | ed(kevi n, mat h273)

produces the response

yes

because the fact enrolled(kevin, math273) was provided as input. The query

?enrol | ed( X, mat h273)

produces the response

kevi n
ki ko

To produce this response, Prolog determines all possible values of X for which
enrolled (X, math273) has been included as a Prolog fact. Similarly, to find all the professors
who are instructors in classes being taken by Juana, we use the query

?t eaches( X, j uana)

This query returns

pat el |
gr ossman
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. Let P(x) denote the statement “x < 4.” What are these

truth values?

a) P(0) b) P(4) c) P(6)

. Let P(x) be the statement “the word x contains the

letter a.” What are these truth values?

a) P(orange) b) P(lemon)

c) P(true) d) P(false)

. Let Q(x, y) denote the statement “x is the capital of y.”

What are these truth values?

a) Q(Denver, Colorado)

b) Q(Detroit, Michigan)

c) Q(Massachusetts, Boston)

d) Q(New York, New York)

. State the value of x after the statement if P(x) thenx :=1

is executed, where P(x) is the statement “x > 1,” if the

value of x when this statement is reached is

a) x=0. b) x =1

c) x=2

. Let P(x) be the statement “x spends more than five hours

every weekday in class,” where the domain for x consists

of all students. Express each of these quantifications in

English.

a) AxP(x) b) VxP(x)

c) Ax—-P(x) d) Vx—=P(x)

. Let N(x) be the statement “x has visited North Dakota,”

where the domain consists of the students in your school.

Express each of these quantifications in English.

a) IxN(x) b) VxN(x) c) —IxN(x)

d) Ix—=N(x) e) —VxN(x) f) Vx=N(x)

. Translate these statements into English, where C (x) is “x

is a comedian” and F(x) is “x is funny” and the domain

consists of all people.

a) Vx(C(x) —» F(x)) b) Vx(C(x) A F(x))

c) Ax(C(x) —> F(x)) d) Ix(C(x) A F(x))

. Translate these statements into English, where R(x) is “x

is arabbit” and H (x) is “x hops” and the domain consists

of all animals.

a) Vx(R(x) — H(x)) b) Vx(R(x) A H(x))

c) Ax(R(x) —> H(x)) d) Ix(R(x) A H(x))

. Let P(x) be the statement “x can speak Russian” and let

Q(x) be the statement “x knows the computer language

C++.” Express each of these sentences in terms of P (x),

Q(x), quantifiers, and logical connectives. The domain

for quantifiers consists of all students at your school.

a) There is a student at your school who can speak Rus-
sian and who knows C++.

b) There is a student at your school who can speak Rus-
sian but who doesn’t know C++.

c) Every student at your school either can speak Russian
or knows C++.

d) No studentat your school can speak Russian or knows
C++.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Let C(x) be the statement “x has a cat,” let D(x) be the

statement “x has a dog,” and let F(x) be the statement “x

has a ferret.” Express each of these statements in terms of

C(x), D(x), F(x), quantifiers, and logical connectives.

Let the domain consist of all students in your class.

a) A student in your class has a cat, a dog, and a ferret.

b) All students in your class have a cat, a dog, or a ferret.

c) Some student in your class has a cat and a ferret, but
not a dog.

d) No student in your class has a cat, a dog, and a ferret.

e) For each of the three animals, cats, dogs, and ferrets,
there is a student in your class who has this animal as
a pet.

Let P(x) be the statement “x = x2.” If the domain con-

sists of the integers, what are these truth values?

a) P(0) b) P(1) c) P2

d) P(-1) e) IxP(x) f) VxP(x)

Let O(x) be the statement “x + 1 > 2x.” If the domain

consists of all integers, what are these truth values?

a) Q(0) b) 0(-1) c) o)
d) Ix0(x) e) VxQ(x) f) Ix—-0(x)
9) Vx—Q(x)

Determine the truth value of each of these statements if
the domain consists of all integers.

a) Vn(n+1>n) b) In(2n = 3n)

c) In(n = —n) d) Vn(3n < 4n)
Determine the truth value of each of these statements if
the domain consists of all real numbers.

a) Ix(x3=-1) b) Ix(x?* < x?)

c) Vx((—x)2 =x?) d) Vx(2x > x)

Determine the truth value of each of these statements if
the domain for all variables consists of all integers.

a) Vn(n® > 0) b) In(n? =2)

c) Vn(n? > n) d) In(n? < 0)

Determine the truth value of each of these statements if
the domain of each variable consists of all real numbers.
a) Ix(x2=2) b) Ix(x2 = -1)

c) Vx(x24+2>1) d) Vx(x? # x)

Suppose that the domain of the propositional function
P(x) consists of the integers 0, 1, 2, 3, and 4. Write out

each of these propositions using disjunctions, conjunc-
tions, and negations.

a) IxP(x) b) VxP(x) c) Ix—P(x)

d) Vx—=P(x) e) —3IxP(x) f) =VxP(x)
Suppose that the domain of the propositional function
P (x) consists of the integers —2, —1, 0, 1, and 2. Write
out each of these propositions using disjunctions, con-
junctions, and negations.

a) xP(x) b) VxP(x)
d) Vx—=P(x) e) —3IxP(x)

c) Ix—P(x)
f) =VxP(x)
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Suppose that the domain of the propositional function
P(x) consists of the integers 1, 2, 3, 4, and 5. Express
these statements without using quantifiers, instead using
only negations, disjunctions, and conjunctions.

a) IxP(x) b) VxP(x)

c) —IxP(x) d) =VxP(x)

e) Vx((x #3) > P(x)) vIx—=P(x)

Suppose that the domain of the propositional function
P (x) consists of —5, —3, —1, 1, 3, and 5. Express these
statements without using quantifiers, instead using only
negations, disjunctions, and conjunctions.

a) IxP(x) b) VxP(x)

C) Vx((x #1) - P(x))

d) Ix((x =0) A P(x))

e) Ix(—Px)) AVx((x <0) = P(x))

For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.

a) Everyone is studying discrete mathematics.

b) Everyone is older than 21 years.

c) Every two people have the same mother.

d) No two different people have the same grandmother.
For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.

a) Everyone speaks Hindi.

b) There is someone older than 21 years.

c) Every two people have the same first name.
d) Someone knows more than two other people.

Translate in two ways each of these statements into logi-
cal expressions using predicates, quantifiers, and logical
connectives. First, let the domain consist of the students
in your class and second, let it consist of all people.

a) Someone in your class can speak Hindi.

b) Everyone in your class is friendly.

¢) There is a person in your class who was not born in
California.

d) A student in your class has been in a movie.

e) No student in your class has taken a course in logic
programming.

Translate in two ways each of these statements into logi-

cal expressions using predicates, quantifiers, and logical

connectives. First, let the domain consist of the students

in your class and second, let it consist of all people.

a) Everyone in your class has a cellular phone.

b) Somebody in your class has seen a foreign movie.

¢) There is a person in your class who cannot swim.

d) All students in your class can solve quadratic equa-
tions.

e) Some student in your class does not want to be rich.

Translate each of these statements into logical expres-
sions using predicates, quantifiers, and logical connec-
tives.

a) No one is perfect.

b) Not everyone is perfect.

c) All your friends are perfect.

d) At least one of your friends is perfect.

26.

217.

28.

29.

30.

31.

e) Everyone is your friend and is perfect.

f) Not everybody is your friend or someone is not per-
fect.

Translate each of these statements into logical expres-

sions in three different ways by varying the domain and

by using predicates with one and with two variables.

a) Someone in your school has visited Uzbekistan.

b) Everyone inyour class has studied calculus and C++.

c) No one in your school owns both a bicycle and a mo-
torcycle.

d) There is a person in your school who is not happy.

e) Everyone in your school was born in the twentieth
century.

Translate each of these statements into logical expres-

sions in three different ways by varying the domain and

by using predicates with one and with two variables.

a) A student in your school has lived in Vietnam.

b) There is a student in your school who cannot speak
Hindi.

c) A student in your school knows Java, Prolog, and
C++.

d) Everyone in your class enjoys Thai food.

e) Someone in your class does not play hockey.

Translate each of these statements into logical expres-

sions using predicates, quantifiers, and logical connec-

tives.

a) Something is not in the correct place.

b) All tools are in the correct place and are in excellent
condition.

c) Everythingisinthe correct place and in excellent con-
dition.

d) Nothingis in the correct place and is in excellent con-
dition.

e) One of your tools is not in the correct place, but it is
in excellent condition.

Express each of these statements using logical operators,

predicates, and quantifiers.

a) Some propositions are tautologies.

b) The negation of a contradiction is a tautology.

c) The disjunction of two contingencies can be a tautol-
ogy.

d) The conjunction of two tautologies is a tautology.

Suppose the domain of the propositional function P (x, y)

consists of pairs x and y, where x is 1, 2, or 3 and y is

1, 2, or 3. Write out these propositions using disjunctions

and conjunctions.

a) dx P(x,3) b) Vy P(1, y)

c) Iy—P(2,y) d) Vx —=P(x,2)

Suppose that the domain of Q(x, y, z) consists of triples

x,y,z,wherex =0,1,0r2,y=0o0rl,andz =0o0r1.

Write out these propositions using disjunctions and con-

junctions.

¢) 3z—Q(0,0,z)

b) IxQ0(x,1,1)
d) Ix—=0(x,0,1)



32.

33.

34.

35.

36.

37.

Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) All dogs have fleas.

b) There is a horse that can add.

c) Every koala can climb.

d) No monkey can speak French.

e) There exists a pig that can swim and catch fish.

Express each of these statements using quantifiers. Then

form the negation of the statement, so that no negation

is to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) Some old dogs can learn new tricks.

b) No rabbit knows calculus.

c) Every bird can fly.

d) There is no dog that can talk.

e) There is no one in this class who knows French and
Russian.

Express the negation of these propositions using quanti-

fiers, and then express the negation in English.

a) Some drivers do not obey the speed limit.

b) All Swedish movies are serious.

c) No one can keep a secret.

d) There is someone in this class who does not have a
good attitude.

Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables

consists of all integers.

a) Vx(x2 > x)

b) Vx(x >0vx <0)

C) Vx(x =1)

Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables

consists of all real numbers.

a) Vx(x? #x)

c) Vx(jx| > 0)

Express each of these statements using predicates and

quantifiers.

a) A passenger on an airline qualifies as an elite flyer if
the passenger flies more than 25,000 miles in a year
or takes more than 25 flights during that year.

b) A man qualifies for the marathon if his best previ-
ous time is less than 3 hours and a woman qualifies
for the marathon if her best previous time is less than
3.5 hours.

c) Astudent must take at least 60 course hours, or at least
45 course hours and write a master’s thesis, and re-
ceive agrade no lower thana B in all required courses,
to receive a master’s degree.

d) There is a student who has taken more than 21 credit
hours in a semester and received all A’s.

b) Vx(x2 #£2)
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Exercises 38-42 deal with the translation between system
specification and logical expressions involving quantifiers.

38.

39.

40.

41.

42,

Translate these system specifications into English where

the predicate S(x, y) is “x is in state y” and where the

domain for x and y consists of all systems and all possible

states, respectively.

a) JxS(x, open)

b) Vx(S(x, malfunctioning) v S(x, diagnostic))

€) 3xS(x, open) v IxS(x, diagnostic)

d) Ix—S(x, available)

e) Vx—S(x, working)

Translate these specifications into English where F(p) is

“Printer p is out of service,” B(p) is “Printer p is busy,”

L(j) is “Print job j is lost,” and Q(j) is “Print job j is

queued.”

a) Ap(F(p) A B(p)) — FjL(j)

b) YpB(p) — 3j0())

¢) 3j(QU) AL()) — 3IpF(p)

d) (YpB(p) AVjO(j)) — FjL(j)

Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) When there is less than 30 megabytes free on the hard
disk, a warning message is sent to all users.

b) No directories in the file system can be opened and
no files can be closed when system errors have been
detected.

¢) The file system cannot be backed up if there is a user
currently logged on.

d) Video on demand can be delivered when there are at
least 8 megabytes of memory available and the con-
nection speed is at least 56 kilobits per second.

Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) At least one mail message, among the nonempty set
of messages, can be saved if there is a disk with more
than 10 kilobytes of free space.

b) Whenever there is an active alert, all queued messages
are transmitted.

¢) Thediagnostic monitor tracks the status of all systems
except the main console.

d) Each participant on the conference call whom the host
of the call did not put on a special list was billed.
Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) Every user has access to an electronic mailbox.

b) The system mailbox can be accessed by everyone in
the group if the file system is locked.

c) The firewall is in a diagnostic state only if the proxy
server is in a diagnostic state.

d) At least one router is functioning normally if the
throughput is between 100 kbps and 500 kbps and
the proxy server is not in diagnostic mode.
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43.

44,

45.
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Determine whether Vx(P(x) — Q(x)) and VxP(x) —
Vx Q(x) are logically equivalent. Justify your answer.

Determine whether Vx (P (x) <> Q(x)) and Vx P(x) <
Vx Q(x) are logically equivalent. Justify your answer.

Show that 3x (P (x) v Q(x)) and Ix P(x) v Ix O (x) are
logically equivalent.

Exercises 46—49 establish rules for null quantification that
we can use when a quantified variable does not appear in part
of a statement.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

Establish these logical equivalences, where x does not

occur as a free variable in A. Assume that the domain is

nonempty.

a) (VxP(x)) VA =Vx(P(x)VA)

b) @xP(x))vA=3x(P(x)V A)

Establish these logical equivalences, where x does not

occur as a free variable in A. Assume that the domain is

nonempty.

a) VxP(x)AA=Vx(P(x)AA)

b) (AxP(x)) A A = 3x(P(x) A A)

Establish these logical equivalences, where x does not

occur as a free variable in A. Assume that the domain is

nonempty.

a) Vx(A > P(x))= A —> VxP(x)

b) Ix(A - P(x)) = A — IxP(x)

Establish these logical equivalences, where x does not

occur as a free variable in A. Assume that the domain is

nonempty.

a) Vx(P(x) > A)=3xP(kx) —> A

b) Ix(P(x) > A)=VxP(x) > A

Show that Vx P(x) v VxQ(x) and Vx (P (x) v Q(x)) are

not logically equivalent.

Show that 3x P (x) A 3xQ(x) and 3x(P(x) A Q(x)) are

not logically equivalent.

As mentioned in the text, the notation 3!x P (x) denotes
“There exists a unique x such that P (x) is true.”

If the domain consists of all integers, what are the truth

values of these statements?

a) x(x > 1) b) Ax(x?2 =1)

c) Ax(x +3=2x) d Axx=x+1)

What are the truth values of these statements?

a) AxP(x) —»> IxP(x)

b) VxP(x) — AxP(x)

c) Ax—P(x) »> —VxP(x)

Write out 3'x P (x), where the domain consists of the in-

tegers 1, 2, and 3, in terms of negations, conjunctions,

and disjunctions.

Given the Prolog facts in Example 28, what would Prolog

return given these queries?

a) ?i nstructor(chan, mat h273)

b) ?i nstructor(patel, cs301)

¢) ?enrol |l ed(X cs301)

d) ?enrol | ed(ki ko, Y)

e) ?teaches(grossman,Y)

56
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58.

. Given the Prolog facts in Example 28, what would Prolog
return when given these queries?

a) ?enrol | ed(kevin, ee222)

b) ?enrol | ed(ki ko, mat h273)

c) ?instructor(grossman, X)

d) ?i nstructor (X, cs301)

e) ?teaches(X, kevi n)

Suppose that Prolog facts are used to define the predicates
mother (M, Y) and father (F, X), which represent that M
is the mother of Y and F is the father of X, respectively.
Give a Prolog rule to define the predicate sibling(X, Y),

which represents that X and Y are siblings (that is, have
the same mother and the same father).

Suppose that Prolog facts are used to define the predi-
cates mother (M, Y) and father(F, X), which represent
that M is the mother of Y and F is the father of X,
respectively. Give a Prolog rule to define the predicate
grandfather (X, Y), which represents that X is the grand-
father of Y. [Hint: You can write a disjunction in Prolog
either by using a semicolon to separate predicates or by
putting these predicates on separate lines.]

Exercises 59-62 are based on questions found in the book
Symbolic Logic by Lewis Carroll.

59

60.

61

. Let P(x), Q(x), and R(x) be the statements “x is a
professor,” “x is ignorant,” and “x is vain,” respectively.
Express each of these statements using quantifiers; log-
ical connectives; and P(x), Q(x), and R(x), where the
domain consists of all people.

a) No professors are ignorant.

b) All ignorant people are vain.

c) No professors are vain.

d) Does (c) follow from (a) and (b)?

Let P(x), O(x), and R(x) be the statements “x is a clear

explanation,” “x is satisfactory,” and “x is an excuse,”

respectively. Suppose that the domain for x consists of all

English text. Express each of these statements using quan-

tifiers, logical connectives, and P (x), Q(x),and R(x).

a) All clear explanations are satisfactory.

b) Some excuses are unsatisfactory.

c) Some excuses are not clear explanations.

*d) Does (c) follow from (a) and (b)?

. Let P(x), Q(x), R(x), and S(x) be the statements “x is
a baby,” “x is logical,” “x is able to manage a crocodile,”
and “x is despised,” respectively. Suppose that the domain
consists of all people. Express each of these statements
using quantifiers; logical connectives; and P(x), Q(x),
R(x), and S(x).

a) Babies are illogical.
b) Nobody is despised who can manage a crocodile.
c) Illogical persons are despised.
d) Babies cannot manage crocodiles.
*e) Does (d) follow from (a), (b), and (c)? If not, is there
a correct conclusion?



62. Let P(x), Q(x), R(x), and S(x) be the statements “x

[LIT]

is a duck,” “x is one of my poultry,” “x is an officer,”
and “x is willing to waltz,” respectively. Express each of
these statements using quantifiers; logical connectives;
and P(x), Q(x), R(x), and S(x).
a) No ducks are willing to waltz.
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b) No officers ever decline to waltz.
¢) All my poultry are ducks.
d) My poultry are not officers.

*¢) Does (d) follow from (a), (b), and (c)? If not, is there
a correct conclusion?

Nested Quantifiers

EXAMPLE 1

Extra
Examples

Q

Introduction

In Section 1.4 we defined the existential and universal quantifiers and showed how they can
be used to represent mathematical statements. We also explained how they can be used to
translate English sentences into logical expressions. However, in Section 1.4 we avoided nested
quantifiers, where one quantifier is within the scope of another, such as

Vx3dy(x +y = 0).

Note that everything within the scope of a quantifier can be thought of as a propositional function.
For example,

Vx3y(x +y =0)

is the same thing as Vx Q (x), where Q(x) is 3y P(x, y), where P(x, y) isx + y = 0.

Nested quantifiers commonly occur in mathematics and computer science. Although nested
quantifiers can sometimes be difficult to understand, the rules we have already studied in
Section 1.4 can help us use them. In this section we will gain experience working with nested
quantifiers. We will see how to use nested quantifiers to express mathematical statements such
as “The sum of two positive integers is always positive.” We will show how nested quantifiers
can be used to translate English sentences such as “Everyone has exactly one best friend” into
logical statements. Moreover, we will gain experience working with the negations of statements
involving nested quantifiers.

Understanding Statements Involving Nested Quantifiers

To understand statements involving nested quantifiers, we need to unravel what the quantifiers
and predicates that appear mean. This is illustrated in Examples 1 and 2.

Assume that the domain for the variables x and y consists of all real numbers. The statement
VaVy(x +y =y +x)

says that x + y = y + x for all real numbers x and y. This is the commutative law for addition
of real numbers. Likewise, the statement

Vxdy(x +y =0)

says that for every real number x there is a real number y such that x + y = 0. This states that
every real number has an additive inverse. Similarly, the statement

VxVyVz(x + (y+2) = (x +y) +2)

is the associative law for addition of real numbers. <
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EXAMPLE 2 Translate into English the statement

EXAMPLE 3

Extra
Examples

Q

VxVy((x > 0) A (y <0) = (xy < 0)),
where the domain for both variables consists of all real numbers.

Solution: This statement says that for every real number x and for every real number y, if x > 0
and y < 0,thenxy < 0. That is, this statement says that for real numbers x and y, if x is positive
and y is negative, then xy is negative. This can be stated more succinctly as “The product of a
positive real number and a negative real number is always a negative real number.” <

THINKING OF QUANTIFICATION AS LOOPS  In working with quantifications of more
than one variable, it is sometimes helpful to think in terms of nested loops. (Of course, if there
are infinitely many elements in the domain of some variable, we cannot actually loop through
all values. Nevertheless, this way of thinking is helpful in understanding nested quantifiers.) For
example, to see whether VxVy P (x, y) is true, we loop through the values for x, and for each x
we loop through the values for y. If we find that P (x, y) is true for all values for x and y, we
have determined that VxVy P (x, y) is true. If we ever hit a value x for which we hit a value y
for which P (x, y) is false, we have shown that VxVy P (x, y) is false.

Similarly, to determine whether Vx3y P (x, y) is true, we loop through the values for x.
For each x we loop through the values for y until we find a y for which P(x, y) is true. If for
every x we hit such a y, then Vx3y P (x, y) is true; if for some x we never hit such a y, then
Vx3IyP(x, y) is false.

To see whether IxVy P (x, y) is true, we loop through the values for x until we find an x for
which P (x, y) is always true when we loop through all values for y. Once we find such an x, we
know that3xVy P (x, y) istrue. If we never hit such an x, then we know that 3xVy P (x, y) is false.

Finally, to see whether 3x3y P (x, y) is true, we loop through the values for x, where for
each x we loop through the values for y until we hit an x for which we hita y for which P (x, y)
is true. The statement 3x3y P (x, y) is false only if we never hit an x for which we hit a y such
that P(x, y) is true.

The Order of Quantifiers

Many mathematical statements involve multiple quantifications of propositional functions in-
volving more than one variable. Itis important to note that the order of the quantifiers is important,
unless all the quantifiers are universal quantifiers or all are existential quantifiers.

These remarks are illustrated by Examples 3-5.

Let P(x, y) be the statement “x + y = y + x.” What are the truth values of the quantifications
VxVyP(x,y)and YyVxP(x, y) where the domain for all variables consists of all real numbers?

Solution: The quantification

VxVyP(x,y)
denotes the proposition

“For all real numbers x, for all real numbers y, x +y =y + x.”
Because P (x, y) is true for all real numbers x and y (it is the commutative law for addition,
which is an axiom for the real numbers—see Appendix 1), the proposition VxVy P (x, y) is
true. Note that the statement VyVx P (x, y) says “For all real numbers y, for all real numbers x,

x + y = y + x.” This has the same meaning as the statement “For all real numbers x, for all real
numbers y, x + y = y + x.” That is, VxVy P (x, y) and VyVx P (x, y) have the same meaning,



EXAMPLE 4

Be careful with the order
of existential and
universal quantifiers!

EXAMPLE 5

1.5 Nested Quantifiers 59

and both are true. This illustrates the principle that the order of nested universal quantifiers
in a statement without other quantifiers can be changed without changing the meaning of the
quantified statement. <

Let Q(x, y) denote “x + y = 0.” What are the truth values of the quantifications 3yVx Q(x, y)
and Yx3yQ(x, y), where the domain for all variables consists of all real numbers?

Solution: The quantification
yVxQ(x, y)
denotes the proposition
“There is a real number y such that for every real number x, Q(x, y).”

No matter what value of y is chosen, there is only one value of x for which x + y = 0. Because
there is no real number y such that x 4+ y = 0 for all real numbers x, the statement 3yVx QO (x, y)
is false.

The quantification

Vx3dyQ(x, y)
denotes the proposition
“For every real number x there is a real number y such that Q(x, y).”

Given a real number x, there is a real number y such that x + y = 0; namely, y = —x. Hence,
the statement Vx3y Q(x, y) is true. <

Example 4 illustrates that the order in which quantifiers appear makes a difference. The state-
ments 3yVx P(x, y) and Vx3y P (x, y) are not logically equivalent. The statement 3yVx P (x, y)
is true if and only if there is a y that makes P (x, y) true for every x. So, for this statement to
be true, there must be a particular value of y for which P (x, y) is true regardless of the choice
of x. On the other hand, Vx3y P (x, y) is true if and only if for every value of x there is a value
of y for which P (x, y) is true. So, for this statement to be true, no matter which x you choose,
there must be a value of y (possibly depending on the x you choose) for which P (x, y) is true.
In other words, in the second case, y can depend on x, whereas in the first case, y is a constant
independent of x.

From these observations, it follows that if IyVx P (x, y) is true, then Vx3y P (x, y) must
also be true. However, if Vx3y P (x, y) is true, it is not necessary for 3yVx P (x, y) to be true.
(See Supplementary Exercises 30 and 31.)

Table 1 summarizes the meanings of the different possible quantifications involving two
variables.

Quantifications of more than two variables are also common, as Example 5 illustrates.

Let O(x, y,z) be the statement “x 4+ y = z.” What are the truth values of the statements
VxVy3zQ(x, y,z) and 3zVxVyQ(x, v, z), where the domain of all variables consists of all
real numbers?

Solution: Suppose that x and y are assigned values. Then, there exists a real number z such that
x 4+ y = z. Consequently, the quantification

VxVy3azQ(x, y, z),
which is the statement

“For all real numbers x and for all real numbers y there is a real number z such that
x+y=z"
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EXAMPLE 6

Extra g>
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EXAMPLE 7

TABLE 1 Quantifications of Two Variables.

Statement When True? When False?

VxVyP(x,y) P(x, y) is true for every pair x, y. There is a pair x, y for

VyVxP(x,y) which P(x, y) is false.

Vx3IyP(x,y) For every x there isay for There is an x such that
which P(x, y) is true. P(x,y) is false for every y.

IxVyP(x,y) There is an x for which P (x, y) For every x there is a'y for
is true for every y. which P(x, y) is false.

AxIyP(x, y) There is a pair x, y for which P(x, y) is false for every

JyIx P(x, y) P(x,y) is true. pair x, y.

is true. The order of the quantification here is important, because the quantification
z2VxVyQ(x, y, 2),

which is the statement

“There is a real number z such that for all real numbers x and for all real numbers y it is
truethatx + y =z,”

is false, because there is no value of z that satisfies the equation x + y = z for all values of x
and y. <

Translating Mathematical Statements into Statements
Involving Nested Quantifiers

Mathematical statements expressed in English can be translated into logical expressions, as
Examples 6-8 show.

Translate the statement “The sum of two positive integers is always positive” into a logical
expression.

Solution: To translate this statement into a logical expression, we first rewrite it so that the implied
quantifiers and a domain are shown: “For every two integers, if these integers are both positive,
then the sum of these integers is positive.” Next, we introduce the variables x and y to obtain “For
all positive integers x and y, x + y is positive.” Consequently, we can express this statement as

VxVy((x >0 A(y>0) = (x +y > 0)),

where the domain for both variables consists of all integers. Note that we could also translate
this using the positive integers as the domain. Then the statement “The sum of two positive
integers is always positive” becomes “For every two positive integers, the sum of these integers
is positive. We can express this as

VxVy(x +y > 0),

where the domain for both variables consists of all positive integers. <

Translate the statement “Every real number except zero has a multiplicative inverse.” (A mul-
tiplicative inverse of a real number x is a real number y such that xy = 1.)
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Solution: We first rewrite this as “For every real number x except zero, x has a multiplicative
inverse.” We can rewrite this as “For every real number x, if x # 0, then there exists a real
number y such that xy = 1.” This can be rewritten as

Vx((x #0) — Jy(xy = 1)). |

One example that you may be familiar with is the concept of limit, which is important in
calculus.

EXAMPLE 8 (Requires calculus) Use quantifiers to express the definition of the limit of a real-valued
function f(x) of a real variable x at a point a in its domain.

Solution: Recall that the definition of the statement
lim f(x) =L
X—>a

is: For every real number € > 0 there exists a real number § > 0 such that | f(x) — L] < €
whenever 0 < |x — a| < é. This definition of a limit can be phrased in terms of quantifiers by

VeddVx (0 < |x —al <8 = |f(x) — L| <€),
where the domain for the variables § and ¢ consists of all positive real numbers and for x consists
of all real numbers.

This definition can also be expressed as

Ve>036>0VxO < |x —a| <8 — |f(x)—L| <€)
when the domain for the variables € and § consists of all real numbers, rather than just the positive

real numbers. [Here, restricted quantifiers have been used. Recall that Vx> 0 P (x) means that
for all x with x>0, P(x) is true.] <4

Translating from Nested Quantifiers into English

Expressions with nested quantifiers expressing statements in English can be quite complicated.
The first step in translating such an expression is to write out what the quantifiers and predicates
in the expression mean. The next step is to express this meaning in a simpler sentence. This
process is illustrated in Examples 9 and 10.

EXAMPLE 9 Translate the statement
Vx(C(x) v Ay(C(y) A Fx,y)))

into English, where C(x) is “x has a computer,” F(x, y) is “x and y are friends,” and the domain
for both x and y consists of all students in your school.

Solution: The statement says that for every student x in your school, x has a computer or there

is a student y such that y has a computer and x and y are friends. In other words, every student
in your school has a computer or has a friend who has a computer. <

EXAMPLE 10 Translate the statement

AxVYVz((F(x, y) A F(x,2) A(y #2)) = —F(,2))
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EXAMPLE 11

EXAMPLE 12

into English, where F'(a,b) means a and b are friends and the domain for x, y, and z consists of
all students in your school.

Solution: We first examine the expression (F(x, y) A F(x,2) A (y # z)) = —F(y, z). This
expression says that if students x and y are friends, and students x and z are friends, and
furthermore, if y and z are not the same student, then y and z are not friends. It follows that
the original statement, which is triply quantified, says that there is a student x such that for all
students y and all students z other than y, if x and y are friends and x and z are friends, then y
and z are not friends. In other words, there is a student none of whose friends are also friends
with each other. <

Translating English Sentences into Logical Expressions

In Section 1.4 we showed how quantifiers can be used to translate sentences into logical expres-
sions. However, we avoided sentences whose translation into logical expressions required the
use of nested quantifiers. We now address the translation of such sentences.

Express the statement “If a person is female and is a parent, then this person is someone’s
mother” as a logical expression involving predicates, quantifiers with a domain consisting of all
people, and logical connectives.

Solution: The statement “If a person is female and is a parent, then this person is someone’s
mother” can be expressed as “For every person x, if person x is female and person x is a parent,
then there exists a person y such that person x is the mother of person y.” We introduce the
propositional functions F(x) to represent “x is female,” P (x) to represent “x is a parent,” and
M (x, y) to represent “x is the mother of y.” The original statement can be represented as

Vx((F(x) A P(x)) = dyM(x, y)).

Using the null quantification rule in part (b) of Exercise 47 in Section 1.4, we can move Jy to
the left so that it appears just after Vx, because y does not appear in F(x) A P(x). We obtain
the logically equivalent expression

Vx3y((F(x) A P(x)) — M(x, y)). <

Express the statement “Everyone has exactly one best friend” as a logical expression involving
predicates, quantifiers with a domain consisting of all people, and logical connectives.

Solution: The statement “Everyone has exactly one best friend” can be expressed as “For every
person x, person x has exactly one best friend.” Introducing the universal quantifier, we see
that this statement is the same as “Vx(person x has exactly one best friend),” where the domain
consists of all people.

To say that x has exactly one best friend means that there is a person y who is the best friend
of x, and furthermore, that for every person z, if person z is not person y, then z is not the best
friend of x. When we introduce the predicate B(x, y) to be the statement *“y is the best friend
of x,” the statement that x has exactly one best friend can be represented as

y(B(x, y) AVz((z # y) = —B(x, 2))).
Consequently, our original statement can be expressed as

Vx3y(B(x,y) AVz((z # y) — —B(x, 2))).
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[Note that we can write this statement as Vx3!y B(x, y), where 3! is the “uniqueness quantifier”
defined in Section 1.4.] <

Use quantifiers to express the statement “There is a woman who has taken a flight on every
airline in the world.”

Solution: Let P(w, f) be “w has taken f” and Q(f, a) be “f is a flight on a.” We can express
the statement as

Va3 f(P(w, f) A Q(f,a)),
where the domains of discourse forw, f, and a consist of all the women in the world, all airplane
flights, and all airlines, respectively.

The statement could also be expressed as

Iwva3afRWw, f,a),

where R(w, f, a) is “w has taken f on a.” Although this is more compact, it somewhat obscures
the relationships among the variables. Consequently, the first solution is usually preferable. <

Negating Nested Quantifiers

Statements involving nested quantifiers can be negated by successively applying the rules for
negating statements involving a single quantifier. This is illustrated in Examples 14-16.

Express the negation of the statement Vx3y(xy = 1) so that no negation precedes a quantifier.

Solution: By successively applying De Morgan’s laws for quantifiers in Table 2 of
Section 1.4, we can move the negation in =Vx3y(xy = 1) inside all the quantifiers. We find
that =Vx3y(xy = 1) is equivalent to Ix—3y(xy = 1), which is equivalent to IxVy—(xy = 1).
Because —(xy = 1) can be expressed more simply as xy # 1, we conclude that our negated
statement can be expressed as IxVy(xy # 1). <

Use quantifiers to express the statement that “There does not exist a woman who has taken a
flight on every airline in the world.”

Solution: This statement is the negation of the statement “There is a woman who has taken a
flight on every airline in the world” from Example 13. By Example 13, our statement can be
expressed as —IwVad f (P (W, f) A Q(f, a)), where P(w, f) is “w has taken f” and Q(f, a)
is “f is a flight on a.” By successively applying De Morgan’s laws for quantifiers in Table 2
of Section 1.4 to move the negation inside successive quantifiers and by applying De Morgan’s
law for negating a conjunction in the last step, we find that our statement is equivalent to each
of this sequence of statements:

Yw=V¥a3 f(PW, f) A Q(f, @) =VYwIa—3f(P(W, f) A Q(f,a))
=vYwIaVf—(P(W, f) A Q(f, a))
= VYwIa¥ f (=P W, f) VvV =Q(f, a)).

This last statement states “For every woman there is an airline such that for all flights, this
woman has not taken that flight or that flight is not on this airline.”
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EXAMPLE 16

Exercises

(Requires calculus) Use quantifiers and predicates to express the fact that lim,_., f(x) does
not exist where f(x) is a real-valued function of a real variable x and a belongs to the domain

of f

Solution: To say that lim,_, f(x) does not exist means that for all real numbers L,
lim,_., f(x) # L. By using Example 8, the statement lim,_,, f(x) # L can be expressed as

“Ve>035>0Vx(0O < |x —a| < — |f(x) — L| <e).

Successively applying the rules for negating quantified expressions, we construct this sequence
of equivalent statements

—Ve>035>0Vx(0O<|x —al|<d — |f(x) — L|<e)
=3de>0—-35>0VxO0<|x —al<d — |f(x) — L|<e)
=3de>0V8>0-Vx(O<|x —a|<§ = |f(x) — L|<e)
=3e>0V6>03dx =(O<|x —a|<d = |f(x) — L|<e€)

=3e>0V6>03axO0O<|x —al<d A|f(x) — L|>¢).

In the last step we used the equivalence —(p — ¢) = p A —g, which follows from the fifth
equivalence in Table 7 of Section 1.3.

Because the statement “lim,_,., f(x) does not exist” means for all real numbers L,
lim,_, f(x) # L, this can be expressed as

VLIe>0V5>03Ax(0 < |x —a| <5 A|f(x) — L] = e).

This last statement says that for every real number L there is a real number ¢ > 0 such that
for every real number § > 0, there exists a real number x such that 0 < |x —a| < § and

| f(x) = L] = €.

1. Translate these statements into English, where the domain

at your school. Express each of these quantifications in

for each variable consists of all real numbers.

a) Vxdy(x < y)

b) VxV¥y(((x = 0) A (y = 0)) — (xy > 0))

C) VxVydz(xy =2)

. Translate these statements into English, where the domain
for each variable consists of all real numbers.

a) IxVy(xy =y)

b) Vx¥y(x 20) A (y <0)) —> (x —y > 0))

C) VxVydz(x =y +2z)

. Let Q(x, y) be the statement “x has sent an e-mail mes-
sage to y,” where the domain for both x and y consists of
all students in your class. Express each of these quantifi-
cations in English.

a) IxIyQ(x,y)
) Vx3yQ(x,y) d) IyVxQ(x,y)
e) VyaxQ(x,y) f) VxV¥yQ(x,y)
. Let P(x, y) be the statement “Student x has taken class
v,” where the domain for x consists of all students in your
class and for y consists of all computer science courses

b) IxVyQ(x,y)

English.

a) AxIyP(x,y)
C) Vx3IyP(x,y)
e) VydxP(x,y)

b) 3xVyP(x,y)
d) IyVxP(x,y)
f) VaVyP(x,y)

. Let W(x, y) mean that student x has visited website y,

where the domain for x consists of all students in your

school and the domain for y consists of all websites. Ex-

press each of these statements by a simple English sen-

tence.

a) W(Sarah Smith, www.att.com)

b) 3xW(x, www.imdb.org)

c) dyW(José Orez, y)

d) Iy(W(Ashok Puri, y) A W(Cindy Yoon, y))

e) JyVz(y # (David Belcher) A (W(David Belcher, z)
- W(.2)))

f) IxyVz((x # ) A (W(x,2) & W(y,2)

. Let C(x, y) mean that student x is enrolled in class y,

where the domain for x consists of all students in your
school and the domain for y consists of all classes being
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given at your school. Express each of these statements by
a simple English sentence.

a) C(Randy Goldberg, CS 252)

b) 3xC(x, Math 695)

c) IyC(Carol Sitea, y)

d) 3x(C(x, Math 222) A C(x, CS 252))

e) FxIyVz((x # y) A (C(x,2) = C(y,2))
f) IyVz((x # y) A (C(x,2) < C(¥,2)))

. Let T'(x, y) mean that student x likes cuisine y, where the

domain for x consists of all students at your school and
the domain for y consists of all cuisines. Express each of
these statements by a simple English sentence.
a) —T(Abdallah Hussein, Japanese)
b) 3xT (x, Korean) A VxT (x, Mexican)
c) 3Iy(T(Monique Arsenault, y) v
T (Jay Johnson, y))
d) Vavz3y((x #2) - =~(T(x,y) ATz, )
&) IxIVy(T(x,y) < T(z,5)
f) VaVz3y(T(x,y) < T(z,y))

. Let Q(x, y) be the statement “student x has been a con-

testant on quiz show y.” Express each of these sentences
in terms of Q(x, y), quantifiers, and logical connectives,
where the domain for x consists of all students at your
school and for y consists of all quiz shows on television.

a) There is a student at your school who has been a con-
testant on a television quiz show.

b) No student at your school has ever been a contestant
on a television quiz show.

c) There is a student at your school who has been a con-
testant on Jeopardy and on Wheel of Fortune.

d) Every television quiz show has had a student from
your school as a contestant.

e) At least two students from your school have been con-
testants on Jeopardy.

. Let L(x, y) be the statement “x loves y,” where the do-

main for both x and y consists of all people in the world.
Use quantifiers to express each of these statements.

a) Everybody loves Jerry.

b) Everybody loves somebody.

¢) There is somebody whom everybody loves.

d) Nobody loves everybody.

e) There is somebody whom Lydia does not love.

f) There is somebody whom no one loves.

g) There is exactly one person whom everybody loves.

h) There are exactly two people whom Lynn loves.

i) Everyone loves himself or herself.

j) There is someone who loves no one besides himself
or herself.

Let F(x, y) be the statement “x can fool y,” where the
domain consists of all people in the world. Use quantifiers
to express each of these statements.

a) Everybody can fool Fred.

b) Evelyn can fool everybody.

c) Everybody can fool somebody.

d) There is no one who can fool everybody.
e) Everyone can be fooled by somebody.
f) No one can fool both Fred and Jerry.

g) Nancy can fool exactly two people.

11.
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h) There is exactly one person whom everybody can fool.

i) No one can fool himself or herself.

j) There is someone who can fool exactly one person
besides himself or herself.

Let S(x) be the predicate “x is a student,” F (x) the pred-

icate “x is a faculty member,” and A(x, y) the predicate

“x has asked y a question,” where the domain consists of

all people associated with your school. Use quantifiers to

express each of these statements.

a) Lois has asked Professor Michaels a question.

b) Every student has asked Professor Gross a question.

c) Every faculty member has either asked Professor
Miller a question or been asked a question by Pro-

fessor Miller.

d) Some student has not asked any faculty member a
question.

e) There is a faculty member who has never been asked
a question by a student.

f) Some student has asked every faculty member a ques-

tion.

g) There is a faculty member who has asked every other

faculty member a question.

h) Some student has never been asked a question by a

faculty member.

Let I (x) be the statement “x has an Internet connection”

and C(x, y) be the statement “x and y have chatted over

the Internet,” where the domain for the variables x and y

consists of all students in your class. Use quantifiers to

express each of these statements.

a) Jerry does not have an Internet connection.

b) Rachel has not chatted over the Internet with Chelsea.

¢) Jan and Sharon have never chatted over the Internet.

d) No one in the class has chatted with Bob.

e) Sanjay has chatted with everyone except Joseph.

f) Someone in your class does not have an Internet con-
nection.

g) Not everyone in your class has an Internet connec-
tion.

h) Exactly one student in your class has an Internet con-
nection.

i) Everyone except one student in your class has an In-
ternet connection.

j) Everyone in your class with an Internet connection
has chatted over the Internet with at least one other
student in your class.

k) Someone inyour class has an Internet connection but
has not chatted with anyone else in your class.

I) There are two students in your class who have not
chatted with each other over the Internet.

m) There is a student in your class who has chatted with
everyone in your class over the Internet.

n) There are at least two students in your class who have
not chatted with the same person in your class.

0) There are two students in the class who between them
have chatted with everyone else in the class.
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Let M(x, y) be “x has sent y an e-mail message” and

T (x, y) be “x has telephoned y,” where the domain con-

sists of all students in your class. Use quantifiers to ex-

press each of these statements. (Assume that all e-mail
messages that were sent are received, which is not the
way things often work.)

a) Chou has never sent an e-mail message to Koko.

b) Arlene has never sent an e-mail message to or tele-
phoned Sarah.

¢) José has never received an e-mail message from Deb-
orah.

d) Every student in your class has sent an e-mail mes-
sage to Ken.

e) No one in your class has telephoned Nina.

f) Everyone in your class has either telephoned Avi or
sent him an e-mail message.

g) Thereisastudentinyour class who has sent everyone
else in your class an e-mail message.

h) There is someone in your class who has either sentan
e-mail message or telephoned everyone else in your
class.

i) There are two different students in your class who
have sent each other e-mail messages.

j) There is a student who has sent himself or herself an
e-mail message.

k) There is a student in your class who has not received
an e-mail message from anyone else in the class and
who has not been called by any other student in the
class.

1) Every student in the class has either received an e-
mail message or received a telephone call from an-
other student in the class.

m) There are at least two students in your class such that
one student has sent the other e-mail and the second
student has telephoned the first student.

n) There are two different students in your class who
between them have sent an e-mail message to or tele-
phoned everyone else in the class.

Use quantifiers and predicates with more than one vari-

able to express these statements.

a) There is a student in this class who can speak Hindi.

b) Every student in this class plays some sport.

c) Some student in this class has visited Alaska but has
not visited Hawaii.

d) All students in this class have learned at least one pro-
gramming language.

e) There is a student in this class who has taken ev-
ery course offered by one of the departments in this
school.

f) Some student in this class grew up in the same town
as exactly one other student in this class.

g) Every student in this class has chatted with at least
one other student in at least one chat group.

Use quantifiers and predicates with more than one vari-

able to express these statements.

a) Every computer science student needs a course in dis-
crete mathematics.

16.
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b) There is a student in this class who owns a personal
computer.

c) Every student in this class has taken at least one com-
puter science course.

d) There is a student in this class who has taken at least
one course in computer science.

e) Every student in this class has been in every building
on campus.

f) There is a student in this class who has been in every
room of at least one building on campus.

g) Every student in this class has been in at least one
room of every building on campus.

A discrete mathematics class contains 1 mathematics ma-
jor who is a freshman, 12 mathematics majors who are
sophomores, 15 computer science majors who are sopho-
mores, 2 mathematics majors who are juniors, 2 computer
science majors who are juniors, and 1 computer science
major who is a senior. Express each of these statements in
terms of quantifiers and then determine its truth value.

a) There is a student in the class who is a junior.

b) Every studentin the class is a computer science major.

c) There is a student in the class who is neither a math-
ematics major nor a junior.

d) Every student in the class is either a sophomore or a
computer science major.

e) There isamajor such that there is a student in the class
in every year of study with that major.

Express each of these system specifications using predi-

cates, quantifiers, and logical connectives, if necessary.

a) Every user has access to exactly one mailbox.

b) Thereisaprocess that continues to run during all error
conditions only if the kernel is working correctly.

c) All users on the campus network can access all web-
sites whose url has a .edu extension.

*d) There are exactly two systems that monitor every re-

mote server.

. Express each of these system specifications using predi-

cates, quantifiers, and logical connectives, if necessary.

a) At least one console must be accessible during every
fault condition.

b) The e-mail address of every user can be retrieved
whenever the archive contains at least one message
sent by every user on the system.

c) For every security breach there is at least one mecha-
nism that can detect that breach if and only if there is
a process that has not been compromised.

d) There are at least two paths connecting every two dis-
tinct endpoints on the network.

e) No one knows the password of every user on the sys-
tem except for the system administrator, who knows
all passwords.[

Express each of these statements using mathematical and

logical operators, predicates, and quantifiers, where the

domain consists of all integers.

a) The sum of two negative integers is negative.

b) The difference of two positive integers is not neces-
sarily positive.
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c) The sum of the squares of two integers is greater than
or equal to the square of their sum.

d) The absolute value of the product of two integers is
the product of their absolute values.

Express each of these statements using predicates, quan-

tifiers, logical connectives, and mathematical operators

where the domain consists of all integers.

a) The product of two negative integers is positive.

b) The average of two positive integers is positive.

c) The difference of two negative integers is not neces-
sarily negative.

d) The absolute value of the sum of two integers does
not exceed the sum of the absolute values of these
integers.

Use predicates, quantifiers, logical connectives, and

mathematical operators to express the statement that ev-

ery positive integer is the sum of the squares of four in-
tegers.

Use predicates, quantifiers, logical connectives, and

mathematical operators to express the statement that there

is a positive integer that is not the sum of three squares.

Express each of these mathematical statements using

predicates, quantifiers, logical connectives, and mathe-

matical operators.

a) The product of two negative real numbers is positive.

b) The difference of a real number and itself is zero.

c) Every positive real number has exactly two square
roots.

d) A negative real number does not have a square root
that is a real number.

Translate each of these nested quantifications into an En-

glish statement that expresses a mathematical fact. The

domain in each case consists of all real numbers.

a) IVy(x+y=y)

b) VxVy(x 20) A (y <0) = (x —y >0))

¢) I =AY =0)AG—y>0)

d) VxVy((x #0) A (y #0) < (xy #0))

Translate each of these nested quantifications into an En-

glish statement that expresses a mathematical fact. The

domain in each case consists of all real numbers.

a) IxVy(xy =y)

b) VxVy(((x <0) A (y <0)) = (xy > 0))

©) IxIy((x? > y) A (x < y))

d) VavVydz(x +y =2)

Let Q(x, y) be the statement “x + y = x — y.” If the do-

main for both variables consists of all integers, what are

the truth values?

a) 0(1,1)

c) Vyo(l,y)

e) IxIy0(x,y)
9) IyVx0(x,y)
i) VxVyQ(x,y)
Determine the truth value of each of these statements if
the domain for all variables consists of all integers.

a) Ynamn? < m) b) InVm(n < m?2)

€) Vnam(n +m =0) d) InVm(nm = m)

b) 0(2,0)

d) IxQ0(x,2)
f) Vx3yO(x, y)
h) Vy3xQ(x,y)

28.
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e) InIm(n? + m? = 5) f) InIm(n? + m? = 6)

g9) mImn+m=4An—m=1)

h) Indmn+m=4Arn—m=2)

i) VaVmIp(p = (m +n)/2)

Determine the truth value of each of these statements if
the domain of each variable consists of all real numbers.
a) VxIy(x2=y) b) Vx3Iy(x = y?)

) IxVy(xy =0) d) IIyx+y#y + x)
e) Vx(x #0— Ay(xy =1))

f) Iavy(y #0 > xy =1)

g) VxIy(x +y=1)

h) 3xIy(x +2y =2A2x+4y =5)

i) VxI3yx+y=2A2x—y=1)

J) VaVyIz(z = (x +)/2)

Suppose the domain of the propositional function P (x, y)
consists of pairs x and y, where x is 1, 2, or 3and y is
1, 2, or 3. Write out these propositions using disjunctions
and conjunctions.

a) VxVyP(x,y) b) AxIyP(x,y)

€) IxVyP(x,y) d) VyaxP(x,y)

Rewrite each of these statements so that negations ap-
pear only within predicates (that is, so that no negation
is outside a quantifier or an expression involving logical
connectives).

a) —IydxP(x, y) b) —=Vx3AyP(x, y)

¢) —3Iy(Q(y) AVx—=R(x,y))

d) =Iy@ExR(x,y) VVxS(x,y))

e) —~Iy(Vx3zT (x,y,z) v IxVzU(x, y, 7))

Express the negations of each of these statements so that
all negation symbols immediately precede predicates.

a) Vx3yvzT(x,y,z)

b) Vx3yP(x,y) vVxIyQ(x,y)

€) Vx3y(P(x,y) AJzR(x, y,2))

d) Vx3y(P(x,y) = Q(x,y))

Express the negations of each of these statements so that
all negation symbols immediately precede predicates.

a) JVyVxT(x,y,z2)

b) AxIyP(x, y) AVxVyQ(x, y)

¢) Ix3y(Q(x,y) <> Q(y, x))

d) VyIx3z(T(x,y,2) v Q(x, y))

Rewrite each of these statements so that negations ap-
pear only within predicates (that is, so that no negation
is outside a quantifier or an expression involving logical
connectives).

a) =VxVyP(x,y) b) —=Vy3axP(x,y)

C) —VyVx(P(x,y)V Q(x, y))

d) =(@xIy—=P(x,y) AVxVyQ(x,y))

e) ~Vx(3yVzP(x,y,z) AJZVyP(x,y,2))

Find a common domain for the variables x, y, and z
for which the statement VxVy((x # y) — Vz((z = x) Vv
(z = y))) is true and another domain for which it is false.

Find a common domain for the variables x,y,z,
and w for which the statement VxVyVzaw((w # x) A
(W # y) A (W # 7)) is true and another common domain
for these variables for which it is false.
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36. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) No one has lost more than one thousand dollars play-
ing the lottery.
b) There is a student in this class who has chatted with

exactly one other student.
¢) No student in this class has sent e-mail to exactly two

other students in this class.
d) Some student has solved every exercise in this book.
e) No student has solved at least one exercise in every

section of this book.

37. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) Every studentinthis class has taken exactly two math-
ematics classes at this school.

b) Someone has visited every country in the world except
Libya.

¢) Noone has climbed every mountain in the Himalayas.

d) Every movie actor has either been in a movie with

Kevin Bacon or has been in a movie with someone
who has been in a movie with Kevin Bacon.

38. Express the negations of these propositions using quan-
tifiers, and in English.
a) Every student in this class likes mathematics.
b) There is a student in this class who has never seen a
computer.
¢) There is a student in this class who has taken every

mathematics course offered at this school.
d) Thereisastudentin this class who has been in at least

one room of every building on campus.

39. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all integers.

a) VaVy(x2 =y2 > x = y)
b) ¥x3y(y? = X)
c) VxVy(xy > x)

40. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all integers.

a) Vady(x =1/y)
b) Vx3y(y2 — x < 100)
c) Vx¥y(x? # y%)

41. Use quantifiers to express the associative law for multi-
plication of real numbers.

42. Use quantifiers to express the distributive laws of multi-
plication over addition for real numbers.

43. Use quantifiers and logical connectives to express the fact
that every linear polynomial (that is, polynomial of de-
gree 1) with real coefficients and where the coefficient of
x is nonzero, has exactly one real root.

44, Use quantifiers and logical connectives to express the fact
that a quadratic polynomial with real number coefficients
has at most two real roots.

45, Determine the truth value of the statement Vx3y(xy = 1)
if the domain for the variables consists of

a) the nonzero real numbers.
b) the nonzero integers.
c) the positive real numbers.

46. Determine the truth value of the statement IxVy(x < y?)
if the domain for the variables consists of
a) the positive real numbers.

b) the integers.
c) the nonzero real numbers.

47. Show that the two statements —3xVyP(x,y) and
Vx3y—P(x, y), where both quantifiers over the first vari-
able in P(x, y) have the same domain, and both quanti-
fiers over the second variable in P(x, y) have the same
domain, are logically equivalent.

#48. Show that Vx P(x) v VxQ(x) and VxVy(P(x) VvV Q(y)),
where all quantifiers have the same nonempty domain,
are logically equivalent. (The new variable y is used to
combine the quantifications correctly.)

*#49. a) Show that Vx P(x) A 3xQ(x) is logically equivalent
to Vx3y (P(x) A Q(y)), where all quantifiers have
the same nonempty domain.

b) Show that Vx P(x) v 3x Q(x) is equivalent to Vx3y
(P(x) v Q(y)), where all quantifiers have the same
nonempty domain.

A statement is in prenex normal form (PNF) if and only if it
is of the form

01x102x2 - - Qxp P(x1, X2, ..., Xg),

whereeach Q;,i =1, 2, ..., k, is either the existential quan-
tifier or the universal quantifier, and P (x1, ..., xx) is a pred-
icate involving no quantifiers. For example, 3xVy (P (x, y) A
Q(y)) is in prenex normal form, whereas 3x P (x) v Vx Q(x)
is not (because the quantifiers do not all occur first).

Every statement formed from propositional variables,
predicates, T, and F using logical connectives and quan-
tifiers is equivalent to a statement in prenex normal form.
Exercise 51 asks for a proof of this fact.

#50. Put these statements in prenex normal form. [Hint: Use
logical equivalence from Tables 6 and 7 in Section 1.3,
Table 2 in Section 1.4, Example 19 in Section 1.4,
Exercises 45 and 46 in Section 1.4, and Exercises 48 and
49.]

a) AxP(x) vIxQ(x) Vv A, where A is a proposition not
involving any quantifiers.

b) =(VxP(x) vVxQ(x))

c) IxP(x) — IxQ(x)

#*%5]. Show how to transform an arbitrary statement to a state-
ment in prenex normal form that is equivalent to the given
statement. (Note: A formal solution of this exercise re-
quires use of structural induction, covered in Section 5.3.)

#52. Express the quantification 3'x P(x), introduced in Sec-
tion 1.4, using universal quantifications, existential quan-
tifications, and logical operators.
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Rules of Inference

Introduction

Later in this chapter we will study proofs. Proofs in mathematics are valid arguments that estab-
lish the truth of mathematical statements. By an argument, we mean a sequence of statements
that end with a conclusion. By valid, we mean that the conclusion, or final statement of the
argument, must follow from the truth of the preceding statements, or premises, of the argument.
That is, an argument is valid if and only if it is impossible for all the premises to be true and
the conclusion to be false. To deduce new statements from statements we already have, we use
rules of inference which are templates for constructing valid arguments. Rules of inference are
our basic tools for establishing the truth of statements.

Before we study mathematical proofs, we will look at arguments that involve only compound
propositions. We will define what it means for an argument involving compound propositions to
be valid. Then we will introduce a collection of rules of inference in propositional logic. These
rules of inference are among the most important ingredients in producing valid arguments. After
we illustrate how rules of inference are used to produce valid arguments, we will describe some
common forms of incorrect reasoning, called fallacies, which lead to invalid arguments.

After studying rules of inference in propositional logic, we will introduce rules of inference
for quantified statements. We will describe how these rules of inference can be used to produce
valid arguments. These rules of inference for statements involving existential and universal
quantifiers play an important role in proofs in computer science and mathematics, although they
are often used without being explicitly mentioned.

Finally, we will show how rules of inference for propositions and for quantified statements
can be combined. These combinations of rule of inference are often used together in complicated
arguments.

Valid Arguments in Propositional Logic

Consider the following argument involving propositions (which, by definition, is a sequence of
propositions):

“If you have a current password, then you can log onto the network.”

“You have a current password.”

Therefore,

“You can log onto the network.”

We would like to determine whether this is a valid argument. That is, we would like to
determine whether the conclusion “You can log onto the network™ must be true when the
premises “If you have a current password, then you can log onto the network™ and *“You have a
current password” are both true.
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DEFINITION 1

Before we discuss the validity of this particular argument, we will look at its form. Use p
to represent “You have a current password” and ¢ to represent “You can log onto the network.”
Then, the argument has the form

pP—49q
p
g

where .. is the symbol that denotes “therefore.”

We know that when p and g are propositional variables, the statement ((p — ¢) A p) — ¢
is a tautology (see Exercise 10(c) in Section 1.3). In particular, when both p — ¢ and p are
true, we know that ¢ must also be true. We say this form of argument is valid because whenever
all its premises (all statements in the argument other than the final one, the conclusion) are true,
the conclusion must also be true. Now suppose that both “If you have a current password, then
you can log onto the network” and “You have a current password” are true statements. When
we replace p by *“You have a current password” and ¢ by “You can log onto the network,” it
necessarily follows that the conclusion “You can log onto the network” is true. This argument
is valid because its form is valid. Note that whenever we replace p and ¢ by propositions where
p — g and p are both true, then ¢ must also be true.

What happens when we replace p and ¢ in this argument form by propositions where not
both p and p — ¢ are true? For example, suppose that p represents “You have access to the
network” and ¢ represents “You can change your grade” and that p is true, but p — ¢ is false.
The argument we obtain by substituting these values of p and ¢ into the argument form is

“If you have access to the network, then you can change your grade.”
“You have access to the network.”

.. *“You can change your grade.”

The argument we obtained is a valid argument, but because one of the premises, namely the first
premise, is false, we cannot conclude that the conclusion is true. (Most likely, this conclusion
is false.)

In our discussion, to analyze an argument, we replaced propositions by propositional vari-
ables. This changed an argument to an argument form. We saw that the validity of an argument
follows from the validity of the form of the argument. We summarize the terminology used to
discuss the validity of arguments with our definition of the key notions.

An argument in propositional logic is a sequence of propositions. All but the final proposition
in the argument are called premises and the final proposition is called the conclusion. An
argument is valid if the truth of all its premises implies that the conclusion is true.

An argument form in propositional logic is a sequence of compound propositions involv-
ing propositional variables. An argument form is valid no matter which particular proposi-
tions are substituted for the propositional variables in its premises, the conclusion is true if
the premises are all true.

From the definition of a valid argument form we see that the argument form with premises
P1, P2, ..., pn @and conclusion ¢ is valid, when (p1 A p2 A --- A p,) — ¢ is a tautology.

The key to showing that an argument in propositional logic is valid is to show that its
argument form is valid. Consequently, we would like techniques to show that argument forms
are valid. We will now develop methods for accomplishing this task.



EXAMPLE 1

EXAMPLE 2

1.6 Rules of Inference 71

Rules of Inference for Propositional Logic

We can always use a truth table to show that an argument form is valid. We do this by showing
that whenever the premises are true, the conclusion must also be true. However, this can be
a tedious approach. For example, when an argument form involves 10 different propositional
variables, to use a truth table to show this argument form is valid requires 219 = 1024 different
rows. Fortunately, we do not have to resort to truth tables. Instead, we can first establish the
validity of some relatively simple argument forms, called rules of inference. These rules of
inference can be used as building blocks to construct more complicated valid argument forms.
We will now introduce the most important rules of inference in propositional logic.

The tautology (p A (p — ¢)) — ¢ is the basis of the rule of inference called modus po-
nens, or the law of detachment. (Modus ponens is Latin for mode that affirms.) This tautology
leads to the following valid argument form, which we have already seen in our initial discussion
about arguments (where, as before, the symbol .-. denotes “therefore”):

B S ]

S

Using this notation, the hypotheses are written in a column, followed by a horizontal bar, followed
by a line that begins with the therefore symbol and ends with the conclusion. In particular, modus
ponens tells us that if a conditional statement and the hypothesis of this conditional statement
are both true, then the conclusion must also be true. Example 1 illustrates the use of modus
ponens.

Suppose that the conditional statement “If it snows today, then we will go skiing” and its
hypothesis, “It is snowing today,” are true. Then, by modus ponens, it follows that the conclusion
of the conditional statement, “We will go skiing,” is true. <

As we mentioned earlier, a valid argument can lead to an incorrect conclusion if one or
more of its premises is false. We illustrate this again in Example 2.

Determine whether the argument given here is valid and determine whether its conclusion must
be true because of the validity of the argument.

“If V2 > 3, then (\/5)2 > (%)2 We know that /2 > 3. Consequently,
(V2 =2>(3) =4

Solution: Let p be the proposition “v/2 > % and ¢ the proposition “2 > (%)2.” The premises
of the argument are p — ¢ and p, and ¢ is its conclusion. This argument is valid because it
is constructed by using modus ponens, a valid argument form. However, one of its premises,
V2 > % is false. Consequently, we cannot conclude that the conclusion is true. Furthermore,

note that the conclusion of this argument is false, because 2 < %. <

There are many useful rules of inference for propositional logic. Perhaps the most widely
used of these are listed in Table 1. Exercises 9, 10, 15, and 30 in Section 1.3 ask for the
verifications that these rules of inference are valid argument forms. We now give examples of
arguments that use these rules of inference. In each argument, we first use propositional variables
to express the propositions in the argument. We then show that the resulting argument form is
a rule of inference from Table 1.
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EXAMPLE 3

EXAMPLE 4

TABLE 1 Rules of Inference.

Rule of Inference Tautology Name

(PAp—>q)—q Modus ponens

hS]

_Q

—q (=g AN(p—>¢q)) > —p Modus tollens

pP—>4q

pP—4q
q—r

(p=>a)Ag—>71)—>(p—>r) Hypothetical syllogism

p—>r

pVgq ((pvg)A—p)—>gq Disjunctive syllogism

-p

p p— (pVq Addition

Vg

PAq (pAng)—p Simplification

. p

p (P~ () = (pAg) Conjunction
q

PAQ

pPVq (pvg)A(=pVr)—(qVr) Resolution

-pVr

qVr

State which rule of inference is the basis of the following argument: “It is below freezing now.
Therefore, it is either below freezing or raining now.”

Solution: Let p be the proposition “It is below freezing now” and ¢ the proposition “Itis raining
now.” Then this argument is of the form

p
S.pVyg

This is an argument that uses the addition rule. |

State which rule of inference is the basis of the following argument: “It is below freezing and
raining now. Therefore, it is below freezing now.”

Solution: Let p be the proposition “It is below freezing now,” and let ¢ be the proposition “It is
raining now.” This argument is of the form

Y]
" p

This argument uses the simplification rule. <



1.6 Rules of Inference 73

EXAMPLE 5 State which rule of inference is used in the argument:

If it rains today, then we will not have a barbecue today. If we do not have a barbecue today,
then we will have a barbecue tomorrow. Therefore, if it rains today, then we will have a
barbecue tomorrow.

Solution: Let p be the proposition “It is raining today,” let ¢ be the proposition “We will not
have a barbecue today,” and let r be the proposition “We will have a barbecue tomorrow.” Then
this argument is of the form

pP—4q
q—r

. p—>r

Hence, this argument is a hypothetical syllogism. |

Using Rules of Inference to Build Arguments

When there are many premises, several rules of inference are often needed to show that an
argument is valid. This is illustrated by Examples 6 and 7, where the steps of arguments are
displayed on separate lines, with the reason for each step explicitly stated. These examples also
show how arguments in English can be analyzed using rules of inference.

EXAMPLE 6 Show that the premises “It is not sunny this afternoon and it is colder than yesterday,” “We will
go swimming only if it is sunny,” “If we do not go swimming, then we will take a canoe trip,”
and “If we take a canoe trip, then we will be home by sunset” lead to the conclusion “We will
be home by sunset.”

Extra 229 Solution: Let p be the proposition “It is sunny this afternoon,” ¢ the proposition “It is colder
Examples than yesterday,” r the proposition “We will go swimming,” s the proposition “We will take a
canoe trip,” and ¢ the proposition “We will be home by sunset.” Then the premises become
—“pAgq,r — p,—r — s, and s — t. The conclusion is simply z. We need to give a valid

argument with premises —p A ¢, r — p, =r — s, and s — ¢ and conclusion ¢.
We construct an argument to show that our premises lead to the desired conclusion as

follows.

Step Reason

1. —=pArg Premise

2. —p Simplification using (1)

3. r—>p Premise

4, —r Modus tollens using (2) and (3)
5. —r —>s Premise

6. s Modus ponens using (4) and (5)
7.5 >t Premise

8.t Modus ponens using (6) and (7)

Note that we could have used a truth table to show that whenever each of the four hypotheses
is true, the conclusion is also true. However, because we are working with five propositional
variables, p, ¢, r, s, and ¢, such a truth table would have 32 rows.
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EXAMPLE 7 Show that the premises “If you send me an e-mail message, then | will finish writing the

Links

EXAMPLE 8

Extra
Examples

program,” “If you do not send me an e-mail message, then | will go to sleep early,” and “If | go
to sleep early, then I will wake up feeling refreshed” lead to the conclusion “If I do not finish
writing the program, then I will wake up feeling refreshed.”

Solution: Let p be the proposition “You send me an e-mail message,” ¢ the proposition *“I will
finish writing the program,” r the proposition “I will go to sleep early,” and s the proposition “I
will wake up feeling refreshed.” Then the premisesare p — ¢, —p — r,andr — s. The desired
conclusion is =g — s. \We need to give a valid argument with premises p — ¢, =p — r, and
r — s and conclusion —g — s.

This argument form shows that the premises lead to the desired conclusion.

Step Reason
1. p—>gq Premise
2. =g —> —p Contrapositive of (1)
3. p—>r Premise
4, =g —> r Hypothetical syllogism using (2) and (3)
5. r—>s Premise <
6. ~q —> s Hypothetical syllogism using (4) and (5)
Resolution

Computer programs have been developed to automate the task of reasoning and proving theo-
rems. Many of these programs make use of a rule of inference known as resolution. This rule
of inference is based on the tautology

(pv@)N(=pVr)—(qVr).

(Exercise 30 in Section 1.3 asks for the verification that this is a tautology.) The final disjunction in
the resolution rule, g Vv r, is called the resolvent. When we let ¢ = r in this tautology, we obtain
(pVq) A(—=pVq)— q. Furthermore, when we let » = F, we obtain (p v ¢) A (—p) — ¢
(because g v F = ¢), whichis the tautology on which the rule of disjunctive syllogism is based.

Use resolution to show that the hypotheses “Jasmine is skiing or it is not snowing” and “It is
snowing or Bart is playing hockey” imply that “Jasmine is skiing or Bart is playing hockey.”

Solution: Let p be the proposition “It is snowing,” ¢ the proposition “Jasmine is skiing,” and r
the proposition “Bart is playing hockey.” We can represent the hypothesesas —p v gand p v r,
respectively. Using resolution, the proposition ¢ v r, “Jasmine is skiing or Bart is playing
hockey,” follows. <

Resolution plays an important role in programming languages based on the rules of logic,
such as Prolog (where resolution rules for quantified statements are applied). Furthermore, it
can be used to build automatic theorem proving systems. To construct proofs in propositional
logic using resolution as the only rule of inference, the hypotheses and the conclusion must be
expressed as clauses, where a clause is a disjunction of variables or negations of these variables.
We can replace a statement in propositional logic that is not a clause by one or more equivalent
statements that are clauses. For example, suppose we have a statement of the form p v (g A 7).
Because p v (g A1) = (p VvV q) A (p Vv 1), we can replace the single statement p v (¢ A r) by
two statements p v ¢ and p Vv r, each of which is a clause. We can replace a statement of
the form —(p Vv ¢) by the two statements —p and —g because De Morgan’s law tells us that
=(p Vv q) =—p A —q.We can also replace a conditional statement p — ¢ with the equivalent
disjunction —p Vv q.
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Show that the premises (p A ¢) Vv r and r — s imply the conclusion p Vv s.

Solution: We can rewrite the premises (p A ¢) Vv r as two clauses, p v r and g v r. We can also
replace r — s by the equivalent clause —r Vv s. Using the two clauses p v r and —r Vv s, we can
use resolution to conclude p v s. <

Fallacies

Several common fallacies arise in incorrect arguments. These fallacies resemble rules of infer-
ence, but are based on contingencies rather than tautologies. These are discussed here to show
the distinction between correct and incorrect reasoning.

The proposition ((p — ¢) A g) — p is not a tautology, because it is false when p is false
and ¢ is true. However, there are many incorrect arguments that treat this as a tautology. In
other words, they treat the argument with premises p — ¢ and ¢ and conclusion p as a valid
argument form, which it is not. This type of incorrect reasoning is called the fallacy of affirming
the conclusion.

Is the following argument valid?

If you do every problem in this book, then you will learn discrete mathematics. You learned
discrete mathematics.

Therefore, you did every problem in this book.

Solution: Let p be the proposition “You did every problem in this book.” Let ¢ be the proposition
“You learned discrete mathematics.” Then this argument is of the form: if p — ¢ and ¢, then
p. This is an example of an incorrect argument using the fallacy of affirming the conclusion.
Indeed, it is possible for you to learn discrete mathematics in some way other than by doing every
problem in this book. (You may learn discrete mathematics by reading, listening to lectures,
doing some, but not all, the problems in this book, and so on.) <

The proposition ((p — ¢) A —p) — —q is not a tautology, because it is false when p is
false and ¢ is true. Many incorrect arguments use this incorrectly as a rule of inference. This
type of incorrect reasoning is called the fallacy of denying the hypothesis.

Let p and ¢ be as in Example 10. If the conditional statement p — ¢ is true, and —p is true,
is it correct to conclude that —g is true? In other words, is it correct to assume that you did not
learn discrete mathematics if you did not do every problem in the book, assuming that if you do
every problem in this book, then you will learn discrete mathematics?

Solution: It is possible that you learned discrete mathematics even if you did not do every

problem in this book. This incorrect argument is of the form p — ¢ and —p imply —¢, which
is an example of the fallacy of denying the hypothesis. <

Rules of Inference for Quantified Statements

We have discussed rules of inference for propositions. We will now describe some important rules
of inference for statements involving quantifiers. These rules of inference are used extensively
in mathematical arguments, often without being explicitly mentioned.

Universal instantiation is the rule of inference used to conclude that P(c) is true, where ¢
is a particular member of the domain, given the premise Vx P (x). Universal instantiation is used
when we conclude from the statement “All women are wise” that “Lisa is wise,” where Lisa is
a member of the domain of all women.
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EXAMPLE 12

Extra
Examples

TABLE 2 Rules of Inference for Quantified Statements.

Rule of Inference Name
VxP(x) Universal instantiation
. P(c)

P(c) for an arbitrary ¢

Universal generalization
" VxP(x)

Jx P(x)

Existential instantiation
". P(c) for some element ¢

P(c) for some element ¢

Existential generalization
L dxP(x)

Universal generalization is the rule of inference that states that Vx P (x) is true, given the
premise that P (c) is true for all elements ¢ in the domain. Universal generalization is used when
we show that Vx P (x) is true by taking an arbitrary element ¢ from the domain and showing that
P(c) is true. The element ¢ that we select must be an arbitrary, and not a specific, element of
the domain. That is, when we assert from Vx P (x) the existence of an element ¢ in the domain,
we have no control over ¢ and cannot make any other assumptions about ¢ other than it comes
from the domain. Universal generalization is used implicitly in many proofs in mathematics and
is seldom mentioned explicitly. However, the error of adding unwarranted assumptions about
the arbitrary element ¢ when universal generalization is used is all too common in incorrect
reasoning.

Existential instantiation is the rule that allows us to conclude that there is an element ¢ in
the domain for which P (c) is true if we know that 3x P (x) is true. We cannot select an arbitrary
value of ¢ here, but rather it must be a ¢ for which P(c) is true. Usually we have no knowledge
of what c is, only that it exists. Because it exists, we may give it a name (c¢) and continue our
argument.

Existential generalization is the rule of inference that is used to conclude that 3x P (x) is
true when a particular element ¢ with P(c) true is known. That is, if we know one element ¢ in
the domain for which P (c) is true, then we know that 3x P (x) is true.

We summarize these rules of inference in Table 2. We will illustrate how some of these rules
of inference for quantified statements are used in Examples 12 and 13.

Show that the premises “Everyone in this discrete mathematics class has taken a course in
computer science” and “Marla is a student in this class” imply the conclusion “Marla has taken
a course in computer science.”

Solution: Let D(x) denote “x is in this discrete mathematics class,” and let C(x) denote “x has
taken a course in computer science.” Then the premises are Vx(D(x) — C(x)) and D(Marla).
The conclusion is C(Marla).

The following steps can be used to establish the conclusion from the premises.

Step Reason
1. Vx(D(x) - C(x)) Premise
2. D(Marla) — C(Marla) Universal instantiation from (1)
3. D(Marla) Premise

4. C(Marla) Modus ponens from (2) and (3) <
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Show that the premises “A student in this class has not read the book,” and “Everyone in this
class passed the first exam” imply the conclusion “Someone who passed the first exam has not
read the book.”

Solution: Let C(x) be “x is in this class,” B(x) be “x has read the book,” and P (x) be “x passed
the first exam.” The premises are 3x(C(x) A —~B(x)) and Vx(C(x) — P(x)). The conclusion
is Ax(P(x) A =B(x)). These steps can be used to establish the conclusion from the premises.

Step Reason

1. Ix(C(x) A —=B(x)) Premise

2. C(a) N —B(a) Existential instantiation from (1)

3. C(a) Simplification from (2)

4. Vx(C(x) — P(x)) Premise

5. C(a) —» P(a) Universal instantiation from (4)

6. P(a) Modus ponens from (3) and (5)

7. =B(a) Simplification from (2)

8. P(a) A —B(a) Conjunction from (6) and (7)

9. Ix(P(x) A —=B(x)) Existential generalization from (8) <

Combining Rules of Inference for Propositions
and Quantified Statements

We have developed rules of inference both for propositions and for quantified statements. Note
that in our arguments in Examples 12 and 13 we used both universal instantiation, a rule of
inference for quantified statements, and modus ponens, a rule of inference for propositional logic.
We will often need to use this combination of rules of inference. Because universal instantiation
and modus ponens are used so often together, this combination of rules is sometimes called
universal modus ponens. This rule tells us that if Vx(P(x) — Q(x)) is true, and if P(a) is
true for a particular element « in the domain of the universal quantifier, then Q(a) must also
be true. To see this, note that by universal instantiation, P(a) — Q(a) is true. Then, by modus
ponens, Q(a) must also be true. We can describe universal modus ponens as follows:

Vx(P(x) — Q(x))
P(a), where a isa particular element in the domain

. 0(a)

Universal modus ponens is commonly used in mathematical arguments. This is illustrated
in Example 14,

Assume that “For all positive integers n, if n is greater than 4, then n? is less than 2"” is true.
Use universal modus ponens to show that 100% < 2100,

Solution: Let P(n) denote “n > 4” and Q(n) denote “n? < 2" The statement “For all positive
integers n, if n is greater than 4, then n? is less than 2" can be represented by Vn (P (n) — Q(n)),
where the domain consists of all positive integers. We are assuming that Vn(P (n) — Q(n)) is
true. Note that P(100) is true because 100 > 4. It follows by universal modus ponens that
Q(100) is true, namely that 1002 < 2100, <

Another useful combination of a rule of inference from propositional logic and a rule
of inference for quantified statements is universal modus tollens. Universal modus tollens



combines universal instantiation and modus tollens and can be expressed in the following way:

—Q(a), where a is a particular element in the domain

The verification of universal modus tollens is left as Exercise 25. Exercises 26—29 develop
additional combinations of rules of inference in propositional logic and quantified statements.
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Vx(P(x) - Q(x))
.~ P(a)
Exercises

1. Find the argument form for the following argument and

determine whether it is valid. Can we conclude that the
conclusion is true if the premises are true?

If Socrates is human, then Socrates is mortal.
Socrates is human.

.. Socrates is mortal.

. Find the argument form for the following argument and

determine whether it is valid. Can we conclude that the
conclusion is true if the premises are true?

If George does not have eight legs, then he is not a
spider.
George is a spider.

-. George has eight legs.

3. What rule of inference is used in each of these argu-

ments?

a) Alice is a mathematics major. Therefore, Alice is ei-
ther amathematics major or acomputer science major.

b) Jerry is a mathematics major and a computer science
major. Therefore, Jerry is a mathematics major.

c) Ifitis rainy, then the pool will be closed. It is rainy.
Therefore, the pool is closed.

d) If it snows today, the university will close. The uni-
versity is not closed today. Therefore, it did not snow
today.

e) If 1 goswimming, then I will stay in the sun too long.
If I stay in the sun too long, then | will sunburn. There-
fore, if 1 go swimming, then I will sunburn.

4. What rule of inference is used in each of these arguments?

a) Kangaroos live in Australiaand are marsupials. There-
fore, kangaroos are marsupials.

b) Itis either hotter than 100 degrees today or the pollu-
tion is dangerous. It is less than 100 degrees outside
today. Therefore, the pollution is dangerous.

¢) Lindaisan excellentswimmer. If Lindaisan excellent
swimmer, then she can work as a lifeguard. Therefore,
Linda can work as a lifeguard.

d) Steve will work at a computer company this summer.
Therefore, this summer Steve will work at a computer
company or he will be a beach bum.

e) If I work all night on this homework, then | can an-
swer all the exercises. If | answer all the exercises, |
will understand the material. Therefore, if | work all
night on this homework, then | will understand the
material.

. Userules of inference to show that the hypotheses “Randy

works hard,” “If Randy works hard, then he is a dull boy,”
and “If Randy is a dull boy, then he will not get the job”
imply the conclusion “Randy will not get the job.”

. Use rules of inference to show that the hypotheses “If it

does not rain or if it is not foggy, then the sailing race will
be held and the lifesaving demonstration will go on,” “If
the sailing race is held, then the trophy will be awarded,”
and “The trophy was not awarded” imply the conclusion
“It rained.”

. What rules of inference are used in this famous argu-

ment? “All men are mortal. Socrates is a man. Therefore,
Socrates is mortal.”

. What rules of inference are used in this argument? “No

man is an island. Manhattan is an island. Therefore, Man-
hattan is not a man.”

. For each of these collections of premises, what relevant

conclusion or conclusions can be drawn? Explain the
rules of inference used to obtain each conclusion from
the premises.

a) “If | take the day off, it either rains or snows.” “I took
Tuesday off or | took Thursday off.” “It was sunny on
Tuesday.” “It did not snow on Thursday.”

b) “If I eat spicy foods, then | have strange dreams.” “I
have strange dreams if there is thunder while | sleep.”
“| did not have strange dreams.”

c) “I am either clever or lucky.” “I am not lucky.” “If |
am lucky, then I will win the lottery.”

d) “Every computer science major has a personal com-
puter.” “Ralph does not have a personal computer.”
“Ann has a personal computer.”

e) “What is good for corporations is good for the United
States.” “What is good for the United States is good
for you.” “What is good for corporations is for you to
buy lots of stuff.”

f) “All rodents gnaw their food.” “Mice are rodents.”
“Rabbits do not gnaw their food.” “Bats are not ro-
dents.”
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For each of these sets of premises, what relevant conclu-

sion or conclusions can be drawn? Explain the rules of in-

ference used to obtain each conclusion from the premises.

a) “If | play hockey, then | am sore the next day.” “I
use the whirlpool if I am sore.” “I did not use the
whirlpool.”

b) “If Iwork, itiseither sunny or partly sunny.” “I worked
last Monday or | worked last Friday.” “It was not sunny
on Tuesday.” “It was not partly sunny on Friday.”

c) “All insects have six legs.” “Dragonflies are insects.”
“Spiders do not have six legs.” “Spiders eat dragon-
flies.”

d) “Every student has an Internet account.” “Homer does
not have an Internet account.” “Maggie has an Internet
account.”

e) “All foods that are healthy to eat do not taste good.”
“Tofu is healthy to eat.” “You only eat what tastes
good.” “You do not eat tofu.” “Cheeseburgers are not
healthy to eat.”

f) “I am either dreaming or hallucinating.” “I am not
dreaming.” “If I am hallucinating, | see elephants run-
ning down the road.”

Show that the argument form with premises

p1, P2, ..., pn and conclusion ¢ — r is valid if the

argument form with premises p1, p2, ..., pa,q, and
conclusion r is valid.

Show that the argument form with premises (p A 1) —
(rvs), g — (uAnt), u— p, and —s and conclusion
q — r is valid by first using Exercise 11 and then us-
ing rules of inference from Table 1.

For each of these arguments, explain which rules of in-

ference are used for each step.

a) “Doug, a student in this class, knows how to write
programs in JAVA. Everyone who knows how to write
programs in JAVA can get a high-paying job. There-
fore, someone in this class can get a high-paying job.”

b) “Somebody in this class enjoys whale watching. Ev-
ery person who enjoys whale watching cares about
ocean pollution. Therefore, there is a person in this
class who cares about ocean pollution.”

c) “Each of the 93 students in this class owns a personal
computer. Everyone who owns a personal computer
can use a word processing program. Therefore, Zeke,
a student in this class, can use a word processing pro-
gram.”

d) “Everyone in New Jersey lives within 50 miles of the
ocean. Someone in New Jersey has never seen the
ocean. Therefore, someone who lives within 50 miles
of the ocean has never seen the ocean.”

For each of these arguments, explain which rules of in-

ference are used for each step.

a) “Linda, a student in this class, owns a red convertible.
Everyone who owns a red convertible has gotten at
least one speeding ticket. Therefore, someone in this
class has gotten a speeding ticket.”

15.

16.

17.
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b) “Each of five roommates, Melissa, Aaron, Ralph, Ve-
neesha, and Keeshawn, has taken a course in discrete
mathematics. Every student who has taken a course in
discrete mathematics can take a course in algorithms.
Therefore, all five roommates can take a course in
algorithms next year.”

c) “All movies produced by John Sayles are wonder-
ful. John Sayles produced a movie about coal miners.
Therefore, there is a wonderful movie about coal min-
ers.”

d) “There is someone in this class who has been to
France. Everyone who goes to France visits the
Louvre. Therefore, someone in this class has visited
the Louvre.”

For each of these arguments determine whether the argu-
ment is correct or incorrect and explain why.

a) All students in this class understand logic. Xavier is
a student in this class. Therefore, Xavier understands
logic.

b) Every computer science major takes discrete math-
ematics. Natasha is taking discrete mathematics.
Therefore, Natasha is a computer science major.

c) Allparrots like fruit. My pet bird is not a parrot. There-
fore, my pet bird does not like fruit.

d) Everyonewho eats granolaevery day is healthy. Linda
is not healthy. Therefore, Linda does not eat granola
every day.

For each of these arguments determine whether the argu-

ment is correct or incorrect and explain why.

a) Everyone enrolled in the university has lived in a dor-
mitory. Mia has never lived in a dormitory. Therefore,
Mia is not enrolled in the university.

b) A convertible car is fun to drive. Isaac’s car is not a
convertible. Therefore, Isaac’s car is not fun to drive.

¢) Quincy likesall action movies. Quincy likes the movie
Eight Men Out. Therefore, Eight Men Out is an action
movie.

d) Alllobstermen set at least a dozen traps. Hamilton is a
lobsterman. Therefore, Hamilton sets at least a dozen
traps.

What is wrong with this argument? Let H(x) be “x is
happy.” Given the premise 3x H (x), we conclude that
H(Lola). Therefore, Lola is happy.

What is wrong with this argument? Let S(x, y) be “x is
shorter than y.” Given the premise 35 S (s, Max), it follows
that S(Max, Max). Then by existential generalization it
follows that 3xS(x, x), so that someone is shorter than
himself.

Determine whether each of these arguments is valid. If an

argument is correct, what rule of inference is being used?

If it is not, what logical error occurs?

a) If n is a real number such that n > 1, then n? > 1.
Suppose that n2 > 1. Thenn > 1.

b) If n is a real number with n > 3, then n? > 9.
Suppose that n2 < 9. Thenn < 3.

c) If n is a real number with n > 2, then n? > 4.
Suppose that n < 2. Then n? < 4.
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Determine whether these are valid arguments.

a) Ifxisapositive real number, then x? is a positive real
number. Therefore, if a2 is positive, where a is a real

number then a is a positive real number.
b) Ifx? £ 0, where x Is a real number, then x £ 0. Let

a be a real number with a2 # 0; then a # 0.

Which rules of inference are used to establish the
conclusion of Lewis Carroll’s argument described in
Example 26 of Section 1.4?

Which rules of inference are used to establish the
conclusion of Lewis Carroll’s argument described in
Example 27 of Section 1.4?

Identify the error or errors in this argument that sup-
posedly shows that if 3xP(x) A IxQ(x) is true then
Ax(P(x) A Q(x)) is true.

1. 3IxP(x) vIxQ(x) Premise

2. IxP(x) Simplification from (1)

3. P(o) Existential instantiation from (2)
4. IxQ(x) Simplification from (1)

5. 0(o) Existential instantiation from (4)
6. P(c) A Q(c) Conjunction from (3) and (5)

7. Ix(P(x) A Q(x)) Existential generalization

Identify the error or errors in this argument that sup-
posedly shows that if Vx(P(x) Vv Q(x)) is true then
VxP(x) v VxQ(x) is true.

1. Vx(P(x) Vv Q(x)) Premise

2. P(c)Vv Q(c) Universal instantiation from (1)
3. P(o) Simplification from (2)

4. VxP(x) Universal generalization from (3)
5. Q(c) Simplification from (2)

6. VxQ(x) Universal generalization from (5)

7. Vx(P(x) v VxQ(x)) Conjunction from (4) and (6)
Justify the rule of universal modus tollens by showing
that the premises Vx(P(x) — Q(x)) and —=Q(a) for a
particular element « in the domain, imply =P (a).
Justify the rule of universal transitivity, which states that
if Vx(P(x) = Q(x)) and Vx(Q(x) — R(x)) are true,
then Vx (P (x) — R(x)) is true, where the domains of all
quantifiers are the same.

Use rules of inference to show that if Vx(P(x) —
(O(x) AS(x))) and Vx(P(x) A R(x)) are true, then
Vx(R(x) A S(x)) is true.

Use rules of inference to show that if Vx(P(x) vV
Q(x)) and Vx((—=P(x) A Q(x)) — R(x)) are true, then
Vx(=R(x) — P(x)) is also true, where the domains of
all quantifiers are the same.
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Use rules of inference to show that if Vx(P(x) v Q(x)),
Vx(=Q(x) vV S(x)), Vx(R(x) — —S(x)), and Ix—P (x)
are true, then Ix—R(x) is true.

Use resolution to show the hypotheses “Allen is a bad
boy or Hillary is a good girl” and “Allen is a good boy or
David is happy” imply the conclusion “Hillary is a good
girl or David is happy.”

Use resolution to show that the hypotheses “It is not rain-
ing or Yvette has her umbrella,” “Yvette does not have
her umbrella or she does not get wet,” and “It is raining
or Yvette does not get wet” imply that “Yvette does not
get wet.”

Show that the equivalence p A —p = F can be derived
using resolution together with the fact that a condi-
tional statement with a false hypothesis is true. [Hint: Let
q = r = Finresolution.]

Use resolution to show that the compound propo-
sition (pV @) A(=pV @) A(pV —=q) A(=pV —q) is
not satisfiable.
The Logic Problem, taken from WFF’N PROOF, The
Game of Logic, has these two assumptions:
1. “Logic is difficult or not many students like logic.”
2. “If mathematics is easy, then logic is not difficult.”
By translating these assumptions into statements involv-
ing propositional variables and logical connectives, deter-
mine whether each of the following are valid conclusions
of these assumptions:
a) That mathematics is not easy, if many students like
logic.
b) That not many students like logic, if mathematics is
not easy.
c) That mathematics is not easy or logic is difficult.
d) That logic is not difficult or mathematics is not easy.
e) That if not many students like logic, then either math-
ematics is not easy or logic is not difficult.
Determine whether this argument, taken from Kalish and
Montague [KaMo64], is valid.
If Superman were able and willing to prevent evil,
he would do so. If Superman were unable to prevent
evil, he would be impotent; if he were unwilling
to prevent evil, he would be malevolent. Superman
does not prevent evil. If Superman exists, he is nei-
ther impotent nor malevolent. Therefore, Superman
does not exist.

Introduction

In this section we introduce the notion of a proof and describe methods for constructing proofs.
A proof is a valid argument that establishes the truth of a mathematical statement. A proof can
use the hypotheses of the theorem, if any, axioms assumed to be true, and previously proven
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theorems. Using these ingredients and rules of inference, the final step of the proof establishes
the truth of the statement being proved.

In our discussion we move from formal proofs of theorems toward more informal proofs.
The arguments we introduced in Section 1.6 to show that statements involving propositions
and quantified statements are true were formal proofs, where all steps were supplied, and the
rules for each step in the argument were given. However, formal proofs of useful theorems can
be extremely long and hard to follow. In practice, the proofs of theorems designed for human
consumption are almost always informal proofs, where more than one rule of inference may
be used in each step, where steps may be skipped, where the axioms being assumed and the
rules of inference used are not explicitly stated. Informal proofs can often explain to humans
why theorems are true, while computers are perfectly happy producing formal proofs using
automated reasoning systems.

The methods of proof discussed in this chapter are important not only because they are used
to prove mathematical theorems, but also for their many applications to computer science. These
applications include verifying that computer programs are correct, establishing that operating
systems are secure, making inferences in artificial intelligence, showing that system specifica-
tions are consistent, and so on. Consequently, understanding the techniques used in proofs is
essential both in mathematics and in computer science.

Some Terminology

Formally, a theorem is a statement that can be shown to be true. In mathematical writing, the
term theorem is usually reserved for a statement that is considered at least somewhat important.
Less important theorems sometimes are called propositions. (Theorems can also be referred to
as facts or results.) A theorem may be the universal quantification of a conditional statement
with one or more premises and a conclusion. However, it may be some other type of logical
statement, as the examples later in this chapter will show. We demonstrate that a theorem is true
with a proof. A proof is a valid argument that establishes the truth of a theorem. The statements
used in a proof can include axioms (or postulates), which are statements we assume to be true
(for example, the axioms for the real numbers, given in Appendix 1, and the axioms of plane
geometry), the premises, if any, of the theorem, and previously proven theorems. Axioms may
be stated using primitive terms that do not require definition, but all other terms used in theorems
and their proofs must be defined. Rules of inference, together with definitions of terms, are used
to draw conclusions from other assertions, tying together the steps of a proof. In practice, the
final step of a proof is usually just the conclusion of the theorem. However, for clarity, we will
often recap the statement of the theorem as the final step of a proof.

A less important theorem that is helpful in the proof of other results is called a lemma
(plural lemmas or lemmata). Complicated proofs are usually easier to understand when they are
proved using a series of lemmas, where each lemma is proved individually. A corollary is a
theorem that can be established directly from a theorem that has been proved. A conjecture is
a statement that is being proposed to be a true statement, usually on the basis of some partial
evidence, a heuristic argument, or the intuition of an expert. When a proof of a conjecture is
found, the conjecture becomes a theorem. Many times conjectures are shown to be false, so they
are not theorems.

Understanding How Theorems Are Stated

Before we introduce methods for proving theorems, we need to understand how many math-
ematical theorems are stated. Many theorems assert that a property holds for all elements in
a domain, such as the integers or the real numbers. Although the precise statement of such
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theorems needs to include a universal quantifier, the standard convention in mathematics is to
omit it. For example, the statement

“If x > y, where x and y are positive real numbers, then x? > y2”
really means
“For all positive real numbers x and y, if x > y, then x2 > y2.”

Furthermore, when theorems of this type are proved, the first step of the proof usually involves
selecting a general element of the domain. Subsequent steps show that this element has the
property in question. Finally, universal generalization implies that the theorem holds for all
members of the domain.

Methods of Proving Theorems

Proving mathematical theorems can be difficult. To construct proofs we need all available am-
munition, including a powerful battery of different proof methods. These methods provide the
overall approach and strategy of proofs. Understanding these methods is a key component of
learning how to read and construct mathematical proofs. One we have chosen a proof method,
we use axioms, definitions of terms, previously proved results, and rules of inference to com-
plete the proof. Note that in this book we will always assume the axioms for real numbers
found in Appendix 1. We will also assume the usual axioms whenever we prove a result about
geometry. When you construct your own proofs, be careful not to use anything but these axioms,
definitions, and previously proved results as facts!

To prove a theorem of the form Vx (P (x) — Q(x)), our goal is to show that P(c) — Q(c)
is true, where ¢ is an arbitrary element of the domain, and then apply universal generalization.
In this proof, we need to show that a conditional statement is true. Because of this, we now focus
on methods that show that conditional statements are true. Recall that p — ¢ is true unless p is
true but ¢ is false. Note that to prove the statement p — ¢, we need only show that g is true if p
is true. The following discussion will give the most common techniques for proving conditional
statements. Later we will discuss methods for proving other types of statements. In this section,
and in Section 1.8, we will develop a large arsenal of proof techniques that can be used to prove
a wide variety of theorems.

When you read proofs, you will often find the words “obviously” or “clearly.” These words
indicate that steps have been omitted that the author expects the reader to be able to fill in.
Unfortunately, this assumption is often not warranted and readers are not at all sure how to fill in
the gaps. We will assiduously try to avoid using these words and try not to omit too many steps.
However, if we included all steps in proofs, our proofs would often be excruciatingly long.

Direct Proofs

A direct proof of a conditional statement p — ¢ is constructed when the first step is the
assumption that p is true; subsequent steps are constructed using rules of inference, with the
final step showing that ¢ must also be true. A direct proof shows that a conditional statement
p — ¢ is true by showing that if p is true, then ¢ must also be true, so that the combination
p true and ¢ false never occurs. In a direct proof, we assume that p is true and use axioms,
definitions, and previously proven theorems, together with rules of inference, to show that ¢
must also be true. You will find that direct proofs of many results are quite straightforward, with a
fairly obvious sequence of steps leading from the hypothesis to the conclusion. However, direct
proofs sometimes require particular insights and can be quite tricky. The first direct proofs we
present here are quite straightforward; later in the text you will see some that are less obvious.

We will provide examples of several different direct proofs. Before we give the first example,
we need to define some terminology.
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The integer n is even if there exists an integer k such that n = 2k, and » is odd if there exists
an integer k such that » = 2k + 1. (Note that every integer is either even or odd, and no
integer is both even and odd.) Two integers have the same parity when both are even or both
are odd; they have opposite parity when one is even and the other is odd.

Give a direct proof of the theorem “If # is an odd integer, then »? is odd.”

Solution: Note that this theorem states Vn P ((n) — Q(n)), where P(n) is “n is an odd integer”
and Q(n) is “n< is odd.” As we have said, we will follow the usual convention in mathematical
proofs by showing that P (n) implies Q(n), and not explicitly using universal instantiation. To
begin a direct proof of this theorem, we assume that the hypothesis of this conditional statement
is true, namely, we assume that » is odd. By the definition of an odd integer, it follows that
n = 2k + 1, where k is some integer. We want to show that »? is also odd. We can square
both sides of the equation n = 2k + 1 to obtain a new equation that expresses n2. When we do
this, we find that n? = (2k + 1)? = 4k® + 4k + 1 = 2(2k? + 2k) + 1. By the definition of an
odd integer, we can conclude that n2 is an odd integer (it is one more than twice an integer).
Consequently, we have proved that if n is an odd integer, then n2 is an odd integer. <

Give a direct proof that if m and n are both perfect squares, then nm is also a perfect square.
(An integer a is a perfect square if there is an integer b such that a = b2.)

Solution: To produce a direct proof of this theorem, we assume that the hypothesis of this
conditional statement is true, namely, we assume that m and n are both perfect squares. By the
definition of a perfect square, it follows that there are integers s and  such that m = s and
n = 2. The goal of the proof is to show that mn must also be a perfect square when m and n are;
looking ahead we see how we can show this by substituting s2 for m and 2 for n into mn. This
tells us that mn = s2¢2. Hence, mn = s2t2 = (ss)(t1) = (st)(st) = (st)2, using commutativity
and associativity of multiplication. By the definition of perfect square, it follows that mn is also
a perfect square, because it is the square of sz, which is an integer. We have proved that if m
and n are both perfect squares, then mn is also a perfect square. <

Proof by Contraposition

Direct proofs lead from the premises of a theorem to the conclusion. They begin with the
premises, continue with a sequence of deductions, and end with the conclusion. However, we
will see that attempts at direct proofs often reach dead ends. We need other methods of proving
theorems of the form Vx(P(x) — Q(x)). Proofs of theorems of this type that are not direct
proofs, that is, that do not start with the premises and end with the conclusion, are called
indirect proofs.

An extremely useful type of indirect proof is known as proof by contraposition. Proofs
by contraposition make use of the fact that the conditional statement p — ¢ is equivalent to its
contrapositive, =g — —p. This means that the conditional statement p — ¢ can be proved by
showing that its contrapositive, —¢g — —p, is true. In a proof by contraposition of p — ¢, we
take —¢ as a premise, and using axioms, definitions, and previously proven theorems, together
with rules of inference, we show that — p must follow. We will illustrate proof by contraposition
with two examples. These examples show that proof by contraposition can succeed when we
cannot easily find a direct proof.

Prove that if » is an integer and 3n + 2 is odd, then » is odd.

Solution: We first attempt a direct proof. To construct a direct proof, we first assume that 3n + 2
is an odd integer. This means that 3n + 2 = 2k + 1 for some integer k. Can we use this fact
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to show that n is odd? We see that 3n + 1 = 2k, but there does not seem to be any direct way
to conclude that n is odd. Because our attempt at a direct proof failed, we next try a proof by
contraposition.

The first step in a proof by contraposition is to assume that the conclusion of the conditional
statement “If 3n + 2 is odd, then n is odd” is false; namely, assume that » is even. Then, by
the definition of an even integer, n = 2k for some integer k. Substituting 2k for n, we find
that 3n + 2 = 3(2k) +2 = 6k + 2 = 2(3k + 1). This tells us that 3n + 2 is even (because it
is a multiple of 2), and therefore not odd. This is the negation of the premise of the theorem.
Because the negation of the conclusion of the conditional statement implies that the hypothesis
is false, the original conditional statement is true. Our proof by contraposition succeeded; we
have proved the theorem “If 3n + 2 is odd, then n is odd.” |

Prove that if n = ab, where a and b are positive integers, thena < \/n or b < /n.

Solution: Because there is no obvious way of showing that a < /n or b < /n directly from
the equation n = ab, where a and b are positive integers, we attempt a proof by contraposition.

The first step in a proof by contraposition is to assume that the conclusion of the conditional
statement “If n = ab, where a and b are positive integers, thena < /norb < \/n” isfalse. That
is, we assume that the statement (a < /n) Vv (b < 4/n) isfalse. Using the meaning of disjunction
together with De Morgan’s law, we see that this implies that botha < /n and b < /n are false.
This implies that « > /n and b > /n. We can multiply these inequalities together (using the
factthat if 0 <s <7 and 0 < u < v, then su < tv) to obtain ab > /n - \/n = n. This shows
that ab # n, which contradicts the statement n = ab.

Because the negation of the conclusion of the conditional statement implies that the hypoth-
esis is false, the original conditional statement is true. Our proof by contraposition succeeded;
we have proved that if n = ab, where a and b are positive integers, thena < /n or b < \/n. 4

VACUOUS AND TRIVIAL PROOFS We can quickly prove that a conditional statement
p — q is true when we know that p is false, because p — ¢ must be true when p is false.
Consequently, if we can show that p is false, then we have a proof, called a vacuous proof, of
the conditional statement p — ¢. Vacuous proofs are often used to establish special cases of
theorems that state that a conditional statement is true for all positive integers [i.e., a theorem
of the kind Vn P (n), where P (n) is a propositional function]. Proof techniques for theorems of
this kind will be discussed in Section 5.1.

Show that the proposition P(0) is true, where P (n) is “If n > 1, then n® > n” and the domain
consists of all integers.

Solution: Note that P(0) is “If 0 > 1, then 02 > 0.” We can show P(0) using a vacuous
proof. Indeed, the hypothesis 0 > 1 is false. This tells us that P (0) is automatically true. <

Remark: The fact that the conclusion of this conditional statement, 02 > 0, is false is irrelevant
to the truth value of the conditional statement, because a conditional statement with a false
hypothesis is guaranteed to be true.

We can also quickly prove a conditional statement p — ¢ if we know that the conclusion
g is true. By showing that ¢ is true, it follows that p — ¢ must also be true. A proof of p — ¢
that uses the fact that ¢ is true is called a trivial proof. Trivial proofs are often important when
special cases of theorems are proved (see the discussion of proof by cases in Section 1.8) and
in mathematical induction, which is a proof technique discussed in Section 5.1.
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Let P(n) be “If a and b are positive integers with a > b, then " > b",” where the domain
consists of all nonnegative integers. Show that P (0) is true.

Solution: The proposition P(0) is“Ifa > b,thena® > %" Because a® = »° = 1, the conclusion
of the conditional statement “If « > b, then «® > %" is true. Hence, this conditional statement,
which is P(0), is true. This is an example of a trivial proof. Note that the hypothesis, which is
the statement “a > b,” was not needed in this proof. |

A LITTLE PROOF STRATEGY We have described two important approaches for proving
theorems of the form Vx (P (x) — Q(x)): direct proof and proof by contraposition. We have
also given examples that show how each is used. However, when you are presented with a
theorem of the form Vx (P (x) — Q(x)), which method should you use to attempt to prove it?
We will provide a few rules of thumb here; in Section 1.8 we will discuss proof strategy at greater
length. When you want to prove a statement of the form Vx(P(x) — Q(x)), first evaluate
whether a direct proof looks promising. Begin by expanding the definitions in the hypotheses.
Start to reason using these hypotheses, together with axioms and available theorems. If a direct
proof does not seem to go anywhere, try the same thing with a proof by contraposition. Recall
that in a proof by contraposition you assume that the conclusion of the conditional statement is
false and use a direct proof to show this implies that the hypothesis must be false. We illustrate
this strategy in Examples 7 and 8. Before we present our next example, we need a definition.

The real number r is rational if there exist integers p and ¢ with g # 0 such that » = p/q.
A real number that is not rational is called irrational.

Prove that the sum of two rational numbers is rational. (Note that if we include the implicit
quantifiers here, the theorem we want to prove is “For every real number r and every real
number s, if » and s are rational numbers, then r + s is rational.)

Solution: We firstattempt a direct proof. To begin, suppose that r and s are rational numbers. From
the definition of a rational number, it follows that there are integers p and ¢, with ¢ # 0, such
that r = p/q, and integers ¢ and u, with u # 0, such that s = ¢/u. Can we use this information
to show that r + s is rational? The obvious next step is to add r = p/q and s = ¢ /u, to obtain

_ pu—+qt

r+s= L + L

q u qu

Because ¢ # 0 and u # 0, it follows that gu # 0. Consequently, we have expressed r + s as
the ratio of two integers, pu + gt and qu, where gu # 0. This means that » + s is rational. We
have proved that the sum of two rational numbers is rational; our attempt to find a direct proof
succeeded. <

Prove that if » is an integer and »? is odd, then » is odd.

Solution: We first attempt a direct proof. Suppose that » is an integer and n2 is odd. Then, there
exists an integer & such that n? = 2k + 1. Can we use this information to show that  is odd?
There seems to be no obvious approach to show that » is odd because solving for n produces
the equation n = ++/2k + 1, which is not terribly useful.

Because this attempt to use a direct proof did not bear fruit, we next attempt a proof by
contraposition. We take as our hypothesis the statement that » is not odd. Because every integer
is odd or even, this means that » is even. This implies that there exists an integer & such that
n = 2k. To prove the theorem, we need to show that this hypothesis implies the conclusion
that 2 is not odd, that is, that n2 is even. Can we use the equation n = 2k to achieve this? By
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squaring both sides of this equation, we obtain n2 = 4k? = 2(2k2), which implies that n? is
also even because n2 = 2¢, where + = 2k2. We have proved that if n is an integer and 2 is odd,
then n is odd. Our attempt to find a proof by contraposition succeeded. <

Proofs by Contradiction

Suppose we want to prove that a statement p is true. Furthermore, suppose that we can find
a contradiction ¢ such that —p — ¢ is true. Because ¢ is false, but —p — ¢ is true, we can
conclude that —p is false, which means that p is true. How can we find a contradiction ¢ that
might help us prove that p is true in this way?

Because the statement r A —r is a contradiction whenever r is a proposition, we can prove
that p is true if we can show that —p — (r A —r) is true for some proposition r. Proofs of this
type are called proofs by contradiction. Because a proof by contradiction does not prove a result
directly, itis another type of indirect proof. We provide three examples of proof by contradiction.
The first is an example of an application of the pigeonhole principle, a combinatorial technique
that we will cover in depth in Section 6.2.

Show that at least four of any 22 days must fall on the same day of the week.

Solution: Let p be the proposition “At least four of 22 chosen days fall on the same day of the
week.” Suppose that —p is true. This means that at most three of the 22 days fall on the same
day of the week. Because there are seven days of the week, this implies that at most 21 days
could have been chosen, as for each of the days of the week, at most three of the chosen days
could fall on that day. This contradicts the premise that we have 22 days under consideration.
That is, if r is the statement that 22 days are chosen, then we have shown that =p — (r A =r).
Consequently, we know that p is true. We have proved that at least four of 22 chosen days fall
on the same day of the week. <

Prove that +/2 is irrational by giving a proof by contradiction.

Solution: Let p be the proposition “+/2 isirrational.” To start a proof by contradiction, we suppose
that —p is true. Note that —p is the statement “It is not the case that +/2 is irrational,” which
says that +/2 is rational. We will show that assuming that —p is true leads to a contradiction.

If \/2 is rational, there exist integers a and b with ~/2 = a/b, where b # 0 and a and b
have no common factors (so that the fraction a/b is in lowest terms.) (Here, we are using the
fact that every rational number can be written in lowest terms.) Because /2 = a/b, when both
sides of this equation are squared, it follows that

a
2 = e
Hence,
2b% = 42

By the definition of an even integer it follows that a? is even. We next use the fact that if a2 is
even, a must also be even, which follows by Exercise 16. Furthermore, because a is even, by
the definition of an even integer, a = 2¢ for some integer ¢. Thus,

2b% = 4¢2.
Dividing both sides of this equation by 2 gives
b? = 2¢2.

By the definition of even, this means that 52 is even. Again using the fact that if the square of an
integer is even, then the integer itself must be even, we conclude that » must be even as well.
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We have now shown that the assumption of —p leads to the equation ~/2 = a/b, where a
and b have no common factors, but both @ and & are even, that is, 2 divides both a and 5. Note
that the statement that v/2 = a/b, where a and b have no common factors, means, in particular,
that 2 does not divide both a and b. Because our assumption of —p leads to the contradiction
that 2 divides both a and b and 2 does not divide both a and b, —p must be false. That is, the
statement p, “+/2 is irrational,” is true. We have proved that /2 is irrational. <

Proof by contradiction can be used to prove conditional statements. In such proofs, we first
assume the negation of the conclusion. We then use the premises of the theorem and the negation
of the conclusion to arrive at a contradiction. (The reason that such proofs are valid rests on the
logical equivalence of p — ¢ and (p A ~g) — F. To see that these statements are equivalent,
simply note that each is false in exactly one case, namely when p is true and g is false.)

Note that we can rewrite a proof by contraposition of a conditional statement as a proof
by contradiction. In a proof of p — ¢ by contraposition, we assume that —¢ is true. We then
show that —p must also be true. To rewrite a proof by contraposition of p — ¢ as a proof by
contradiction, we suppose that both p and —g are true. Then, we use the steps from the proof
of —g — —p to show that —p is true. This leads to the contradiction p A —p, completing the
proof. Example 11 illustrates how a proof by contraposition of a conditional statement can be
rewritten as a proof by contradiction.

EXAMPLE 11  Give a proof by contradiction of the theorem “If 3n + 2 is odd, then n is odd.”

Solution: Let p be “3n + 2 is odd” and ¢ be “n is odd.” To construct a proof by contradiction,
assume that both p and —g are true. That is, assume that 3n + 2 is odd and that » is not odd.
Because n is not odd, we know that it is even. Because n is even, there is an integer k such
that n = 2k. This implies that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). Because 3n + 2 is
2t, where t = 3k + 1, 3n + 2 is even. Note that the statement “3n + 2 is even” is equivalent to
the statement —p, because an integer is even if and only if it is not odd. Because both p and
—p are true, we have a contradiction. This completes the proof by contradiction, proving that if
3n + 2 is odd, then n is odd.

Note that we can also prove by contradiction that p — ¢ is true by assuming that p and
—q are true, and showing that ¢ must be also be true. This implies that —g and ¢ are both
true, a contradiction. This observation tells us that we can turn a direct proof into a proof by
contradiction.

PROOFS OF EQUIVALENCE To prove a theorem that is a biconditional statement, that is,
a statement of the form p <> ¢, we show that p — ¢ and ¢ — p are both true. The validity of
this approach is based on the tautology

(p<q) < (p—>q) NG — p).

EXAMPLE 12  Prove the theorem “If n is an integer, then » is odd if and only if n? is odd.”

Solution: This theorem has the form “p if and only if ¢,” where p is “n is odd” and ¢ is “n?
is odd.” (As usual, we do not explicitly deal with the universal quantification.) To prove this
theorem, we need to show that p — ¢ and ¢ — p are true.
Extra £ We have already shown (in Example 1) that p — ¢ is true and (in Example 8) thatg — p
Examples is true.
Because we have shown that both p — ¢ and ¢ — p are true, we have shown that the
theorem is true. <
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Sometimes a theorem states that several propositions are equivalent. Such a theorem states
that propositions p1, p2, ps, ..., p, are equivalent. This can be written as

P1 <> p2 <+ <> Dp,

which states that all » propositions have the same truth values, and consequently, that for all
and jwithl <i <nandl < j <n, p; and p; are equivalent. One way to prove these mutually
equivalent is to use the tautology

PL<> P2 <> <> pp < (p1—> p2) A(p2 = p3) A~ A (pp —> p1).

This shows that if the n conditional statements p1 — p2, p» — p3, ..., p» — p1canbe shown
to be true, then the propositions p1, p2, ..., p, are all equivalent.

This is much more efficient than proving that p; — p; forall i # j with1 <i <n and
1 < j < n. (Note that there are n2 — n such conditional statements.)

When we prove that a group of statements are equivalent, we can establish any chain of
conditional statements we choose as long as it is possible to work through the chain to go from
any one of these statements to any other statement. For example, we can show that p1, p2, and
ps3 are equivalent by showing that p; — p3, ps — p2, and p2 — p1.

Show that these statements about the integer n are equivalent:

p1. niseven.
p2: n—1lisodd.
p3: n?iseven.

Solution: We will show that these three statements are equivalent by showing that the conditional
statements p1 — p2, p2 — p3,and p3 — p; are true.

We use a direct proof to show that p1 — p». Suppose that n is even. Then n = 2k for some
integer k. Consequently,n — 1 =2k — 1 = 2(k — 1) + 1. Thismeans that » — 1 is odd because
it is of the form 2m + 1, where m is the integer k — 1.

We also use a direct proof to show that p» — ps. Now suppose n — 1 is odd. Then n —
1 = 2k + 1 for some integer k. Hence, n = 2k + 2 so that n? = (2k + 2)2 = 4k?> + 8k + 4 =
2(2k? + 4k + 2). This means that n? is twice the integer 2k2 + 4k + 2, and hence is even.

To prove p3 — p1, we use a proof by contraposition. That is, we prove that if » is not even,
then 2 is not even. This is the same as proving that if » is odd, then 2 is odd, which we have
already done in Example 1. This completes the proof. |

COUNTEREXAMPLES In Section 1.4 we stated that to show that a statement of the form
Vx P(x) is false, we need only find a counterexample, that is, an example x for which P(x)
is false. When presented with a statement of the form Vx P (x), which we believe to be false or
which has resisted all proof attempts, we look for a counterexample. We illustrate the use of
counterexamples in Example 14.

Show that the statement “Every positive integer is the sum of the squares of two integers” is
false.

Solution: To show that this statement is false, we look for a counterexample, which is a particular
integer that is not the sum of the squares of two integers. It does not take long to find a counterex-
ample, because 3 cannot be written as the sum of the squares of two integers. To show this is the
case, note that the only perfect squares not exceeding 3 are 02 = 0 and 12 = 1. Furthermore,
there is no way to get 3 as the sum of two terms each of which is 0 or 1. Consequently, we have
shown that “Every positive integer is the sum of the squares of two integers” is false. <
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Mistakes in Proofs

There are many common errors made in constructing mathematical proofs. We will briefly
describe some of these here. Among the most common errors are mistakes in arithmetic and basic
algebra. Even professional mathematicians make such errors, especially when working with
complicated formulae. Whenever you use such computations you should check them as carefully
as possible. (You should also review any troublesome aspects of basic algebra, especially before
you study Section 5.1.)

Each step of a mathematical proof needs to be correct and the conclusion needs to follow
logically from the steps that precede it. Many mistakes result from the introduction of steps that
do not logically follow from those that precede it. This is illustrated in Examples 15-17.

What is wrong with this famous supposed “proof” that 1 = 2?

“Proof:” We use these steps, where a and b are two equal positive integers.

Step Reason

l.a=b Given

2. a® =ab Multiply both sides of (1) by a

3. a® —b® =ab — b? Subtract b2 from both sides of (2)

4. (a—b)(a+Db)=b(a—Db) Factor both sides of (3)

5.a+b=b Divide both sides of (4) by a — b

6. 2b=b Replace a by b in (5) because a = b
and simplify

7.2=1 Divide both sides of (6) by »

Solution: Every step is valid except for one, step 5 where we divided both sides by a — b. The
error is that a — b equals zero; division of both sides of an equation by the same quantity is
valid as long as this quantity is not zero.

What is wrong with this “proof?”

“Theorem:” If n? is positive, then n is positive.

“Proof:” Suppose that n? is positive. Because the conditional statement “If n is positive, then
n? is positive” is true, we can conclude that # is positive.

Solution: Let P(n) be “n is positive” and Q (n) be “n* is positive.” Then our hypothesis is Q (n).
The statement “If n is positive, then n? is positive” is the statement Vi (P (n) — Q(n)). From
the hypothesis Q(n) and the statement Vn(P (n) — Q(n)) we cannot conclude P (n), because
we are not using a valid rule of inference. Instead, this is an example of the fallacy of affirming
the conclusion. A counterexample is supplied by n = —1 for which n? = 1 is positive, but n is
negative. <

EXAMPLE 17 What is wrong with this “proof?”

“Theorem:” If n is not positive, then 2 is not positive. (This is the contrapositive of the
“theorem” in Example 16.)
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EXAMPLE 18

“Proof:” Suppose that n is not positive. Because the conditional statement “If » is positive, then
n? is positive” is true, we can conclude that n2 is not positive.

Solution: Let P(n) and Q(n) be as in the solution of Example 16. Then our hypothesis is = P (n)
and the statement “If n is positive, then n? is positive” is the statement Va(P (n) — Q(n)).
From the hypothesis — P (n) and the statement Vn(P (n) — Q(n)) we cannot conclude —Q (n),
because we are not using a valid rule of inference. Instead, this is an example of the fallacy of
denying the hypothesis. A counterexample is supplied by n = —1, as in Example 16. <

Finally, we briefly discuss a particularly nasty type of error. Many incorrect arguments are
based on a fallacy called begging the question. This fallacy occurs when one or more steps of
a proof are based on the truth of the statement being proved. In other words, this fallacy arises
when a statement is proved using itself, or a statement equivalent to it. That is why this fallacy
is also called circular reasoning.

Is the following argument correct? It supposedly shows that # is an even integer whenever n? is
an even integer.

Suppose that 12 is even. Then n? = 2k for some integer k. Let n = 21 for some integer /.
This shows that # is even.

Solution: This argument is incorrect. The statement “let n = 2/ for some integer [” occurs in
the proof. No argument has been given to show that n can be written as 2/ for some integer /.
This is circular reasoning because this statement is equivalent to the statement being proved,
namely, “n is even.” Of course, the result itself is correct; only the method of proof is wrong. <

Making mistakes in proofs is part of the learning process. When you make a mistake that
someone else finds, you should carefully analyze where you went wrong and make sure that
you do not make the same mistake again. Even professional mathematicians make mistakes in
proofs. More than a few incorrect proofs of important results have fooled people for many years
before subtle errors in them were found.

Just a Beginning

We have now developed a basic arsenal of proof methods. In the next section we will introduce
other important proof methods. We will also introduce several important proof techniques in
Chapter 5, including mathematical induction, which can be used to prove results that hold for
all positive integers. In Chapter 6 we will introduce the notion of combinatorial proofs.

In this section we introduced several methods for proving theorems of the form Vx (P (x) —
Q(x)), including direct proofs and proofs by contraposition. There are many theorems of this
type whose proofs are easy to construct by directly working through the hypotheses and def-
initions of the terms of the theorem. However, it is often difficult to prove a theorem without
resorting to a clever use of a proof by contraposition or a proof by contradiction, or some
other proof technique. In Section 1.8 we will address proof strategy. We will describe various
approaches that can be used to find proofs when straightforward approaches do not work. Con-
structing proofs is an art that can be learned only through experience, including writing proofs,
having your proofs critiqued, and reading and analyzing other proofs.
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Exercises
1. Useadirect proof to show that the sum of two odd integers 23. Show that at least ten of any 64 days chosen must fall on
is even. the same day of the week.
2. Use a direct proof to show that the sum of two even inte- 24. Show that at least three of any 25 days chosen must fall
gers is even. in the same month of the year.
3. Show that the square of an even number is an even number 25. Use a proof by contradiction to show that there is no ratio-
using a direct proof. nal number r for which 3 +r + 1 = 0. [Hint: Assume
4. Show that the additive inverse, or negative, of an even thatr = a/bisaroot, where a and b are integers and a /b
number is an even humber using a direct proof. IS 1IN IOV\./est .terms. osbta”'] an eqUatlon |nVO|V|ng Integers
5. Prove that if m + n and n + p are even integers, where Egc?ggépglggeﬁy b®. Then look at whether a and b are
m, n, and p are integers, then m + p is even. What kind ) V_ ] o ) )
of proof did you use? 26. Prove; that if n is a positive integer, then n is even if and
6. Use a direct proof to show that the product of two odd only if 7n + 4 '.5 even. o . .
numbers is odd. 27. Prove that if n is a positive integer, then » is odd if and
7. Use a direct proof to show that every odd integer is the only if 5n +§’ 1S ogld_. .
difference of two squares. 28. Prove that me=n if a.nd only if m =norm=—n.
8. Prove that if n is a perfect square, then n + 2 is not a 29. Prove or dlsproye that if m and n are integers such that
perfect square. mzéI =1, thfn eitherm=1andn =1, orelse m = -1
9. Use a proof by contradiction to prove that the sum of an andn = —L. .
irrational number and a rational number is irrational. 30. Sh(?‘;)" that th:ase thtr)ee st?;em_er}ts af[f] qu'\E‘?‘_I)eP;’ where a
) - and b are real numbers: (i) a is less than b, (ii) the average
10. #j&ggr'srﬁgtrg;?:;;? show that the product of two rational of a and b is greater than «, and (iii) the average of a and
i ' o b is less than b.
1L Eé?:?sc}rrgﬁgg;\fe that the product of two irrational num- 31. Show that these statements about the integer x are equiv-
i ' . alent: (i) 3x 4 2 is even, (i) x + 5 is odd, (iii) x? is even.
12. Er?{g cr)r ﬂg‘p?}ﬁ tt?a:]t:]i prrr:)giurcit c:iratri]or?zlero rational 32. Show that these statements about the real number x are
umbera ) a ) _a O_ al number 1s _a_ 0 "f‘ : equivalent: (i) x is rational, (i) x /2 is rational, (iii) 3x — 1
13. Prove that if x is irrational, then 1/x is irrational. is rational.
14. Prove that if x is rational and x # 0, then 1/x is rational. 33. Show that these statements about the real number x are
15. Use a proof by contraposition to show that if x + y > 2, equivalent: (i) x is irrational, (ii) 3x + 2 is irrational,
where x and y are real numbers, then x > 1ory > 1. (iii) x /2 is irrational.
Prove that if m and n are integers and mn is even, then m 34. Is this reasoning for finding the solutions of the equa-
is even or n is even. tion +/2x2 — 1 = x correct? (1) ~/2x2 — 1 = x is given;
17. Show that if n is an integer and 73 + 5 is odd, then  is (2) 2x2 — 1 = x?, obtained by squaring both sides of (1);
even using (3) x2 —1 =0, obtained by subtracting_x2 from both
a) a proof by contraposition. _S|des of (2); (4) (x - Dx —Zk 1) = 0, obtained by factor-
b) a proof by contradiction. ing the left-hand side of x= — 1; _(5) x = lorx=-1,
o . . . which follows because ab = 0 implies that a =0 or
18. Prove that if n is an integer and 3n + 2 is even, then n is _
even usin b=0.
?‘b t it 35. Are these steps for finding the solutions of /x +3 =
z) a proof by contragpstl_ on. 3 — xcorrect? (1) vVx +3 =3 —xisgiven; (2) x +3 =
) aproof by cor_l _ra iction. ) ) x? — 6x + 9, obtained by squaring both sides of (1); (3)
19. Prove the proposition P (0), where P(n) is the proposi- 0 = x2 — 7x + 6, obtained by subtracting x + 3 from
tion “If n is a positive integer greater than 1, then n? > n.” both sides of (2); (4) 0 = (x — 1)(x — 6), obtained by
What kind of proof did you use? factoring the right-hand side of (3); (5) x =1 orx = 6,
20. Prove the proposition P (1), where P(n) is the proposi- which follows from (4) because ab = 0 implies that
tion “If n is a positive integer, then n? > n.”” What kind a=00rb=0.
of proof did you use? 36. Show that the propositions p1, pa, p3, and ps can be
21. Let P(n) be the proposition “If a and b are positive real shown to be equivalent by showing that p1 < ps, p2 <
numbers, then (a + b)" > a™ + b".” Prove that P(1) is p3, and p1 < p3.
true. What kind of proof did you use? 37. Show that the propositions p1, p2. p3, ps, and ps can
22. Show that if you pick three socks from a drawer contain- be shown to be equivalent by proving that the conditional

ing just blue socks and black socks, you must get either
a pair of blue socks or a pair of black socks.

statements p1 — pa, p3 — p1, p4 — p2, p2 —> ps,and
ps — p3 are true.
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Find a counterexample to the statement that every posi-
tive integer can be written as the sum of the squares of

three integers in consecutive locations around the circle
that have a sum greater than or equal to 17.

three integers. 41
39. Prove that at least one of the real numbers as, a, ..., a,

is greater than or equal to the average of these numbers.

What kind of proof did you use? 42
40. Use Exercise 39 to show that if the first 10 positive inte-

gers are placed around a circle, in any order, there exist

. Prove that if n is an integer, these four statements are
equivalent: (i) n is even, (ii) n + 1 is odd, (iii) 3n + 1 is
odd, (iv) 3n is even.

. Prove that these four statements about the integer » are
equivalent: (i) n2 is odd, (i) 1 — n is even, (iii) n° is odd,
(iv) n? + 1 is even.

Proof Methods and Strategy

Introduction

In Section 1.7 we introduced many methods of proof and illustrated how each method can be
used. Inthis section we continue this effort. We will introduce several other commonly used proof
methods, including the method of proving a theorem by considering different cases separately.
We will also discuss proofs where we prove the existence of objects with desired properties.

In Section 1.7 we briefly discussed the strategy behind constructing proofs. This strategy
includes selecting a proof method and then successfully constructing an argument step by step,
based on this method. In this section, after we have developed a versatile arsenal of proof
methods, we will study some aspects of the art and science of proofs. We will provide advice
on how to find a proof of a theorem. We will describe some tricks of the trade, including how
proofs can be found by working backward and by adapting existing proofs.

When mathematicians work, they formulate conjectures and attempt to prove or disprove
them. We will briefly describe this process here by proving results about tiling checkerboards
with dominoes and other types of pieces. Looking at tilings of this kind, we will be able to
quickly formulate conjectures and prove theorems without first developing a theory.

We will conclude the section by discussing the role of open questions. In particular, we
will discuss some interesting problems either that have been solved after remaining open for
hundreds of years or that still remain open.

Assessment

Exhaustive Proof and Proof by Cases

Sometimes we cannot prove a theorem using a single argument that holds for all possible cases.
We now introduce a method that can be used to prove a theorem, by considering different cases
separately. This method is based on a rule of inference that we will now introduce. To prove a
conditional statement of the form

(prV p2V---Vpy)—>q

the tautology

[(prVp2V---Vp) =gl (pr—=> @ ANpP2—>q@ A AN(pp— q)]

can be used as a rule of inference. This shows that the original conditional statement with
a hypothesis made up of a disjunction of the propositions p1, p2, ..., p, can be proved by
proving each of the n conditional statements p; — ¢, i =1, 2, ..., n, individually. Such an
argument is called a proof by cases. Sometimes to prove that a conditional statement p — ¢ is
true, it is convenient to use a disjunction p1 Vv p2 v --- Vv p, instead of p as the hypothesis of
the conditional statement, where p and p1 Vv p2 VvV --- Vv p, are equivalent.
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Proofs by exhaustion can
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EXHAUSTIVEPROOF Some theorems can be proved by examining a relatively small number
of examples. Such proofs are called exhaustive proofs, or proofs by exhaustion because these
proofs proceed by exhausting all possibilities. An exhaustive proof is a special type of proof by
cases where each case involves checking a single example. We now provide some illustrations
of exhaustive proofs.

Prove that (n + 1)3 > 3" ifnisa positive integer with n < 4.

Solution: We use a proof by exhaustion. We only need verify the inequality (n + 1)%3 > 3"
whenn =1,2,3,and 4. Forn = 1, we have (n + 1) =23 =8 and 3" = 31 = 3; forn = 2,
we have (n +1)3 =33 =27 and 3" =32 = 9; for n = 3, we have (n + 1)% = 4% = 64 and
3" =33 =27; and for n = 4, we have (n + 1)3 = 5% = 125 and 3" = 3* = 81. In each of
these four cases, we see that (n + 1)® > 3". We have used the method of exhaustion to prove
that (n +1)° > 3" ifnisa positive integer with n < 4. |

Prove that the only consecutive positive integers not exceeding 100 that are perfect powers are
8 and 9. (An integer is a perfect power if it equals n¢, where a is an integer greater than 1.)

Solution: We use a proof by exhaustion. In particular, we can prove this fact by examining
positive integers n not exceeding 100, first checking whether n is a perfect power, and if it is,
checking whether n + 1 is also a perfect power. A quicker way to do this is simply to look at all
perfect powers not exceeding 100 and checking whether the next largest integer is also a perfect
power. The squares of positive integers not exceeding 100 are 1, 4, 9, 16, 25, 36, 49, 64, 81, and
100. The cubes of positive integers not exceeding 100 are 1, 8, 27, and 64. The fourth powers
of positive integers not exceeding 100 are 1, 16, and 81. The fifth powers of positive integers
not exceeding 100 are 1 and 32. The sixth powers of positive integers not exceeding 100 are 1
and 64. There are no powers of positive integers higher than the sixth power not exceeding 100,
other than 1. Looking at this list of perfect powers not exceeding 100, we see that n = 8 is the
only perfect power  for which n + 1 is also a perfect power. That is, 23 = 8 and 32 = 9 are the
only two consecutive perfect powers not exceeding 100. <

People can carry out exhaustive proofs when it is necessary to check only a relatively small
number of instances of a statement. Computers do not complain when they are asked to check
a much larger number of instances of a statement, but they still have limitations. Note that not
even a computer can check all instances when it is impossible to list all instances to check.

PROOF BY CASES A proof by cases must cover all possible cases that arise in a theorem.
We illustrate proof by cases with a couple of examples. In each example, you should check that
all possible cases are covered.

Prove that if » is an integer, then n2 > n.

Solution: We can prove that n2 > n for every integer by considering three cases, when n = 0,
whenn > 1, and when n < —1. We split the proof into three cases because it is straightforward
to prove the result by considering zero, positive integers, and negative integers separately.

Case (i): When n = 0, because 02 = 0, we see that 02 > 0. It follows that n2 > n is true in
this case.

Case (ii): When n > 1, when we multiply both sides of the inequality n > 1 by the positive
integer n, we obtain n - n > n - 1. This implies that n2 > n forn > 1.
Case (iii): In this case n < —1. However, n? > 0. It follows that n2 > n.

Because the inequality n2 > n holds in all three cases, we can conclude that if n is an integer,
then n2 > n. |
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EXAMPLE 4

EXAMPLE 5

Use a proof by cases to show that |xy| = |x]||y|, where x and y are real numbers. (Recall that
la|, the absolute value of a, equals a when @ > 0 and equals —a when a < 0.)

Solution: In our proof of this theorem, we remove absolute values using the fact that |a| = a
whena > 0 and |a| = —a when a < 0. Because both |x| and |y| occur in our formula, we will
need four cases: (i) x and y both nonnegative, (ii) x nonnegative and y is negative, (iii) x negative
and y nonnegative, and (iv) x negative and y negative. We denote by p1, p2, p3, and p4, the
proposition stating the assumption for each of these four cases, respectively.

(Note that we can remove the absolute value signs by making the appropriate choice of
signs within each case.)

Case (i): We see that p; — ¢ because xy > Owhenx > 0and y > 0, so that |xy| = xy =

x|yl
Case (ii): To see that p» — ¢, note that if x > 0and y < 0, then xy <0, so that |xy| =
—xy = x(—y) = |x||y|. (Here, because y < 0, we have |y| = —y.)

Case (iii): To see that p3 — ¢, we follow the same reasoning as the previous case with the
roles of x and y reversed.

Case (iv): To see that ps — ¢, note that when x < 0 and y < 0, it follows that xy > 0.
Hence, |xy| = xy = (—=x)(—y) = |x|[yl.

Because |xy| = |x||y| holds in each of the four cases and these cases exhaust all possibilities,
we can conclude that |xy| = |x]||y|, whenever x and y are real numbers. <

LEVERAGING PROOF BY CASES The examples we have presented illustrating proof by
cases provide some insight into when to use this method of proof. In particular, when it is not
possible to consider all cases of a proof at the same time, a proof by cases should be considered.
When should you use such a proof? Generally, look for a proof by cases when there is no
obvious way to begin a proof, but when extra information in each case helps move the proof
forward. Example 5 illustrates how the method of proof by cases can be used effectively.

Formulate a conjecture about the final decimal digit of the square of an integer and prove your
result.

Solution: The smallest perfect squares are 1, 4,9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169,
196, 225, and so on. We notice that the digits that occur as the final digit of a square are
0,1,4,5,6,and9,with 2, 3, 7, and 8 never appearing as the final digit of a square. We conjecture
this theorem: The final decimal digit of a perfect square is 0, 1, 4, 5, 6 or 9. How can we prove
this theorem?

We first note that we can express an integer n as 10a + b, where a and b are pos-
itive integers and b is 0,1,2,3,4,5,6,7,8, or 9. Here a is the integer obtained by
subtracting the final decimal digit of n from n and dividing by 10. Next, note that
(10a + b)? = 100a? + 20ab + b? = 10(10a? + 2b) + b?, so that the final decimal digit of 12
is the same as the final decimal digit of 42. Furthermore, note that the final decimal digit of 52
is the same as the final decimal digit of (10 — b)? = 100 — 20b + b?. Consequently, we can
reduce our proof to the consideration of six cases.

Case (i): The final digit of n is 1 or 9. Then the final decimal digit of 12 is the final decimal
digit of 12 = 1 or 92 = 81, namely 1.

Case (ii): The final digit of n is 2 or 8. Then the final decimal digit of 2 is the final decimal
digit of 22 = 4 or 82 = 64, namely 4.

Case (iii): The final digit of z is 3 or 7. Then the final decimal digit of 12 is the final decimal
digit of 32 = 9 or 72 = 49, namely 9.

Case (iv): The final digit of n is 4 or 6. Then the final decimal digit of n2 is the final decimal
digit of 42 = 16 or 62 = 36, namely 6.

Case (v): The final decimal digit of » is 5. Then the final decimal digit of »? is the final
decimal digit of 52 = 25, namely 5.
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Case (vi): The final decimal digit of 7 is 0. Then the final decimal digit of n2 is the final
decimal digit of 02 = 0, namely 0.

Because we have considered all six cases, we can conclude that the final decimal digit of n?,
where n is an integer is either 0, 1, 2, 4, 5, 6, or 9. |

Sometimes we can eliminate all but a few examples in a proof by cases, as Example 6
illustrates.

Show that there are no solutions in integers x and y of x2 + 3y = 8.

Solution: We can quickly reduce a proof to checking just a few simple cases because x2 > 8
when |x| > 3 and 3y2 > 8 when |y| > 2. This leaves the cases when x equals —2, —1,0, 1,
or 2 and y equals —1, 0, or 1. We can finish using an exhaustive proof. To dispense with the
remaining cases, we note that possible values for x? are 0, 1, and 4, and possible values for 3y?
are 0 and 3, and the largest sum of possible values for x2 and 3y? is 7. Consequently, it is
impossible for x? 4+ 3y? = 8 to hold when x and y are integers. <

WITHOUT LOSS OF GENERALITY In the proof in Example 4, we dismissed case (iii),
where x < 0 and y > 0, because it is the same as case (ii), where x > 0 and y < 0, with the
roles of x and y reversed. To shorten the proof, we could have proved cases (ii) and (iii) together
by assuming, without loss of generality, that x > 0 and y < 0. Implicit in this statement is that
we can complete the case with x < 0 and y > 0 using the same argument as we used for the
case with x > 0 and y < 0, but with the obvious changes.

In general, when the phrase “without loss of generality” is used in a proof (often abbreviated
as WLOG), we assert that by proving one case of a theorem, no additional argument is required
to prove other specified cases. That is, other cases follow by making straightforward changes
to the argument, or by filling in some straightforward initial step. Proofs by cases can often be
made much more efficient when the notion of without loss of generality is employed. Of course,
incorrect use of this principle can lead to unfortunate errors. Sometimes assumptions are made
that lead to a loss in generality. Such assumptions can be made that do not take into account
that one case may be substantially different from others. This can lead to an incomplete, and
possibly unsalvageable, proof. In fact, many incorrect proofs of famous theorems turned out
to rely on arguments that used the idea of “without loss of generality” to establish cases that
could not be quickly proved from simpler cases.

We now illustrate a proof where without loss of generality is used effectively together with
other proof techniques.

Show that if x and y are integers and both xy and x + y are even, then both x and y are even.

Solution: We will use proof by contraposition, the notion of without loss of generality, and proof
by cases. First, suppose that x and y are not both even. That is, assume that x is odd or that y is
odd (or both). Without loss of generality, we assume that x is odd, so that x = 2m + 1 for some
integer k.

To complete the proof, we need to show that xy is odd or x 4+ y is odd. Consider
two cases: (i) y even, and (ii) y odd. In (i), y = 2n for some integer n, so that x + y =
@2m +1)+2n=2(m +n) + 1is odd. In (ii), y = 2n + 1 for some integer n, so that xy =
Cm+1)2n+1)=4mn+2m+2n+1=22mn +m + n) + 1is odd. This completes the
proof by contraposition. (Note that our use of without loss of generality within the proof is
justified because the proof when y is odd can be obtained by simply interchanging the roles of
x and y in the proof we have given.)

COMMON ERRORS WITH EXHAUSTIVE PROOF AND PROOF BY CASES A common
error of reasoning is to draw incorrect conclusions from examples. No matter how many separate
examples are considered, a theorem is not proved by considering examples unless every possible



96 1/ The Foundations: Logic and Proofs

EXAMPLE 8

EXAMPLE 9

EXAMPLE 10

case is covered. The problem of proving a theorem is analogous to showing that a computer
program always produces the output desired. No matter how many input values are tested, unless
all input values are tested, we cannot conclude that the program always produces the correct
output.

Is it true that every positive integer is the sum of 18 fourth powers of integers?

Solution: To determine whether a positive integer n can be written as the sum of 18 fourth powers
of integers, we might begin by examining whether » is the sum of 18 fourth powers of integers
for the smallest positive integers. Because the fourth powers of integers are 0, 1, 16, 81, ...,
if we can select 18 terms from these numbers that add up to », then n is the sum of 18 fourth
powers. We can show that all positive integers up to 78 can be written as the sum of 18 fourth
powers. (The details are left to the reader.) However, if we decided this was enough checking,
we would come to the wrong conclusion. It is not true that every positive integer is the sum of
18 fourth powers because 79 is not the sum of 18 fourth powers (as the reader can verify). <

Another common error involves making unwarranted assumptions that lead to incorrect
proofs by cases where not all cases are considered. This is illustrated in Example 9.

What is wrong with this “proof?”

“Theorem:” If x is a real number, then x is a positive real number.

“Proof:” Let py be “x is positive,” let p, be “x is negative,” and let ¢ be “x? is positive.” To
show that p; — ¢ is true, note that when x is positive, x? is positive because it is the product
of two positive numbers, x and x. To show that p» — ¢, note that when x is negative, x2 is
positive because it is the product of two negative numbers, x and x. This completes the proof.

Solution: The problem with this “proof” is that we missed the case of x = 0. When x =0,
x2 = 0 is not positive, so the supposed theorem is false. If p is “x is a real number,” then
we can prove results where p is the hypothesis with three cases, pi1, p2, and p3, where
p1 is “x is positive,” po is “x is negative,” and p3 is “x = 0” because of the equivalence
p< p1Vp2Vps <

Existence Proofs

Many theorems are assertions that objects of a particular type exist. A theorem of this type is a
proposition of the form 3x P(x), where P is a predicate. A proof of a proposition of the form
dx P(x) is called an existence proof. There are several ways to prove a theorem of this type.
Sometimes an existence proof of 3x P (x) can be given by finding an element «, called a witness,
such that P(a) is true. This type of existence proof is called constructive. It is also possible
to give an existence proof that is nonconstructive; that is, we do not find an element a such
that P (a) is true, but rather prove that 3x P (x) is true in some other way. One common method
of giving a nonconstructive existence proof is to use proof by contradiction and show that the
negation of the existential quantification implies a contradiction. The concept of a constructive
existence proof is illustrated by Example 10 and the concept of a nonconstructive existence
proof is illustrated by Example 11.

A Constructive Existence Proof Show that there is a positive integer that can be written as
the sum of cubes of positive integers in two different ways.

> Solution: After considerable computation (such as a computer search) we find that

QL

1729 = 10° + 93 = 123 4+ 18
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Because we have displayed a positive integer that can be written as the sum of cubes in two
different ways, we are done.

There is an interesting story pertaining to this example. The English mathematician G. H.
Hardy, when visiting the ailing Indian prodigy Ramanujan in the hospital, remarked that 1729,
the number of the cab he took, was rather dull. Ramanujan replied “No, it is a very interesting
number; it is the smallest number expressible as the sum of cubes in two different ways.” <

EXAMPLE 11 A Nonconstructive Existence Proof Show that there exist irrational numbers x and y such
that x” is rational.

Solution: By Example 10 in Section 1.7 we know that +/2 is irrational. Consider the number
ﬁﬁ. If itis rational, we have two irrational numbers x and y with x” rational, namely, x = g
and y = +/2. On the other hand if \@ﬁ is irrational, then we can let x = ﬁfz and y = /2
so that x¥ = (ﬁﬁ)ﬁ = ﬁ(ﬁ'ﬁ) =V =2

This proof is an example of a nonconstructive existence proof because we have not found
irrational numbers x and y such that x” is rational. Rather, we have shown that either the pair

x =+/2,y = /2 orthe pair x = ﬁﬁ, y = /2 have the desired property, but we do not know
which of these two pairs works! <

Links a

GODFREY HAROLD HARDY (1877-1947) Hardy, born in Cranleigh, Surrey, England, was the older of
two children of Isaac Hardy and Sophia Hall Hardy. His father was the geography and drawing master at the
Cranleigh School and also gave singing lessons and played soccer. His mother gave piano lessons and helped
run a boardinghouse for young students. Hardy’s parents were devoted to their children’s education. Hardy
demonstrated his numerical ability at the early age of two when he began writing down numbers into the
millions. He had a private mathematics tutor rather than attending regular classes at the Cranleigh School. He
moved to Winchester College, a private high school, when he was 13 and was awarded a scholarship. He excelled
in his studies and demonstrated a strong interest in mathematics. He entered Trinity College, Cambridge, in
1896 on a scholarship and won several prizes during his time there, graduating in 1899.

Hardy held the position of lecturer in mathematics at Trinity College at Cambridge University from 1906 to 1919, when he was
appointed to the Sullivan chair of geometry at Oxford. He had become unhappy with Cambridge over the dismissal of the famous
philosopher and mathematician Bertrand Russell from Trinity for antiwar activities and did not like a heavy load of administrative
duties. In 1931 he returned to Cambridge as the Sadleirian professor of pure mathematics, where he remained until his retirement
in 1942. He was a pure mathematician and held an elitist view of mathematics, hoping that his research could never be applied.
Ironically, he is perhaps best known as one of the developers of the Hardy—Weinberg law, which predicts patterns of inheritance.
His work in this area appeared as a letter to the journal Science in which he used simple algebraic ideas to demonstrate errors in
an article on genetics. Hardy worked primarily in number theory and function theory, exploring such topics as the Riemann zeta
function, Fourier series, and the distribution of primes. He made many important contributions to many important problems, such
as Waring’s problem about representing positive integers as sums of kth powers and the problem of representing odd integers as
sums of three primes. Hardy is also remembered for his collaborations with John E. Littlewood, a colleague at Cambridge, with
whom he wrote more than 100 papers, and the famous Indian mathematical prodigy Srinivasa Ramanujan. His collaboration with
Littlewood led to the joke that there were only three important English mathematicians at that time, Hardy, Littlewood, and Hardy—
Littlewood, although some people thought that Hardy had invented a fictitious person, Littlewood, because Littlewood was seldom
seen outside Cambridge. Hardy had the wisdom of recognizing Ramanujan’s genius from unconventional but extremely creative
writings Ramanujan sent him, while other mathematicians failed to see the genius. Hardy brought Ramanujan to Cambridge and
collaborated on important joint papers, establishing new results on the number of partitions of an integer. Hardy was interested
in mathematics education, and his book A Course of Pure Mathematics had a profound effect on undergraduate instruction in
mathematics in the first half of the twentieth century. Hardy also wrote A Mathematician’s Apology, in which he gives his answer
to the question of whether it is worthwhile to devote one’s life to the study of mathematics. It presents Hardy’s view of what
mathematics is and what a mathematician does.

Hardy had a strong interest in sports. He was an avid cricket fan and followed scores closely. One peculiar trait he had was that
he did not like his picture taken (only five snapshots are known) and disliked mirrors, covering them with towels immediately upon
entering a hotel room.
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Nonconstructive existence proofs often are quite subtle, as Example 12 illustrates.

EXAMPLE 12 Chomp is a game played by two players. In this game, cookies are laid out on a rectangular grid.
The cookie in the top left position is poisoned, as shown in Figure 1(a). The two players take
turns making moves; at each move, a player is required to eat a remaining cookie, together with

E all cookies to the right and/or below it (see Figure 1(b), for example). The loser is the player
Links who has no choice but to eat the poisoned cookie. We ask whether one of the two players has a
winning strategy. That is, can one of the players always make moves that are guaranteed to lead

to a win?

Solution: We will give a nonconstructive existence proof of a winning strategy for the first
player. That is, we will show that the first player always has a winning strategy without explicitly
describing the moves this player must follow.

First, note that the game ends and cannot finish in a draw because with each move at least
one cookie is eaten, so after no more than m x n moves the game ends, where the initial grid
is m x n. Now, suppose that the first player begins the game by eating just the cookie in the
bottom right corner. There are two possibilities, this is the first move of a winning strategy for
the first player, or the second player can make a move that is the first move of a winning strategy
for the second player. In this second case, instead of eating just the cookie in the bottom right
corner, the first player could have made the same move that the second player made as the first

Links @

SRINIVASA RAMANUJIAN (1887-1920) The famous mathematical prodigy Ramanujan was born and raised
in southern India near the city of Madras (now called Chennai). His father was a clerk in a cloth shop. His mother
contributed to the family income by singing at a local temple. Ramanujan studied at the local English language
school, displaying his talent and interest for mathematics. At the age of 13 he mastered a textbook used by
college students. When he was 15, a university student lent him a copy of Synopsis of Pure Mathematics.
Ramanujan decided to work out the over 6000 results in this book, stated without proof or explanation, writing
on sheets later collected to form notebooks. He graduated from high school in 1904, winning a scholarship to the
University of Madras. Enrolling in a fine arts curriculum, he neglected his subjects other than mathematics and
lost his scholarship. He failed to pass examinations at the university four times from 1904 to 1907, doing well
only in mathematics. During this time he filled his notebooks with original writings, sometimes rediscovering already published
work and at other times making new discoveries.

Without a university degree, it was difficult for Ramanujan to find a decent job. To survive, he had to depend on the goodwill of
his friends. He tutored students in mathematics, but his unconventional ways of thinking and failure to stick to the syllabus caused
problems. He was married in 1909 in an arranged marriage to a young woman nine years his junior. Needing to support himself and
his wife, he moved to Madras and sought a job. He showed his notebooks of mathematical writings to his potential employers, but
the books bewildered them. However, a professor at the Presidency College recognized his genius and supported him, and in 1912
he found work as an accounts clerk, earning a small salary.

Ramanujan continued his mathematical work during this time and published his first paper in 1910 in an Indian journal. He
realized that his work was beyond that of Indian mathematicians and decided to write to leading English mathematicians. The first
mathematicians he wrote to turned down his request for help. But in January 1913 he wrote to G. H. Hardy, who was inclined
to turn Ramanujan down, but the mathematical statements in the letter, although stated without proof, puzzled Hardy. He decided
to examine them closely with the help of his colleague and collaborator J. E. Littlewood. They decided, after careful study, that
Ramanujan was probably a genius, because his statements “could only be written down by a mathematician of the highest class;
they must be true, because if they were not true, no one would have the imagination to invent them.”

Hardy arranged a scholarship for Ramanujan, bringing him to England in 1914. Hardy personally tutored him in mathematical
analysis, and they collaborated for five years, proving significant theorems about the number of partitions of integers. During this
time, Ramanujan made important contributions to number theory and also worked on continued fractions, infinite series, and elliptic
functions. Ramanujan had amazing insight involving certain types of functions and series, but his purported theorems on prime
numbers were often wrong, illustrating his vague idea of what constitutes a correct proof. He was one of the youngest members ever
appointed a Fellow of the Royal Society. Unfortunately, in 1917 Ramanujan became extremely ill. At the time, it was thought that he
had trouble with the English climate and had contracted tuberculosis. It is now thought that he suffered from a vitamin deficiency,
brought on by Ramanujan’s strict vegetarianism and shortages in wartime England. He returned to India in 1919, continuing to
do mathematics even when confined to his bed. He was religious and thought his mathematical talent came from his family deity,
Namagiri. He considered mathematics and religion to be linked. He said that “an equation for me has no meaning unless it expresses
a thought of God.” His short life came to an end in April 1920, when he was 32 years old. Ramanujan left several notebooks of
unpublished results. The writings in these notebooks illustrate Ramanujan’s insights but are quite sketchy. Several mathematicians
have devoted many years of study to explaining and justifying the results in these notebooks.
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FIGURE 1 (a) Chomp (Top Left Cookie Poisoned). (b) Three Possible Moves.
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move of a winning strategy (and then continued to follow that winning strategy). This would
guarantee a win for the first player.

Note that we showed that a winning strategy exists, but we did not specify an actual winning
strategy. Consequently, the proof is a nonconstructive existence proof. In fact, no one has been
able to describe a winning strategy for that Chomp that applies for all rectangular grids by
describing the moves that the first player should follow. However, winning strategies can be
described for certain special cases, such as when the grid is square and when the grid only has
two rows of cookies (see Exercises 15 and 16 in Section 5.2). <

Uniqueness Proofs

Some theorems assert the existence of a unique element with a particular property. In other
words, these theorems assert that there is exactly one element with this property. To prove a
statement of this type we need to show that an element with this property exists and that no
other element has this property. The two parts of a uniqueness proof are:

Existence: We show that an element x with the desired property exists.
Uniqueness:  We show that if y # x, then y does not have the desired property.

Equivalently, we can show that if x and y both have the desired property, then x = y.

Remark: Showing that there is a unique element x such that P(x) is the same as proving the
statement Ax (P (x) AVy(y # x — =P (y))).

We illustrate the elements of a uniqueness proof in Example 13.

Show that if a and b are real numbers and a # 0, then there is a unique real number r such that
ar+b=0.

Solution: First, note that the real number r = —b/a is a solution of ar + b = 0 because
a(—b/a) +b = —b + b = 0. Consequently, a real number r exists for which ar + b = 0. This
is the existence part of the proof.

Second, suppose that s is a real number suchthatas + » = 0. Thenar 4+ b = as + b, where
r = —b/a. Subtracting b from both sides, we find that ar = as. Dividing both sides of this last
equation by a, which is nonzero, we see that » = 5. This means that if s # r, thenas + b # 0.
This establishes the uniqueness part of the proof. <
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Proof Strategies

Finding proofs can be a challenging business. When you are confronted with a statement to
prove, you should first replace terms by their definitions and then carefully analyze what the
hypotheses and the conclusion mean. After doing so, you can attempt to prove the result using
one of the available methods of proof. Generally, if the statement is a conditional statement,
you should first try a direct proof; if this fails, you can try an indirect proof. If neither of these
approaches works, you might try a proof by contradiction.

FORWARD AND BACKWARD REASONING Whichever method you choose, you need
a starting point for your proof. To begin a direct proof of a conditional statement, you start
with the premises. Using these premises, together with axioms and known theorems, you can
construct a proof using a sequence of steps that leads to the conclusion. This type of reasoning,
called forward reasoning, is the most common type of reasoning used to prove relatively simple
results. Similarly, with indirect reasoning you can start with the negation of the conclusion and,
using a sequence of steps, obtain the negation of the premises.

Unfortunately, forward reasoning is often difficult to use to prove more complicated results,
because the reasoning needed to reach the desired conclusion may be far from obvious. In such
cases it may be helpful to use backward reasoning. To reason backward to prove a statement ¢,
we find a statement p that we can prove with the property that p — ¢. (Note that it is not helpful
to find a statement » that you can prove such that ¢ — r, because it is the fallacy of begging
the question to conclude from ¢ — r and r that ¢ is true.) Backward reasoning is illustrated in
Examples 14 and 15.

EXAMPLE 14  Given two positive real numbers x and y, their arithmetic mean is (x + y)/2 and their geo-
metric mean is ,/xy. When we compare the arithmetic and geometric means of pairs of distinct
positive real numbers, we find that the arithmetic mean is always greater than the geometric
mean. [For example, when x = 4 and y = 6, we have 5 = (4 +6)/2 > V4 -6 = v/24] Can
we prove that this inequality is always true?

Solution: To prove that (x + y)/2 > ./xy when x and y are distinct positive real numbers,
we can work backward. We construct a sequence of equivalent inequalities. The equivalent
inequalities are

(x+y)/2 > Jxy,
(x + y)2/4 > xy,

(x + y)2 > 4xy,
Extra g>
Examples ) X2+ 2xy + y2 > 4xy,
x2 —2xy+y%>0,

(x —y)2 > 0.

Because (x — y)? > 0 when x # vy, it follows that the final inequality is true. Because all these
inequalities are equivalent, it follows that (x + y)/2 > ,/xy whenx # y. Once we have carried
out this backward reasoning, we can easily reverse the steps to construct a proof using forward
reasoning. \We now give this proof.

Suppose that x and y are distinct positive real numbers. Then (x — y)2 > 0 because
the square of a nonzero real number is positive (see Appendix 1). Because (x — y)? =
x? — 2xy + y?, this implies that x?> — 2xy 4+ y? > 0. Adding 4xy to both sides, we obtain
x% +2xy + y? > 4xy. Because x> 4 2xy + y? = (x + y)?, this means that (x 4 y)? > 4xy.
Dividing both sides of this equation by 4, we see that (x + y)2/4 > xy. Finally, taking square
roots of both sides (which preserves the inequality because both sides are positive) yields
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(x +y)/2 > /xy. We conclude that if x and y are distinct positive real numbers, then their
arithmetic mean (x + y)/2 is greater than their geometric mean . /xy. <

Suppose that two people play a game taking turns removing one, two, or three stones at a time
from a pile that begins with 15 stones. The person who removes the last stone wins the game.
Show that the first player can win the game no matter what the second player does.

Solution: To prove that the first player can always win the game, we work backward. At the
last step, the first player can win if this player is left with a pile containing one, two, or three
stones. The second player will be forced to leave one, two, or three stones if this player has to
remove stones from a pile containing four stones. Consequently, one way for the first person to
win is to leave four stones for the second player on the next-to-last move. The first person can
leave four stones when there are five, six, or seven stones left at the beginning of this player’s
move, which happens when the second player has to remove stones from a pile with eight stones.
Consequently, to force the second player to leave five, six, or seven stones, the first player should
leave eight stones for the second player at the second-to-last move for the first player. This means
that there are nine, ten, or eleven stones when the first player makes this move. Similarly, the
first player should leave twelve stones when this player makes the first move. We can reverse
this argument to show that the first player can always make moves so that this player wins the
game no matter what the second player does. These moves successively leave twelve, eight, and
four stones for the second player.

ADAPTING EXISTING PROOFS  An excellent way to look for possible approaches that can
be used to prove a statement is to take advantage of existing proofs of similar results. Often
an existing proof can be adapted to prove other facts. Even when this is not the case, some of
the ideas used in existing proofs may be helpful. Because existing proofs provide clues for new
proofs, you should read and understand the proofs you encounter in your studies. This process
is illustrated in Example 16.

In Example 10 of Section 1.7 we proved that +/2 is irrational. We now conjecture that +/3 is
irrational. Can we adapt the proof in Example 10 in Section 1.7 to show that +/3 is irrational?

Solution: To adapt the proof in Example 10 in Section 1.7, we begin by mimicking the steps in
that proof, but with +/2 replaced with /3. First, we suppose that /3 = d/c where the fraction
c¢/d is in lowest terms. Squaring both sides tells us that 3 = ¢2/d?, so that 3d? = ¢2. Can we
use this equation to show that 3 must be a factor of both ¢ and d, similar to how we used the
equation 22 = a2 in Example 10 in Section 1.7 to show that 2 must be a factor of both «a
and b? (Recall that an integer s is a factor of the integer ¢ if ¢ /s is an integer. An integer n is even
if and only if 2 is a factor of n.) In turns out that we can, but we need some ammunition from
number theory, which we will develop in Chapter 4. We sketch out the remainder of the proof,
but leave the justification of these steps until Chapter 4. Because 3 is a factor of ¢?, it must also
be a factor of c. Furthermore, because 3 is a factor of ¢, 9 is a factor of ¢?, which means that 9
is a factor of 342. This implies that 3 is a factor of 42, which means that 3 is a factor of that 4.
This makes 3 a factor of both ¢ and d, which contradicts the assumption that c¢/d is in lowest
terms. After we have filled in the justification for these steps, we will have shown that +/3 is
irrational by adapting the proof that +/2 is irrational. Note that this proof can be extended to
show that /n is irrational whenever n is a positive integer that is not a perfect square. We leave
the details of this to Chapter 4. <

A good tip is to look for existing proofs that you might adapt when you are confronted
with proving a new theorem, particularly when the new theorem seems similar to one you have
already proved.
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Looking for Counterexamples

In Section 1.7 we introduced the use of counterexamples to show that certain statements are
false. When confronted with a conjecture, you might first try to prove this conjecture, and if
your attempts are unsuccessful, you might try to find a counterexample, first by looking at
the simplest, smallest examples. If you cannot find a counterexample, you might again try to
prove the statement. In any case, looking for counterexamples is an extremely important pursuit,
which often provides insights into problems. We will illustrate the role of counterexamples in
Example 17.

In Example 14 in Section 1.7 we showed that the statement “Every positive integer is the sum of
two squares of integers” is false by finding a counterexample. That is, there are positive integers
that cannot be written as the sum of the squares of two integers. Although we cannot write every
positive integer as the sum of the squares of two integers, maybe we can write every positive
integer as the sum of the squares of three integers. That is, is the statement “Every positive
integer is the sum of the squares of three integers” true or false?

Solution: Because we know that not every positive integer can be written as the sum of two
squares of integers, we might initially be skeptical that every positive integer can be written as
the sum of three squares of integers. So, we first look for a counterexample. That is, we can
show that the statement “Every positive integer is the sum of three squares of integers” is false
if we can find a particular integer that is not the sum of the squares of three integers. To look
for a counterexample, we try to write successive positive integers as a sum of three squares.
We find that 1 =02 + 02 + 12,2 =02 + 12 + 12,3 =12 +12 + 12, 4 = 02 +- 02 + 22, 5 =
02+12 422 6 =12 4+ 12+ 22, but we cannot find a way to write 7 as the sum of three
squares. To show that there are not three squares that add up to 7, we note that the only possible
squares we can use are those not exceeding 7, namely, 0, 1, and 4. Because no three terms where
each termis 0, 1, or 4 add up to 7, it follows that 7 is a counterexample. We conclude that the
statement “Every positive integer is the sum of the squares of three integers” is false.

We have shown that not every positive integer is the sum of the squares of three integers.
The next question to ask is whether every positive integer is the sum of the squares of four
positive integers. Some experimentation provides evidence that the answer is yes. For example,
7=12412 41242225 =42 4+ 22 + 22 + 12 and 87 = 9% + 22 + 12 4+ 12. It turns out the
conjecture “Every positive integer is the sum of the squares of four integers” is true. For a proof,
see [Ro10]. <

Proof Strategy in Action

Mathematics is generally taught as if mathematical facts were carved in stone. Mathematics
texts (including the bulk of this book) formally present theorems and their proofs. Such presen-
tations do not convey the discovery process in mathematics. This process begins with exploring
concepts and examples, asking questions, formulating conjectures, and attempting to settle these
conjectures either by proof or by counterexample. These are the day-to-day activities of math-
ematicians. Believe it or not, the material taught in textbooks was originally developed in this
way.

People formulate conjectures on the basis of many types of possible evidence. The exam-
ination of special cases can lead to a conjecture, as can the identification of possible patterns.
Altering the hypotheses and conclusions of known theorems also can lead to plausible conjec-
tures. At other times, conjectures are made based on intuition or a belief that a result holds.
No matter how a conjecture was made, once it has been formulated, the goal is to prove or
disprove it. When mathematicians believe that a conjecture may be true, they try to find a proof.
If they cannot find a proof, they may look for a counterexample. When they cannot find a coun-
terexample, they may switch gears and once again try to prove the conjecture. Although many
conjectures are quickly settled, a few conjectures resist attack for hundreds of years and lead to



Links

EXAMPLE 18

EXAMPLE 19

Extra
Examples <

1.8 Proof Methods and Strategy 103

FIGURE 3
FIGURE 2 The Standard Checkerboard. Two Dominoes.

the development of new parts of mathematics. We will mention a few famous conjectures later
in this section.

Tilings

We can illustrate aspects of proof strategy through a brief study of tilings of checkerboards.
Looking at tilings of checkerboards is a fruitful way to quickly discover many different results
and construct their proofs using a variety of proof methods. There are almost an endless number
of conjectures that can be made and studied in this area too. To begin, we need to define some
terms. A checkerboard is a rectangle divided into squares of the same size by horizontal and
vertical lines. The game of checkers is played on a board with 8 rows and 8 columns; this
board is called the standard checkerboard and is shown in Figure 2. In this section we use the
term board to refer to a checkerboard of any rectangular size as well as parts of checkerboards
obtained by removing one or more squares. A domino is a rectangular piece that is one square
by two squares, as shown in Figure 3. We say that a board is tiled by dominoes when all its
squares are covered with no overlapping dominoes and no dominoes overhanging the board. We
now develop some results about tiling boards using dominoes.

Can we tile the standard checkerboard using dominoes?

Solution: We can find many ways to tile the standard checkerboard using dominoes. For example,
we can tile it by placing 32 dominoes horizontally, as shown in Figure 4. The existence of one
such tiling completes a constructive existence proof. Of course, there are a large number of other
ways to do this tiling. We can place 32 dominoes vertically on the board or we can place some
tiles vertically and some horizontally. But for a constructive existence proof we needed to find
just one such tiling. <

Can we tile a board obtained by removing one of the four corner squares of a standard checker-
board?

Solution: To answer this question, note that a standard checkerboard has 64 squares, so removing
a square produces a board with 63 squares. Now suppose that we could tile a board obtained
from the standard checkerboard by removing a corner square. The board has an even number of
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FIGURE 4 Tiling the Standard Checkerboard. FIGURE5 The Standard Checkerboard

EXAMPLE 20

with the Upper Left and Lower Right
Squares Removed.

squares because each domino covers two squares and no two dominoes overlap and no dominoes
overhang the board. Consequently, we can prove by contradiction that a standard checkerboard
with one square removed cannot be tiled using dominoes because such a board has an odd
number of squares. <

We now consider a trickier situation.

Can we tile the board obtained by deleting the upper left and lower right corner squares of a
standard checkerboard, shown in Figure 5?

Solution: A board obtained by deleting two squares of a standard checkerboard contains
64 — 2 = 62 squares. Because 62 is even, we cannot quickly rule out the existence of a tiling of
the standard checkerboard with its upper left and lower right squares removed, unlike Example
19, where we ruled out the existence of a tiling of the standard checkerboard with one corner
square removed. Trying to construct a tiling of this board by successively placing dominoes
might be a first approach, as the reader should attempt. However, no matter how much we try,
we cannot find such a tiling. Because our efforts do not produce atiling, we are led to conjecture
that no tiling exists.

We might try to prove that no tiling exists by showing that we reach a dead end however
we successively place dominoes on the board. To construct such a proof, we would have to
consider all possible cases that arise as we run through all possible choices of successively
placing dominoes. For example, we have two choices for covering the square in the second
column of the first row, next to the removed top left corner. We could cover it with a horizontally
placed tile or a vertically placed tile. Each of these two choices leads to further choices, and so
on. It does not take long to see that this is not a fruitful plan of attack for a person, although a
computer could be used to complete such a proof by exhaustion. (Exercise 45 asks you to supply
such a proof to show that a 4 x 4 checkerboard with opposite corners removed cannot be tiled.)

We need another approach. Perhaps there is an easier way to prove there is no tiling of a
standard checkerboard with two opposite corners removed. As with many proofs, a key obser-
vation can help. We color the squares of this checkerboard using alternating white and black
squares, as in Figure 2. Observe that a domino in a tiling of such a board covers one white square
and one black square. Next, note that this board has unequal numbers of white square and black
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squares. We can use these observations to prove by contradiction that a standard checkerboard
with opposite corners removed cannot be tiled using dominoes. We now present such a proof.

Proof: Suppose we can use dominoes to tile a standard checkerboard with opposite corners
removed. Note that the standard checkerboard with opposite corners removed contains 64 — 2 =
62 squares. The tiling would use 62/2 = 31 dominoes. Note that each domino in this tiling covers
one white and one black square. Consequently, the tiling covers 31 white squares and 31 black
squares. However, when we remove two opposite corner squares, either 32 of the remaining
squares are white and 30 are black or else 30 are white and 32 are black. This contradicts the
assumption that we can use dominoes to cover a standard checkerboard with opposite corners
removed, completing the proof. <

We can use other types of pieces besides dominoes in tilings. Instead of dominoes we can
study tilings that use identically shaped pieces constructed from congruent squares that are
connected along their edges. Such pieces are called polyominoes, a term coined in 1953 by the
mathematician Solomon Golomb, the author of an entertaining book about them [G094]. We
will consider two polyominoes with the same number of squares the same if we can rotate and/or
flip one of the polyominoes to get the other one. For example, there are two types of triominoes
(see Figure 6), which are polyominoes made up of three squares connected by their sides. One
type of triomino, the straight triomino, has three horizontally connected squares; the other
type, right triominoes, resembles the letter L in shape, flipped and/or rotated, if necessary. We
will study the tilings of a checkerboard by straight triominoes here; we will study tilings by
right triominoes in Section 5.1.

Can you use straight triominoes to tile a standard checkerboard?

Solution: The standard checkerboard contains 64 squares and each triomino covers three
squares. Consequently, if triominoes tile a board, the number of squares of the board must be
a multiple of 3. Because 64 is not a multiple of 3, triominoes cannot be used to cover an 8 x 8
checkerboard. <

In Example 22, we consider the problem of using straight triominoes to tile a standard
checkerboard with one corner missing.

Can we use straight triominoes to tile a standard checkerboard with one of its four corners
removed? An 8 x 8 checkerboard with one corner removed contains 64 — 1 = 63 squares. Any
tiling by straight triominoes of one of these four boards uses 63/3 = 21 triominoes. However,
when we experiment, we cannot find a tiling of one of these boards using straight triominoes.
A proof by exhaustion does not appear promising. Can we adapt our proof from Example 20 to
prove that no such tiling exists?

Solution: We will color the squares of the checkerboard in an attempt to adapt the proof by
contradiction we gave in Example 20 of the impossibility of using dominoes to tile a standard
checkerboard with opposite corners removed. Because we are using straight triominoes rather
than dominoes, we color the squares using three colors rather than two colors, as shown in
Figure 7. Note that there are 21 blue squares, 21 black squares, and 22 white squares in this
coloring. Next, we make the crucial observation that when a straight triomino covers three
squares of the checkerboard, it covers one blue square, one black square, and one white square.
Next, note that each of the three colors appears in a corner square. Thus without loss of generality,
we may assume that we have rotated the coloring so that the missing square is colored blue.
Therefore, we assume that the remaining board contains 20 blue squares, 21 black squares, and
22 white squares.

If we could tile this board using straight triominoes, then we would use 63/3 = 21 straight
triominoes. These triominoes would cover 21 blue squares, 21 black squares, and 21 white
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FIGURE 7 Coloring the Squares of the Standard Checkerboard
with Three Colors.

squares. This contradicts the fact that this board contains 20 blue squares, 21 black squares, and
22 white squares. Therefore we cannot tile this board using straight triominoes.

The Role of Open Problems

Many advances in mathematics have been made by people trying to solve famous unsolved
problems. In the past 20 years, many unsolved problems have finally been resolved, such as the
proof of a conjecture in number theory made more than 300 years ago. This conjecture asserts
the truth of the statement known as Fermat’s last theorem.

FERMAT’S LAST THEOREM The equation

has no solutions in integers x, y, and z with xyz % 0 whenever n is an integer with n > 2.

Remark: The equation x2 + y? = z? has infinitely many solutions in integers x, y, and z; these
solutions are called Pythagorean triples and correspond to the lengths of the sides of right
triangles with integer lengths. See Exercise 32.

This problem has a fascinating history. In the seventeenth century, Fermat jotted in the
margin of his copy of the works of Diophantus that he had a “wondrous proof” that there are no
integer solutions of x” + y" = 7z when n is an integer greater than 2 with xyz # 0. However,
he never published a proof (Fermat published almost nothing), and no proof could be found in
the papers he left when he died. Mathematicians looked for a proof for three centuries without
success, although many people were convinced that a relatively simple proof could be found.
(Proofs of special cases were found, such as the proof of the case when n = 3 by Euler and the
proof of the n = 4 case by Fermat himself.) Over the years, several established mathematicians
thought that they had proved this theorem. In the nineteenth century, one of these failed attempts
led to the development of the part of number theory called algebraic number theory. A correct
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proof, requiring hundreds of pages of advanced mathematics, was not found until the 1990s,
when Andrew Wiles used recently developed ideas from a sophisticated area of number theory
called the theory of elliptic curves to prove Fermat’s last theorem. Wiles’s quest to find a
proof of Fermat’s last theorem using this powerful theory, described in a program in the Nova
series on public television, took close to ten years! Moreover, his proof was based on major
contributions of many mathematicians. (The interested reader should consult [Ro10] for more
information about Fermat’s last theorem and for additional references concerning this problem
and its resolution.)

We now state an open problem that is simple to describe, but that seems quite difficult to
resolve.

The 3x + 1 Conjecture Let T be the transformation that sends an even integer x to x /2 and
an odd integer x to 3x + 1. A famous conjecture, sometimes known as the 3x + 1 conjec-
ture, states that for all positive integers x, when we repeatedly apply the transformation 7,
we will eventually reach the integer 1. For example, starting with x = 13, we find 7'(13) =
3-13+1=140, T(40)=40/2 =20, T(20)=20/2=10, T(10)=10/2=5, T(5) =
3-54+1=16,T(16)=8,T@8) =4, T(4) =2, and T(2) = 1. The 3x + 1 conjecture has
been verified using computers for all integers x up to 5.6 - 1013,

The 3x + 1 conjecture has an interesting history and has attracted the attention of mathe-
maticians since the 1950s. The conjecture has been raised many times and goes by many other
names, including the Collatz problem, Hasse’s algorithm, Ulam’s problem, the Syracuse prob-
lem, and Kakutani’s problem. Many mathematicians have been diverted from their work to spend
time attacking this conjecture. This led to the joke that this problem was part of a conspiracy
to slow down American mathematical research. See the article by Jeffrey Lagarias [Lal0] for a
fascinating discussion of this problem and the results that have been found by mathematicians
attacking it. <

In Chapter 4 we will describe additional open questions about prime numbers. Students
already familiar with the basic notions about primes might want to explore Section 4.3, where
these open questions are discussed. We will mention other important open questions throughout
the book.

Additional Proof Methods

In this chapter we introduced the basic methods used in proofs. We also described how to leverage
these methods to prove a variety of results. We will use these proof methods in all subsequent
chapters. In particular, we will use them in Chapters 2, 3, and 4 to prove results about sets,
functions, algorithms, and number theory and in Chapters 9, 10, and 11 to prove results in graph
theory. Among the theorems we will prove is the famous halting theorem which states that there
is a problem that cannot be solved using any procedure. However, there are many important
proof methods besides those we have covered. We will introduce some of these methods later
in this book. In particular, in Section 5.1 we will discuss mathematical induction, which is an
extremely useful method for proving statements of the form Vn P (n), where the domain consists
of all positive integers. In Section 5.3 we will introduce structural induction, which can be used
to prove results about recursively defined sets. We will use the Cantor diagonalization method,
which can be used to prove results about the size of infinite sets, in Section 2.5. In Chapter 6
we will introduce the notion of combinatorial proofs, which can be used to prove results by
counting arguments. The reader should note that entire books have been devoted to the activities
discussed in this section, including many excellent works by George Pélya ([Po61], [Po71],
[P090]).

Finally, note that we have not given a procedure that can be used for proving theorems in
mathematics. It is a deep theorem of mathematical logic that there is no such procedure.
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Exercises

10.

11.

12.

13.

14,

15.

16.

17.

. Prove that n? 4+ 1 > 2" when n is a positive integer with

l<n<4d

. Prove that there are no positive perfect cubes less than

1000 that are the sum of the cubes of two positive integers.

. Prove that if x and y are real numbers, then max(x, y) +

min(x, y) = x + y. [Hint: Use a proof by cases, with
the two cases correspondingto x > y and x < y, respec-
tively.]

. Use a proof by cases to show that min(a, min(b, ¢)) =

min(min(a, b), c¢) whenever a, b, and c are real numbers.

. Prove using the notion of without loss of generality

that min(x, y) = (x +y — |x — y|)/2 and max(x, y) =
(x + y + |x — y|)/2 whenever x and y are real numbers.

. Prove using the notion of without loss of generality that

5x 4 5y is an odd integer when x and y are integers of
opposite parity.

. Prove the triangle inequality, which states that if x and

y are real numbers, then |x| + |y| > |x + y| (where |x]|
represents the absolute value of x, whichequals x ifx > 0
and equals —x if x < 0).

. Prove that there is a positive integer that equals the sum

of the positive integers not exceeding it. Is your proof
constructive or nonconstructive?

. Prove that there are 100 consecutive positive integers that

are not perfect squares. Is your proof constructive or non-
constructive?

Prove that either 2 - 10°%° + 15 or 2 - 10°%° + 16 is not a
perfect square. Is your proof constructive or nonconstruc-
tive?

Prove that there exists a pair of consecutive integers such
that one of these integers is a perfect square and the other
is a perfect cube.

Show that the product of two of the numbers 651900 —
82001 | 3177 7gl212 _ 2399 | 92001  and 44493 _
58192 4 71777 js nonnegative. Is your proof constructive
or nonconstructive? [Hint: Do not try to evaluate these
numbers!]

Prove or disprove that there is a rational number x and an
irrational number y such that x” is irrational.

Prove or disprove that if ¢ and b are rational numbers,
then a? is also rational.

Show that each of these statements can be used to ex-
press the fact that there is a unique element x such that
P (x) is true. [Note that we can also write this statement
as 3 P(x).]

a) IxVy(P(y) < x =y)

b) AxP(x) AVxVy(P(x) A P(y) > x = y)

€) (P AVY(P(y) > x =y))

Show that if a, b, and ¢ are real numbers and a # 0, then
there is a unique solution of the equation ax + b = c.
Suppose that a and b are odd integers with a # b. Show
there is a unique integer ¢ such that |a — ¢| = |b — ¢|.

18.

19.

20.

21.

22.

23.

24.

*25.

#26.

27.

28.

29.

30.

31.

32.

Show that if  is an irrational number, there is a unique
integer n such that the distance between r and n is less
than 1/2.

Show that if n is an odd integer, then there is a unique
integer k such that n is the sum of k — 2 and k + 3.

Prove that given a real number x there exist unique num-
bers n and € such that x = n + €, n is an integer, and
0<e<l.

Prove that given a real number x there exist unique num-
bers n and ¢ such that x = n — ¢, n is an integer, and
O0<e<l.

Use forward reasoning to show that if x is a nonzero real
number, then x? + 1/x2 > 2. [Hint: Start with the in-
equality (x — 1/x)2 > 0 which holds for all nonzero real
numbers x.]

The harmonic mean of two real numbers x and y equals
2xy/(x + y).Bycomputing the harmonic and geometric
means of different pairs of positive real numbers, formu-
late a conjecture about their relative sizes and prove your
conjecture.

The quadratic mean of two real numbers x and y
equals /(x2 + y2)/2. By computing the arithmetic and
quadratic means of different pairs of positive real num-
bers, formulate a conjecture about their relative sizes and
prove your conjecture.

Write the numbers 1,2, ..., 2n on a blackboard, where
n is an odd integer. Pick any two of the numbers, j and
k, write | j — k| on the board and erase j and k. Continue
this process until only one integer is written on the board.
Prove that this integer must be odd.

Suppose that five ones and four zeros are arranged around
a circle. Between any two equal bits you insert a 0 and
between any two unequal bits you insert a 1 to produce
nine new bits. Then you erase the nine original bits. Show
that when you iterate this procedure, you can never get
nine zeros. [Hint: Work backward, assuming that you did
end up with nine zeros.]

Formulate a conjecture about the decimal digits that ap-
pear as the final decimal digit of the fourth power of an
integer. Prove your conjecture using a proof by cases.

Formulate a conjecture about the final two decimal digits
of the square of an integer. Prove your conjecture using a
proof by cases.

Prove that there is no positive integer  such that n? +
n3 = 100.

Prove that there are no solutions in integers x and y to the
equation 2x? + 5y? = 14.

Prove that there are no solutions in positive integers x and
y to the equation x* + y* = 625.

Prove that there are infinitely many solutions in posi-
tive integers x, y, and z to the equation x2 + y2 = z2.
[Hint: Let x = m? —n?, y =2mn, and z = m? + n?,

where m and n are integers.]



33.

34.
35.
36.

*37.

38.

39.

40.

41.

42.

43.

44,

45,

Adapt the proof in Example 4 in Section 1.7 to prove that
if n = abc, where a, b, and ¢ are positive integers, then
a<IYn,b<3norc<n.

Prove that /2 is irrational.

Prove that between every two rational numbers there is
an irrational number.

Prove that between every rational number and every irra-
tional number there is an irrational number.

Let S =x1y1 + x2y2 + -+ + Xy, Where x1,x2,...,
xn and y1, y2, ..., y, are orderings of two different se-
quences of positive real numbers, each containing n ele-
ments.

a) Show that S takes its maximum value over all order-
ings of the two sequences when both sequences are
sorted (so that the elements in each sequence are in
nondecreasing order).

b) Show that S takes its minimum value over all order-
ings of the two sequences when one sequence is sorted
into nondecreasing order and the other is sorted into
nonincreasing order.

Prove or disprove that if you have an 8-gallon jug of wa-

ter and two empty jugs with capacities of 5 gallons and 3

gallons, respectively, then you can measure 4 gallons by

successively pouring some of or all of the water in a jug
into another jug.

Verify the 3x + 1 conjecture for these integers.

a) 6 b) 7 c) 17 d) 21

Verify the 3x + 1 conjecture for these integers.

a) 16 b) 11 c) 35 d) 113

Prove or disprove that you can use dominoes to tile

the standard checkerboard with two adjacent corners re-

moved (that is, corners that are not opposite).

Prove or disprove that you can use dominoes to tile a

standard checkerboard with all four corners removed.

Prove that you can use dominoes to tile a rectangular

checkerboard with an even number of squares.

Prove or disprove that you can use dominoes to tile a

5 x 5 checkerboard with three corners removed.

Use a proof by exhaustion to show that a tiling using

dominoes of a 4 x 4 checkerboard with opposite corners

removed does not exist. [Hint: First show that you can
assume that the squares in the upper left and lower right
corners are removed. Number the squares of the original
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checkerboard from 1 to 16, starting in the first row, mov-
ing right in this row, then starting in the leftmost square
in the second row and moving right, and so on. Remove
squares 1 and 16. To begin the proof, note that square 2 is
covered either by a domino laid horizontally, which cov-
ers squares 2 and 3, or vertically, which covers squares 2
and 6. Consider each of these cases separately, and work
through all the subcases that arise.]

*46. Prove that when a white square and a black square are

removed from an 8 x 8 checkerboard (colored as in the
text) you can tile the remaining squares of the checker-
board using dominoes. [Hint: Show that when one black
and one white square are removed, each part of the parti-
tion of the remaining cells formed by inserting the barriers
shown in the figure can be covered by dominoes.]

47. Show that by removing two white squares and two black

squares from an 8 x 8 checkerboard (colored as in the
text) you can make it impossible to tile the remaining
squares using dominoes.

*48. Find all squares, if they exist, on an 8 x 8 checkerboard

such that the board obtained by removing one of these
square can be tiled using straight triominoes. [Hint: First
use arguments based on coloring and rotations to elimi-
nate as many squares as possible from consideration.]

*49. a) Draw each of the five different tetrominoes, where a

tetromino is a polyomino consisting of four squares.

b) Foreach of the five different tetrominoes, prove or dis-
prove that you can tile a standard checkerboard using
these tetrominoes.

*50. Prove or disprove that you can tile a 10 x 10 checker-

board using straight tetrominoes.

TERMS
proposition: a statement that is true or false

propositional variable: a variable that represents a proposi-
tion

truth value: true or false

= p (negation of p): the proposition with truth value opposite
to the truth value of p

logical operators: operators used to combine propositions
compound proposition: a proposition constructed by combin-

ing propositions using logical operators

truth table: a table displaying all possible truth values of

propositions

p Vv g (disjunction of p and q): the proposition “p or g,” which

is true if and only if at least one of p and ¢ is true
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p A g (conjunction of p and q): the proposition “p and ¢,”
which is true if and only if both p and g are true

p @ q (exclusive or of p and @): the proposition “p XOR ¢,”
which is true when exactly one of p and g is true

p — q (p implies q): the proposition “if p, then ¢g,” which is
false if and only if p is true and g is false

converse of p — q: the conditional statementg — p

contrapositive of p— q: the conditional statement —g — —p

inverse of p — q: the conditional statement —p — —¢

p < q (biconditional): the proposition “p if and only if ¢,”
which is true if and only if p and ¢ have the same truth
value

bit: eitheraOoral

Boolean variable: a variable that has a value of 0 or 1

bit operation: an operation on a bit or bits

bit string: a list of bits

bitwise operations: operations on bit strings that operate on
each bit in one string and the corresponding bit in the other
string

logic gate: a logic element that performs a logical operation
on one or more bits to produce an output bit

logic circuit: a switching circuit made up of logic gates that
produces one or more output bits

tautology: a compound proposition that is always true

contradiction: a compound proposition that is always false

contingency: a compound proposition that is sometimes true
and sometimes false

consistent compound propositions: compound propositions
for which there is an assignment of truth values to the vari-
ables that makes all these propositions true

satisfiable compound proposition: a compound proposition
for which there is an assignment of truth values to its vari-
ables that makes it true

logically equivalent compound propositions: compound
propositions that always have the same truth values

predicate: part of a sentence that attributes a property to the
subject

propositional function: a statement containing one or more
variables that becomes a proposition when each of its vari-
ables is assigned a value or is bound by a quantifier

domain (or universe) of discourse: the values a variable in a
propositional function may take

Ix P(x) (existential quantification of P(x)): the proposition
that is true if and only if there exists an x in the domain
such that P(x) is true

VxP(x) (universal quantification of P(x)): the proposition
that is true if and only if P(x) is true for every x in the
domain

logically equivalent expressions: expressions that have the
same truth value no matter which propositional functions
and domains are used

free variable: a variable not bound in a propositional function

bound variable: a variable that is quantified

scope of a quantifier: portion of a statement where the quan-
tifier binds its variable

argument: a sequence of statements

argument form: a sequence of compound propositions involv-
ing propositional variables

premise: a statement, in an argument, or argument form, other
than the final one

conclusion: the final statement in an argument or argument
form

valid argument form: a sequence of compound propositions
involving propositional variables where the truth of all the
premises implies the truth of the conclusion

valid argument: an argument with a valid argument form

rule of inference: a valid argument form that can be used in
the demonstration that arguments are valid

fallacy: an invalid argument form often used incorrectly as a
rule of inference (or sometimes, more generally, an incor-
rect argument)

circular reasoning or begging the question: reasoning where
one or more steps are based on the truth of the statement
being proved

theorem: a mathematical assertion that can be shown to be
true

conjecture: a mathematical assertion proposed to be true, but
that has not been proved

proof: a demonstration that a theorem is true

axiom: a statement that is assumed to be true and that can be
used as a basis for proving theorems

lemma: a theorem used to prove other theorems

corollary: a proposition that can be proved as a consequence
of a theorem that has just been proved

vacuous proof: a proof that p — ¢ is true based on the fact
that p is false

trivial proof: a proof that p — ¢ is true based on the fact that
q istrue

direct proof: aproofthat p — ¢ istrue that proceeds by show-
ing that ¢ must be true when p is true

proof by contraposition: a proof that p — ¢ is true that pro-
ceeds by showing that p must be false when ¢ is false

proof by contradiction: a proof that p is true based on the
truth of the conditional statement —p — ¢, where ¢ is a
contradiction

exhaustive proof: a proof that establishes a result by checking
a list of all possible cases

proof by cases: a proof broken into separate cases, where these
cases cover all possibilities

without loss of generality: anassumption ina proof that makes
it possible to prove a theorem by reducing the number of
cases to consider in the proof

counterexample: an element x such that P(x) is false

constructive existence proof: a proof that an element with a
specified property exists that explicitly finds such an ele-
ment

nonconstructive existence proof: a proof that an element with
a specified property exists that does not explicitly find such
an element

rational number: a number that can be expressed as the ratio
of two integers p and g such that g = 0

uniqueness proof: a proof that there is exactly one element
satisfying a specified property



RESULTS

The logical equivalences given in Tables 6, 7, and 8 in Sec-

tion 1.3.

Review Questions
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De Morgan’s laws for quantifiers.
Rules of inference for propositional calculus.
Rules of inference for quantified statements.

1.

a) Define the negation of a proposition.
b) What is the negation of “This is a boring course”?

. a) Define (using truth tables) the disjunction, conjunc-

tion, exclusive or, conditional, and biconditional of
the propositions p and g.

b) What are the disjunction, conjunction, exclusive or,
conditional, and biconditional of the propositions “I’ll
go to the movies tonight” and “I’ll finish my discrete
mathematics homework™?

. a) Describe at least five different ways to write the con-

ditional statement p — ¢ in English.

b) Define the converse and contrapositive of a conditional
statement.

c) State the converse and the contrapositive of the con-
ditional statement “If it is sunny tomorrow, then I will
go for a walk in the woods.”

. a) Whatdoes it mean for two propositions to be logically

equivalent?

b) Describe the different ways to show that two com-
pound propositions are logically equivalent.

c) Show in at least two different ways that the compound
propositions —p v (r - —g)and —p v —g Vv —r are
equivalent.

. (Depends on the Exercise Set in Section 1.3)

a) Givenatruthtable, explain how to use disjunctive nor-
mal form to construct a compound proposition with
this truth table.

b) Explain why part (a) shows that the operators A, Vv,
and — are functionally complete.

c) Is there an operator such that the set containing just
this operator is functionally complete?

. What are the universal and existential quantifications of

a predicate P(x)? What are their negations?

. a) What is the difference between the quantification

AxVyP(x, y) and Vy3x P(x, y), where P(x,y) is a
predicate?

Supplementary Exercises

10.

11.

12.

13.

14.

15.

16.

b) Give an example of a predicate P(x, y) such that
AxVyP(x,y) and Yy3x P(x, y) have different truth
values.

. Describe what is meant by a valid argument in proposi-

tional logic and show that the argument “If the earth is
flat, then you can sail off the edge of the earth,” “You can-
not sail off the edge of the earth,” therefore, “The earth is
not flat” is a valid argument.

. Use rules of inference to show that if the premises “All

zebras have stripes” and “Mark is a zebra” are true, then

the conclusion “Mark has stripes” is true.

a) Describe what is meant by a direct proof, a proof by
contraposition, and a proof by contradiction of a con-
ditional statement p — ¢.

b) Give a direct proof, a proof by contraposition and a
proof by contradiction of the statement: “If n is even,
then n + 4 is even.”

a) Describe a way to prove the biconditional p <> g.

b) Prove the statement: “The integer 3n + 2 is odd if and
only if the integer 9n + 5 is even, where # is an inte-
ger.”

To prove that the statements p1, p2, p3, and p4 are equiva-

lent, is it sufficient to show that the conditional statements

pa —> p2, p3 — p1,and p1 — py are valid? If not, pro-
vide another collection of conditional statements that can
be used to show that the four statements are equivalent.

a) Suppose that a statement of the form Vx P (x) is false.
How can this be proved?

b) Show that the statement “For every positive integer n,
n? > 2n” is false.

What is the difference between a constructive and non-

constructive existence proof? Give an example of each.

What are the elements of a proof that there is a unique

element x such that P(x), where P(x) is a propositional

function?

Explain how a proof by cases can be used to prove a result

about absolute values, such as the fact that |xy| = |x]||y|

for all real numbers x and y.

1.

Let p be the proposition “l will do every exercise in
this book™ and ¢ be the proposition “I will get an “A”
in this course.” Express each of these as a combination of
pand g.

a) I'will getan “A” inthis course only if | do every exer-
cise in this book.

b) I will get an “A” in this course and | will do every
exercise in this book.

c) Either I will not get an “A” in this course or | will not
do every exercise in this book.

d) For me to get an “A” in this course it is necessary and
sufficient that I do every exercise in this book.
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. Find the truth table of the compound proposition (p v

q) — (p A —r).

. Show that these compound propositions are tautologies.

a) (—g A (p—>q)— —p
b) (pvag) A—=p)—q

. Give the converse, the contrapositive, and the inverse of

these conditional statements.

a) If it rains today, then I will drive to work.

b) If |x] = x,thenx > 0.

c) If n is greater than 3, then n? is greater than 9.

. Given a conditional statement p — ¢, find the converse

of its inverse, the converse of its converse, and the con-
verse of its contrapositive.

. Given a conditional statement p — ¢, find the inverse of

its inverse, the inverse of its converse, and the inverse of
its contrapositive.

. Find a compound proposition involving the propositional

variables p, g, r, and s that is true when exactly three of
these propositional variables are true and is false other-
wise.

. Show that these statements are inconsistent: “If Sergei

takes the job offer then he will get a signing bonus.” “If
Sergei takes the job offer, then he will receive a higher
salary.” “If Sergei gets a signing bonus, then he will not
receive a higher salary.” “Sergei takes the job offer.”

. Show that these statements are inconsistent: “If Miranda

does not take a course in discrete mathematics, then she
will not graduate.” “If Miranda does not graduate, then
she is not qualified for the job.” “If Miranda reads this
book, then she is qualified for the job.” “Miranda does
not take a course in discrete mathematics but she reads
this book.”

Teachers in the Middle Ages supposedly tested the realtime
propositional logic ability of a student via a technique known
asan obligato game. In an obligato game, a number of rounds
is set and in each round the teacher gives the student succes-
sive assertions that the student must either accept or reject as
they are given. When the student accepts an assertion, it is
added as a commitment; when the student rejects an assertion
its negation is added as a commitment. The student passes
the test if the consistency of all commitments is maintained
throughout the test.

10.

11.

12.

Suppose that in a three-round obligato game, the teacher
first gives the student the proposition p — ¢, then the
proposition =(p Vv r) Vv ¢, and finally the proposition g.
For which of the eight possible sequences of three answers
will the student pass the test?

Suppose that in a four-round obligato game, the teacher
first gives the student the proposition —=(p — (g A T)),
then the proposition p v —g, then the proposition —r, and
finally, the proposition (p A r) v (¢ — p). For which of
the 16 possible sequences of four answers will the student
pass the test?

Explain why every obligato game has a winning strategy.

Exercises 13 and 14 are set on the island of knights and knaves
described in Example 7 in Section 1.2.

13.

14.

15.

16.

17.

18.

*19.

20.

21.

22.

Suppose that you meet three people Aaron, Bohan, and
Crystal. Can you determine what Aaron, Bohan, and Crys-
tal are if Aaron says “All of us are knaves™ and Bohan says
“Exactly one of us is a knave.”?

Suppose that you meet three people, Anita, Boris, and
Carmen. What are Anita, Boris, and Carmen if Anita says
“l am a knave and Boris is a knight” and Boris says “Ex-
actly one of the three of us is a knight”?

(Adapted from [Sm78]) Suppose that on an island there
are three types of people, knights, knaves, and normals
(also known as spies). Knights always tell the truth,
knaves always lie, and normals sometimes lie and some-
times tell the truth. Detectives questioned three inhabi-
tants of the island—Amy, Brenda, and Claire—as part
of the investigation of a crime. The detectives knew that
one of the three committed the crime, but not which one.
They also knew that the criminal was a knight, and that the
other two were not. Additionally, the detectives recorded
these statements: Amy: “I am innocent.” Brenda: “What
Amy says is true.” Claire: “Brenda is not a normal.” Af-
ter analyzing their information, the detectives positively
identified the guilty party. Who was it?

Show that if S is a proposition, where S is the conditional
statement “If S is true, then unicorns live,” then “Uni-
corns live” is true. Show that it follows that S cannot be a
proposition. (This paradox is known as Lob’s paradox.)

Show that the argument with premises “The tooth fairy isa
real person” and “The tooth fairy is not a real person” and
conclusion “You can find gold at the end of the rainbow”
is a valid argument. Does this show that the conclusion is
true?

Suppose that the truth value of the proposition p; is T
whenever i is an odd positive integer and is F when-
ever i is an even positive integer. Find the truth values
of Vi% (pi A pisa) and A8 (pi v pisa).

Model 16 x 16 Sudoku puzzles (with 4 x 4 blocks) as
satisfiability problems.

Let P (x) be the statement “Student x knows calculus” and

let Q(y) be the statement “Class y contains a student who

knows calculus.” Express each of these as quantifications

of P(x) and Q(y).

a) Some students know calculus.

b) Not every student knows calculus.

c) Every class has a student in it who knows calculus.

d) Every student in every class knows calculus.

e) There is at least one class with no students who know
calculus.

Let P(m, n) be the statement “m divides n,” where the do-

main for both variables consists of all positive integers.

(By “m divides n” we mean that n = km for some integer

k.) Determine the truth values of each of these statements.

a) P@4,5) b) P(2,4)
C) VmVn P(m,n) d) 3mVn P(m, n)
e) InVm P(m,n) f) vu P(1,n)

Find a domain for the quantifiers in IxIy(x £y A
Vz((z = x) Vv (z = y))) such that this statement is true.



23.

24.

25.

26.

217.

28.

29.

30.

31

32.

Find a domain for the quantifiers in IxIy(x #y A
Vz((z = x) Vv (z = y))) such that this statement is false.

Use existential and universal quantifiers to express the

statement “No one has more than three grandmothers” us-

ing the propositional function G (x, y), which represents

“x is the grandmother of y.”

Use existential and universal quantifiers to express the

statement “Everyone has exactly two biological parents”

using the propositional function P(x, y), which repre-

sents “x is the biological parent of y.”

The quantifier 3,, denotes “there exists exactly »,” so that

3,x P(x) means there exist exactly n values in the do-

main such that P (x) is true. Determine the true value of

these statements where the domain consists of all real

numbers.

a) Jox(x? = -1) b) 31x(lx| = 0)

c) Jx(x?=2) d) Jax(x = [x])

Express each of these statements using existential and

universal quantifiers and propositional logic where 3, is

defined in Exercise 26.

a) JoxP(x) b) J1xP(x)

C) FxP(x) d) J3xP(x)

Let P(x,y) be a propositional function. Show that

AxVy P(x,y) — Vy3x P(x, y) is a tautology.

Let P(x) and Q(x) be propositional functions. Show

that3x (P(x) — Q(x))andVx P(x) — 3x Q(x) always

have the same truth value.

If Vy3x P(x, y) is true, does it necessarily follow that

dx Vy P(x, y) is true?

If Vx 3y P(x, y) is true, does it necessarily follow that

Ix Vy P(x, y) is true?

Find the negations of these statements.

a) If it snows today, then I will go skiing tomorrow.

b) Every person in this class understands mathematical
induction.

c) Some students in this class do not like discrete math-
ematics.

d) In every mathematics class there is some student who
falls asleep during lectures.

Computer Projects

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44,

45.

46.
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Express this statement using quantifiers: “Every student
in this class has taken some course in every department
in the school of mathematical sciences.”

Express this statement using quantifiers: “There isabuild-
ing on the campus of some college in the United States in
which every room is painted white.”

Express the statement “There is exactly one student in this
class who has taken exactly one mathematics class at this
school” using the uniqueness quantifier. Then express this
statement using quantifiers, without using the uniqueness
quantifier.

Describe a rule of inference that can be used to prove that
there are exactly two elements x and y in a domain such
that P (x) and P (y) are true. Express this rule of inference
as a statement in English.

Use rules of inference to show that if the premises
Vx(P(x) = Q(x)), Vx(Q(x) — R(x)), and —R(a),
where a is in the domain, are true, then the conclusion
—P(a) is true.

Prove that if x2 is irrational, then x is irrational.

Prove that if x is irrational and x > 0, then /x is irra-
tional.

Prove that given a nonnegative integer n, there is a unique
nonnegative integer m such that m? < n < (m + 1)2.
Prove that there exists an integer m such that m? > 101900,
Is your proof constructive or nonconstructive?

Prove that there is a positive integer that can be written
as the sum of squares of positive integers in two differ-
ent ways. (Use a computer or calculator to speed up your
work.)

Disprove the statement that every positive integer is the
sum of the cubes of eight nonnegative integers.

Disprove the statement that every positive integer is the
sum of at most two squares and a cube of nonnegative
integers.

Disprove the statement that every positive integer is the
sum of 36 fifth powers of nonnegative integers.
Assuming the truth of the theorem that states that /n is
irrational whenever n is a positive integer that is not a
perfect square, prove that /2 + /3 is irrational.

Write programs with the specified input and output.

1.

*3.

Given the truth values of the propositions p and ¢, find the
truth values of the conjunction, disjunction, exclusive or,
conditional statement, and biconditional of these proposi-
tions.

. Given two bit strings of length #, find the bitwise AND,

bitwise OR, and bitwise XOR of these strings.

Give a compound proposition, determine whether it is sat-
isfiable by checking its truth value for all positive assign-
ments of truth values to its propositional variables.

4.

*5.

*6.

Given the truth values of the propositions p and g in
fuzzy logic, find the truth value of the disjunction and
the conjunction of p and ¢ (see Exercises 46 and 47 of
Section 1.1).

Given positive integers m and n, interactively play the game
of Chomp.

Given a portion of a checkerboard, look for tilings of this
checkerboard with various types of polyominoes, including
dominoes, the two types of triominoes, and larger polyomi-
noes.
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Computations and Explorations

Use a computational program or programs you have written to do these exercises.

. Look for positive integers that are not the sum of the cubes
of nine different positive integers.

. Look for positive integers greater than 79 that are not the
sum of the fourth powers of 18 positive integers.

. Find as many positive integers as you can that can be writ-
ten as the sum of cubes of positive integers, in two different
ways, sharing this property with 1729.

Writing Projects

*4,

5.

6.

Try to find winning strategies for the game of Chomp for
different initial configurations of cookies.

Construct the 12 different pentominoes, where a pentomino
is a polyomino consisting of five squares.

Find all the rectangles of 60 squares that can be tiled using
every one of the 12 different pentominoes.

Respond to these with essays using outside sources.

. Discuss logical paradoxes, including the paradox of Epi- 8. Discuss some of the techniques used in computational
menides the Cretan, Jourdain’s card paradox, and the bar- logic, including Skolem’s rule.
ber paradox, and how they are resolved. 9. “Automated theorem proving” is the task of using com-

. Describe how fuzzy logic is being applied to practical ap- puters to mechanically prove theorems. Discuss the goals
plications. Consult one or more of the recent books on and applications of automated theorem proving and the
fuzzy logic written for general audiences. progress made in developing automated theorem provers.

. Describe some qf_the practical problems that can be mod- 10. Describe how DNA computing has been used to solve
eled as satisfiability problems. _ instances of the satisfiability problem.

) gesg{r')b;ez%ﬂesgf\}:%Lt;%hknu'%‘i;szltgng\]/gu?iﬁz 32;";?2 11. Look up some of the incorrect proofs of famous open

questions and open questions that were solved since 1970
compL.Jter. . and describe the type of error made in each proof.

. Describe the basic rules of WFF’N PROOF, The Game of . . . L.
Modern Logic, developed by Layman Allen. Give exam- 12. Discuss what is known about winning strategies in the
ples of some of the games included in WFF’N PROOF. game of Chomp.

. Read some of the writings of Lewis Carroll on symbolic 13. Describe various aspects of proof strategy discussed by
logic. Describe in detail some of the models he used to George Pdlya in his writings on reasoning, including
represent logical arguments and the rules of inference he [Po62], [Po71], and [Po90].
used in these arguments. 14. Describe a few problems and results about tilings with

. Extend the discussion of Prolog given in Section 1.4, ex-
plaining in more depth how Prolog employs resolution.

polyominoes, as described in [G0o94] and [Ma91], for ex-
ample.
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2.1 Sets

Basic Structures: Sets, Functions,
Sequences, Sums, and Matrices

I\/I uch of discrete mathematics is devoted to the study of discrete structures, used to repre-
sent discrete objects. Many important discrete structures are built using sets, which are
collections of objects. Among the discrete structures built from sets are combinations, unordered
collections of objects used extensively in counting; relations, sets of ordered pairs that represent
relationships between objects; graphs, sets of vertices and edges that connect vertices; and finite
state machines, used to model computing machines. These are some of the topics we will study
in later chapters.

The concept of a function is extremely important in discrete mathematics. A function assigns
to each element of a first set exactly one element of a second set, where the two sets are not
necessarily distinct. Functions play important roles throughout discrete mathematics. They are
used to represent the computational complexity of algorithms, to study the size of sets, to count
objects, and in a myriad of other ways. Useful structures such as sequences and strings are
special types of functions. In this chapter, we will introduce the notion of a sequence, which
represents ordered lists of elements. Furthermore, we will introduce some important types of
sequences and we will show how to define the terms of a sequence using earlier terms. We will
also address the problem of identifying a sequence from its first few terms.

In our study of discrete mathematics, we will often add consecutive terms of a sequence of
numbers. Because adding terms from a sequence, as well as other indexed sets of numbers, is
such acommon occurrence, a special notation has been developed for adding such terms. In this
chapter, we will introduce the notation used to express summations. We will develop formulae
for certain types of summations that appear throughout the study of discrete mathematics. For
instance, we will encounter such summations in the analysis of the number of steps used by an
algorithm to sort a list of numbers so that its terms are in increasing order.

The relative sizes of infinite sets can be studied by introducing the notion of the size, or
cardinality, of a set. We say that a set is countable when it is finite or has the same size as the
set of positive integers. In this chapter we will establish the surprising result that the set of
rational numbers is countable, while the set of real numbers is not. We will also show how the
concepts we discuss can be used to show that there are functions that cannot be computed using
a computer program in any programming language.

Matrices are used in discrete mathematics to represent a variety of discrete structures. We
will review the basic material about matrices and matrix arithmetic needed to represent relations
and graphs. The matrix arithmetic we study will be used to solve a variety of problems involving
these structures.

Introduction

In this section, we study the fundamental discrete structure on which all other discrete structures
are built, namely, the set. Sets are used to group objects together. Often, but not always, the
objects in a set have similar properties. For instance, all the students who are currently enrolled
in your school make up a set. Likewise, all the students currently taking a course in discrete
mathematics at any school make up a set. In addition, those students enrolled in your school
who are taking a course in discrete mathematics form a set that can be obtained by taking the
elements common to the first two collections. The language of sets is a means to study such
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DEFINITION 1

EXAMPLE 1
EXAMPLE 2

EXAMPLE 3

EXAMPLE 4

Extra g
Examples <

Beware that mathe-
maticians disagree
whether 0 is a natural
number. We consider it
quite natural.

collections in an organized fashion. We now provide a definition of a set. This definition is an
intuitive definition, which is not part of a formal theory of sets.

A set is an unordered collection of objects, called elements or members of the set. A set is
said to contain its elements. We write a € A to denote that a is an element of the set A. The
notation a € A denotes that a is not an element of the set A.

It is common for sets to be denoted using uppercase letters. Lowercase letters are usually
used to denote elements of sets.

There are several ways to describe a set. One way is to list all the members of a set, when
this is possible. We use a notation where all members of the set are listed between braces. For
example, the notation {a, b, ¢, d} represents the set with the four elements a, b, ¢, and d. This
way of describing a set is known as the roster method.

The set V of all vowels in the English alphabet can be writtenas V = {a, ¢, i, 0, u}. |
The set O of odd positive integers less than 10 can be expressed by O = {1, 3,5, 7, 9}. |

Although sets are usually used to group together elements with common properties, there is
nothing that prevents a set from having seemingly unrelated elements. For instance, {a, 2, Fred,
New Jersey} is the set containing the four elements a, 2, Fred, and New Jersey. <

Sometimes the roster method is used to describe a set without listing all its members. Some
members of the set are listed, and then ellipses (.. .) are used when the general pattern of the
elements is obvious.

The set of positive integers less than 100 can be denoted by {1, 2, 3, ..., 99}. <

Another way to describe a set is to use set builder notation. We characterize all those
elements in the set by stating the property or properties they must have to be members. For
instance, the set O of all odd positive integers less than 10 can be written as

O = {x | x is an odd positive integer less than 10},
or, specifying the universe as the set of positive integers, as
O={xeZ" |xisodd and x < 10}.

We often use this type of notation to describe sets when it is impossible to list all the elements
of the set. For instance, the set Q™ of all positive rational numbers can be written as

Qf={xeR|x= 2., for some positive integers p and g}.

These sets, each denoted using a boldface letter, play an important role in discrete mathe-
matics:

N ={0,1,2,3,...}, the set of natural numbers
Z={...,—2,-1,0,1,2,...}, the set of integers

Zt ={1,2,3,...}, the set of positive integers

Q=1{p/qlpeZ qeZ andq # 0}, the set of rational numbers
R, the set of real numbers

R, the set of positive real numbers

C, the set of complex numbers.



EXAMPLE 5

DEFINITION 2

EXAMPLE 6

Links

2.1Sets 117

(Note that some people do not consider 0 a natural number, so be careful to check how the term
natural numbers is used when you read other books.)

Recall the notation for intervals of real numbers. When a and b are real numbers with
a < b, we write

la,b] ={x]a < x < b}
[a,b) ={x|a < x < b}
(a,b] ={x|a < x < b}

(a,b) ={x|a < x < b}

Note that [a, b] is called the closed interval from a to b and (a, b) is called the open interval
froma to b.
Sets can have other sets as members, as Example 5 illustrates.

The set {N, Z, Q, R} is a set containing four elements, each of which is a set. The four elements
of this set are N, the set of natural numbers; Z, the set of integers; Q, the set of rational numbers;
and R, the set of real numbers. <

Remark: Note that the concept of a datatype, or type, in computer science is built upon the
concept of a set. In particular, a datatype or type is the name of a set, together with a set of
operations that can be performed on objects from that set. For example, boolean is the name of
the set {0, 1} together with operators on one or more elements of this set, such as AND, OR,
and NOT.

Because many mathematical statements assert that two differently specified collections of
objects are really the same set, we need to understand what it means for two sets to be equal.

Two sets are equal if and only if they have the same elements. Therefore, if A and B are sets,
then A and B are equal if and only if Vx(x € A <> x € B). We write A = B if A and B are
equal sets.

The sets {1, 3,5} and {3, 5, 1} are equal, because they have the same elements. Note that the
order in which the elements of a set are listed does not matter. Note also that it does not matter
if an element of a set is listed more than once, so {1, 3, 3, 3,5, 5, 5, 5} is the same as the set
{1, 3, 5} because they have the same elements. <

GEORG CANTOR (1845-1918) Georg Cantor was born in St. Petersburg, Russia, where his father was a
successful merchant. Cantor developed his interest in mathematics in his teens. He began his university studies
in Zurich in 1862, but when his father died he left Zurich. He continued his university studies at the University
of Berlin in 1863, where he studied under the eminent mathematicians Weierstrass, Kummer, and Kronecker.
He received his doctor’s degree in 1867, after having written a dissertation on number theory. Cantor assumed
a position at the University of Halle in 1869, where he continued working until his death.

Cantor is considered the founder of set theory. His contributions in this area include the discovery that the
set of real numbers is uncountable. He is also noted for his many important contributions to analysis. Cantor
also was interested in philosophy and wrote papers relating his theory of sets with metaphysics.

Cantor married in 1874 and had five children. His melancholy temperament was balanced by his wife’s happy disposition.
Although he received a large inheritance from his father, he was poorly paid as a professor. To mitigate this, he tried to obtain a
better-paying position at the University of Berlin. His appointment there was blocked by Kronecker, who did not agree with Cantor’s
views on set theory. Cantor suffered from mental iliness throughout the later years of his life. He died in 1918 from a heart attack.
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THE EMPTY SET There is a special set that has no elements. This set is called the empty set,
or null set, and is denoted by (. The empty set can also be denoted by { } (that is, we represent
the empty set with a pair of braces that encloses all the elements in this set). Often, a set of
elements with certain properties turns out to be the null set. For instance, the set of all positive
integers that are greater than their squares is the null set.

A set with one element is called a singleton set. A common error is to confuse the empty
set ¢ with the set {##}, which is a singleton set. The single element of the set {#}} is the empty set
itself! A useful analogy for remembering this difference is to think of folders in a computer file
system. The empty set can be thought of as an empty folder and the set consisting of just the
empty set can be thought of as a folder with exactly one folder inside, namely, the empty folder.

NAIVE SET THEORY Note that the term object has been used in the definition of a set,
Definition 1, without specifying what an object is. This description of a set as a collection
of objects, based on the intuitive notion of an object, was first stated in 1895 by the German
mathematician Georg Cantor. The theory that results from this intuitive definition of a set, and
the use of the intuitive notion that for any property whatever, there is a set consisting of exactly
the objects with this property, leads to paradoxes, or logical inconsistencies. This was shown
by the English philosopher Bertrand Russell in 1902 (see Exercise 46 for a description of one of
these paradoxes). These logical inconsistencies can be avoided by building set theory beginning
with axioms. However, we will use Cantor’s original version of set theory, known as naive set
theory, in this book because all sets considered in this book can be treated consistently using
Cantor’s original theory. Students will find familiarity with naive set theory helpful if they go on
to learn about axiomatic set theory. They will also find the development of axiomatic set theory
much more abstract than the material in this text. We refer the interested reader to [Su72] to
learn more about axiomatic set theory.

Venn Diagrams

Sets can be represented graphically using Venn diagrams, named after the English mathemati-
cian John Venn, who introduced their use in 1881. In Venn diagrams the universal set U, which
contains all the objects under consideration, is represented by a rectangle. (Note that the uni-
versal set varies depending on which objects are of interest.) Inside this rectangle, circles or
other geometrical figures are used to represent sets. Sometimes points are used to represent the
particular elements of the set. \Vienn diagrams are often used to indicate the relationships between
sets. We show how a Venn diagram can be used in Example 7.

Draw a Venn diagram that represents V, the set of vowels in the English alphabet.

Solution: We draw a rectangle to indicate the universal set U, which is the set of the 26 letters
of the English alphabet. Inside this rectangle we draw a circle to represent V. Inside this circle
we indicate the elements of V with points (see Figure 1). <

FIGURE 1 Venn Diagram for the Set of Vowels.
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Subsets

It is common to encounter situations where the elements of one set are also the elements of
a second set. We now introduce some terminology and notation to express such relationships
between sets.

The set A is a subset of B if and only if every element of A is also an element of B. We use
the notation A € B to indicate that A is a subset of the set B.

We see that A C B if and only if the quantification
Vx(x € A —> x € B)

is true. Note that to show that A is not a subset of B we need only find one element x € A with
x ¢ B. Such an x is a counterexample to the claim that x € A implies x € B.
We have these useful rules for determining whether one set is a subset of another:

Showing that A is a Subset of B To show that A C B, show that if x belongs to A then x
also belongs to B.

Showing that A is Not a Subset of B To show that A Z B, find a single x € A such that
x & B.

The set of all odd positive integers less than 10 is a subset of the set of all positive integers less
than 10, the set of rational numbers is a subset of the set of real numbers, the set of all computer
science majors at your school is a subset of the set of all students at your school, and the set of
all people in China is a subset of the set of all people in China (that is, it is a subset of itself).
Each of these facts follows immediately by noting that an element that belongs to the first set
in each pair of sets also belongs to the second set in that pair. <

The set of integers with squares less than 100 is not a subset of the set of nonnegative integers
because —1 is in the former set [as (—1)? < 100], but not the later set. The set of people who
have taken discrete mathematics at your school is not a subset of the set of all computer science
majors at your school if there is at least one student who has taken discrete mathematics who is
not a computer science major. <

BERTRAND RUSSELL (1872-1970) Bertrand Russell was born into a prominent English family active in
the progressive movement and having a strong commitment to liberty. He became an orphan at an early age
and was placed in the care of his father’s parents, who had him educated at home. He entered Trinity College,
Cambridge, in 1890, where he excelled in mathematics and in moral science. He won a fellowship on the basis
of his work on the foundations of geometry. In 1910 Trinity College appointed him to a lectureship in logic and
the philosophy of mathematics.

Russell fought for progressive causes throughout his life. He held strong pacifist views, and his protests
against World War | led to dismissal from his position at Trinity College. He was imprisoned for 6 months in
1918 because of an article he wrote that was branded as seditious. Russell fought for women’s suffrage in Great

Britain. In 1961, at the age of 89, he was imprisoned for the second time for his protests advocating nuclear disarmament.

Russell’s greatest work was in his development of principles that could be used as a foundation for all of mathematics. His
most famous work is Principia Mathematica, written with Alfred North Whitehead, which attempts to deduce all of mathematics
using a set of primitive axioms. He wrote many books on philosophy, physics, and his political ideas. Russell won the Nobel Prize
for literature in 1950.
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FIGURE 2 Venn Diagram Showing that A Is a Subset of B.

Theorem 1 shows that every nonempty set S is guaranteed to have at least two subsets, the
empty set and the set S itself, thatis, ¥ C Sand S C S.

ForeverysetS,(i)d < S and (ii)S CS.

Proof: We will prove (i) and leave the proof of (ii ) as an exercise.

Let S be a set. To show that ¥ C S, we must show that Vx (x € § — x € §) is true. Because
the empty set contains no elements, it follows that x € ¢ is always false. It follows that the
conditional statement x € # — x € S is always true, because its hypothesis is always false and
a conditional statement with a false hypothesis is true. Therefore, Vx(x € @ — x € S) is true.
This completes the proof of (). Note that this is an example of a vacuous proof. <

When we wish to emphasize that a set A is a subset of a set B but that A # B, we write
A C B and say that A is a proper subset of B. For A C Bto be true, it must be the case that
A C B and there must exist an element x of B that is not an element of A. That is, A is a proper
subset of B if and only if

VixeA—>xeB)AIx(xe BAx & A)

is true. Venn diagrams can be used to illustrate that a set A is a subset of a set B. We draw the
universal set U as a rectangle. Within this rectangle we draw a circle for B. Because A is a subset
of B, we draw the circle for A within the circle for B. This relationship is shown in Figure 2.
A useful way to show that two sets have the same elements is to show that each set is a
subset of the other. In other words, we can show that if A and B are setswith A € Band B C A,
then A = B. Thatis, A = Bifand only if Vx(x e A > x € B) and Vx(x € B— x € A) or
equivalently if and only if Vx(x € A <> x € B), which is what it means for the A and B to be
equal. Because this method of showing two sets are equal is so useful, we highlight it here.

JOHN VENN (1834-1923) John Venn was born into a London suburban family noted for its philanthropy.
He attended London schools and got his mathematics degree from Caius College, Cambridge, in 1857. He was
elected a fellow of this college and held his fellowship there until his death. He took holy orders in 1859 and,
after a brief stint of religious work, returned to Cambridge, where he developed programs in the moral sciences.
Besides his mathematical work, Venn had an interest in history and wrote extensively about his college and
family.

Venn’s book Symbolic Logic clarifies ideas originally presented by Boole. In this book, Venn presents a
systematic development of a method that uses geometric figures, known now as Venn diagrams. Today these
diagrams are primarily used to analyze logical arguments and to illustrate relationships between sets. In addition

to his work on symbolic logic, Venn made contributions to probability theory described in his widely used textbook on that subject.
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Showing Two Sets are Equal To show that two sets A and B are equal, show that A € B
and B C A.

Sets may have other sets as members. For instance, we have the sets
A = {0, {a}, {b}, {a, b}} and B = {x | x is a subset of the set {a, b}}.

Note that these two sets are equal, that is, A = B. Also note that {a} € A, buta ¢ A.

The Size of a Set

Sets are used extensively in counting problems, and for such applications we need to discuss
the sizes of sets.

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer,
we say that S is a finite set and that » is the cardinality of S. The cardinality of S is denoted
by |S].

Remark: The term cardinality comes from the common usage of the term cardinal number as
the size of a finite set.

Let A be the set of odd positive integers less than 10. Then |A| = 5. <
Let S be the set of letters in the English alphabet. Then |S| = 26. <
Because the null set has no elements, it follows that |#| = 0. <

We will also be interested in sets that are not finite.
A set is said to be infiniteif it is not finite.

The set of positive integers is infinite. <

We will extend the notion of cardinality to infinite sets in Section 2.5, a challenging topic
full of surprising results.

Power Sets

Many problems involve testing all combinations of elements of a set to see if they satisfy some
property. To consider all such combinations of elements of a set S, we build a new set that has
as its members all the subsets of S.

Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is
denoted by P(S).
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What is the power set of the set {0, 1, 2}?

Solution: The power set P ({0, 1, 2}) is the set of all subsets of {0, 1, 2}. Hence,
P(0,1,2}h) = {0, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.

Note that the empty set and the set itself are members of this set of subsets. <

What is the power set of the empty set? What is the power set of the set {¢}}?

Solution: The empty set has exactly one subset, namely, itself. Consequently,
P@) = {9}.
The set {#J} has exactly two subsets, namely, ¢ and the set {¢} itself. Therefore,

P = (9. 19). b

If a set has n elements, then its power set has 2" elements. We will demonstrate this fact in
several ways in subsequent sections of the text.

Cartesian Products

The order of elements in a collection is often important. Because sets are unordered, a different
structure is needed to represent ordered collections. This is provided by ordered n-tuples.

The ordered n-tuple (az, az, . . ., ay,) is the ordered collection that has a; as its first element,
ap as its second element, . . ., and a,, as its nth element.

We say that two ordered n-tuples are equal if and only if each corresponding pair of their
elements is equal. In other words, (a1, a2, ..., a,) = (b1, ba, ..., by,) if and only if a; = b;,
fori =1,2,...,n. Inparticular, ordered 2-tuples are called ordered pairs. The ordered pairs
(a, b) and (c, d) are equal if and only if « = ¢ and b = d. Note that (a, ) and (b, a) are not
equal unless a = b.

RENE DESCARTES (1596-1650) René Descartes was born into a noble family near Tours, France, about
200 miles southwest of Paris. He was the third child of his father’s first wife; she died several days after his
birth. Because of René’s poor health, his father, a provincial judge, let his son’s formal lessons slide until, at
the age of 8, René entered the Jesuit college at La Fléeche. The rector of the school took a liking to him and
permitted him to stay in bed until late in the morning because of his frail health. From then on, Descartes spent
his mornings in bed; he considered these times his most productive hours for thinking.

Descartes left school in 1612, moving to Paris, where he spent 2 years studying mathematics. He earned
a law degree in 1616 from the University of Poitiers. At 18 Descartes became disgusted with studying and
decided to see the world. He moved to Paris and became a successful gambler. However, he grew tired

of bawdy living and moved to the suburb of Saint-Germain, where he devoted himself to mathematical study. When his gambling
friends found him, he decided to leave France and undertake a military career. However, he never did any fighting. One day, while
escaping the cold in an overheated room at a military encampment, he had several feverish dreams, which revealed his future career
as a mathematician and philosopher.

After ending his military career, he traveled throughout Europe. He then spent several years in Paris, where he studied mathemat-
ics and philosophy and constructed optical instruments. Descartes decided to move to Holland, where he spent 20 years wandering
around the country, accomplishing his most important work. During this time he wrote several books, including the Discours, which
contains his contributions to analytic geometry, for which he is best known. He also made fundamental contributions to philosophy.

In 1649 Descartes was invited by Queen Christina to visit her court in Sweden to tutor her in philosophy. Although he was
reluctant to live in what he called “the land of bears amongst rocks and ice,” he finally accepted the invitation and moved to Sweden.
Unfortunately, the winter of 1649-1650 was extremely bitter. Descartes caught pneumonia and died in mid-February.
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Many of the discrete structures we will study in later chapters are based on the notion of the
Cartesian product of sets (named after René Descartes). We first define the Cartesian product
of two sets.

Let A and B be sets. The Cartesian product of A and B, denoted by A x B, is the set of all
ordered pairs (a, b), where a € A and b € B. Hence,

Ax B={(a,b)|aec AADbe B}

Let A represent the set of all students at a university, and let B represent the set of all courses
offered at the university. What is the Cartesian product A x B and how can it be used?

Solution: The Cartesian product A x B consists of all the ordered pairs of the form (a, b), where

a is a student at the university and b is a course offered at the university. One way to use the set
A x B is to represent all possible enrollments of students in courses at the university. <

What is the Cartesian product of A = {1, 2} and B = {a, b, ¢}?

Solution: The Cartesian product A x B is

Ax B={l,a),1,b),1,0),(2,a),(2,b), (2, c)}. <

Note that the Cartesian products A x B and B x A are not equal, unless A = or B =
(sothat A x B = () or A = B (see Exercises 31 and 38). This is illustrated in Example 18.

Show that the Cartesian product B x A is not equal to the Cartesian product A x B, where A
and B are as in Example 17.

Solution: The Cartesian product B x A is
B xA={(a,1),(a,2),®1),®,2),(c1),(c2)}
This is not equal to A x B, which was found in Example 17. <

The Cartesian product of more than two sets can also be defined.

The Cartesian product of the sets A1, Aa, ..., A,, denoted by A3 x As x --- x A, is the
set of ordered n-tuples (a1, az, ..., a,), where a; belongsto A; fori =1,2, ..., n. In other
words,

Al x A x -+ x A, ={(ar,az,...,a,) |a; € A; fori =1,2,...,n}.
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EXAMPLE 19 What is the Cartesian product A x B x C,where A ={0,1}, B={1,2},and C = {0, 1,2}?

EXAMPLE 20

EXAMPLE 21
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Solution: The Cartesian product A x B x C consists of all ordered triples (a, b, ¢), wherea € A,
b € B,and ¢ € C. Hence,

Ax BxC={(0,1,0),(0,1,1),(0,1,2),(0,2,0), (0, 2,1), (0, 2, 2),
1,1,0,(1,1,1),(1,1,2),(1,2,0), (1,2,1), (1, 2, 2)}. <

Remark: Note that when A, B, and C are sets, (A x B) x C isnotthesameas A x B x C (see
Exercise 39).

We use the notation A2 to denote A x A, the Cartesian product of the set A with itself.
Similarly, A = A x A x A, A* = A x A x A x A, and s0 on. More generally,

A" ={(ar,az,...,a,) |a; € Afori =1,2,... nl.

Suppose that A = {1,2}. It follows that A% ={(1,1),(1,2),(2,1),(2,2)} and A% =
(1,1,1),(1,1,2),(1,2,1), (1,2,2),(2,1,1), (2, 1,2), (2,2, 1), (2,2, 2)}. <

A subset R of the Cartesian product A x B is called a relation from the set A to the set
B. The elements of R are ordered pairs, where the first element belongs to A and the second
to B. For example, R = {(a, 0), (a, 1), (a, 3), (b, 1), (b, 2), (¢, 0), (c, 3)} isarelation from the
set {a, b, c} to the set {0, 1, 2, 3}. A relation from a set A to itself is called a relation on A.

What are the ordered pairs in the less than or equal to relation, which contains (a, b) if a < b,
on the set {0, 1, 2, 3}?

Solution: The ordered pair (a, b) belongs to R if and only if both ¢ and 4 belong to {0, 1, 2, 3}
and a < b. Consequently, the ordered pairs in R are (0,0), (0,1), (0,2), (0,3), (1,1), (1,2), (1, 3)
(2,2), (2, 3), and (3, 3).

We will study relations and their properties at length in Chapter 9.

Using Set Notation with Quantifiers

Sometimes we restrict the domain of a quantified statement explicitly by making use of a
particular notation. For example, Vxe S(P(x)) denotes the universal quantification of P(x)
over all elements in the set S. In other words, Vxe S(P(x)) is shorthand forVx(x € § — P(x)).
Similarly, 3xe S(P(x)) denotes the existential quantification of P (x) over all elements in S.
That is, 3xe S(P(x)) is shorthand for 3x(x € S A P(x)).

What do the statements Vxe R (x2 > 0) and Ixe Z (x2 = 1) mean?

Solution: The statement Vxe R(x2 > 0) states that for every real number x, x? > 0. This state-
ment can be expressed as “The square of every real number is nonnegative.” This is a true
statement.

The statement 3xe Z(x2 = 1) states that there exists an integer x such that x2 = 1. This
statement can be expressed as “There is an integer whose square is 1.” This is also a true statement
because x = 1 is such an integer (as is —1). <
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Truth Sets and Quantifiers

We will now tie together concepts from set theory and from predicate logic. Given a predicate
P, and a domain D, we define the truth set of P to be the set of elements x in D for which
P(x) is true. The truth set of P(x) is denoted by {x € D | P(x)}.

What are the truth sets of the predicates P(x), Q(x), and R(x), where the domain is the set of
integers and P (x) is “|x| = 1,” Q(x) is “x2 = 2,” and R(x) is “|x| = x.”

Solution: The truth set of P, {x € Z | |x| = 1}, is the set of integers for which |x| = 1. Because
|x] = Lwhenx = 1 or x = —1, and for no other integers x, we see that the truth set of P is the

set {—1, 1}.

The truth set of Q, {x € Z | x2 = 2}, is the set of integers for which x2 = 2. This is the
empty set because there are no integers x for which x? = 2.

The truth set of R, {x € Z | |x| = x}, is the set of integers for which |x| = x. Because
|x] = x if and only if x > 0, it follows that the truth set of R is N, the set of nonnegative

integers.

<

Note that Vx P (x) is true over the domain U if and only if the truth set of P is the set U.
Likewise, 3x P (x) is true over the domain U if and only if the truth set of P is nonempty.

Exercises

1. List the members of these sets.

a) {x | x is a real number such that x2 = 1}

b) {x | x is a positive integer less than 12}

c) {x | x isthe square of an integer and x < 100}

d) {x | x is an integer such that x2 = 2}

. Use set builder notation to give a description of each of
these sets.

a) {0,3,6,9,12}

b) {-3,-2,-1,0,1,2,3}

c) {m,n,o,p}

. For each of these pairs of sets, determine whether the first

is a subset of the second, the second is a subset of the first,
or neither is a subset of the other.

a) {1,3,3,3,5,5,5,5,5},{5,3,1}
b) {{1}}, {1, {1}} c) 4. {9}

. Suppose that A = {2, 4,6}, B = {2, 6}, C = {4, 6}, and

D = {4, 6, 8}. Determine which of these sets are subsets
of which other of these sets.

. For each of the following sets, determine whether 2 is an

element of that set.

a) {x € R|x isan integer greater than 1}
b) {x € R|x is the square of an integer}
¢) {2,{2}} d) {{2}.{{2}1}}
e) {{2h{2.{2}}} f) {{2}y

. For each of the sets in Exercise 7, determine whether {2}

is an element of that set.

. Determine whether each of these statements is true or

a) the set of airline flights from New York to New Delhi, false.
the set of nonstop airline flights from New York to a) 0ed b) ¥ € {0}
New Delhi c) {0} c @ d) 9 c {0}
b) the set of people who speak English, the set of people e) {0} € {0} f) {0} c {0}
who speak Chinese g) {4} c {9}

c) the set of flying squirrels, the set of living creatures 10. Determine whether these statements are true or false.

that can fly a) ¥ e {0 b) ¥ e {9, {9}}
. For each of these pairs of sets, determine whether the first c) {7} e (¥) d) {9} € ({91}

is a subset of the second, the second is a subset of the first, e) {0} c {9, (%)) f) ({9} C {9, {9}}

or neither is a subset of the other. 9) {{(9)} c {{9}, (9}

a) the set of people who speak English, the set of people 11. Determine whether each of these statements is true or
who speak English with an Australian accent false.

b) the set of fruits, the set of citrus fruits a) x e {x} b) {x} C {x} c) {x}e{x}

c) the set of students studying discrete mathematics, the d {x}e{{x}}] e O {x} f) 8 e{x}
set of students studying data structures 12. Use aVenn diagram to illustrate the subset of odd integers

5. Determine whether each of these pairs of sets are equal.

in the set of all positive integers not exceeding 10.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.
26.
217.

28.

29.

30.

31.
32.

Use a Venn diagram to illustrate the set of all months of
the year whose names do not contain the letter R in the
set of all months of the year.

Use a Venn diagram to illustrate the relationship A C B
and B C C.

Use a Venn diagram to illustrate the relationships A ¢ B
and B C C.

Use a Venn diagram to illustrate the relationships A ¢ B
and A C C.

Suppose that A, B, and C are sets such that A € B and
B C C.Showthat A C C.

Find two sets A and B suchthat A € Band A C B.
What is the cardinality of each of these sets?

a) {a} b) {{a}}

) {a,{a}} d) {a,{a}, {a, {a}}}

What is the cardinality of each of these sets?

a) o b) {7}

c) {4, {9}} d) {9, {9}, (4, {9}}}

Find the power set of each of these sets, where a and b
are distinct elements.

a) {a} b) {a, b} c) {9, (v}

Can you conclude that A = B if A and B are two sets
with the same power set?

How many elements does each of these sets have where
a and b are distinct elements?

a) P({a, b, {a, b}})

b) P4, a, {a}, {{a}}})

c) P(P®))

Determine whether each of these sets is the power set of
a set, where a and b are distinct elements.

a) o b) {9, {a})

) {4, {a}, {9, a}} d) {9, {a}, {b}, {a, b}}
Prove that P(A) € P(B) ifand only if A C B.

Show thatif AC Cand B < D,thenAx B C C x D
Let A ={a,b,c,d}and B = {y, z}. Find

a) A x B. b) B x A.

What is the Cartesian product A x B, where A is the set
of courses offered by the mathematics department at a
university and B is the set of mathematics professors at
this university? Give an example of how this Cartesian
product can be used.

What is the Cartesian product A x B x C, where A is
the set of all airlines and B and C are both the set of all
cities in the United States? Give an example of how this
Cartesian product can be used.

Suppose that A x B = ¢, where A and B are sets. What
can you conclude?

Let A beaset. Showthatd x A=A x ¥ = 0.

Let A ={a, b, c}, B={x, y},and C = {0, 1}. Find

a) Ax BxC. b) C x B x A.

c) C x Ax B. d) B x B x B.

33.

34.

35.

36.

3r.

38.

39.

40.

41.

42.

43.

44.

#45,

46

*47.

Find A? if

a) A=1{0,1,3}. b) A ={1,2,a,b}

Find A3 if

a) A={a}. b) A ={0,a}.

How many different elements does A x B have if A has

m elements and B has n elements?

How many different elements does A x B x C have if A
has m elements, B has n elements, and C has p elements?

How many different elements does A" have when A has

m elements and » is a positive integer?

Showthat A x B # B x A,when A and B are nonempty,

unless A = B.

Explain why A x B x C and (A x B) x C are not the

same.

Explain why (A x B) x (C x D) and A x (B x C) x

D are not the same.

Translate each of these quantifications into English and

determine its truth value.

a) VxeR (x%2 # —1) b) IxeZ x2 =2)

c) VxeZ (x2 > 0) d) 3xeR (x2 =x)

Translate each of these quantifications into English and

determine its truth value.

a) IxeR (x3 = -1) b) IxeZ(x+1>x)

C) VxeZ(x —1€2) d) VxeZ (x2 € 2)

Find the truth set of each of these predicates where the

domain is the set of integers.

a) P(x):x%<3

€) Rx):2x+1=0

Find the truth set of each of these predicates where the

domain is the set of integers.

a) P(x):x3>1

c) R(x):x < x?

The defining property of an ordered pair is that two or-

dered pairs are equal if and only if their first elements

are equal and their second elements are equal. Surpris-

ingly, instead of taking the ordered pair as a primitive con-

cept, we can construct ordered pairs using basic notions

from set theory. Show that if we define the ordered pair

(a, b) to be {{a}, {a, b}}, then (a, b) = (¢, d) if and only

ifa = candb = d. [Hint: Firstshowthat {{a}, {a, b}} =

{{c}, {c,d}} ifandonlyifa =cand b = d.]

This exercise presents Russell’s paradox. Let S be the

set that contains a set x if the set x does not belong to

itself, sothat S = {x | x ¢ x}.

a) Show the assumption that S is a member of S leads to
a contradiction.

b) Show the assumption that S is nota member of S leads
to a contradiction.

By parts (a) and (b) it follows that the set S cannot be de-

fined as it was. This paradox can be avoided by restricting

the types of elements that sets can have.

Describe a procedure for listing all the subsets of a finite

set.

b) Q) x%>x

b) Ox):x2=2
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Set Operations

Links

DEFINITION 1

EXAMPLE 1

EXAMPLE 2

DEFINITION 2

Introduction

Two, or more, sets can be combined in many different ways. For instance, starting with the set
of mathematics majors at your school and the set of computer science majors at your school, we
can form the set of students who are mathematics majors or computer science majors, the set of
students who are joint majors in mathematics and computer science, the set of all students not
majoring in mathematics, and so on.

Let A and B be sets. The union of the sets A and B, denoted by A U B, is the set that contains
those elements that are either in A or in B, or in both.

An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs
to B. This tells us that

AUB={x|xe€ AVxeB}.

The Venn diagram shown in Figure 1 represents the union of two sets A and B. The area
that represents A U B is the shaded area within either the circle representing A or the circle
representing B.

We will give some examples of the union of sets.

The union of the sets {1,3,5} and {1,2,3} is the set {1,2,3,5}; that is,
{1,3,5}U{1,2,3} ={1,2,3,5}. <

The union of the set of all computer science majors at your school and the set of all mathe-
matics majors at your school is the set of students at your school who are majoring either in
mathematics or in computer science (or in both).

Let A and B be sets. The intersection of the sets A and B, denoted by A N B, is the set
containing those elements in both A and B.

An element x belongs to the intersection of the sets A and B if and only if x belongs to A and
x belongs to B. This tells us that

ANB={x|x€eAAx € B}.

A U Biis shaded. A N Bis shaded.

FIGURE 1 Venn Diagram of the FIGURE 2 Venn Diagram of the
Union of A and B. Intersection of A and B.
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EXAMPLE 3

EXAMPLE 4

DEFINITION 3

EXAMPLE 5

Be careful not to
overcount!

DEFINITION 4

EXAMPLE 6

EXAMPLE 7

The Venn diagram shown in Figure 2 represents the intersection of two sets A and B. The shaded
area that is within both the circles representing the sets A and B is the area that represents the
intersection of A and B.

We give some examples of the intersection of sets.

The intersection of the sets {1,3,5} and {1,2,3} is the set {1,3}; that is,
{1,3,5)n{1,2,3} = {1, 3}. <

The intersection of the set of all computer science majors at your school and the set of all
mathematics majors is the set of all students who are joint majors in mathematics and computer
science. <

Two sets are called digjoint if their intersection is the empty set.

Let A=1{1,3,5,7,9}and B = {2,4,6,8,10}. Because AN B = @, A and B are disjoint. <

We are often interested in finding the cardinality of a union of two finite sets A and B. Note
that |A| + | B| counts each element that is in A but not in B or in B but not in A exactly once,
and each element that is in both A and B exactly twice. Thus, if the number of elements that
are in both A and B is subtracted from |A| + | B], elements in A N B will be counted only once.
Hence,

|AUB| = |A|+ |B| — |AN B

The generalization of this result to unions of an arbitrary number of sets is called the principle
of inclusion—exclusion. The principle of inclusion—exclusion is an important technique used in
enumeration. We will discuss this principle and other counting techniques in detail in Chapters 6
and 8.

There are other important ways to combine sets.

Let A and B be sets. The differenceof A and B, denoted by A — B, is the set containing those
elements that are in A but not in B. The difference of A and B is also called the complement
of B with respect to A.

Remark: The difference of sets A and B is sometimes denoted by A\ B.

An element x belongs to the difference of A and B ifand only if x € A and x ¢ B. Thistells us
that

A—B={x|xeAAx ¢ B}.

The Venn diagram shown in Figure 3 represents the difference of the sets A and B. The shaded
area inside the circle that represents A and outside the circle that represents B is the area that
represents A — B.

We give some examples of differences of sets.

The difference of {1, 3,5} and {1, 2, 3} is the set {5}; that is, {1, 3, 5} — {1, 2, 3} = {5}. This
is different from the difference of {1, 2, 3} and {1, 3, 5}, which is the set {2}. <

The difference of the set of computer science majors at your school and the set of mathematics
majors at your school is the set of all computer science majors at your school who are not also
mathematics majors. <



DEFINITION 5

EXAMPLE 8

EXAMPLE 9

Set identities and
propositional
equivalences are just
special cases of identities
for Boolean algebra.

2.2 Set Operations 129

u u
A-B s shaded. Ais shaded.
FIGURE 3 Venn Diagram for FIGURE 4 Venn Diagram for
the Difference of A and B. the Complement of the Set A.

Once the universal set U has been specified, the complement of a set can be defined.

Let U be the universal set. The complement of the set A, denoted by A, is the complement
of A with respect to U. Therefore, the complement of the set A isU — A.

An element belongs to A if and only if x ¢ A. This tells us that
A={xeU]|x¢A).

In Figure 4 the shaded area outside the circle representing A is the area representing A.
We give some examples of the complement of a set.

Let A = {a, e, i, 0, u} (where the universal set is the set of letters of the English alphabet). Then
A={b,c,d, f, g h,j k,l,m,n,p,q,rs,t,V,Wx,y,z} <

Let A be the set of positive integers greater than 10 (with universal set the set of all positive
integers). Then A = {1, 2,3,4,5,6, 7,8, 9, 10}. <

It is left to the reader (Exercise 19) to show that we can express the difference of A and B
as the intersection of A and the complement of B. That is,

A—B=ANB.

Set Identities

Table 1 lists the most important set identities. We will prove several of these identities here,
using three different methods. These methods are presented to illustrate that there are often many
different approaches to the solution of a problem. The proofs of the remaining identities will
be left as exercises. The reader should note the similarity between these set identities and the
logical equivalences discussed in Section 1.3. (Compare Table 6 of Section 1.6 and Table 1.) In
fact, the set identities given can be proved directly from the corresponding logical equivalences.
Furthermore, both are special cases of identities that hold for Boolean algebra (discussed in
Chapter 12).

One way to show that two sets are equal is to show that each is a subset of the other. Recall
that to show that one set is a subset of a second set, we can show that if an element belongs to
the first set, then it must also belong to the second set. We generally use a direct proof to do this.
We illustrate this type of proof by establishing the first of De Morgan’s laws.
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EXAMPLE 10

This identity says that
the complement of the
intersection of two sets
is the union of their
complements.

Extra g2
Examples <

TABLE 1 Set Identities.

Identity Name

ANU=A Identity laws
AUP=A

AUU =U Domination laws
ANP=0

AUA=A Idempotent laws
ANA=A

(zT)z A Complementation law
AUB=BUA Commutative laws
ANB=BNA

AU(BUC)=(AUB)UC Associative laws

ANBNC)=(ANB)NC

AUBNC)=(AUB)N(AUC) Distributive laws
AN(BUC)=(ANB)U(ANC)

ANB=AUB De Morgan’s laws
AUB=ANB

AUANB)=A Absorption laws
AN(AUB) = A

AUA=U Complement laws
ANA=0

Provethat AN B = A U B.

Solution: We will prove that the two sets A N B and A U B are equal by showing that each set
is a subset of the other.

First, we will show that A N B € A U B. We do this by showing that if x isin A N B, then it
must also be in A U B. Now suppose that x € A N B. By the definition of complement, x & A N
B. Using the definition of intersection, we see that the proposition —=((x € A) A (x € B)) istrue.

By applying De Morgan’s law for propositions, we see that —(x € A) or =(x € B). Using
the definition of negation of propositions, we have x ¢ A or x ¢ B. Using the definition of
the complement of a set, we see that this implies that x € A or x € B. Consequently, by the
definition of union, we see that x € A U B. We have now shown that AN B € A U B.

Next, we will show that A U B € A N B. We do this by showing that if x isin A U B, then
it must also be in A N B. Now suppose that x € A U B. By the definition of union, we know that
x € Aorx e B.Using the definition of complement, we see that x ¢ A orx ¢ B. Consequently,
the proposition —(x € A) Vv —(x € B) is true.

By De Morgan’s law for propositions, we conclude that —((x € A) A (x € B)) is true.
By the definition of intersection, it follows that —=(x € A N B). We now use the definition of
complement to conclude that x € A N B. This shows that AU B € A N B.

Because we have shown that each set is a subset of the other, the two sets are equal, and the
identity is proved. <

We can more succinctly express the reasoning used in Example 10 using set builder notation,
as Example 11 illustrates.



EXAMPLE 11

EXAMPLE 12

EXAMPLE 13
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Use set builder notation and logical equivalences to establish the first De Morgan law A N B =
AU B.

Solution: We can prove this identity with the following steps.

ANB={x|x¢ ANB)} by definition of complement
={x|-(xe(ANB))} by definition of does not belong symbol
={x|—-(x € AAx € B)} by definition of intersection
={x|—(x € A) v —(x € B)} by the first De Morgan law for logical equivalences
={x|x¢AVx¢B)} by definition of does not belong symbol
={x|xeAVvxeB)} by definition of complement
={x|xeAUB) by definition of union
=AUB by meaning of set builder notation

Note that besides the definitions of complement, union, set membership, and set builder
notation, this proof uses the second De Morgan law for logical equivalences. <

Proving a set identity involving more than two sets by showing each side of the identity is
a subset of the other often requires that we keep track of different cases, as illustrated by the
proof in Example 12 of one of the distributive laws for sets.

Prove the second distributive law from Table 1, which states that AN (BUC) = (AN B) U
(ANC)forall sets A, B, and C.

Solution: We will prove this identity by showing that each side is a subset of the other side.

Suppose thatx € AN (BUC). Thenx € A and x € B U C. By the definition of union, it
follows that x € A, and x € B or x € C (or both). In other words, we know that the compound
proposition (x € A) A ((x € B) v (x € C)) istrue. By the distributive law for conjunction over
disjunction, it followsthat ((x € A) A (x € B)) vV ((x € A) A (x € C)).We conclude that either
x € Aandx € B,orx € Aandx € C.Bythedefinition of intersection, it followsthatx € AN B
or x € AN C. Using the definition of union, we conclude that x € (AN B) U (AN C). We
concludethat AN (BUC) C(ANB)U(ANCQC).

Now suppose that x € (A N B) U (A N C). Then, by the definition of union,x € AN B or
x € AN C. By the definition of intersection, it follows that x € A and x € B orthat x € A and
x € C. From this we see that x € A, and x € B or x € C. Consequently, by the definition of
unionweseethatx € Aandx € B U C. Furthermore, by the definition of intersection, it follows
that x € AN (B U C). We conclude that (AN B) U(ANC) € AN (B UC). This completes
the proof of the identity. <

Set identities can also be proved using membership tables. We consider each combination
of sets that an element can belong to and verify that elements in the same combinations of sets
belong to both the sets in the identity. To indicate that an element is in a set, a 1 is used; to
indicate that an element is not in a set, a 0 is used. (The reader should note the similarity between
membership tables and truth tables.)

Use a membership table to show that AN (BUC) = (AN B)U(ANC).
Solution: The membership table for these combinations of sets is shown in Table 2. This table

has eight rows. Because the columns for AN (B U C) and (A N B) U (A N C) are the same, the
identity is valid. <

Additional setidentities can be established using those that we have already proved. Consider
Example 14.
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TABLE 2 A Membership Table for the Distributive Property.
A B C BUC AN(BUCQC) ANB ANC (ANB)UANC)
1 1 1 1 1 1 1 1
1 1 0 1 1 1 0 1
1 0 1 1 1 0 1 1
1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0

EXAMPLE 14 Let A, B, and C be sets. Show that

AU(BNC)=(CUB)NA.

Solution: We have

AUMBNC)=AN(BNO)
=AN(BUC)
=(BUC)NA
=(CUBNA

by the first De Morgan law
by the second De Morgan law
by the commutative law for intersections

by the commutative law for unions.

Generalized Unions and Intersections

Because unions and intersections of sets satisfy associative laws, the sets AU B U C and
AN BNC are well defined; that is, the meaning of this notation is unambiguous when A,
B, and C are sets. That is, we do not have to use parentheses to indicate which operation
comes first because AU(BUC)=(AUB)UCand AN(BNC)= (AN B)NC. Note that
A U B U C contains those elements that are in at least one of the sets A, B, and C, and that
A N BN C contains those elements that are in all of A, B, and C. These combinations of the
three sets, A, B, and C, are shown in Figure 5.

s
&

§
5a

(&) AU B U Cis shaded.

(b) ANB NCis shaded.

FIGURE5 The Union and Intersection of A, B, and C.




EXAMPLE 15

DEFINITION 6

DEFINITION 7

EXAMPLE 16
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Let A=1{0,2,4,6,8}, B=1{0,1,2,3,4}, and C ={0,3,6,9}. What are AUBUC and
ANBNC?

Solution: The set A U B U C contains those elements in at least one of A, B, and C. Hence,
AUBUC=1{0,1,2,3,4,6,8,9}.

The set A N B N C contains those elements in all three of A, B, and C. Thus,
ANBNC ={0}. <

We can also consider unions and intersections of an arbitrary number of sets. We introduce
these definitions.

The union of a collection of sets is the set that contains those elements that are members of
at least one set in the collection.

We use the notation
AtUA U UA, =4

to denote the union of the sets A1, Ao, ..., A,,.

The intersection of a collection of sets is the set that contains those elements that are members
of all the sets in the collection.

We use the notation
ALNAN---NA, = ﬂAi

to denote the intersection of the sets A1, Ao, ..., A,. We illustrate generalized unions and
intersections with Example 16.

Fori=1,2,...,letA; ={i,i +1,i+2,...}. Then,

n n
A; U{i,i+1,i+2,...}={1,2,3,...},
=1 i=1

1

and

n n
(A= l.i+Li+2. . )={nn+ln+2,...}=A,. <
i=1 i=1
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EXAMPLE 17

EXAMPLE 18

We can extend the notation we have introduced for unions and intersections to other families of
sets. In particular, we use the notation

o0
AfUA2U-UA U= A
i=1
to denote the union of the sets A1, Ay, ..., A,, ... . Similarly, the intersection of these sets is
denoted by
o0
AmAzmu-mAnm---:ﬂA,-.
i=1
More generally, when I is a set, the notations ();.; A; and | J;c; A; are used to denote

the intersection and union of the sets A; for i € I, respectively. Note that we have
{x|Viel(xeAptand|J;.; Ai ={x |3 €I (x € A)}.

Ai =

iel
iel
Suppose that A; = {1,2,3,...,i}fori =1,2,3,....Then,

oo
-
i=1

{1,2,3,...,i}={1,2,3,..} =27

(@

1

Il
I

and

ﬂA,- = ﬂ{1,2,3,...,i} = {1}.
i=1 i=1

To see that the union of these sets is the set of positive integers, note that every positive
integer n is in at least one of the sets, because it belongsto A, = {1, 2, ..., n},and every element
of the sets in the union is a positive integer. To see that the intersection of these sets is the set
{1}, note that the only element that belongs to all the sets A1, Ao, ... is 1. To see this note that
Ai={1}andle A;fori =1,2,.... <

Computer Representation of Sets

There are various ways to represent sets using a computer. One method is to store the elements
of the set in an unordered fashion. However, if this is done, the operations of computing the
union, intersection, or difference of two sets would be time-consuming, because each of these
operations would require a large amount of searching for elements. We will present a method
for storing elements using an arbitrary ordering of the elements of the universal set. This method
of representing sets makes computing combinations of sets easy.

Assume that the universal set U is finite (and of reasonable size so that the number of
elements of U is not larger than the memory size of the computer being used). First, specify an
arbitrary ordering of the elements of U, for instance a1, az, ..., a,. Represent a subset A of U
with the bit string of length n, where the ith bit in this string is 1 if a; belongs to A and is O if
a; does not belong to A. Example 18 illustrates this technique.

Let U ={1,2,3,4,5,6,7,8,9, 10}, and the ordering of elements of U has the elements in
increasing order; that is, a; = i. What bit strings represent the subset of all odd integers in U,
the subset of all even integers in U, and the subset of integers not exceeding 5 in U?



EXAMPLE 19

EXAMPLE 20
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Solution: The bit string that represents the set of odd integers in U, namely, {1, 3,5, 7, 9}, has
a one bit in the first, third, fifth, seventh, and ninth positions, and a zero elsewhere. It is

10 1010 1010.

(We have split this bit string of length ten into blocks of length four for easy reading.) Similarly,
we represent the subset of all even integers in U, namely, {2, 4, 6, 8, 10}, by the string

01 0101 0101.

The set of all integers in U that do not exceed 5, namely, {1, 2, 3, 4, 5}, is represented by the
string

11 1110 0000. <

Using bit strings to represent sets, it is easy to find complements of sets and unions, inter-
sections, and differences of sets. To find the bit string for the complement of a set from the bit
string for that set, we simply change each 1 to a 0 and each 0 to 1, because x € A if and only if
x ¢ A. Note that this operation corresponds to taking the negation of each bit when we associate
a bit with a truth value—with 1 representing true and 0 representing false.

We have seen that the bit string for the set {1,3,5,7,9} (with universal set {1, 2,3, 4,
5,6,7,8,9,10}) is

10 1010 1010.

What is the bit string for the complement of this set?

Solution: The bit string for the complement of this set is obtained by replacing 0s with 1s and
vice versa. This yields the string

01 0101 0101,
which corresponds to the set {2, 4, 6, 8, 10}. |

To obtain the bit string for the union and intersection of two sets we perform bitwise Boolean
operations on the bit strings representing the two sets. The bit in the ith position of the bit string
of the union is 1 if either of the bits in the ith position in the two strings is 1 (or both are 1), and
is 0 when both bits are 0. Hence, the bit string for the union is the bitwise OR of the bit strings
for the two sets. The bit in the ith position of the bit string of the intersection is 1 when the bits
in the corresponding position in the two strings are both 1, and is 0 when either of the two bits
is O (or both are). Hence, the bit string for the intersection is the bitwise AND of the bit strings
for the two sets.

The bit strings for the sets {1, 2, 3,4, 5} and {1, 3,5, 7, 9} are 11 1110 0000 and 10 1010 1010,
respectively. Use bit strings to find the union and intersection of these sets.

Solution: The bit string for the union of these sets is
111110 0000 v 10 1010 1010 = 11 1110 1010,

which corresponds to the set {1, 2, 3, 4, 5, 7, 9}. The bit string for the intersection of these sets
is

11 1110 0000 A 10 1010 1010 = 10 1010 0000,

which corresponds to the set {1, 3, 5}. |
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Exercises

1

Let A be the set of students who live within one mile
of school and let B be the set of students who walk to
classes. Describe the students in each of these sets.

a) ANB b) AUB

c) A—B d B—A

. Suppose that A is the set of sophomores at your school

and B is the set of students in discrete mathematics at
your school. Express each of these sets in terms of A and
B.

a) the set of sophomores taking discrete mathematics in
your school

b) the set of sophomores at your school who are not tak-
ing discrete mathematics

c) thesetof students at your school who either are sopho-
mores or are taking discrete mathematics

d) the set of students at your school who either are not
sophomores or are not taking discrete mathematics

. LetA=1{1,2,3,4,5}and B = {0, 3, 6}. Find

a) AUB. b) AN B.

c) A—B. d) B — A.

. Let A={a,b,c,d,e} and B ={a,b,c,d,e, f, g, h}.
Find

a) AUB. b) AN B.

c) A—B. d) B — A.

In Exercises 5-10 assume that A is a subset of some underly-
ing universal set U.

5.

10.

11.

12.

13.

14.

15.

Prove the complementation law in Table 1 by showing
that A = A.

. Prove the identity laws in Table 1 by showing that

a) AUP = A. b) ANU = A.

. Prove the domination laws in Table 1 by showing that
a) AUU=U. b) ANy =0.

. Prove the idempotent laws in Table 1 by showing that
a) AUA = A. b) ANA=A.

. Prove the complement laws in Table 1 by showing that
a) AUA=U. b) ANA=0.

Show that

a) A—0=A. b) s —A=0.

Let A and B be sets. Prove the commutative laws from
Table 1 by showing that

a) AUB = BUA.

b) ANB=BnNA.

Prove the first absorption law from Table 1 by showing
that if A and B are sets, then AU (AN B) = A.

Prove the second absorption law from Table 1 by showing
that if A and B are sets, then AN (AU B) = A.
Findthesets Aand BifA— B =1{1,5,7,8}, B— A =
{2,10},and AN B = {3, 6, 9}.

Prove the second De Morgan law in Table 1 by showing
that if A and B are sets,then AUB =ANB

a) by showing each side is a subset of the other side.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

b) using a membership table.

Let A and B be sets. Show that

a) (ANB)C A. b) AC (AUB).

) A—BCA. d) AN(B—A) =4.

e) AU(B—A)=AUB.

Show that if A, B, and C are sets, then ANBNC =
AUBUC

a) by showing each side is a subset of the other side.

b) using a membership table.

Let A, B, and C be sets. Show that

a) (AUB)C(AUBUC).

b) (ANnBNC)C (AN B).

) (A—B)—CCA-C.

d) (A-C)N(C —B)=40.

e) (B—A)U(C—-A)=(BUC)— A.

Show that if A and B are sets, then

a) A—B=ANB.

b) (ANB) U(ANB) = A.

Show that if A and B are sets with A C B, then

a) AUB=B.

b) AnB=A.

Prove the first associative law from Table 1 by show-
ing that if A, B, and C are sets, then AU (BUC) =
(AUB)UC.

Prove the second associative law from Table 1 by show-
ing that if A, B, and C are sets, then AN (BNC) =
(ANB)NC.

Prove the first distributive law from Table 1 by show-
ing that if A, B, and C are sets, then AU(BNC) =
(AUB)N(AUCQC).

Let A, B, and C be sets. Show that (A — B) — C =
(A-C)—(B—-0).

Let A ={0,2,4,6,8,10}, B ={0,1,2,3,4,5,6}, and
C ={4,5,6,7,8,9, 10}. Find

a) ANBNC. b) AUBUC.

c) (AUB)NC. d) (AnB)UC.

Draw the Venn diagrams for each of these combinations
of the sets A, B, and C.

a) AN(BUC) b) AnBNC

) (A—B)UMA-C)UB-0)

Draw the Venn diagrams for each of these combinations
of the sets A, B, and C.
a) AN(B—-0C)

) (ANBYU(ANC)
Draw the Venn diagrams for each of these combinations
of the sets A, B, C, and D.

a) (ANB)U(CND) b) AUBUCUD

c) A—(BNCND)

What can you say about the sets A and B if we know that
a) AUB = A? b) AnNB = A?

) A—B=A? d) ANB=BNA?

e) A—-B=B—-A?

b) (ANB)UANC)



30.

31.

Canyou concludethat A = B if A, B, and C are sets such
that

aQ) AUC=BUC? b) ANC=BNC?
) AUC=BUCandANC=BNC?

Let A and B be subsets of a universal set U. Show that
A C Bifandonlyif B C A.

The symmetric difference of A and B, denoted by A & B, is
the set containing those elements in either A or B, but not in
both A and B.

32.

33.

34.

35.
36.
37.

38.

39.

*40.

*41.

42.

43.

44,

45.

*46.

47.

48.

Find the symmetric difference of {1, 3, 5} and {1, 2, 3}.

Find the symmetric difference of the set of computer sci-
ence majors at a school and the set of mathematics majors
at this school.

Draw a Venn diagram for the symmetric difference of the
sets A and B.

Showthat A@ B = (AU B) — (AN B).
Showthat A@® B = (A — B) U (B — A).

Show that if A is a subset of a universal set U, then

a) A A=40. b) Ae 0¥ =A.

c) AdU = A. d A A=U.

Show that if A and B are sets, then

a) A@B=B® A. b) (A®B)® B =A.
What can you say about the sets Aand Bif A® B = A?

Determine whether the symmetric difference is associa-
tive; that is, if A, B, and C are sets, does it follow that
Ao (BeC)=(AdB)C?

Suppose that A, B, and C are sets such that A @ C =
B @ C. Must it be the case that A = B?

If A, B, C,and D are sets, does it follow that (A & B) ®
(CoD)=(A®C)®(B® D)?
If A, B, C, and D are sets, does it follow that (A ® B) &
(C®D)=(AD D) BBC)?

Show that if A and B are finite sets, then A U B is a finite
set.

Show that if A is an infinite set, then whenever B is a set,
A U B is also an infinite set.

Show that if A, B, and C are sets, then

[AUBUC| =|A|+|B|+|C| — |AN B|
—JANC|—|BNC|+|ANBNC|.

(This is a special case of the inclusion—exclusion princi-
ple, which will be studied in Chapter 8.)

LetA; =1{1,2,3,...,i}fori =1,2,3,....Find

a) CJA,’. b) ﬁA,‘.
i=1 i=1

LetA; = {...,—2,—1,0,1,...,i}. Find

a) UA,'. b) ﬂAi-
i=1 i=1

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.
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Let A; be the set of all nonempty bit strings (that is, bit
strings of length at least one) of length not exceeding i.

Find

a) [ JA b) (1) A:.
i=1 i=1

Find |72, A; and (72, A; if for every positive integer i,

a) Aj={i,i+1,i+2,...}

b) A; ={0,i}.

c) A; =(0,i), that is, the set of real numbers x with
0<x<i.

d) A; = (i, 00), that is, the set of real numbers x with

X > 1.

Find (72, A; and ()72, A; if for every positive integer i,

a) Aj={—i,—i+1,...,-1,0,1,...,i —1,i}.

b) A; = {—i,i}.

c) A; =[—i,1i], thatis, the set of real numbers x with
—i<x<I.

d) A; =[i, 00), that is, the set of real numbers x with
x> 1.

Suppose that the universal set is U ={1,2,3,4,
5,6,7,8,9,10}. Express each of these sets with bit
strings where the ith bit in the string is 1 if i is in the
set and 0 otherwise.

a) {3,4,5}

b) {1,3,6, 10}

c) {2,3,4,7,8,9}

Using the same universal set as in the last problem, find
the set specified by each of these bit strings.

a) 1111001111

b) 010111 1000

c) 100000 0001

What subsets of a finite universal set do these bit strings
represent?

a) the string with all zeros

b) the string with all ones

What is the bit string corresponding to the difference of
two sets?

What is the bit string corresponding to the symmetric dif-
ference of two sets?

Show how bitwise operations on bit strings can be
used to find these combinations of A = {a, b, ¢, d, ¢},
B=1{b,c,d, g, p,t,v}, C={c,e,i,o,u,x,vy,z}, and
D={d,e,h,i,n,o,t,u,x,y}.

a) AUB b) ANB

c) (AUD)N(BUC) d AUBUCUD

How can the union and intersection of # sets that all are
subsets of the universal set U be found using bit strings?

The successor of the set A is the set A U {A}.

59.

Find the successors of the following sets.
a) {1,2,3} b) ¥
c) {4} d) {9, {9}
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60. How many elements does the successor of a set with n
elements have?

Sometimes the number of times that an element occurs in an
unordered collection matters. Multisets are unordered collec-
tions of elements where an element can occur as a member
more than once. The notation {m1 - a1, m» - az, ..., m, - a,}
denotes the multiset with element a1 occurring m1 times, el-
ement ap occurring ma times, and so on. The numbers m;,
i=1,2,...,r are called the multiplicities of the elements
a,-,i:l,Z,...,r.

Let P and Q be multisets. The union of the multisets P
and Q is the multiset where the multiplicity of an element is
the maximum of its multiplicities in P and Q. The intersec-
tion of P and Q is the multiset where the multiplicity of an
element is the minimum of its multiplicities in P and Q. The
difference of P and Q is the multiset where the multiplicity
of an element is the multiplicity of the element in P less its
multiplicity in Q unless this difference is negative, in which
case the multiplicity is 0. The sum of P and Q is the multiset
where the multiplicity of an element is the sum of multiplic-
ities in P and Q. The union, intersection, and difference of
P and Q are denotedby P U Q, PN Q,and P — Q, respec-
tively (where these operations should not be confused with
the analogous operations for sets). The sum of P and Q is
denoted by P + Q.

61. Let A and B be the multisets {3-a,2-b,1-c} and
{2-a,3-b,4-d}, respectively. Find
a) AUB. b) AN B.

d) B— A. e) A+ B.
Suppose that A is the multiset that has as its elements
the types of computer equipment needed by one depart-
ment of a university and the multiplicities are the number
of pieces of each type needed, and B is the analogous
multiset for a second department of the university. For
instance, A could be the multiset {107 - personal comput-
ers, 44 - routers, 6 - servers} and B could be the multiset
{14 - personal computers, 6 - routers, 2 - mainframes}.

a) What combination of A and B represents the equip-
ment the university should buy assuming both depart-
ments use the same equipment?

Functions

c) A— B.

62.

b) What combination of A and B represents the equip-
ment that will be used by both departments if both
departments use the same equipment?

c) What combination of A and B represents the equip-
ment that the second department uses, but the first de-
partment does not, if both departments use the same
equipment?

d) What combination of A and B represents the equip-
ment that the university should purchase if the depart-
ments do not share equipment?

Fuzzy sets are used in artificial intelligence. Each element

in the universal set U has a degree of membership, which

is a real number between 0 and 1 (including 0 and 1), in a

fuzzy set S. The fuzzy set S is denoted by listing the elements

with their degrees of membership (elements with 0 degree of
membership are not listed). For instance, we write {0.6 Alice,

0.9 Brian, 0.4 Fred, 0.1 Oscar, 0.5 Rita} for the set F (of fa-

mous people) to indicate that Alice has a 0.6 degree of mem-

bership in F, Brian has a 0.9 degree of membership in F, Fred
has a 0.4 degree of membership in F, Oscar has a 0.1 degree
of membership in F, and Rita has a 0.5 degree of membership
in F (so that Brian is the most famous and Oscar is the least
famous of these people). Also suppose that R is the set of rich
people with R = {0.4 Alice, 0.8 Brian, 0.2 Fred, 0.9 Oscar,

0.7 Rita}.

63. The complement of a fuzzy set S is the set S, with the
degree of the membership of an element in S equal to
1 minus the degree of membership of this element in S.
Find F (the fuzzy set of people who are not famous) and
R (the fuzzy set of people who are not rich).

64. The union of two fuzzy sets S and T is the fuzzy set
S U T, where the degree of membership of an element in
S U T is the maximum of the degrees of membership of
this element in S and in 7. Find the fuzzy set F U R of
rich or famous people.

65. The intersection of two fuzzy sets S and T is the fuzzy
set S N T, where the degree of membership of an element
in S N T is the minimum of the degrees of membership
of this element in S and in 7. Find the fuzzy set F N R
of rich and famous people.

Introduction

In many instances we assign to each element of a set a particular element of a second set (which
may be the same as the first). For example, suppose that each student in a discrete mathematics
class is assigned a letter grade from the set {A, B, C, D, F'}. And suppose that the grades are A
for Adams, C for Chou, B for Goodfriend, A for Rodriguez, and F' for Stevens. This assignment

of grades is illustrated in Figure 1.

This assignment is an example of a function. The concept of a function is extremely impor-
tant in mathematics and computer science. For example, in discrete mathematics functions are
used in the definition of such discrete structures as sequences and strings. Functions are also
used to represent how long it takes a computer to solve problems of a given size. Many computer
programs and subroutines are designed to calculate values of functions. Recursive functions,
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Adams ° >0 A
Chou ° e B
Goodfriend e e C
Rodriguez e oD
Stevens ° -0 F

FIGURE 1 Assignment of Grades in a Discrete Mathematics Class.

which are functions defined in terms of themselves, are used throughout computer science; they
will be studied in Chapter 5. This section reviews the basic concepts involving functions needed
in discrete mathematics.

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one
element of B to each element of A. We write f(a) = b if b is the unique element of B
assigned by the function f to the element a of A. If f is a function from A to B, we write
f:A— B.

Remark: Functions are sometimes also called mappings or transformations.

Functions are specified in many different ways. Sometimes we explicitly state the assign-
ments, as in Figure 1. Often we give a formula, such as f(x) = x + 1, to define a function.
Other times we use a computer program to specify a function.

A function f : A — B can also be defined in terms of a relation from A to B. Recall from
Section 2.1 that a relation from A to B is just a subset of A x B. A relation from A to B that
contains one, and only one, ordered pair (a, b) for every element a € A, defines a function f
from A to B. This function is defined by the assignment f(a) = b, where (a, b) is the unique
ordered pair in the relation that has « as its first element.

If £ isafunction from A to B, we say that A is the domain of f and B is the codomain of f.
If f(a) = b, we say that b is the image of a and « is a preimage of b. The range, or image,
of f is the set of all images of elements of A. Also, if f is a function from A to B, we say
that f mapsAto B.

Figure 2 represents a function f from A to B.

When we define a function we specify its domain, its codomain, and the mapping of elements
of the domain to elements in the codomain. Two functions are equal when they have the same
domain, have the same codomain, and map each element of their common domain to the same
element in their common codomain. Note that if we change either the domain or the codomain

FIGURE 2 The Function f Maps A to B.
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EXAMPLE 1

EXAMPLE 2

EXAMPLE 3
Extra g2
Examples

EXAMPLE 4

EXAMPLE 5

of a function, then we obtain a different function. If we change the mapping of elements, then
we also obtain a different function.

Examples 1-5 provide examples of functions. In each case, we describe the domain, the
codomain, the range, and the assignment of values to elements of the domain.

What are the domain, codomain, and range of the function that assigns grades to students
described in the first paragraph of the introduction of this section?

Solution: Let G be the function that assigns a grade to a student in our discrete mathematics class.
Note that G(Adams) = A, for instance. The domain of G is the set {Adams, Chou, Goodfriend,
Rodriguez, Stevens}, and the codomain is the set {A, B, C, D, F}. The range of G is the set
{A, B, C, F}, because each grade except D is assigned to some student. |

Let R be the relation with ordered pairs (Abdul, 22), (Brenda, 24), (Carla, 21), (Desire, 22),
(Eddie, 24), and (Felicia, 22). Here each pair consists of a graduate student and this student’s
age. Specify a function determined by this relation.

Solution: If f is a function specified by R, then f(Abdul) =22, f(Brenda)= 24,
f(Carla) = 21, f(Desire) = 22, f(Eddie) = 24, and f (Felicia) = 22. (Here, f(x) is the age
of x, where x is a student.) For the domain, we take the set {Abdul, Brenda, Carla, Desire,
Eddie, Felicia}. We also need to specify a codomain, which needs to contain all possible ages
of students. Because it is highly likely that all students are less than 100 years old, we can take
the set of positive integers less than 100 as the codomain. (Note that we could choose a different
codomain, such as the set of all positive integers or the set of positive integers between 10 and
90, but that would change the function. Using this codomain will also allow us to extend the
function by adding the names and ages of more students later.) The range of the function we
have specified is the set of different ages of these students, which is the set {21, 22, 24}. |

Let f be the function that assigns the last two bits of a bit string of length 2 or greater to that
string. For example, £(11010) = 10. Then, the domain of f is the set of all bit strings of length
2 or greater, and both the codomain and range are the set {00, 01, 10, 11}. |

Let f: Z — Zassign the square of an integer to this integer. Then, f(x) = x2, where the domain
of f is the set of all integers, the codomain of f is the set of all integers, and the range of f is
the set of all integers that are perfect squares, namely, {0, 1,4,9,...}.

The domain and codomain of functions are often specified in programming languages. For
instance, the Java statement

int floor(float real){. . .}
and the C++ function statement
int function (float x){.. .}

both tell us that the domain of the floor function is the set of real numbers (represented by
floating point numbers) and its codomain is the set of integers. <

A function is called real-valued if its codomain is the set of real numbers, and it is called
integer-valued if its codomain is the set of integers. Two real-valued functions or two integer-
valued functions with the same domain can be added, as well as multiplied.
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Let f1 and f2 be functions from A to R. Then f1 + f> and f1 f> are also functions from A
to R defined for all x € A by

(fi+ f2(x) = fi(x) + fa(x),
(f1f2)(x) = fi(x) fa(x).

Note that the functions f1 + f2 and f1 f2 have been defined by specifying their values at x in
terms of the values of f; and f7 at x.

Let 1 and f> be functions from R to R such that f1(x) = x2 and fo(x) = x — x2. What are
the functions f1 + f> and f1 f2?

Solution: From the definition of the sum and product of functions, it follows that
(fi+ D) = fid) + fo(0) = x* + (x —x)) =x
and
(fif(x) = 2% (x = x%) = x° = x*. <

When £ is a function from A to B, the image of a subset of A can also be defined.

Let f be afunction from A to B and let S be a subset of A. The image of S under the function
f is the subset of B that consists of the images of the elements of S. We denote the image of
S by (), so

F&) ={t]3seS = fls)}

We also use the shorthand { f(s) | s € S} to denote this set.

Remark: The notation f(S) for the image of the set S under the function f is potentially
ambiguous. Here, f(S) denotes a set, and not the value of the function f for the set S.

LetA ={a,b,c,d,e}and B = {1, 2, 3,4} with f(a) =2, f(b) =1, f(c) =4, f(d) =1,and
f(e) = 1. The image of the subset S = {b, c, d} is the set f(S) = {1, 4}. <

One-to-One and Onto Functions

Some functions never assign the same value to two different domain elements. These functions
are said to be one-to-one.

A function f is said to be one-to-one, or an injunction, ifand only if f(a) = f(b) implies that
a = b for all a and b in the domain of f. A function is said to be injectiveif it is one-to-one.
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FIGURE 3 A One-to-One Function.

Note that a function f is one-to-one if and only if f(a) # f(b) whenever a # b. This way
of expressing that f is one-to-one is obtained by taking the contrapositive of the implication in
the definition.

Remark: We can express that f is one-to-one using quantifiersas VaVb(f (a) = f(b) — a = b)
or equivalently YaVb(a # b — f(a) # f (b)), where the universe of discourse is the domain
of the function.

We illustrate this concept by giving examples of functions that are one-to-one and other
functions that are not one-to-one.

Determine whether the function f from {a, b, ¢, d} to {1, 2, 3, 4, 5} with f(a) =4, f(b) =5,
f(c) =1,and f(d) = 3 is one-to-one.

Solution: The function f is one-to-one because f takes on different values at the four elements
of its domain. This is illustrated in Figure 3. <

Determine whether the function f(x) = x2 from the set of integers to the set of integers is
one-to-one.

Solution: The function £ (x) = x? is not one-to-one because, for instance, f(1) = f(-1) = 1,
butl # —1.

Note that the function f(x) = x2 with its domain restricted to Z is one-to-one. (Techni-
cally, when we restrict the domain of a function, we obtain a new function whose values agree
with those of the original function for the elements of the restricted domain. The restricted
function is not defined for elements of the original domain outside of the restricted domain.) <

Determine whether the function f(x) = x + 1 from the set of real numbers to itself is one-to-
one.

Solution: The function f(x) = x + 1 is a one-to-one function. To demonstrate this, note that
x+1#y+1whenx #y. <

Suppose that each worker in a group of employees is assigned a job from a set of possible
jobs, each to be done by a single worker. In this situation, the function f that assigns a job
to each worker is one-to-one. To see this, note that if x and y are two different workers, then
f(x) £ f(y) because the two workers x and y must be assigned different jobs. <

We now give some conditions that guarantee that a function is one-to-one.
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FIGURE 4 An Onto Function.

A function f whose domain and codomain are subsets of the set of real numbers is called
increasing if f(x) < f(y), and strictly increasing if f(x) < f(y), whenever x < y and x
and y are in the domain of f. Similarly, f is called decreasing if f(x) > f(y), and strictly
decreasing if f(x) > f(y), whenever x < y and x and y are in the domain of f. (The word
strictly in this definition indicates a strict inequality.)

Remark: A function f is increasing if VaVy(x <y — f(x) < f(y)), strictly increasing if
VxVy(x <y — f(x) < f(y)), decreasing if VxVy(x <y — f(x) > f(y)), and strictly de-
creasing if VxVy(x < y — f(x) > f(y)), where the universe of discourse is the domain of f.

From these definitions, it can be shown (see Exercises 26 and 27) that a function that is
either strictly increasing or strictly decreasing must be one-to-one. However, a function that is
increasing, but notstrictly increasing, or decreasing, but not strictly decreasing, is not one-to-one.

For some functions the range and the codomain are equal. That is, every member of the
codomain is the image of some element of the domain. Functions with this property are called
onto functions.

A function f from A to B is called onto, or a surjection, if and only if for every element
b € Bthereisanelementa € A with f(a) = b. A function f is called surjectiveif it is onto.

Remark: A function f isonto if Vy3x(f(x) = y), where the domain for x is the domain of the
function and the domain for y is the codomain of the function.

We now give examples of onto functions and functions that are not onto.

Let f be the function from {a, b, ¢, d} to {1, 2, 3} defined by f(a) =3, f(b) =2, f(c) =1,
and f(d) = 3. Is f an onto function?

Solution: Because all three elements of the codomain are images of elements in the domain, we

see that f is onto. This is illustrated in Figure 4. Note that if the codomain were {1, 2, 3, 4},
then f would not be onto. <

Is the function f(x) = x? from the set of integers to the set of integers onto?

Solution: The function £ is not onto because there is no integer x with x2 = —1, for instance. <

Is the function f(x) = x + 1 from the set of integers to the set of integers onto?
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FIGURE 5 Examples of Different Types of Correspondences.

EXAMPLE 15

DEFINITION 8
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EXAMPLE 17

Solution: This function is onto, because for every integer y there is an integer x such that
f(x) = y. To see this, note that f(x) = y if and only if x + 1 = y, which holds if and only if
x=y-—1 <

Consider the function f in Example 11 that assigns jobs to workers. The function f is onto if
for every job there is a worker assigned this job. The function f is not onto when there is at
least one job that has no worker assigned it. <

The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and
onto. We also say that such a function is bijective.

Examples 16 and 17 illustrate the concept of a bijection.

Let f be the function from {a, b, ¢, d} to {1, 2, 3, 4} with f(a) =4, f(b) =2, f(c) =1, and
f(d) =3.ls f abijection?

Solution: The function f is one-to-one and onto. It is one-to-one because no two values in
the domain are assigned the same function value. It is onto because all four elements of the
codomain are images of elements in the domain. Hence, f is a bijection. |

Figure 5 displays four functions where the first is one-to-one but not onto, the second is onto
but not one-to-one, the third is both one-to-one and onto, and the fourth is neither one-to-one
nor onto. The fifth correspondence in Figure 5 is not a function, because it sends an element to
two different elements.

Suppose that f is a function from a set A to itself. If A is finite, then f is one-to-one if and
only if it is onto. (This follows from the result in Exercise 72.) This is not necessarily the case
if A is infinite (as will be shown in Section 2.5).

Let A be a set. The identity function on A is the function ¢4 : A — A, where
tw(x) =x

for all x € A. In other words, the identity function ¢4 is the function that assigns each element
to itself. The function ¢4 is one-to-one and onto, so it is a bijection. (Note that ¢ is the Greek
letter iota.) <

For future reference, we summarize what needs be to shown to establish whether a function
is one-to-one and whether it is onto. It is instructive to review Examples 8-17 in light of this
summary.
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Suppose that f : A — B.

To show that f is injective Show that if f(x) = f(y) for arbitrary x, y € A with x # y,
then x = y.

1o show that f is not injective Find particular elements x, y € A such that x # y and
f@) = f.

To show that f is surjective Consider an arbitrary element y € B and find an element x € A
such that f(x) = y.

10 show that f is not surjective Find a particular y € B such that f(x) # y forall x € A.

Inverse Functions and Compositions of Functions

Now consider a one-to-one correspondence f from the set A to the set B. Because f is an onto
function, every element of B is the image of some element in A. Furthermore, because f is also
a one-to-one function, every element of B is the image of a unique element of A. Consequently,
we can define a new function from B to A that reverses the correspondence given by f. This
leads to Definition 9.

Let f be a one-to-one correspondence from the set A to the set B. The inverse function of
f is the function that assigns to an element » belonging to B the unique element a in A
such that f(a) = b. The inverse function of f is denoted by f~1. Hence, f~1(b) = a when

fla) =b.

Remark: Be sure not to confuse the function £~ with the function 1/f, which is the function
that assigns to each x in the domain the value 1/f (x). Notice that the latter makes sense only
when f(x) is a non-zero real number.

Figure 6 illustrates the concept of an inverse function.

If a function f is not a one-to-one correspondence, we cannot define an inverse function of
/. When f is not a one-to-one correspondence, either it is not one-to-one or it is not onto. If
f is not one-to-one, some element & in the codomain is the image of more than one element in
the domain. If f is not onto, for some element b in the codomain, no element a in the domain
exists for which f(a) = b. Consequently, if f is not a one-to-one correspondence, we cannot
assign to each element b in the codomain a unique element a in the domain such that f(a) = b
(because for some b there is either more than one such « or no such a).

A one-to-one correspondence is called invertible because we can define an inverse of this
function. A function is not invertible if it is not a one-to-one correspondence, because the
inverse of such a function does not exist.

f(b)

FIGURE 6 The Function £~ Is the Inverse of Function f.
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EXAMPLE 18

EXAMPLE 19

EXAMPLE 20

EXAMPLE 21

DEFINITION 10

Let f be the function from {a, b, ¢} to {1, 2, 3} such that f(a) =2, f(b) =3, and f(c) = 1.
Is f invertible, and if it is, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The in-
verse function £~ reverses the correspondence given by £,so f~1(1) = ¢, f1(2) = «a, and
|

1@ =0,

Let f : Z — Z besuch that f(x) = x + 1. Is f invertible, and if it is, what is its inverse?

Solution: The function f has an inverse because it is a one-to-one correspondence, as follows
from Examples 10 and 14. To reverse the correspondence, suppose that y is the image of x, so
that y = x + 1. Then x = y — 1. This means that y — 1 is the unique element of Z that is sent
to y by f. Consequently, f~1(y) = y — 1. <

Let f be the function from R to R with f(x) = x2. Is f invertible?

Solution: Because f(—2) = f(2) = 4, f is not one-to-one. If an inverse function were defined,
it would have to assign two elements to 4. Hence, f is not invertible. (Note we can also show
that f is not invertible because it is not onto.) <

Sometimes we can restrict the domain or the codomain of a function, or both, to obtain an
invertible function, as Example 21 illustrates.

Show that if we restrict the function f(x) = x2 in Example 20 to a function from the set of all
nonnegative real numbers to the set of all nonnegative real numbers, then f is invertible.

Solution: The function f(x) = x2 from the set of nonnegative real numbers to the set of non-
negative real numbers is one-to-one. To see this, note that if f(x) = f(y), then x2 = y2, so
x> —y2 = (x4 y)(x —y) =0.Thismeansthatx + y =00rx —y =0,50x = —yorx = y.
Because both x and y are nonnegative, we must have x = y. So, this function is one-to-one.
Furthermore, f(x) = x2 is onto when the codomain is the set of all nonnegative real numbers,
because each nonnegative real number has a square root. That is, if y is a nonnegative real
number, there exists a nonnegative real number x such that x = ,/y, which means that x2 = y.
Because the function f(x) = x? from the set of nonnegative real numbers to the set of non-
negative real numbers is one-to-one and onto, it is invertible. Its inverse is given by the rule

o= <

Let g be a function from the set A to the set B and let f be a function from the set B to the
set C. The composition of the functions f and g, denoted for all @ € A by f o g, is defined

by
(fog)a) = f(g(a)).

In other words, f o g is the function that assigns to the element a of A the element assigned
by f to g(a). That is, to find (f o g)(a) we first apply the function g to « to obtain g(a) and
then we apply the function f to the result g(a) to obtain (f o g)(a) = f(g(a)). Note that the
composition f o g cannot be defined unless the range of g is a subset of the domain of f. In
Figure 7 the composition of functions is shown.
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(f ° 9@

9(a) f(9())

FIGURE 7 The Composition of the Functions f and g.

Let g be the function from the set {a, b, c} to itself such that g(a) = b, g(b) = ¢, and g(c) = a.
Let f be the function from the set {a, b, ¢} to the set {1, 2, 3} such that f(a) = 3, f(b) = 2, and
f(c) = 1. What is the composition of f and g, and what is the composition of g and f?

Solution:  The composition fog is defined by (fog)(a) = f(gla)) = f(b) =2,

(fog) (b)= f(g) = f(c)=1and (fog)(c)= f(g()) = f(a) =3
Note that g o f is not defined, because the range of f is not a subset of the domain of g. <

Let f and g be the functions from the set of integers to the set of integers defined by
f(x) =2x +3 and g(x) = 3x + 2. What is the composition of f and g? What is the com-
position of g and f?

Solution: Both the compositions f o g and g o f are defined. Moreover,
(fog)x)=f(glx) = fBx+2)=2@x+2)+3=6x+7
and

(go fHx) =g(f(x) = g(2x +3) =3(2x +3) +2 = 6x + 11. <

Remark: Note that even though f o g and g o f are defined for the functions f and g in
Example 23, f o g and g o f are not equal. In other words, the commutative law does not hold
for the composition of functions.

When the composition of a function and its inverse is formed, in either order, an identity
function is obtained. To see this, suppose that f is a one-to-one correspondence from the set A
to the set B. Then the inverse function £~ exists and is a one-to-one correspondence from B
to A. The inverse function reverses the correspondence of the original function, so f~1(b) = a
when f(a) = b, and f(a) = b when f~1(b) = a. Hence,

(Yo fra = f@) = 1) =a,
and
(fof™H)y =) = fa) =b.

Consequently f~1o f =4 and f o f~1 =15, where 14 and (5 are the identity functions on
the sets A and B, respectively. Thatis, (f~1)~1 = f.
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EXAMPLE 24

EXAMPLE 25

The Graphs of Functions

We can associate a set of pairsin A x B to each function from A to B. This set of pairs is called
the graph of the function and is often displayed pictorially to aid in understanding the behavior
of the function.

Let f be a function from the set A to the set B. The graph of the function f is the set of
ordered pairs {(a, b) | a € A and f(a) = b}.

From the definition, the graph of a function f from A to B is the subset of A x B containing the
ordered pairs with the second entry equal to the element of B assigned by f to the first entry.
Also, note that the graph of a function f from A to B is the same as the relation from A to B
determined by the function f, as described on page 139.

Display the graph of the function f(n) = 2n 4 1 from the set of integers to the set of integers.
Solution: The graph of f is the set of ordered pairs of the form (n, 2n + 1), where n is an integer.
This graph is displayed in Figure 8. <
Display the graph of the function f(x) = x? from the set of integers to the set of integers.
Solution: The graph of £ is the set of ordered pairs of the form (x, f(x)) = (x, x?), where x is

an integer. This graph is displayed in Figure 9. <

Some Important Functions

Next, we introduce two important functions in discrete mathematics, namely, the floor and ceiling
functions. Let x be a real number. The floor function rounds x down to the closest integer less
than or equal to x, and the ceiling function rounds x up to the closest integer greater than or
equal to x. These functions are often used when objects are counted. They play an important
role in the analysis of the number of steps used by procedures to solve problems of a particular
size.

e (-3,9) 3,9 e
o (-2,4) (2,4)0
L) e e (11)
(0,0)
FIGURE 8 The Graph of FIGURE 9 The Graph of

f(n) =2n+1fromZto Z. f(x) =x?fromZto Z.
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The floor function assigns to the real number x the largest integer that is less than or equal to
x. The value of the floor function at x is denoted by | x]. The ceiling function assigns to the
real number x the smallest integer that is greater than or equal to x. The value of the ceiling
function at x is denoted by [x].

Remark: The floor function is often also called the greatest integer function. It is often denoted
by [x].

These are some values of the floor and ceiling functions:
131=0,131=1,1-31=-1,1-31=0,[31] =3,[311 =4,[7] =7,[7] =7. <

We display the graphs of the floor and ceiling functions in Figure 10. In Figure 10(a) we display
the graph of the floor function | x]. Note that this function has the same value throughout the
interval [n, n 4+ 1), namely n, and then it jumps up to n + 1 when x = n + 1. In Figure 10(b)
we display the graph of the ceiling function [x7]. Note that this function has the same value
throughout the interval (n, n 4+ 1], namely n + 1, and then jumps to n + 2 when x is a little
larger than n + 1.

The floor and ceiling functions are useful in a wide variety of applications, including those
involving data storage and data transmission. Consider Examples 27 and 28, typical of basic
calculations done when database and data communications problems are studied.

Data stored on a computer disk or transmitted over a data network are usually represented as a
string of bytes. Each byte is made up of 8 bits. How many bytes are required to encode 100 bits
of data?

Solution: To determine the number of bytes needed, we determine the smallest integer that is at
least as large as the quotient when 100 is divided by 8, the number of bits in a byte. Consequently,
[100/8] = [12.57 = 13 bytes are required. |

Inasynchronous transfer mode (ATM) (acommunications protocol used on backbone networks),
data are organized into cells of 53 bytes. How many ATM cells can be transmitted in 1 minute
over a connection that transmits data at the rate of 500 kilobits per second?

Solution: In 1 minute, this connection can transmit 500,000 - 60 = 30,000,000 bits. Each ATM
cell is 53 bytes long, which means that it is 53 - 8 = 424 bits long. To determine the number

3T 3T o—e
2 1+ &——O 21+ O—e
1+ e&—o0 1 p—eo
| | | N | | | | PN | | |
] ] ] hd ] ] I I hd I I I
-3 2 - 1 2 3 -3 2 -1 1 2 3
*—— o—e I
-1 -1
—0-2 + o—e -2 +
—oO -3 T -3 +
@ y=[K () y=1[x

FIGURE 10 Graphs of the (a) Floor and (b) Ceiling Functions.
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EXAMPLE 29

Extra
Examples <

TABLE 1 Useful Properties of the Floor
and Ceiling Functions.
(nis an integer, x is a real number)

(1a) |x] =nifandonlyifn <x <n+1
(1b) [x] =nifandonlyifn —1<x <n
(1c) |x] =nifandonlyifx —1<n <x
(1d) [x]=nifandonlyifx <n <x+1

(2 x—l<lx]<x=<xl<x+1

(3a) [—x]=—[x]
(Bb) [—x1=—|x]
(4a) |x+n]l=|x]+n
(4b) [x+n]l=[x]+n

of cells that can be transmitted in 1 minute, we determine the largest integer not exceeding the
quotient when 30,000,000 is divided by 424. Consequently, [30,000,000/424| = 70,754 ATM
cells can be transmitted in 1 minute over a 500 kilobit per second connection. |

Table 1, with x denoting a real number, displays some simple but important properties of the
floor and ceiling functions. Because these functions appear so frequently in discrete mathematics,
it is useful to look over these identities. Each property in this table can be established using the
definitions of the floor and ceiling functions. Properties (1a), (1b), (1c), and (1d) follow directly
from these definitions. For example, (1a) states that | x| = » if and only if the integer n is less
than or equal to x and n + 1 is larger than x. This is precisely what it means for n to be the
greatest integer not exceeding x, which is the definition of |x] = n. Properties (1b), (1c), and
(1d) can be established similarly. We will prove property (4a) using a direct proof.

Proof: Suppose that |x] = m, where m is a positive integer. By property (1a), it follows that
m < x < m + 1. Adding n to all three quantities in this chain of two inequalities shows that m +
n <x+n <m+n+ 1. Using property (1a) again, we see that |x +n] =m +n = |x] + n.
This completes the proof. Proofs of the other properties are left as exercises. <

The floor and ceiling functions enjoy many other useful properties besides those displayed in
Table 1. There are also many statements about these functions that may appear to be correct, but
actually are not. We will consider statements about the floor and ceiling functions in Examples 29
and 30.

A useful approach for considering statements about the floor function is to let x = n + ¢,
where n = | x] is an integer, and ¢, the fractional part of x, satisfies the inequality 0 < ¢ < 1.
Similarly, when considering statements about the ceiling function, itis useful towrite x = n — ¢,
where n = [x7] isanintegerand 0 < e < 1.

Prove that if x is a real number, then |2x| = [x]| + |x + %J.

Solution: To prove this statement we let x = n + €, where n is an integer and 0 < ¢ < 1. There
are two cases to consider, depending on whether ¢ is less than, or greater than or equal to %
(The reason we choose these two cases will be made clear in the proof.)
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We first consider the case when 0 < ¢ < % In this case, 2x = 2n + 2¢ and [2x] = 2n
because 0 < 2¢ < L.Similarly,x + 5 =n+ (3 +¢),50 |x + 5] = n,because0 < 1 + ¢ < 1.
Consequently, [2x| = 2nand [x] + [x + 5| =n +n = 2n.

Next, we consider the case when % <e <11l |In this case, 2x =2n+ 2¢ =
(2n+ 1)+ (e —1). Because 0 <2¢—1<1, it follows that |2x] =2n + 1. Because
x+3=m+G+el=ln+1+(€—3land0 <e— 3 <1, itfollowsthat [x + 1] =
n + 1. Consequently, [2x] =2n + 1 and |x] + [x + %J =n+ (n+1) =2n + 1. This con-
cludes the proof. <

EXAMPLE 30 Prove or disprove that [x + y] = [x7] + [y] for all real numbers x and y.

Solution: Although this statement may appear reasonable, it is false. A counterexample is sup-
plied by x = 5 and y = 3. With these values we find that [x + y] = [ + 3] = [1] = 1, but

I+ D=1+ 131=1+1=2 <

There are certain types of functions that will be used throughout the text. These include
polynomial, logarithmic, and exponential functions. A brief review of the properties of these
functions needed in this text is given in Appendix 2. In this book the notation log x will be used
to denote the logarithm to the base 2 of x, because 2 is the base that we will usually use for
logarithms. We will denote logarithms to the base b, where b is any real number greater than 1,
by log,, x, and the natural logarithm by In x.

Another function we will use throughout this text is the factorial function f: N — Z,
denoted by f(n) = n!. The value of f(n) = n! is the product of the first n positive integers, so
fm)y=1-2---(n—1)-n[and f(0) =0! =1].

EXAMPLE31 We hae f(1)=1l=1 f@ =2=1.2=2 f®6)=6!=1-2-3-4.5.6=720,
and f(20) = 1.2.3.4.5.6.7-8.9.10-11-12.13-14-15.16-17-18-19-20 =
2,432,902,008,176,640,000. <

Example 31 illustrates that the factorial function grows extremely rapidly as n grows.
The rapid growth of the factorial function is made clearer by Stirling’s formula, a result from
higher mathematics that tell us that n! ~ /27w n(n/e)". Here, we have used the notation f(n) ~
g(n), which means that the ratio f(n)/g(n) approaches 1 as n grows without bound (that is,
lim,— o f(n)/g(n) = 1). The symbol ~ is read “is asymptotic to.” Stirling’s formula is named
links after James Stirling, a Scottish mathematician of the eighteenth century.

JAMES STIRLING (1692-1770) James Stirling was born near the town of Stirling, Scotland. His family strongly supported the
Jacobite cause of the Stuarts as an alternative to the British crown. The first information known about James is that he entered Balliol
College, Oxford, on a scholarship in 1711. However, he later lost his scholarship when he refused to pledge his allegiance to the
British crown. The first Jacobean rebellion took place in 1715, and Stirling was accused of communicating with rebels. He was
charged with cursing King George, but he was acquitted of these charges. Even though he could not graduate from Oxford because
of his politics, he remained there for several years. Stirling published his first work, which extended Newton’s work on plane curves,
in 1717. He traveled to Venice, where a chair of mathematics had been promised to him, an appointment that unfortunately fell
through. Nevertheless, Stirling stayed in Venice, continuing his mathematical work. He attended the University of Padua in 1721,
and in 1722 he returned to Glasgow. Stirling apparently fled Italy after learning the secrets of the Italian glass industry, avoiding the
efforts of Italian glass makers to assassinate him to protect their secrets.

In late 1724 Stirling moved to London, staying there 10 years teaching mathematics and actively engaging in research. In 1730
he published Methodus Differentialis, his most important work, presenting results on infinite series, summations, interpolation, and
quadrature. It is in this book that his asymptotic formula for n! appears. Stirling also worked on gravitation and the shape of the
earth; he stated, but did not prove, that the earth is an oblate spheroid. Stirling returned to Scotland in 1735, when he was appointed
manager of a Scottish mining company. He was very successful in this role and even published a paper on the ventilation of mine
shafts. He continued his mathematical research, but at a reduced pace, during his years in the mining industry. Stirling is also noted
for surveying the River Clyde with the goal of creating a series of locks to make it navigable. In 1752 the citizens of Glasgow
presented him with a silver teakettle as a reward for this work.
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Exercises

Partial Functions

A program designed to evaluate a function may not produce the correct value of the function for
all elements in the domain of this function. For example, a program may not produce a correct
value because evaluating the function may lead to an infinite loop or an overflow. Similarly, in
abstract mathematics, we often want to discuss functions that are defined only for a subset of
the real numbers, such as 1/x, 4/x, and arcsin (x). Also, we may want to use such notions as
the “youngest child” function, which is undefined for a couple having no children, or the “time
of sunrise,” which is undefined for some days above the Arctic Circle. To study such situations,
we use the concept of a partial function.

A partial function f from a set A to a set B is an assignment to each element « in a subset
of A, called the domain of definition of f, of a unique element b in B. The sets A and B are
called the domain and codomain of f, respectively. We say that f is undefined for elements
in A that are not in the domain of definition of f. When the domain of definition of f equals
A, we say that 1 is a total function.

Remark: We write f : A — B to denote that f is a partial function from A to B. Note that
this is the same notation as is used for functions. The context in which the notation is used
determines whether f is a partial function or a total function.

The function f : Z — Rwhere f(n) = /nisapartial function from Z to R where the domain of
definition is the set of nonnegative integers. Note that f is undefined for negative integers. <

1. Why is f not a function from R to R if

a) f(x)=1/x?
b) f(x) = x?

0) f(x)=+/(2+1)?
2. Determine whether f is a function from Z to R if

a) f(n) = +n.

b) f(n) =+n2+1.

5. Find the domain and range of these functions. Note that
in each case, to find the domain, determine the set of
elements assigned values by the function.

a) the function that assigns to each bit string the number
of ones in the string minus the number of zeros in the
string

b) the function that assigns to each bit string twice the

) f(n) =1/(n*—4).

. Determine whether £ is a function from the set of all bit

strings to the set of integers if

a) f(S) is the position of a 0 bitin S.

b) f(S) is the number of 1 bits in S.

c) f(S) is the smallest integer i such that the ith bit of
Sisland f(S) =0 when S is the empty string, the
string with no bits.

. Find the domain and range of these functions. Note that

in each case, to find the domain, determine the set of

elements assigned values by the function.

a) the function that assigns to each nonnegative integer
its last digit

b) the function that assigns the next largest integer to a
positive integer

¢) the function that assigns to a bit string the number of
one bits in the string

d) the function that assigns to a bit string the number of
bits in the string

number of zeros in that string

¢) the function that assigns the number of bits left over
when a bit string is split into bytes (which are blocks
of 8 bits)

d) the function that assigns to each positive integer the
largest perfect square not exceeding this integer

. Find the domain and range of these functions.

a) the function that assigns to each pair of positive inte-
gers the first integer of the pair

b) the function that assigns to each positive integer its
largest decimal digit

c) the function that assigns to a bit string the number of
ones minus the number of zeros in the string

d) the function that assigns to each positive integer the
largest integer not exceeding the square root of the
integer

e) the function that assigns to a bit string the longest
string of ones in the string



7.

10.

11.
12.

13.
14.

15.

16.

17.

Find the domain and range of these functions.

a) the function that assigns to each pair of positive inte-
gers the maximum of these two integers

b) the function that assigns to each positive integer the
number of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 that do
not appear as decimal digits of the integer

c) the function that assigns to a bit string the number of
times the block 11 appears

d) the function that assigns to a bit string the numerical
position of the first 1 in the string and that assigns the
value 0 to a bit string consisting of all Os

. Find these values.

a) [1.1] b) 1.1]

c) |—0.1] d) [-0.1]

e) [2.99] f) [—2.99]

9) [3+7131) h T31+131+ 14
. Find these values.

a) 3] b) 5]

c) [-37 d) [—Z]

e) 3] f) 1-1]

0) L3 +131) h) 13- 13]]

Determine whether each of these functions from
{a, b, c, d} to itself is one-to-one.

a) f(a)=>b, f(b)=a, f(c)=c, f(d)=d

b) fla)=0b, f(b)=b, f(c)=d, f(d)=c

¢) fla)=d, f(b)y=>b, f(c)=c, f(d)=d

Which functions in Exercise 10 are onto?

Determine whether each of these functions from Z to Z
is one-to-one.

a) f(m)=n-1 b) f(n) =n?+1

c) f(n)=n? d) f(n)=[n/2]

Which functions in Exercise 12 are onto?

Determine whether f: Z x Z — Z is onto if

a) f(m,n) =2m —n.

b) f(m,n) =m?—n?.

c) fm,n)=m+n+1

d) f(m,n)=|m|—|n|.

e) f(m,n) =m?—4.

Determine whether the function f: Z x Z — Z is onto
if

a) f(m,n) =m+n.

b) f(m,n) =m?+ n?.

c) f(m,n)=m.

d) f(m,n) =|n|

e) f(m,n)=m—n.

Consider these functions from the set of students in a
discrete mathematics class. Under what conditions is the
function one-to-one if it assigns to a student his or her

a) mobile phone number.

b) student identification number.

c) final grade in the class.

d) home town.

Consider these functions from the set of teachers in a
school. Under what conditions is the function one-to-one
if it assigns to a teacher his or her

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.
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a) office.

b) assigned bus to chaperone in a group of buses taking
students on a field trip.

c) salary.

d) social security number.

Specify a codomain for each of the functions in Exercise

16. Under what conditions is each of these functions with

the codomain you specified onto?

Specify a codomain for each of the functions in Exercise

17. Under what conditions is each of the functions with

the codomain you specified onto?

Give an example of a function from N to N that is

a) one-to-one but not onto.

b) onto but not one-to-one.

c) both onto and one-to-one (but different from the iden-
tity function).

d) neither one-to-one nor onto.

Give an explicit formula for a function from the set of

integers to the set of positive integers that is

a) one-to-one, but not onto.

b) onto, but not one-to-one.

c) one-to-one and onto.

d) neither one-to-one nor onto.

Determine whether each of these functions is a bijection

fromR to R.

a) f(x)=—3x+4

b) f(x)=-3x2+7

0 f(x)=x+1)/(x+2)

d f(x)=x>+1

Determine whether each of these functions is a bijection

from R to R.

a) f(x)=2x+1

b) f(x)=x?+1

) fx)=x3

d) f(x) =2 4+1)/(x*+2)

Let f: R — R and let f(x) > 0 for all x € R. Show

that f(x) is strictly increasing if and only if the func-

tion g(x) = 1/f(x) is strictly decreasing.

Let f:R — R and let f(x) > 0 for all x € R. Show

that f(x) is strictly decreasing if and only if the func-

tion g(x) = 1/f (x) is strictly increasing.

a) Prove that a strictly increasing function from R to it-
self is one-to-one.

b) Give an example of an increasing function from R to
itself that is not one-to-one.

a) Prove that a strictly decreasing function from R to
itself is one-to-one.

b) Give an example of a decreasing function from R to
itself that is not one-to-one.

Show that the function f(x) = e* from the set of real
numbers to the set of real numbers is not invertible, but
if the codomain is restricted to the set of positive real
numbers, the resulting function is invertible.
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29.

30.

31.

32.

33.

*34.

*35.

36.

37.

38.

39.

40.

41,

Show that the function f(x) = |x| from the set of real
numbers to the set of nonnegative real numbers is not
invertible, but if the domain is restricted to the set of non-
negative real numbers, the resulting function is invertible.
Let S ={-1,0,2,4,7}. Find f(S) if

a) f(x)=1 b) f(x)=2x+1.

¢) f(x)=T[x/5]. d) f)=1*+1)/3].
Let f(x) = [x2/3]. Find f(S) if

a) $={-2,-1,0,1,2,3}.

b) $=1{0,1,2,3,4,5}.

¢) $={1,5,7,11}.

d) S ={2,6,10,14}.

Let f(x) = 2x where the domain is the set of real num-
bers. What is

a) f(2)? b) f(N)? c) f(R)?

Suppose that g is a function from A to B and f is a

function from B to C.

a) Show that if both f and g are one-to-one functions,
then f o g is also one-to-one.

b) Show that if both f and g are onto functions, then
f o g isalso onto.

If £ and f o g are one-to-one, does it follow that g is
one-to-one? Justify your answer.

If f and f o g are onto, does it follow that g is onto?
Justify your answer.

Find f o gand g o f, where f(x) = x?2 +1and g(x) =
x + 2, are functions from R to R.

Find f + g and fg for the functions f and g given in
Exercise 36.

Let f(x) =ax +b and g(x) = cx +d, where a, b, c,
and d are constants. Determine necessary and suffi-
cient conditions on the constants «a, b, ¢, and d so that
fog=gof.

Show that the function f(x) =ax +b from Rto R is

invertible, where a and b are constants, with a # 0, and
find the inverse of f.

Let f be a function from the set A to the set B. Let S and

T be subsets of A. Show that

a) fSUT)= f(SU f(T).

b) f(SNT) < f(S)N f(T).

a) Give an example to show that the inclusion in part (b)
in Exercise 40 may be proper.

b) Show that if f is one-to-one, the inclusion in part (b)
in Exercise 40 is an equality.

Let f be a function from the set A to the set B. Let S be a
subset of B. We define the inverse image of S to be the subset
of A whose elements are precisely all pre-images of all ele-
ments of S. We denote the inverse image of S by £~1(S), so
fYS) ={a € A| f(a) € S}. (Beware: The notation f~1is
used in two different ways. Do not confuse the notation intro-
duced here with the notation f~1(y) for the value at y of the

inverse of the invertible function f. Notice also that £~1(S),
the inverse image of the set S, makes sense for all functions f,
not just invertible functions.)

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Let f be the function from R to R defined by
F(x) = x2. Find

a) £,

) fM({x [ x > 4).
Let g(x) = [x]. Find

a) g~ 1((op.

o) g l{x10<x<1).
Let f be a function from A to B. Let S and T be subsets
of B. Show that

a) fHSUT) = NS U D).

b) fHSNT) = f~HS) N fFHD).

Let f be a function from A to B. Let S be a subset of B.
Show that £~1(S) = £~1(9).

Show that |x + %J is the closest integer to the number x,

except when x is midway between two integers, when it
is the larger of these two integers.

Show that [x — %1 is the closest integer to the number x,
except when x is midway between two integers, when it
is the smaller of these two integers.

Show that if x is a real number, then [x] — [x] =1 ifx
is not an integer and [x] — |x| = 0 if x is an integer.
Show that if x isareal number,thenx — 1 < |x] <x <
[x] <x+ 1

Show that if x is a real number and m is an integer, then
[x +m] = [x] +m.

Show that if x is a real number and » is an integer, then
a) x <nifandonlyif x| < n.

b) n < xifandonlyifn < [x].

b) F~1{x10<x <1}).

b) ¢~1({—1,0,1}).

Show that if x is a real number and = is an integer, then
a) x <nifandonlyif [x] <n.

b) n <xifandonlyifn < |x].

Prove that if n is an integer, then |n/2] = n/2 if niseven
and (n — 1)/2 if n is odd.

Prove that if x is a real number, then | —x| = —[x] and
[—x] = —|x].
The function INT is found on some calculators, where

INT(x) = [x] when x is a nonnegative real number and
INT(x) = [x] when x is a negative real number. Show
that this INT function satisfies the identity INT(—x) =
—INT(x).

Let @ and b be real numbers with a < b. Use the floor
and/or ceiling functions to express the number of inte-
gers n that satisfy the inequality a < n < b.

Let ¢ and b be real numbers with a < b. Use the floor
and/or ceiling functions to express the number of inte-
gers n that satisfy the inequality a < n < b.

How many bytes are required to encode n bits of data
where n equals
a) 4? b) 10?

¢) 500? d) 30007



59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.
70.

71.

How many bytes are required to encode n bits of data
where n equals

a)7? b) 17? c) 1001? d) 28,800?
How many ATM cells (described in Example 28) can be
transmitted in 10 seconds over a link operating at the fol-
lowing rates?

a) 128 kilobits per second (1 kilobit = 1000 bits)

b) 300 kilobits per second

¢) 1 megabit per second (1 megabit = 1,000,000 bits)
Data are transmitted over a particular Ethernet network
in blocks of 1500 octets (blocks of 8 bits). How many
blocks are required to transmit the following amounts of
data over this Ethernet network? (Note that a byte is a
synonym for an octet, a kilobyte is 1000 bytes, and a
megabyte is 1,000,000 bytes.)

a) 150 kilobytes of data

b) 384 kilobytes of data

c) 1.544 megabytes of data

d) 45.3 megabytes of data

Draw the graph of the function f(n) = 1 — n? from Z
to Z.

Draw the graph of the function f(x) = [2x] from R
toR.

Draw the graph of the function f(x) = [x/2] from R
to R.

Draw the graph of the function f(x) = [x] + |x/2] from
R to R.

Draw the graph of the function f(x) = [x] + [x/2] from
R toR.

Draw graphs of each of these functions.

a) f(x) =[x+ 1] b) f(x)=[2x +1]

c) f(x)=[x/3] d) f(x) =[1/x]

e) f(x)=T[x—2]+|x+2]

f) f()=[2x][x/2] Q) fx)=Tlx—3]+3]
Draw graphs of each of these functions.

a) f(x)=[3x—2] b) f(x) = [0.2x]

c) f(x)=[-1/x] d) f(x) = [x?]

e) f(x)=Tx/21lx/2] f) f()=Lx/2] +[x/2]
9) f(&x)=12x/2] + 3]

Find the inverse function of f(x) = x3 + 1.

Suppose that f is an invertible function from Y to Z
and g is an invertible function from X to Y. Show
that the inverse of the composition f o g is given by
(fog)yt=gltos L

Let S be a subset of a universal set U. The characteristic
function fg of S is the function from U to the set {0, 1}
such that fs(x) = 1if x belongsto S and fs(x) = 0if x
does not belong to S. Let A and B be sets. Show that for
allx e U,

a) fanp(x) = fa(x)- fp(x)

b) faur(x) = fa(x) + fe(x) — fa(x) - fB(x)
C) frx)=1— falx)

d) faep(x) = fa(x)+ fp(x) —2fa(x) fp(x)

5772,

73.

74.

75.

76.

77.

78.

L 79,

*80.
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Suppose that f is a function from A to B, where A and B

are finite sets with |A| = | B|. Show that f is one-to-one

if and only if it is onto.

Prove or disprove each of these statements about the floor

and ceiling functions.

a) [lx]71 = Lx] forall real numbers x.

b) [2x] = 2|x] whenever x is a real number.

c) [x]+[y]—[x+ y] =0or1whenever x and y are
real numbers.

d) [xy] = [x] [y] for all real numbers x and y.

0 E-‘=V+l

Prove or disprove each of these statements about the floor
and ceiling functions.

a) | [x]] = [x] for all real numbers x.

b) |x + y] = [x] + Ly] for all real numbers x and y.
c) [[x/21/2] = [x/4] for all real numbers x.

d) [/TxT] = L/x ] for all positive real numbers x.

J for all real numbers x.

e) x|+ ly]+x+y] <|2x]+[2y] for all real
numbers x and y.

Prove that if x is a positive real number, then

a) WIx])=[vx].

b) TVTxT1=TVx1.

Let x be a real number. Show that [3x] =

L]+ [x + 31+ [x + ).

For each of these partial functions, determine its domain,

codomain, domain of definition, and the set of values for

which it is undefined. Also, determine whether it is a total

function.

a) f[:Z—>R, f(n)=1/n

b) f:Z— Z, f(n) =[n/2]

C) [:ZxZ—Q, f(m,n)=m/n

d f:ZxZ—>Z, f(m,n) =mn

e) [:ZxZ—>Z fmn)=m—nifm>n

a) Show thata partial function from A to B can be viewed
as a function f* from A to B U {u}, where u is not an
element of B and

f(a) if a belongs to the domain
of definition of f
u if fisundefined at a.

) =

b) Using the construction in (a), find the function f*
corresponding to each partial function in Exercise 77.

a) Show that if a set S has cardinality m, where m is a
positive integer, then there is a one-to-one correspon-
dence between S and the set {1, 2, ..., m}.

b) Show that if S and T are two sets each with m ele-
ments, where m is a positive integer, then there is a
one-to-one correspondence between S and 7.

Show that a set S is infinite if and only if there is a proper

subset A of S such that there is a one-to-one correspon-

dence between A and S.
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Sequences and Summations

DEFINITION 1

EXAMPLE 1

Introduction

Sequences are ordered lists of elements, used in discrete mathematics in many ways. For ex-
ample, they can be used to represent solutions to certain counting problems, as we will see in
Chapter 8. They are also an important data structure in computer science. We will often need
to work with sums of terms of sequences in our study of discrete mathematics. This section
reviews the use of summation notation, basic properties of summations, and formulas for the
sums of terms of some particular types of sequences.

The terms of a sequence can be specified by providing a formula for each term of the
sequence. In this section we describe another way to specify the terms of a sequence using
a recurrence relation, which expresses each term as a combination of the previous terms. We
will introduce one method, known as iteration, for finding a closed formula for the terms of a
sequence specified via a recurrence relation. ldentifying a sequence when the first few terms
are provided is a useful skill when solving problems in discrete mathematics. We will provide
some tips, including a useful tool on the Web, for doing so.

Sequences

A sequence is a discrete structure used to represent an ordered list. For example, 1, 2, 3,5, 8 is
a sequence with five termsand 1, 3,9, 27,81, ..., 3", ... is an infinite sequence.

A sequenceis a function from a subset of the set of integers (usually either the set {0, 1, 2, .. .}
ortheset {1, 2, 3, ...}) toaset S. We use the notation a,, to denote the image of the integer n.
We call a,, a term of the sequence.

We use the notation {a,} to describe the sequence. (Note that a, represents an individual
term of the sequence {a,}. Be aware that the notation {a,} for a sequence conflicts with the
notation for a set. However, the context in which we use this notation will always make it clear
when we are dealing with sets and when we are dealing with sequences. Moreover, although we
have used the letter a in the notation for a sequence, other letters or expressions may be used
depending on the sequence under consideration. That is, the choice of the letter a is arbitrary.)

We describe sequences by listing the terms of the sequence in order of increasing subscripts.

Consider the sequence {a,}, where
1
a, = —.
n
The list of the terms of this sequence, beginning with a1, namely,
al’ a27 a37 a47 MR

starts with

1,

N| =
Wl
Nl
A



DEFINITION 2

EXAMPLE 2

DEFINITION 3

EXAMPLE 3

EXAMPLE 4
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A geometric progression is a sequence of the form

a,ar,ar®, ... ar", ...

where the initial term a and the common ratio r are real numbers.

Remark: A geometric progression is a discrete analogue of the exponential function f(x) =

ar®.

The sequences {b,,} with b, = (=1)", {c,} with ¢,, =2 - 5", and {d,,} with d,, = 6 - (1/3)" are
geometric progressions with initial term and common ratio equal to 1 and —1; 2 and 5; and 6
and 1/3, respectively, if we start at n = 0. The list of terms b, b1, by, b3, ba, . .. begins with

1,-1,1,-1,1,...;

the list of terms o, c1, c2, ¢3, ¢4, . . . begins with
2,10, 50, 250, 1250, .. .;

and the list of terms do, d1, d2, ds, ds, . . . begins with

6.2.2.2 2 <
3°9° 27

An arithmetic progression is a sequence of the form
a,at+d,a+2d,...,a+nd,...

where the initial terma and the common difference d are real numbers.

Remark: An arithmetic progression is a discrete analogue of the linear function f(x) = dx + a.

The sequences {s, } with s, = —1 + 4n and {¢,} with t, = 7 — 3n are both arithmetic progres-
sions with initial terms and common differences equal to —1 and 4, and 7 and —3, respectively,
if we start at n = 0. The list of terms sg, 51, 52, 53, . . . begins with

-1,3,7,11,...,

and the list of terms 1o, 11, 12, t3, . . . begins with
7,4,1,-2,.... <
Sequences of the form a1, as, ..., a, are often used in computer science. These finite

sequences are also called strings. This string is also denoted by ajay .. .a,. (Recall that bit
strings, which are finite sequences of bits, were introduced in Section 1.1.) The length of a
string is the number of terms in this string. The empty string, denoted by 2, is the string that
has no terms. The empty string has length zero.

The string abcd is a string of length four. <

Recurrence Relations

In Examples 1-3 we specified sequences by providing explicit formulas for their terms. There
are many other ways to specify a sequence. For example, another way to specify a sequence is
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DEFINITION 4

EXAMPLE 5

EXAMPLE 6

Hop along to Chapter 8
to learn how to find a
formula for the Fibonacci
numbers.

DEFINITION 5

Links

EXAMPLE 7

to provide one or more initial terms together with a rule for determining subsequent terms from
those that precede them.

A recurrencerelation for the sequence {a, } is an equation that expresses a,, in terms of one or
more of the previous terms of the sequence, namely, ag, a1, . . ., a,_1, for all integers n with
n > ng, wWhere ng is a nonnegative integer. A sequence is called a solution of a recurrence
relation if its terms satisfy the recurrence relation. (A recurrence relation is said to recursively
define a sequence. We will explain this alternative terminology in Chapter 5.)

Let {a,} be a sequence that satisfies the recurrence relation a, = a,—1 +3forn =1,2,3, ...,
and suppose that ag = 2. What are a1, ap, and az?

Solution: We see from the recurrence relation that a3 = ag +3 = 2 4+ 3 = 5. It then follows
thatap =5+3=8andas =8+ 3 =11 <

Let {a,} be a sequence that satisfies the recurrence relation a, = a,—1 — a,—2 for n =
2,3,4, ..., and suppose that ag = 3 and a; = 5. What are a» and a3”?

Solution: We see from the recurrence relation that ap = a1 —ag=5—-3=2and a3 = ay —
a; =2 —5= —3.We can find a4, as, and each successive term in a similar way. |

The initial conditions for a recursively defined sequence specify the terms that precede the
first term where the recurrence relation takes effect. For instance, the initial condition in Example
5isap = 2, and the initial conditions in Example 6 are ag = 3 and a; = 5. Using mathematical
induction, a proof technique introduced in Chapter 5, it can be shown that a recurrence relation
together with its initial conditions determines a unique solution.

Next, we define a particularly useful sequence defined by a recurrence relation, known as
the Fibonacci sequence, after the Italian mathematician Fibonacci who was born in the 12th
century (see Chapter 5 for his biography). We will study this sequence in depth in Chapters 5
and 8, where we will see why it is important for many applications, including modeling the
population growth of rabbits.

The Fibonacci sequence, fo, f1, f2, ..., is defined by the initial conditions fo = 0, f1 = 1,
and the recurrence relation

fn = fn—l + fn—2

forn=2,3,4,....

Find the Fibonacci numbers f2, f3, fa, f5, and fg.

Solution: The recurrence relation for the Fibonacci sequence tells us that we find successive
terms by adding the previous two terms. Because the initial conditions tell us that fo = 0 and
f1 =1, using the recurrence relation in the definition we find that

fo=A+fo=14+0=1,

f=L+A=14+1=2,

fa=fz+f2=2+1=3,

fo=fa+f3=3+2=5, <

fe=fs+ fa=54+3=8.
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EXAMPLE 9

EXAMPLE 10
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Suppose that {a,} is the sequence of integers defined by a, = n!, the value of the factorial

function at the integer n, where n =1,2,3,.... Because n! =n((n —)(n —2)...2-1) =
n(n —1)! = na,—1, we see that the sequence of factorials satisfies the recurrence relation
a, = nay,_1, together with the initial condition a; = 1. <

We say that we have solved the recurrence relation together with the initial conditions when
we find an explicit formula, called a closed formula, for the terms of the sequence.

Determine whether the sequence {a,}, where a, = 3n for every nonnegative integer n, is a
solution of the recurrence relation a,, = 2a,,_1 — a,—» forn = 2, 3,4, ... . Answer the same
question where a,, = 2" and where a,, = 5.

Solution: Suppose that a, = 3n for every nonnegative integer n. Then, for n > 2, we see that
20,1 — ay_2 = 2(3(n — 1)) — 3(n — 2) = 3n = a,. Therefore, {a,}, where a, = 3n, is a so-
lution of the recurrence relation.

Suppose thata,, = 2" for every nonnegative integer n. Notethatag = 1,a1 = 2,andaz = 4.
Because 2a; —ag =2 -2 — 1 = 3 # ap, we see that {a,}, where a,, = 2", is not a solution of
the recurrence relation.

Suppose that a, = 5 for every nonnegative integer n. Then for n > 2, we see that @, =
2a, 1 — ay_» = 2-5—5=5 = a,. Therefore, {a,}, where a, = 5, is a solution of the recur-
rence relation. <4

Many methods have been developed for solving recurrence relations. Here, we will introduce
a straightforward method known as iteration via several examples. In Chapter 8 we will study
recurrence relations in depth. In that chapter we will show how recurrence relations can be used
to solve counting problems and we will introduce several powerful methods that can be used to
solve many different recurrence relations.

Solve the recurrence relation and initial condition in Example 5.

Solution: We can successively apply the recurrence relation in Example 5, starting with the
initial condition a; = 2, and working upward until we reach «,, to deduce a closed formula for
the sequence. We see that

ap=2+3
a3=2+3)+3=2+3-2
as=024+2-3)+3=2+3-3

ap=a,-1+3=024+3-n—-2))+3=24+3(n—-1).

We can also successively apply the recurrence relation in Example 5, starting with the
term a,, and working downward until we reach the initial condition a; = 2 to deduce this same
formula. The steps are

ap =ay—1+3
=(an2+3)+3=a, 2+3-2
=(a,-3+3)+3-2=a,_3+3-3

a24+3n—-2)=(@+3)+3n—2)=24+3(n—1).



160 2/ Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

EXAMPLE 11

Extra g>
Examples e

At each iteration of the recurrence relation, we obtain the next term in the sequence by
adding 3 to the previous term. We obtain the nth term after n — 1 iterations of the recurrence
relation. Hence, we have added 3(n — 1) to the initial term ag = 2 to obtain a,. This gives us
the closed formula a, = 2 + 3(n — 1). Note that this sequence is an arithmetic progression. <

The technique used in Example 10 is called iteration. We have iterated, or repeatedly used,
the recurrence relation. The first approach is called forward substitution — we found successive
terms beginning with the initial condition and ending with «a,. The second approach is called
backward substitution, because we began with a,, and iterated to express it in terms of falling
terms of the sequence until we found it in terms of a;. Note that when we use iteration, we
essential guess a formula for the terms of the sequence. To prove that our guess is correct, we
need to use mathematical induction, a technique we discuss in Chapter 5.

In Chapter 8 we will show that recurrence relations can be used to model a wide variety of
problems. We provide one such example here, showing how to use a recurrence relation to find
compound interest.

Compound Interest Suppose that a person deposits $10,000 in a savings account at a bank
yielding 11% per year with interest compounded annually. How much will be in the account
after 30 years?

Solution: To solve this problem, let P, denote the amount in the account after n years. Because
the amount in the account after n years equals the amount in the account after n — 1 years plus
interest for the nth year, we see that the sequence { P,} satisfies the recurrence relation

P,=P, 1+011P, 1 = (L1 P, 1.

The initial condition is Py = 10,000.
We can use an iterative approach to find a formula for P,. Note that

P =111 Py
P, = (111 P = (1.11)2 Py
P3 = (1.11) P, = (1.11)3 Py
P, =@Q11)P,_1 = (L.11)" Py.
When we insert the initial condition Py = 10,000, the formula P, = (1.11)"10,000 is obtained.
Inserting n = 30 into the formula P, = (1.11)"10,000 shows that after 30 years the account

contains

P3o = (1.11)*°10,000 = $228,922.97. <

Special Integer Sequences

A common problem in discrete mathematics is finding a closed formula, a recurrence relation,
or some other type of general rule for constructing the terms of a sequence. Sometimes only a
few terms of a sequence solving a problem are known; the goal is to identify the sequence. Even
though the initial terms of a sequence do not determine the entire sequence (after all, there are
infinitely many different sequences that start with any finite set of initial terms), knowing the
first few terms may help you make an educated conjecture about the identity of your sequence.
Once you have made this conjecture, you can try to verify that you have the correct sequence.
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When trying to deduce a possible formula, recurrence relation, or some other type of rule
for the terms of a sequence when given the initial terms, try to find a pattern in these terms. You
might also see whether you can determine how a term might have been produced from those
preceding it. There are many questions you could ask, but some of the more useful are:

B Are there runs of the same value? That is, does the same value occur many times in a
row?

m Are terms obtained from previous terms by adding the same amount or an amount that
depends on the position in the sequence?

B Are terms obtained from previous terms by multiplying by a particular amount?
B Are terms obtained by combining previous terms in a certain way?
m Are there cycles among the terms?

Find formulae for the sequences with the following first five terms: (a) 1, 1/2, 1/4, 1/8, 1/16
(01,3579 (1,-1,1,-1,1.

Solution: (a) We recognize that the denominators are powers of 2. The sequence witha, = 1/2",
n=20,1,2,...Iisapossible match. This proposed sequence is a geometric progression with
a=1andr =1/2.

(b) We note that each term is obtained by adding 2 to the previous term. The sequence
witha, =2n+1,n =0,1, 2, ... is apossible match. This proposed sequence is an arithmetic
progression witha = 1 and d = 2.

(c) The terms alternate between 1 and —1. The sequence with a, = (—1)",n =0,1,2...
is a possible match. This proposed sequence is a geometric progression witha = land r = —1.

|

Examples 13-15 illustrate how we can analyze sequences to find how the terms are con-
structed.

How can we produce the terms of a sequence if the first 10 terms are 1, 2, 2, 3, 3, 3, 4, 4, 4, 4?

Solution: In this sequence, the integer 1 appears once, the integer 2 appears twice, the integer 3
appears three times, and the integer 4 appears four times. A reasonable rule for generating this
sequence is that the integer n appears exactly n times, so the next five terms of the sequence
would all be 5, the following six terms would all be 6, and so on. The sequence generated this
way is a possible match. <4

How can we produce the terms of a sequence if the first 10 terms are 5, 11, 17, 23, 29, 35, 41,
47,53, 59?

Solution: Note that each of the first 10 terms of this sequence after the first is obtained by adding
6 to the previous term. (We could see this by noticing that the difference between consecutive
terms is 6.) Consequently, the nth term could be produced by starting with 5 and adding 6 a
total of n — 1 times; that is, a reasonable guess is that the nth termis 5+ 6(n — 1) = 6n — 1.
(This is an arithmetic progression witha = 5and d = 6.) <

How can we produce the terms of a sequence if the first 10 terms are 1, 3, 4, 7, 11, 18, 29, 47,
76, 123?

Solution: Observe that each successive term of this sequence, starting with the third term,
is the sum of the two previous terms. Thatis, 4 =3+ 1, 7=4+43,11 =7 + 4, and so on.
Consequently, if L,, is the nth term of this sequence, we guess that the sequence is determined
by the recurrence relation L,, = L,_1 + L,_» with initial conditions L1 = 1 and L, = 3 (the
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TABLE 1 Some Useful Sequences.
nth Term First 10 Terms

n? 1,4,9,16, 25, 36, 49, 64, 81, 100, . . .
n3 1,8, 27, 64,125, 216, 343,512, 729, 1000, . . .
nt 1,16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, . . .
on 2,4,8,16,32, 64,128, 256,512, 1024, ...
3n 3,9,27, 81,243, 729, 2187, 6561, 19683, 59049, . . .
n! 1,2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, ...
fa 1,1,2,3,5,8,13,21,34,55, 89, ...

same recurrence relation as the Fibonacci sequence, but with different initial conditions). This
sequence is known as the Lucas sequence, after the French mathematician Francois Edouard
Lucas. Lucas studied this sequence and the Fibonacci sequence in the nineteenth century. <

Another useful technique for finding a rule for generating the terms of a sequence is to
compare the terms of a sequence of interest with the terms of a well-known integer sequence,
such as terms of an arithmetic progression, terms of a geometric progression, perfect squares,
perfect cubes, and so on. The first 10 terms of some sequences you may want to keep in mind
are displayed in Table 1.

EXAMPLE 16 Conjecture a simple formula for a, if the first 10 terms of the sequence {a,} are 1, 7, 25, 79,
241,727, 2185, 6559, 19681, 59047.

Solution: To attack this problem, we begin by looking at the difference of consecutive terms,
but we do not see a pattern. When we form the ratio of consecutive terms to see whether each
term is a multiple of the previous term, we find that this ratio, although not a constant, is close
to 3. So it is reasonable to suspect that the terms of this sequence are generated by a formula
involving 3". Comparing these terms with the corresponding terms of the sequence {3"}, we
notice that the nth term is 2 less than the corresponding power of 3. We see that a,, = 3" — 2
for 1 < n < 10 and conjecture that this formula holds for all n. |

We will see throughout this text that integer sequences appear in a wide range of contexts in
discrete mathematics. Sequences we have encountered or will encounter include the sequence
of prime numbers (Chapter 4), the number of ways to order »n discrete objects (Chapter 6), the
number of moves required to solve the famous Tower of Hanoi puzzle with » disks (Chapter 8),
and the number of rabbits on an island after » months (Chapter 8).

Check out the puzzles at . . . . . .
the OEIS site. Integer sequences appear in an amazingly wide range of subject areas besides discrete
mathematics, including biology, engineering, chemistry, and physics, as well as in puzzles. An
Links BN amazing database of over 200,000 different integer sequences can be found in the On-Line
Encyclopedia of Integer Sequences (OEIS). This database was originated by Neil Sloane in the
1960s. The last printed version of this database was published in 1995 ([SIPI95]); the current
encyclopedia would occupy more than 750 volumes of the size of the 1995 book with more than
10,000 new submissions a year. There is also a program accessible via the Web that you can use

to find sequences from the encyclopedia that match initial terms you provide.

Summations

Next, we consider the addition of the terms of a sequence. For this we introduce summation
notation. We begin by describing the notation used to express the sum of the terms

am am—i—l’ <o lp
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from the sequence {a, }. We use the notation
n
n
Z aj, Zj:m aj or ngjgn aj
j=m

(read as the sum from j = m to j = n of a;) to represent
am + am+1 + -+ ay.

Here, the variable j is called the index of summation, and the choice of the letter j as the
variable is arbitrary; that is, we could have used any other letter, such as i or k. Or, in notation,

n n n
Ya=Ya=Ya
j=m i=m k=m

Here, the index of summation runs through all integers starting with its lower limit m and ending
with its upper limit n. A large uppercase Greek letter sigma, Y, is used to denote summation.

The usual laws for arithmetic apply to summations. For example, when a and b are real
numbers, we have Z};:l(ax]' +byj)=a Zgzl xj+b>"_;yj, where x1,x,...,x, and
¥1, ¥2, ..., ¥ are real numbers. (We do not present a formal proof of this identity here. Such a
proof can be constructed using mathematical induction, a proof method we introduce in Chap-
ter 5. The proof also uses the commutative and associative laws for addition and the distributive
law of multiplication over addition.)

We give some examples of summation notation.

Use summation notation to express the sum of the first 100 terms of the sequence {a;}, where
aj=1/jforj=1,2,3,....

Solution: The lower limit for the index of summation is 1, and the upper limit is 100. We write
this sum as

NEIL SLOANE (BORN 1939) Neil Sloane studied mathematics and electrical engineering at the Uni-
versity of Melbourne on a scholarship from the Australian state telephone company. He mastered many
telephone-related jobs, such as erecting telephone poles, in his summer work. After graduating, he designed
minimal-cost telephone networks in Australia. In 1962 he came to the United States and studied electri-
cal engineering at Cornell University. His Ph.D. thesis was on what are now called neural networks. He
took a job at Bell Labs in 1969, working in many areas, including network design, coding theory, and
sphere packing. He now works for AT&T Labs, moving there from Bell Labs when AT&T split up in
1996. One of his favorite problems is the kissing problem (a name he coined), which asks how many
spheres can be arranged in n dimensions so that they all touch a central sphere of the same size. (In two

dimensions the answer is 6, because 6 pennies can be placed so that they touch a central penny. In three dimensions, 12 billiard
balls can be placed so that they touch a central billiard ball. Two billiard balls that just touch are said to “kiss,” giving rise to the
terminology “kissing problem” and “kissing number.”) Sloane, together with Andrew Odlyzko, showed that in 8 and 24 dimensions,
the optimal kissing numbers are, respectively, 240 and 196,560. The kissing number is known in dimensions 1, 2, 3, 4, 8, and 24, but
not in any other dimensions. Sloane’s books include Sphere Packings, Lattices and Groups, 3d ed., with John Conway; The Theory
of Error-Correcting Codes with Jessie MacWilliams; The Encyclopedia of Integer Sequences with Simon Plouffe (which has grown
into the famous OEIS website); and The Rock-Climbing Guide to New Jersey Crags with Paul Nick. The last book demonstrates his
interest in rock climbing; it includes more than 50 climbing sites in New Jersey.



164 2/ Basic Structures: Sets, Functions, Sequences, Sums, and Matrices
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THEOREM 1

What is the value of °5_; j22

Solution: We have

5

Zj2=12+22+32+42+52

j=1
=14+4+4+9+4+16+25 <
= 55.

What is the value of 3% _ ,(—~1)k?

Solution: We have

8
YD = (=D 4 (DP + (DE+ (DT + (-D)P
k=4
=1+-D+1+D+1 <

Sometimes itlié useful to shift the index of summation in a sum. This is often done when
two sums need to be added but their indices of summation do not match. When shifting an index
of summation, it is important to make the appropriate changes in the corresponding summand.
This is illustrated by Example 20.

Suppose we have the sum

but want the index of summation to run between 0 and 4 rather than from 1 to 5. To do this,
we let k = j — 1. Then the new summation index runs from 0 (because k =1 — 0 = 0 when
j =1)to4 (because k =5 — 1 = 4 when j = 5), and the term j2 becomes (k + 1)2. Hence,

5 4
D= k+ 12
j=1 k=0

It is easily checked that both sums are 1 +4 + 9 + 16 + 25 = 55. <

Sums of terms of geometric progressions commonly arise (such sums are called geometric
series). Theorem 1 gives us a formula for the sum of terms of a geometric progression.

If @ and r are real numbers and r # 0, then

ar"tl — ¢

Sari= | o1
j=0

(n+ La ifr =1.

ifr £1

Proof: Let

S, = 2”: ar’.
j=0
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To compute S, first multiply both sides of the equality by r and then manipulate the resulting

sum as follows:

rS,=r Z ar’ substituting summation formula for §
j=0
n
= Z aritt by the distributive property
j=0
n+1
= ark shifting the index of summation, withk = j + 1
k=1
n

= ( ark> + (ar"t! —a) removing k = n + 1 term and adding k = 0 term
k=0
S

n + (ar”+1 —a) substituting S for summation formula

From these equalities, we see that
rSy = Sy + (@t — a).
Solving for S,, shows that if r # 1, then

ar"tl — ¢

Sy = —.
" r—1

Ifr =1 thenthe S, =Y} _gar/ =3|_ga = (n+ 1.

<

Double summations arise in many contexts (as in the analysis of nested loops in computer

programs). An example of a double summation is

3

iZij.

i=1 j=1

To evaluate the double sum, first expand the inner summation and then continue by computing

the outer summation:

4 3 4
DX ij=) i +2i+30)

i=1 j=1 i=1

4
= Z 6i
i=1

=6+12 + 18 + 24 = 60.

|

We can also use summation notation to add all values of a function, or terms of an indexed

set, where the index of summation runs over all values in a set. That is, we write

> f)

ses

to represent the sum of the values f (s), for all members s of S.
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TABLE 2 Some Useful Summation Formulae.

Sum Closed Form
" +1
3 ark - £ 0) '™ —a o4
Py r—1
n
Zk nn+1)
k=1 2
i 2 n(n+1)@n +1)
k=1 6
2":,(3 n2(n + 1)
k=1 4
o0
1
Zxk,|x| <1 1
k=0 -
o0
1
> kbt <1 —
(1—x)?

What is the value of > (g5 4y 57

Solution: Because ) ¢ o 2.4 represents the sum of the values of s for all the members of the
set {0, 2, 4}, it follows that

Z s=0+2+4=6.
5 €{0,2,4}

<

Certain sums arise repeatedly throughout discrete mathematics. Having a collection of
formulae for such sums can be useful; Table 2 provides a small table of formulae for commonly
occurring sums.

We derived the first formula in this table in Theorem 1. The next three formulae give us the
sum of the first n positive integers, the sum of their squares, and the sum of their cubes. These
three formulae can be derived in many different ways (for example, see Exercises 37 and 38).
Also note that each of these formulae, once known, can easily be proved using mathematical
induction, the subject of Section 5.1. The last two formulae in the table involve infinite series
and will be discussed shortly.

Example 23 illustrates how the formulae in Table 2 can be useful.

Find Y190 k2,
Solution: First note that because 3 120, k2 = 372 k% + Y19 k2, we have
100 100 49
Fe-Pe P
k=50 k=1 k=1

Using the formula ZZ=1/<2 =n( + 1)(2n + 1)/6 from Table 2 (and proved in Exercise 38),
we see that

100

>k

k=250

, 100-101-201 49-50-99
- 6 B 6

= 338,350 — 40,425 = 297,925.
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SOME INFINITE SERIES Although most of the summations in this book are finite sums,
infinite series are important in some parts of discrete mathematics. Infinite series are usually
studied in a course in calculus and even the definition of these series requires the use of calculus,
but sometimes they arise in discrete mathematics, because discrete mathematics deals with infi-
nite collections of discrete elements. In particular, in our future studies in discrete mathematics,
we will find the closed forms for the infinite series in Examples 24 and 25 to be quite useful.

EXAMPLE 24 (Requirescalculus) Let x be a real number with |x| < 1. Find Y 7, x".
' xk-‘rl -1
biira Solution: By Theorem 1 with a =1 and r = x we see that ), _,x" = 1 Because
x —
Examples B Ix| < 1, x**1 approaches 0 as k approaches infinity. It follows that
N, o a1 01 1
Z x" = lim = = . <
k0o x—1 x—1 1—x
n=0
We can produce new summation formulae by differentiating or integrating existing formulae.
EXAMPLE 25 (Requires calculus) Differentiating both sides of the equation
oo
> = 1 -
k=0 -
from Example 24 we find that
o
D k= %
1 (1-x)
(This differentiation is valid for |x| < 1 by a theorem about infinite series.) <
Exercises
1. Find these terms of the sequence {a,}, where a, = d) the sequence whose nth term is n! — 2"
2-(=3)" +5". e) the sequence that begins with 3, where each succeed-
a) ag b) a1 C) ag d) as ing term is twice the preceding term
2. What is the term ag of the sequence {a,} if a, equals f) the sequence whose first term is 2, second term is 4,
a) 2017 b) 7? and each succeeding term is the sum of the two pre-
c) 14 (=1™? d) —(—2)"? ceding terms
3. What are the terms ag, a1, a2, and a3 of the sequence {a,,}, g) the sequence whose nth term is the number of bits
where a, equals in the binary expansion of the number n (defined in
a) 2" +1? b) (n + 1)n+19 Section 4.2)
¢) Ln/2)? d) |n/2] + [n/2]? h) the sequence where the nth term is the number of let-

4. What are the terms ag, a1, a2, and a3 of the sequence {a, },

where a, equals
a) (=2)"?
c) 7+44"?

5. List the first 10 terms of each of these sequences.
a) the sequence that begins with 2 and in which each

ters in the English word for the index n
6. List the first 10 terms of each of these sequences.

b) 3? a) the sequence obtained by starting with 10 and obtain-
d) 2"+ (—2)"? ing each term by subtracting 3 from the previous term

b) the sequence whose nth term is the sum of the first n
positive integers

successive term is 3 more than the preceding term c) the sequence whose nth term is 3" — 2"
b) the sequence that lists each positive integer three d) the sequence whose nth term is | /n]

times, in increasing order e) the sequence whose first two terms are 1 and 5 and
c) the sequence that lists the odd positive integers in in- each succeeding term is the sum of the two previous

creasing order, listing each odd integer twice terms
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10.

11.

12.

13.

14.

15.

f) the sequence whose nth term is the largest integer
whose binary expansion (defined in Section 4.2) has
n bits (Write your answer in decimal notation.)

g) the sequence whose terms are constructed sequen-
tially as follows: start with 1, then add 1, then multiply
by 1, then add 2, then multiply by 2, and so on

h) the sequence whose nth term is the largest integer &
suchthatk! < n

. Find at least three different sequences beginning with the

terms 1, 2, 4 whose terms are generated by a simple for-
mula or rule.

. Find at least three different sequences beginning with the

terms 3, 5, 7 whose terms are generated by a simple for-
mula or rule.

. Find the first five terms of the sequence defined by each

of these recurrence relations and initial conditions.

a) a, =6a,—1,a0 =2

b) a, = arzl_l, a; =2

C) ap = ap—1 + 3an—2: ag=1a = 2

d) a, = nap_1+n?a,_s,a0=1,a1 =1

e) ay =an-1+an—3,a=1a1=2,a,=0

Find the first six terms of the sequence defined by each
of these recurrence relations and initial conditions.

a) a, = —2a,-1,a0 = —1

b) a, =ay—1 —an—2,a0 = 2,a1 = -1
C) ay, = 3a5_1, ag=1

d) a, = na,—1 +ar21—2’ ag=-1,a0=0

€) ay=an-1—ap—2+ay,—3,a0=1,a1=1a, =2

Leta, =2"+5-3"forn=0,1,2,....

a) Find ag, a1, a2, as, and ay.

b) Show that a; = 5a; — 6ag, a3 = 5a2 — 6a1, and
a4 = 5az — 6ay.

¢) Showthata, = 5a,_1 — 6a,_> for all integers n with
n>2.

Show that the sequence {a, } isa solution of the recurrence

relation a, = —3a,_1 + 4a,_» if
a) a, =0. b) a, = 1.
C) a, = (—4)". d) a, =2(-4)" + 3.

Is the sequence {a,} a solution of the recurrence relation
a, = 8a,_1 — 16a,_; if

a) a, =0? b) a, =1?

c) a, =2"? d) a, =4"?

e) a, = nd"? f) a, =2-4" 4 3nd"?
9) a, = (—4)"? h) a, = n%4"?

For each of these sequences find a recurrence relation
satisfied by this sequence. (The answers are not unique
because there are infinitely many different recurrence
relations satisfied by any sequence.)

a) a, =3 b) a, = 2n
C) ap=2n+3 d) a, =5"
e) a, = n? f) a, =n%+n
9) a, =n+ (=1)" h) a, = n!

Show that the sequence {a, } isa solution of the recurrence
relation a, = a,—1 + 2a,—» +2n — 9 if

a) a, = —n+2.

b) a, =5(-1)" —n + 2.

16.

17.

18.

19.

20.

21.

22.

C) a,=3(-1)"+2"—n+2.

da =7-2"-n+2.

Find the solution to each of these recurrence relations with

the given initial conditions. Use an iterative approach such

as that used in Example 10.

a) ay = —dap-1, 40 = 5

b) ay =ap_1+3,a0 =1

C) ap=ay—1—n,ap =14

d) a, =2a,-1—3,a0 = -1

e) ap =+ Day_1,a0 =2

f) ay, = 2na,_1,a0 =3

9) ay=—ap-1+n—1,a0=7

Find the solution to each of these recurrence relations and

initial conditions. Use an iterative approach such as that

used in Example 10.

a) a, =3a,_1,ap =2

b) a, =ay,—1+2,a0=3

C) apn=ap—1+n,a0=1

d a,=a,-1+2n+3,a0=4

e) a, =2a,-1—1,a0=1

f) ay=3ap,-1+1,a0=1

9) an =nay—1,a0 =5

h) a, = 2na,—1,a0 =1

A person deposits $1000 in an account that yields 9%

interest compounded annually.

a) Set up a recurrence relation for the amount in the ac-
count at the end of n years.

b) Find an explicit formula for the amount in the account
at the end of n years.

c) How much money will the account contain after 100
years?

Suppose that the number of bacteria in a colony triples

every hour.

a) Setuparecurrence relation for the number of bacteria
after n hours have elapsed.

b) If 100 bacteria are used to begin a new colony, how
many bacteria will be in the colony in 10 hours?
Assume that the population of the world in 2010 was 6.9

billion and is growing at the rate of 1.1% a year.

a) Set up a recurrence relation for the population of the
world n years after 2010.

b) Find an explicit formula for the population of the
world n years after 2010.

¢) What will the population of the world be in 2030?

A factory makes custom sports cars at an increasing rate.

In the first month only one car is made, in the second

month two cars are made, and so on, with »n cars made in

the nth month.

a) Set up a recurrence relation for the number of cars
produced in the first » months by this factory.

b) How many cars are produced in the first year?

c) Find an explicit formula for the number of cars pro-
duced in the first n months by this factory.

An employee joined a company in 2009 with a starting

salary of $50,000. Every year this employee receives a

raise of $1000 plus 5% of the salary of the previous year.



23.

24.

)

25.

26.

#%27.

*28.

a) Setup arecurrence relation for the salary of this em-
ployee n years after 20009.

b) What will the salary of this employee be in 2017?

c) Find an explicit formula for the salary of this em-
ployee n years after 2009.

Find a recurrence relation for the balance B(k) owed at

the end of £ months on a loan of $5000 at a rate of 7%

if a payment of $100 is made each month. [Hint: Ex-

press B(k) in terms of B(k — 1); the monthly interest is

(0.07/12)B(k — 1).]

a) Findarecurrence relation forthe balance B (k) owed at
the end of k months on a loan at a rate of r if a payment
P is made on the loan each month. [Hint: Express
B(k) in terms of B(k — 1) and note that the monthly
interest rate is r/12.]

b) Determine what the monthly payment P should be so
that the loan is paid off after 7 months.

For each of these lists of integers, provide a simple for-
mula or rule that generates the terms of an integer se-
quence that begins with the given list. Assuming that your
formula or rule is correct, determine the next three terms
of the sequence.

a) 1,0,1,1,0,0,1,1,1,0,0,0,1, ...
b) 1,2,2,3,4,4,5,6,6,7,8,8, ...
¢) 1,0,2,0,4,0,8,0,16,0,...

d) 3,6,12,24,48,96,192, ...

e) 15,8,1, —6, —13, —20, —27

f) 3,5,8,12,17,23, 30, 38,47, ...

g) 2,16,54,128, 250, 432, 686, . ..

h) 2,3,7,25,121, 721,5041, 40321, ...

For each of these lists of integers, provide a simple for-
mula or rule that generates the terms of an integer se-
quence that begins with the given list. Assuming that your
formula or rule is correct, determine the next three terms
of the sequence.

a) 3,6,11,18, 27, 38,51, 66, 83, 102, ...

b) 7,11, 15,19, 23, 27,31, 35, 39,43, ...

c) 1,1

d) 1,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5, ...

e) 0,2,8,26,80,242,728,2186,6560,19682, ...

f) 1,3,15, 105,945, 10395, 135135, 2027025,
34459425, . ..

g 1,0,0,1,1,1,0,0,0,0,1,1,1,1,1,...

h) 2, 4,16, 256, 65536, 4294967296, . ..

Show that if a,, denotes the nth positive integer that is not
aperfectsquare, thena, = n + {/n}, where {x} denotes
the integer closest to the real number x.

Leta, bethe nthtermofthesequencel,2,2,3,3,3,4,4,4,
4,5,5,5,5,5,6,6,6,6,6,6, ..., constructed by including
the integer k exactly & times. Show thata,, = |v/2n + %J.

29. What are the values of these sums?

5 4 .
a Y (k+1) b) > (=2)/
k=1 j=0

10 8 . .
c) 23 d) > @+ -2/
i=1 j=0

, 10,11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, ...

30.

3L

32.

33.

34.

35.

36.

37.

*38.

39.
40.
*41.

*42.
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What are the values of these sums, where S = {1, 3, 5, 7}?

a) ¥ b) X j°
jes jes

c) > /N d > 1
jeSs jeSs

What is the value of each of these sums of terms of a
geometric progression?

8
a) z 3.2/ b) Y 2/
/— ji=1
. 8 .
<) Z(—3)J d) > 2- (=3’
j=2 j=0

Find the value of each of these sums

a) Z(1+( 1Y) b) 2(31—21)

/_ I_
c) 2(2.31+3-zf) d) Z(zf“—z/’)
j=0 j=0
Compute each of these double sums.

a) Z Z(l+J> b) Z 2(214‘3])
171]7 170],

c) Z Zl d) Z Z ij
i=1j=0 i=0j=1

Compute each of these double sums.

a) Z Z(t—;) b) Z Z(3t+21)
l_l]_ 1_0]_

c) Z Z J d) Z Z
i=1j=0 i=0,;=0

Show that >%_,(aj —aj-1) =a, —ao, Wwhere

ap, di, ..., dy is asequence of real numbers. This type

of sum is called telescoping.

Use the identity 1/(k(k+1)) =1/k—1/(k+ 1) and

Exercise 35 to compute ZZ:1 1/(k(k + 1)).

Sum both sides of the identity k2 — (k —1)2 =2k — 1

from k = 1to k = n and use Exercise 35 to find

a) aformulafor Y} _;(2k — 1) (the sum of the first n
odd natural numbers).

b) aformulafor Y} _; k.

Use the technique given in Exercise 35, together with the

result of Exercise 37b, to derive the formula for "} _; k?

given in Table 2. [Hint: Take a; = 2 in the telescoping

sum in Exercise 35.]

Find Y°2%, ok. (Use Table 2.)

Find Y22 0k3. (Use Table 2.)

Find a formula for }"7'_,[~/k], when m is a positive
integer.

Find a formula for Y"7'_, [¥/k], when m is a positive
integer.

There is also a special notation for products. The product of

Ams Am+1y -« -

n
ay isrepresented by [] aj, read as the prod-
j=m

uctfrom j =mto j = nofa;.
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43. What are the values of the following products? 44, Express n! using product notation.
a) [1iZoi b) TT7-si
¢) [T % (-1 d) [1;2,2 45. Find 4 _ !
i=1 i=1 . Fin ijo_]..

Recall that the value of the factorial function at a positive in-
teger n, denoted by n!, is the product of the positive integers

from 1 to n, inclusive. Also, we specify that 0! = 1. 46. Find [T4_g jt.
Cardinality of Sets
Introduction

In Definition 4 of Section 2.1 we defined the cardinality of a finite set as the number of elements
in the set. We use the cardinalities of finite sets to tell us when they have the same size, or when
one is bigger than the other. In this section we extend this notion to infinite sets. That is, we will
define what it means for two infinite sets to have the same cardinality, providing us with a way
to measure the relative sizes of infinite sets.

We will be particularly interested in countably infinite sets, which are sets with the same
cardinality as the set of positive integers. We will establish the surprising result that the set of
rational numbers is countably infinite. We will also provide an example of an uncountable set
when we show that the set of real numbers is not countable.

The concepts developed in this section have important applications to computer science. A
function is called uncomputable if no computer program can be written to find all its values,
even with unlimited time and memory. We will use the concepts in this section to explain why
uncomputable functions exist.

We now define what it means for two sets to have the same size, or cardinality. In Section 2.1,
we discussed the cardinality of finite sets and we defined the size, or cardinality, of such sets. In
Exercise 79 of Section 2.3 we showed that there is a one-to-one correspondence between any
two finite sets with the same number of elements. We use this observation to extend the concept
of cardinality to all sets, both finite and infinite.

DEFINITION 1 Thesets A and B have the same cardinality if and only if there is a one-to-one correspondence
from A to B. When A and B have the same cardinality, we write |A| = | B].

For infinite sets the definition of cardinality provides a relative measure of the sizes of two sets,
rather than a measure of the size of one particular set. We can also define what it means for one
set to have a smaller cardinality than another set.

DEFINITION 2 If there is a one-to-one function from A to B, the cardinality of A is less than or the same as
the cardinality of B and we write |A| < |B|. Moreover, when |A| < |B| and A and B have
different cardinality, we say that the cardinality of A is less than the cardinality of B and we
write |[A| < |B|.

Countable Sets

We will now split infinite sets into two groups, those with the same cardinality as the set of
natural numbers and those with a different cardinality.



DEFINITION 3

EXAMPLE 1

You can always get a room
at Hilbert’s Grand Hotel!

Links

Links
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1 3 5 7 9 11 13 15 17 19 21 23 ..

FIGURE 1 A One-to-One Correspondence Between Z+ and the Set of Odd Positive
Integers.

A set that is either finite or has the same cardinality as the set of positive integers is called
countable. A set that is not countable is called uncountable. When an infinite set S is countable,
we denote the cardinality of S by Rg (where X is aleph, the first letter of the Hebrew alphabet).
We write | S| = Rg and say that S has cardinality “aleph null.”

We illustrate how to show a set is countable in the next example.
Show that the set of odd positive integers is a countable set.

Solution: To show that the set of odd positive integers is countable, we will exhibit a one-to-one
correspondence between this set and the set of positive integers. Consider the function

f(n)y=2n-1

from Z* to the set of odd positive integers. We show that f is a one-to-one correspondence by
showing that it is both one-to-one and onto. To see that it is one-to-one, suppose that f(n) =
f(m). Then2n — 1 =2m — 1, s0n = m. To see that it is onto, suppose that 7 is an odd positive
integer. Thenz is 1 less than an even integer 2k, where k is a natural number. Hencer = 2k — 1 =
f (k). We display this one-to-one correspondence in Figure 1. <

An infinite set is countable if and only if it is possible to list the elements of the set in a
sequence (indexed by the positive integers). The reason for this is that a one-to-one correspon-
dence f from the set of positive integers to a set S can be expressed in terms of a sequence

ai,az,...,dy,...,whereay = f(1),a2 = f(2),...,a, = f(n),....

HILBERT’S GRAND HOTEL We now describe a paradox that shows that something impos-
sible with finite sets may be possible with infinite sets. The famous mathematician David Hilbert
invented the notion of the Grand Hotel, which has a countably infinite number of rooms, each
occupied by a guest. When a new guest arrives at a hotel with a finite number of rooms, and
all rooms are occupied, this guest cannot be accommodated without evicting a current guest.
However, we can always accommodate a new guest at the Grand Hotel, even when all rooms
are already occupied, as we show in Example 2. Exercises 5 and 8 ask you to show that we can
accommodate a finite number of new guests and a countable number of new guests, respectively,
at the fully occupied Grand Hotel.

DAVID HILBERT (1862-1943)  Hilbert, born in Kdnigsberg, the city famous in mathematics for its seven
bridges, was the son of a judge. During his tenure at Géttingen University, from 1892 to 1930, he made many
fundamental contributions to a wide range of mathematical subjects. He almost always worked on one area of
mathematics at a time, making important contributions, then moving to a new mathematical subject. Some areas
inwhich Hilbert worked are the calculus of variations, geometry, algebra, number theory, logic, and mathematical
physics. Besides his many outstanding original contributions, Hilbert is remembered for his famous list of 23
difficult problems. He described these problems at the 1900 International Congress of Mathematicians, as a
challenge to mathematicians at the birth of the twentieth century. Since that time, they have spurred a tremendous
amount and variety of research. Although many of these problems have now been solved, several remain open,

including the Riemann hypothesis, which is part of Problem 8 on Hilbert’s list. Hilbert was also the author of several important
textbooks in number theory and geometry.
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EXAMPLE 2

EXAMPLE 3

EXAMPLE 4

Take room 1,
everyone else
move down one room

!

Manager New gLest

FIGURE 2 A New Guest Arrives at Hilbert’s Grand Hotel.

How can we accommodate a new guest arriving at the fully occupied Grand Hotel without
removing any of the current guests?

Solution: Because the rooms of the Grand Hotel are countable, we can list them as Room 1,
Room 2, Room 3, and so on. When a new guest arrives, we move the guest in Room 1 to Room
2, the guest in Room 2 to Room 3, and in general, the guest in Room n to Room n + 1, for all
positive integers n. This frees up Room 1, which we assign to the new guest, and all the current
guests still have rooms. We illustrate this situation in Figure 2. |

When there are finitely many room in a hotel, the notion that all rooms are occupied is
equivalent to the notion that no new guests can be accommodated. However, Hilbert’s paradox
of the Grand Hotel can be explained by noting that this equivalence no longer holds when there
are infinitely many room.

EXAMPLES OF COUNTABLE AND UNCOUNTABLE SETS  We will now show that cer-
tain sets of numbers are countable. We begin with the set of all integers. Note that we can show
that the set of all integers is countable by listing its members.

Show that the set of all integers is countable.

Solution: We can list all integers in a sequence by starting with 0 and alternating between
positive and negative integers: 0, 1, —1, 2, —2, . ... Alternatively, we could find a one-to-one
correspondence between the set of positive integers and the set of all integers. We leave it to the
reader to show that the function f(n) = n/2 when n is even and f(n) = —(n — 1)/2 when n
is odd is such a function. Consequently, the set of all integers is countable. <

It is not surprising that the set of odd integers and the set of all integers are both countable
sets (as shown in Examples 1 and 3). Many people are amazed to learn that the set of rational
numbers is countable, as Example 4 demonstrates.

Show that the set of positive rational numbers is countable.

Solution: It may seem surprising that the set of positive rational numbers is countable, but we
will show how we can list the positive rational numbers as a sequence r1, 2, ..., ry, . ... First,
note that every positive rational number is the quotient p/q of two positive integers. \We can
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Terms not circled C
are not listed

because they

0
:
s Q" @ 3
o/
:

N

5

3

2 3 4 5
/4 4 4

2 3 4 5

5 5 5

FIGURE 3 The Positive Rational Numbers Are Countable.

arrange the positive rational numbers by listing those with denominator ¢ = 1 in the first row,
those with denominator ¢ = 2 in the second row, and so on, as displayed in Figure 3.

The key to listing the rational numbers in a sequence is to first list the positive rational
numbers p/q with p 4+ g = 2, followed by those with p + ¢ = 3, followed by those with
p + g = 4, and so on, following the path shown in Figure 3. Whenever we encounter a number
p/q that is already listed, we do not list it again. For example, when we come to 2/2 = 1 we
do not list it because we have already listed 1/1 = 1. The initial terms in the list of positive
rational numbers we have constructedare 1, 1/2, 2, 3,1/3,1/4,2/3, 3/2, 4, 5, and so on. These
numbers are shown circled; the uncircled numbers in the list are those we leave out because
they are already listed. Because all positive rational numbers are listed once, as the reader can
verify, we have shown that the set of positive rational numbers is countable. |

An Uncountable Set

Not all infinite sets have

the same sizel We have seen that the set of positive rational numbers is a countable set. Do we have a promising

candidate for an uncountable set? The first place we might look is the set of real numbers. In

@ Example 5 we use an important proof method, introduced in 1879 by Georg Cantor and known
Links as the Cantor diagonalization argument, to prove that the set of real numbers is not countable.
This proof method is used extensively in mathematical logic and in the theory of computation.

EXAMPLE 5 Show that the set of real numbers is an uncountable set.

Extra >N Solution: To show that the set of real numbers is uncountable, we suppose that the set of real
Examples numbers is countable and arrive at a contradiction. Then, the subset of all real numbers that
fall between 0 and 1 would also be countable (because any subset of a countable set is also

countable; see Exercise 16). Under this assumption, the real numbers between 0 and 1 can be

listed in some order, say, r1, r2, r3, .. .. Let the decimal representation of these real numbers be

r1 = 0.d11d1pd13da . ..
ro = 0.do1d22do3dy . . .
r3 = 0.d31d32d33d3s . ..
ra = 0.da1dardsszdas . . .

where d;; € {0, 1,2,3,4,5,6,7,8,9}. (For example, if r; = 0.23794102.. .., we have d11 =
2, dip =3, di3 =17, and so on.) Then, form a new real number with decimal expansion
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S

A number with a decimal
expansion that terminates
has a second decimal
expansion ending with an
infinite sequence of 9s
because 1 = 0.999....

THEOREM 1

This proof uses WLOG
and cases.

THEOREM 2

r = 0.d1dod3d, . . ., where the decimal digits are determined by the following rule:

_[Aifd #~4
"7 \|5ifd; = 4.

(As an example, suppose that r;=0.23794102..., rp =0.44590138..., r3=
0.09118764 ..., r4 = 0.80553900..., and so on. Then we have r = 0.didodzds ... =
0.4544. .., where di = 4 because d11 # 4, do = 5 because doy = 4, d3 = 4 because ds3 # 4,
dy = 4 because dgq # 4, and so on.)

Every real number has a unique decimal expansion (when the possibility that the expansion
has a tail end that consists entirely of the digit 9 is excluded). Therefore, the real number r is not
equal toany of r1, rp, . . . because the decimal expansion of r differs from the decimal expansion
of r; in the ith place to the right of the decimal point, for each i.

Because there is a real number r between 0 and 1 that is not in the list, the assumption that all
the real numbers between 0 and 1 could be listed must be false. Therefore, all the real numbers
between 0 and 1 cannot be listed, so the set of real numbers between 0 and 1 is uncountable. Any
set with an uncountable subset is uncountable (see Exercise 15). Hence, the set of real numbers
is uncountable. <

RESULTS ABOUT CARDINALITY We will now discuss some results about the cardinality
of sets. First, we will prove that the union of two countable sets is also countable.

If A and B are countable sets, then A U B is also countable.

Proof: Suppose that A and B are both countable sets. Without loss of generality, we can assume
that A and B are disjoint. (If they are not, we can replace Bby B — A,because AN (B — A) = ()
and AU (B — A) = A U B.) Furthermore, without loss of generality, if one of the two sets is
countably infinite and other finite, we can assume that B is the one that is finite.

There are three cases to consider: (i) A and B are both finite, (ii) A is infinite and B is finite,
and (iii) A and B are both countably infinite.

Case (i): Note that when A and B are finite, A U B is also finite, and therefore, countable.

Case (ii): Because A is countably infinite, its elements can be listed in an infinite sequence

ai, az, as, ..., a, ... and because B is finite, its terms can be listed as b1, b, ..., b, for

some positive integer m. We can list the elements of A U B as b1, ba, ..., by, a1, az, as,
.. ay, .... This means that A U B is countably infinite.

Case (iii): Because both A and B are countably infinite, we can list their elements as a1,
az, as, ..., dy, ... and b1, by, b3, ..., by, ..., respectively. By alternating terms of these
two sequences we can list the elements of A U B in the infinite sequence a1, b1, az, b2, as,
b3, ..., ay, by, .... Thismeans A U B must be countably infinite.

We have completed the proof, as we have shown that A U B is countable in all three
cases. <

Because of its importance, we now state a key theorem in the study of cardinality.

SCHRODER-BERNSTEIN THEOREM If A and B are sets with |A| < |B| and |B| <
|Al, then |A| = | B|. In other words, if there are one-to-one functions f from A to B and g
from B to A, then there is a one-to-one correspondence between A and B.
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DEFINITION 4

¢ is the lowercase
Fraktur c.
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Because Theorem 2 seems to be quite straightforward, we might expect that it has an easy
proof. However, even though it can be proved without using advanced mathematics, no known
proof is easy to explain. Consequently, we omit a proof here. We refer the interested reader to
[AiZiHo09] and [Ve06] for a proof. This result is called the Schréder-Bernstein theorem after
Ernst Schroder who published a flawed proof of it in 1898 and Felix Bernstein, a student of
Georg Cantor, who presented a proof in 1897. However, a proof of this theorem was found
in notes of Richard Dedekind dated 1887. Dedekind was a German mathematician who made
important contributions to the foundations of mathematics, abstract algebra, and number theory.
We illustrate the use of Theorem 2 with an example.

Show that the | (0, 1)| = |(0, 1]I.

Solution: It is not at all obvious how to find a one-to-one correspondence between (0, 1) and
(0, 1] to show that |(0, 1)| = |(0, 1]|. Fortunately, we can use the Schroder-Bernstein theorem
instead. Finding a one-to-one function from (0, 1) to (0, 1] is simple. Because (0, 1) c (0, 1],
f(x) = x is a one-to-one function from (0, 1) to (0, 1]. Finding a one-to-one function from
(0,1] to (0, 1) is also not difficult. The function g(x) = x/2 is clearly one-to-one and maps
(0,1] to (0,1/2] C (0, 1). As we have found one-to-one functions from (0, 1) to (0, 1] and
from (0, 1] to (0, 1), the Schréder-Bernstein theorem tells us that |(0, 1)| = |(0, 1]|. <

UNCOMPUTABLE FUNCTIONS We will now describe an important application of the
concepts of this section to computer science. In particular, we will show that there are functions
whose values cannot be computed by any computer program.

We say that a function is computable if there is a computer program in some programming
language that finds the values of this function. If a function is not computable we say it is
uncomputable.

To show that there are uncomputable functions, we need to establish two results. First, we
need to show that the set of all computer programs in any particular programming language is
countable. This can be proved by noting that a computer programs in a particular language can
be thought of as a string of characters from a finite alphabet (see Exercise 37). Next, we show
that there are uncountably many different functions from a particular countably infinite set to
itself. In particular, Exercise 38 shows that the set of functions from the set of positive integers
to itself is uncountable. This is a consequence of the uncountability of the real numbers between
0 and 1 (see Example 5). Putting these two results together (Exercise 39) shows that there are
uncomputable functions.

THE CONTINUUM HYPOTHESIS We conclude this section with a brief discussion of a
famous open question about cardinality. It can be shown that the power set of Z* and the set
of real numbers R have the same cardinality (see Exercise 38). In other words, we know that
|P(Z1)| = |R| = ¢, where ¢ denotes the cardinality of the set of real numbers.

Animportant theorem of Cantor (Exercise 40) states that the cardinality of a setis always less
than the cardinality of its power set. Hence, |Z*| < |P(ZT)|. We can rewrite this as 8¢ < 2%,
using the notation 2!5! to denote the cardinality of the power set of the set S. Also, note that the
relationship |P(Z)| = |R| can be expressed as 2% = .

This leads us to the famous continuum hypothesis, which asserts that there is no cardinal
number X between Xg and c. In other words, the continuum hypothesis states that there is no set
A such that 8¢, the cardinality of the set of positive integers, is less than |A| and | A| is less than
¢, the cardinality of the set of real numbers. It can be shown that the smallest infinite cardinal
numbers form an infinite sequence Rg < 81 < Ny < --- . If we assume that the continuum
hypothesis is true, it would follow that ¢ = K1, so that 2% = R.
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The continuum hypothesis was stated by Cantor in 1877. He labored unsuccessfully to prove
it, becoming extremely dismayed that he could not. By 1900, settling the continuum hypothesis
was considered to be among the most important unsolved problems in mathematics. It was the
first problem posed by David Hilbert in his famous 1900 list of open problems in mathematics.

The continuum hypothesis is still an open question and remains an area for active research.
However, it has been shown that it can be neither proved nor disproved under the standard set
theory axioms in modern mathematics, the Zermelo-Fraenkel axioms. The Zermelo-Fraenkel
axioms were formulated to avoid the paradoxes of naive set theory, such as Russell’s paradox,
but there is much controversy whether they should be replaced by some other set of axioms for

set theory.

Exercises

1. Determine whether each of these sets is finite, countably

infinite, or uncountable. For those that are countably in-

finite, exhibit a one-to-one correspondence between the

set of positive integers and that set.

a) the negative integers

b) the even integers

c) the integers less than 100

d) the real numbers between 0 and %

e) the positive integers less than 1,000,000,000

f) the integers that are multiples of 7

. Determine whether each of these sets is finite, countably

infinite, or uncountable. For those that are countably in-

finite, exhibit a one-to-one correspondence between the

set of positive integers and that set.

a) the integers greater than 10

b) the odd negative integers

c) the integers with absolute value less than 1,000,000

d) the real numbers between 0 and 2

e) theset A x ZT where A = {2, 3}

f) the integers that are multiples of 10

. Determine whether each of these sets is countable or un-

countable. For those that are countably infinite, exhibit

a one-to-one correspondence between the set of positive

integers and that set.

a) all bit strings not containing the bit 0

b) all positive rational numbers that cannot be written
with denominators less than 4

c) the real numbers not containing 0 in their decimal
representation

d) the real numbers containing only a finite number of
1s in their decimal representation

. Determine whether each of these sets is countable or un-

countable. For those that are countably infinite, exhibit

a one-to-one correspondence between the set of positive

integers and that set.

a) integers not divisible by 3

b) integers divisible by 5 but not by 7

c¢) the real numbers with decimal representations con-
sisting of all 1s

d) the real numbers with decimal representations of all
1sor9s

*9.

10.

11.

12.
13.

14.

e715,

L 16,
17.

. Show that a finite group of guests arriving at Hilbert’s

fully occupied Grand Hotel can be given rooms without
evicting any current guest.

. Suppose that Hilbert’s Grand Hotel is fully occupied, but

the hotel closes all the even numbered rooms for mainte-
nance. Show that all guests can remain in the hotel.

. Suppose that Hilbert’s Grand Hotel is fully occupied on

the day the hotel expands to a second building which also
contains a countably infinite number of rooms. Show that
the current guests can be spread out to fill every room of
the two buildings of the hotel.

. Show that a countably infinite number of guests arriv-

ing at Hilbert’s fully occupied Grand Hotel can be given
rooms without evicting any current guest.

Suppose that a countably infinite number of buses, each
containing a countably infinite number of guests, arrive
at Hilbert’s fully occupied Grand Hotel. Show that all the
arriving guests can be accommodated without evicting
any current guest.

Give an example of two uncountable sets A and B such
that A — B is

a) finite.

b) countably infinite.

€) uncountable.

Give an example of two uncountable sets A and B such
that AN B is

a) finite.

b) countably infinite.

c) uncountable.

Show that if A and B aresetsand A C B then |A| < |B|.
Explain why the set A is countable if and only if |A] <
1Z*].

Show that if A and B are sets with the same cardinality,
then |A| < |B|and |B| < |A|.

Show that if A and B are sets, A is uncountable, and
A C B, then B is uncountable.

Show that a subset of a countable set is also countable.

If A is an uncountable set and B is a countable set, must
A — B be uncountable?



18.

19.

20.
21.

22.

23.

24.

25.

26.

*27.

28.
*29.
*30.

*31.

*32.

Show that if A and B are sets |A| = |B|, then |P(A)| =
|P(B)].

Show that if A, B, C, and D are sets with |A| = |B| and
|C| = |D|,then |A x C| = |B x D|.

Show that if |[A| = |B| and |B| = |C|, then |A| = |C|.
Show that if A, B, and C are sets such that |[A| < |B]| and
|B| < |C], then [A] < |C].

Suppose that A is a countable set. Show that the set B is
also countable if there is an onto function f from A to B.

Show that if A is an infinite set, then it contains a count-
ably infinite subset.

Show that there is no infinite set A suchthat |A| < |ZT| =
No.

Prove that if it is possible to label each element of an
infinite set S with a finite string of keyboard characters,
from a finite list characters, where no two elements of S
have the same label, then S is a countably infinite set.

Use Exercise 25 to provide a proof different from that
in the text that the set of rational numbers is countable.
[Hint: Show that you can express a rational number as a
string of digits with a slash and possibly a minus sign.]

Show that the union of a countable number of countable
sets is countable.

Show that the set Z+ x Z* is countable.
Show that the set of all finite bit strings is countable.

Show that the set of real numbers that are solutions of
quadratic equations ax? + bx + ¢ = 0, where a, b, and ¢
are integers, is countable.

Show that Z* x Z* is countable by showing that
the polynomial function f:Z* xZ* — Z* with
fm,n)=m+n—2)(m+n—1)/2+m is one-to-
one and onto.

Show that when you substitute (3n + 1)2 for each occur-
rence of n and (3m + 1)? for each occurrence of m in the
right-hand side of the formula for the function f(m, n)
in Exercise 31, you obtain a one-to-one polynomial func-
tion Z x Z — Z. It is an open question whether there is
a one-to-one polynomial function Q x Q — Q.

Matrices

33.

34.

35.

*36.

*37.

*38.

*30.

*40.
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Use the Schréder-Bernstein theorem to show that (0, 1)
and [0, 1] have the same cardinality

Show that (0, 1) and R have the same cardinality. [Hint:
Use the Schrdder-Bernstein theorem.]

Show that there is no one-to-one correspondence from
the set of positive integers to the power set of the set of
positive integers. [Hint: Assume that there is such a one-
to-one correspondence. Represent a subset of the set of
positive integers as an infinite bit string with ith bit 1 if
belongs to the subset and 0 otherwise. Suppose that you
can list these infinite strings in a sequence indexed by the
positive integers. Construct a new bit string with its ith
bit equal to the complement of the ith bit of the ith string
in the list. Show that this new bit string cannot appear in
the list.]

Show that there is a one-to-one correspondence from the
set of subsets of the positive integers to the set real num-
bers between 0 and 1. Use this result and Exercises 34 and
35 to conclude that Ro < |P(Z™)| = |R|. [Hint: Look at
the first part of the hint for Exercise 35.]

Show that the set of all computer programs in a partic-
ular programming language is countable. [Hint: A com-
puter program written in a programming language can be
thought of as a string of symbols from a finite alphabet.]

Show that the set of functions from the positive inte-
gers to the set {0, 1, 2, 3, 4,5, 6, 7, 8, 9} is uncountable.
[Hint: First set up a one-to-one correspondence between
the set of real numbers between 0 and 1 and a subset of
these functions. Do this by associating to the real number
0.d1d> ...d, ... the function f with f(n) = d,.]

We say that a function is computable if there is a com-
puter program that finds the values of this function. Use
Exercises 37 and 38 to show that there are functions that
are not computable.

Show that if S is a set, then there does not exist an onto
function f from S to P(S), the power set of S. Con-
clude that | S| < |P(S)|. This result is known as Cantor’s
theorem. [Hint: Suppose such a function f existed. Let
T={seS|s ¢ f(s)} and show that no element s can
exist for which f(s) = T.]

Introduction

Matrices are used throughout discrete mathematics to express relationships between elements
in sets. In subsequent chapters we will use matrices in a wide variety of models. For instance,
matrices will be used in models of communications networks and transportation systems. Many
algorithms will be developed that use these matrix models. This section reviews matrix arithmetic

that will be used in these algorithms.
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DEFINITION 1 A matrix is a rectangular array of numbers. A matrix with m rows and » columns is called
an m x n matrix. The plural of matrix is matrices. A matrix with the same number of rows
as columns is called square. Two matrices are equal if they have the same number of rows
and the same number of columns and the corresponding entries in every position are equal.

1 1
EXAMPLE1 Thematrix |0 2] isa3 x 2 matrix. <
1 3

We now introduce some terminology about matrices. Boldface uppercase letters will be
used to represent matrices.

DEFINITION 2 Letm and n be positive integers and let

a11 Cl]_2 aco aln
Cl2]_ Cl22 0co agn
A= i
am1 am?2 800 Amn
The ith row of A is the 1 x n matrix [a;1, a;2, . .., a;,]. The jth column of A isthe m x 1
matrix
a]_j
azj
amj

The (i, j)th element or entry of A is the element a;;, that is, the number in the ith row and
jth column of A. A convenient shorthand notation for expressing the matrix A is to write
A = [a;], which indicates that A is the matrix with its (i, j)th element equal to aj;.

Matrix Arithmetic

The basic operations of matrix arithmetic will now be discussed, beginning with a definition of
matrix addition.

DEFINITION 3 Let A = [aj] and B = [b;;] be m x n matrices. The sum of A and B, denoted by A + B, is
the m x n matrix that has a;; + bj; as its (i, j)th element. In other words, A 4+ B = [a;; + bjj].

The sum of two matrices of the same size is obtained by adding elements in the corresponding
positions. Matrices of different sizes cannot be added, because the sum of two matrices is defined
only when both matrices have the same number of rows and the same number of columns.

EXAMPLE 2
1 0 -1 3 4 -1 4 4 -2
Wehave |2 2 -3+ | 1 -3 0|=(3 -1 -=-3]. <
3 4 0 -1 1 2 2 5 2
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EXAMPLE 3

Extra
Examples <
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We now discuss matrix products. A product of two matrices is defined only when the number
of columns in the first matrix equals the number of rows of the second matrix.

Let Abeanm x k matrixand B be a k x n matrix. The product of A and B, denoted by AB, is
the m x n matrix with its (i, j)th entry equal to the sum of the products of the corresponding
elements from the ith row of A and the jth column of B. In other words, if AB = [c;;], then

cij = ai1b1j + aizbzj + - - - + aikby;.

In Figure 1 the colored row of A and the colored column of B are used to compute the element
c;j of AB. The product of two matrices is not defined when the number of columns in the first
matrix and the number of rows in the second matrix are not the same.

We now give some examples of matrix products.

Let

and B=

o WM K
N R PO
NO R AN
W N
or b

Find AB if it is defined.

Solution: Because A isa4 x 3 matrix and B is a 3 x 2 matrix, the product AB is defined and is
a4 x 2 matrix. To find the elements of AB, the corresponding elements of the rows of A and the
columns of B are first multiplied and then these products are added. For instance, the element in
the (3, 1)th position of AB is the sum of the products of the corresponding elements of the third
row of A and the first column of B; namely, 3-2 4+ 1.1+ 0-3 = 7. When all the elements of
AB are computed, we see that

14 4
8 9

AB = 7 13| <
8 2

Matrix multiplication is not commutative. That is, if A and B are two matrices, it is not
necessarily true that AB and BA are the same. In fact, it may be that only one of these two
products is defined. For instance, if Ais 2 x 3and B is 3 x 4, then AB is defined and is 2 x 4;
however, BA is not defined, because it is impossible to multiply a 3 x 4 matrix and a 2 x 3
matrix.

In general, suppose that A isan m x n matrix and B is an r x s matrix. Then AB is defined
only when n = r and BA is defined only when s = m. Moreover, even when AB and BA are

[a11 a1z ... au’
a a2 ... ay b11 b1y ... blj ... by, c11 €12 ... Cin
: : : byy by ... by ... by €1 €22 ... (2
a1l a2 ... Qg : : : : - cij
bia b ... by ... b Cml Cm2 .. Cmn
| am1 am2 ... amk

FIGURE 1 The Product of A = [a;j] and B = [b;;].
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EXAMPLE 4

DEFINITION 5

both defined, they will not be the same size unless m = n = r = s. Hence, if both AB and BA
are defined and are the same size, then both A and B must be square and of the same size.
Furthermore, even with A and B both n x n matrices, AB and BA are not necessarily equal, as
Example 4 demonstrates.

Let

Does AB = BA?

Solution: We find that

3 2 4 3
AB = [5 3} and BA = [3 2} .
Hence, AB # BA. <

Transposes and Powers of Matrices

We now introduce an important matrix with entries that are zeros and ones.

The identity matrix of order n is the n x n matrix 1, = [§;;], where é;; =1 if i = j and
8;; =0ifi # j. Hence

1 0 ... O
0 1 0
Lo .
0 0 1

Multiplying a matrix by an appropriately sized identity matrix does not change this matrix. In
other words, when A is an m x n matrix, we have

Al, =1,A=A.
Powers of square matrices can be defined. When A is an n x n matrix, we have

A — 1, A" = AAA...A.
— ———

r times

The operation of interchanging the rows and columns of a square matrix arises in many
contexts.



DEFINITION 6

EXAMPLE 5

DEFINITION 7

EXAMPLE 6

&

FIGURE2 A
Symmetric Matrix.

DEFINITION 8

EXAMPLE 7

2.6 Matrices 181

Let A = [a;;] be an m x n matrix. The transpose of A, denoted by A’, is the n x m matrix
obtained by interchanging the rows and columns of A. In other words, if A’ = [b;;], then
b,‘j = aji for i =1,2,...,nandj:1,2,...,m.

1 4

The transpose of the matrix 123 isthe matrix | 2 5.
4 5 6 3 <

Matrices that do not change when their rows and columns are interchanged are often im-
portant.

A square matrix A is called symmetric if A = A’. Thus A = [a;;] is symmetric if a;; = aj;
foralliand jwithl <i <nandl<j <n.

Note that a matrix is symmetric if and only if it is square and it is symmetric with respect to its
main diagonal (which consists of entries that are in the ith row and ith column for some ). This
symmetry is displayed in Figure 2.

1 10
Thematrix {1 0 1] issymmetric. <
0 1 0

Zero—-One Matrices

A matrix all of whose entries are either 0 or 1 is called a zero—one matrix. Zero—one matrices
are often used to represent discrete structures, as we will see in Chapters 9 and 10. Algorithms
using these structures are based on Boolean arithmetic with zero—one matrices. This arithmetic
is based on the Boolean operations A and v, which operate on pairs of bits, defined by

by A by — 1 ifby=5by=1
L2270 otherwise,

b1\ by 1 ifby=1lorby=1
Y7270 otherwise.

Let A = [a;;] and B = [b;;] be m x n zero-one matrices. Then the join of A and B is the
zero—one matrix with (i, j)th entry a;; v b;;. The join of A and B is denoted by A v B. The
meet of A and B is the zero—one matrix with (i, j)th entry a;; A b;;. The meet of Aand B is
denoted by A A B.

Find the join and meet of the zero—one matrices

10 1 0010
A:[o 1 o}’ B:[l 1 o]‘



182 2/ Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Solution: We find that the join of A and B is

Ayg_|LVO Ovl 1vO]_[1 1 1
“lovi 1vi ovo|T|1 1 o

The meet of A and B is

A/\Bz[l/\o onl 1/\0}:[0 0 o]

0Al 1A1 OAO 0 1 O

We now define the Boolean product of two matrices.

DEFINITION 9 Let A = [a;;] be anm x k zero—one matrix and B = [b;;] be a k x n zero—one matrix. Then
the Boolean product of A and B, denoted by A © B, is the m x n matrix with (i, j)th entry
cij Where

cij = (@1 Ab1j) V (ai2 Ab2j) vV -+ -V (aik A byj).

Note that the Boolean product of A and B is obtained in an analogous way to the ordinary
product of these matrices, but with addition replaced with the operation v and with multiplication
replaced with the operation A. We give an example of the Boolean products of matrices.

EXAMPLE 8 Find the Boolean product of A and B, where

Solution: The Boolean product A © B is given by

(LA VOAD @LALVOAL (LA VOAL
AOB=|(0ALDVAAD OALDVEAAL OAO0VELAL
| AADVOAD AADVEOAL AA0VEOAD

[1v0 1vO0 O0voO
=(0v0 Ovl Ov1
}vO 1v0o O0voO

Il
=
e
oo

|

We can also define the Boolean powers of a square zero—one matrix. These powers will
be used in our subsequent studies of paths in graphs, which are used to model such things as
communications paths in computer networks.
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EXAMPLE9 LetA=
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Let A be a square zero—one matrix and let » be a positive integer. The rth Boolean power of
A is the Boolean product of » factors of A. The rth Boolean product of A is denoted by A",

Hence

All=A0AOAD...OA

r times

(This is well defined because the Boolean product of matrices is associative.) We also define

Al% to be 1,,.

. Find A" for all positive integers n.

=)
oo
oo R

Solution: We find that

1 10
Al —paoA=]0 0 1
1 0 1
We also find that
1 0 1 1 1 1
ABl —aAllloa=[1 1 of, A —_aABloa=|1 0 1
1 1 1 1 1 1

Additional computation shows that

1 1 1
APl =11 1 1
1 1 1
The reader can now see that Al = Al®I for all positive integers n with n > 5. <
Exercises
11 1 3 _[-1 0 5 &6
1 LetA=[z 0 4 e} b)A=1_14 35 —2]’
1 1 3 7 _
a) What size is A? B= _g _2 :i ‘21]
b) What is the third column of A? . L
c) What is the second row of A? 3. Find AB if
d) What is the element of A in the (3, 2)th position? a) A= 2 1 B— 0 4
e) Whatis A’? T3 27T L o3
2. Find A + B, where (1 —1 3 2 _1
1 0o 4] by A=[0 1 ,B=[1 _0 _2]
a) A=|-1 2 2|, 2 3
0 -2 —3_ - 4 -3
o] 3 = 0 A= 3 -1 B= -1 3 2 —2.
0 -2 0 -1 4 -3
B = 2 2 =-3]. 1 5
2 -3 0] -
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4.

10.

11.

12.

13.

14.

Find the product AB, where

1 0 1 0 1 -1
ayA=| 0 -1 —-1|,B=| 1 -1 0
_—1 1 0 -1 0 1
1 -3 0 1 -1 2 3
by A=|1 2 2|,B=|-1 0 3 -1
| 2 1 -1 -3 -2 0 2
[0 -1
4 -1 2 3 0
c) A= 7 2|1,B= [ ]
4 -3 -2 0 3 41
. Find a matrix A such that
2 3 30
F S ]

[Hint: Finding A requires that you solve systems of linear
equations.]

. Find a matrix A such that

1 3 2 7 1 3
21 1A= 1 0 3
4 0 3 -1 -3 7

. Let A be an m x n matrix and let O be the m x n matrix

that has all entries equal to zero. Show that A =0+ A =
A+0.

. Show that matrix addition is commutative; that is,

show that if A and B are both m x n matrices, then
A+B=B+A.

. Show that matrix addition is associative; that is, show

that if A, B, and C are all m x n matrices, then
A+B+C=A+B)+C

Let Abe a3 x 4 matrix, B be a4 x 5 matrix,and C be a
4 x 4 matrix. Determine which of the following products
are defined and find the size of those that are defined.

a) AB b) BA c) AC

d) CA e) BC f) CB

What do we know about the sizes of the matrices A and
B if both of the products AB and BA are defined?

In this exercise we show that matrix multiplication is dis-

tributive over matrix addition.

a) Suppose that A and B are m x k matrices and that C
isa k x n matrix. Show that (A + B)C = AC + BC.

b) SupposethatCisanm x k matrix and that Aand B are

k x n matrices. Show that C(A + B) = CA + CB.
In this exercise we show that matrix multiplication is
associative. Suppose that A is an m x p matrix, B is
a p x k matrix, and C is a k x n matrix. Show that
A(BC) = (AB)C.

Then x nmatrix A = [g;;]is called a diagonal matrix if
a;j = 0wheni # j. Show that the product of two n x n
diagonal matrices is again a diagonal matrix. Give a sim-
ple rule for determining this product.

15.

16.
17.

Let
11
Ao ]
Find a formula for A", whenever n is a positive integer.
Show that (A")! = A.
Let A and B be two n x n matrices. Show that

a) (A+B)=A"+B".
b) (AB)' = B'A’.

If A and B are n x n matrices with AB = BA = |,,, then B
is called the inverse of A (this terminology is appropriate be-

19.

20.

21.

22.

23.

cause such a matrix B is unique) and A is said to be invertible.
The notation B = A~ denotes that B is the inverse of A.

18.

Show that
2 3 1]
1 2 1
-1 -1 3

is the inverse of

7 -8 5
-4 5 -3
1 -1 1

Let A be the 2 x 2 matrix

a b
a0
Show that if ad — bc # 0, then

d -b
ad —bc ad — bc
—c a

ad —bc ad — bc

-1 2

A [ ! 3] .
a) Find A~L. [Hint: Use Exercise 19.]
b) Find A3.
¢) Find (A~1)3,
d) Use your answers to (b) and (c) to show that (A—1)3

is the inverse of A3,

Let A be an invertible matrix. Show that (A")~1 =
(A~1)" whenever n is a positive integer.
Let A be a matrix. Show that the matrix AA’ is symmet-
ric. [Hint: Show that this matrix equals its transpose with
the help of Exercise 17b.]

Suppose that A is an n x n matrix where n is a positive
integer. Show that A + A’ is symmetric.

Al =

Let



24. a) Show that the system of simultaneous linear equations

aipx1 +apxy + -+ aypx, = by

axx1 + axpxy + -+ + axpx, = b2

ap1x1 + ap2x2 + -+ + appxy = by.

in the variables x1, x2, ..., x,, can be expressed as
AX = B, where A = [g;;], Xisan n x 1 matrix with
x; the entry in its ith row, and B is an n x 1 matrix
with b; the entry in its ith row.

b) Show that if the matrix A = [a;;] is invertible (as
defined in the preamble to Exercise 18), then the so-
lution of the system in part (a) can be found using the
equation X = A~1B.

25. Use Exercises 18 and 24 to solve the system

Tx1 —8x2 +5x3 =5
—4x1 4+ 5x2 — 3x3 = -3

X1 —x2+x3=0

26. Let

11 01
A:[O 1] and B:[1 O]'

Find
a) AvB. b) AAB. c) AOB.
27. Let
1 01 0 11
A=(1 1 0 and B=|1 0 1
0 01 101
Find
a) AvB. b) A AB. c) AOB.

Key Terms and Results
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28. Find the Boolean product of A and B, where

100 1 ég
A=|0 1 0 1 and B =
1111 11
10
29. Let
100
A=|1 0 1
010
Find
a) A2, b) Al

c) Av ARy ABL
30. Let A be a zero—one matrix. Show that
a) AVA=A b) ANA=A.
31. In this exercise we show that the meet and join opera-

tions are commutative. Let A and B be m x n zero-one
matrices. Show that
a) AvB=BVA. b) BAA=AAB.

32. In this exercise we show that the meet and join opera-
tions are associative. Let A, B, and C be m x n zero—one
matrices. Show that
a) AvB)vC=Av BvVvO).

b) AABYAC=AABACQC).

33. We will establish distributive laws of the meet over the
join operation in this exercise. Let A, B,and Cbe m x n
zero—one matrices. Show that
a) A VvBAC)=(AVB)AAVC).

b) AABVC)=(AAB)VAAC).

34. Let A be an n x n zero—one matrix. Let | be the n x n
identity matrix. Showthat AO I =10A = A.

35. In this exercise we will show that the Boolean prod-
uct of zero—one matrices is associative. Assume that A
is an m x p zero—one matrix, B is a p x k zero—one
matrix, and C is a k x n zero—one matrix. Show that
AOBOC)=(AOB)OC.

TERMS

set: a collection of distinct objects

axiom: a basic assumption of a theory

paradox: a logical inconsistency

element, member of a set: an object in a set

roster method: a method that describes a set by listing its
elements

set builder notation: the notation that describes a set by stating
a property an element must have to be a member

@ (empty set, null set): the set with no members

universal set: the set containing all objects under considera-
tion

Venn diagram: a graphical representation of a set or sets

S =T (set equality): S and T have the same elements

S C T (Sis asubset of T): every element of S is also an
element of T

S c T (Sis a proper subset of T): S is a subset of T and
S#T

finite set: a set with n elements, where n is a nonnegative
integer

infinite set: a set that is not finite

|S] (the cardinality of S): the number of elements in S

P(S) (the power set of S): the set of all subsets of S

A U B (the union of A and B): the set containing those ele-
ments that are in at least one of A and B

A N B (the intersection of A and B): the set containing those
elements that are in both A and B.
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A — B (the difference of A and B): the set containing those
elements that are in A but notin B

A (the complement of A): the set of elements in the universal
set that are not in A

A @ B (the symmetric difference of A and B): the set con-
taining those elements in exactly one of A and B

membership table: a table displaying the membership of ele-
ments in sets

function from A to B : an assignment of exactly one element
of B to each element of A

domain of f: the set A, where f is a function from A to B

codomain of f: the set B, where f is a function from A to B

b is the image of aunder f: b = f(a)

aisapre-image of bunderf: f(a) =b

range of f: the set of images of f

onto function, surjection: a function from A to B such that
every element of B is the image of some element in A

one-to-one function, injection: a function such that the im-
ages of elements in its domain are distinct

one-to-one correspondence, bijection: a function that is both
one-to-one and onto

inverse of f: the function that reverses the correspondence
given by f (when f is a bijection)

f o g (composition of f and g): the function that assigns
f(gx) tox

Lx] (floor function): the largest integer not exceeding x

[x]1 (ceiling function): the smallest integer greater than or
equal to x

partial function: an assignment to each element in a subset of
the domain a unique element in the codomain

sequence: a function with domain that is a subset of the set of
integers

geometric progression: asequence of the forma, ar, ar?, . . .,
where a and r are real numbers

arithmetic progression: a sequence of the form a, a +d,
a-+2d, ..., where a and d are real numbers

string: a finite sequence

empty string: a string of length zero

recurrence relation: a equation that expresses the nth term a,,
of a sequence in terms of one or more of the previous terms
of the sequence for all integers n greater than a particular
integer

Review Questions

Y iairthesumas +ax + -+ +ay

1= a:: the product ataz - - - ay,

cardinality: two sets A and B have the same cardinality if
there is a one-to-one correspondence from A to B

countable set: a set that either is finite or can be placed in
one-to-one correspondence with the set of positive integers

uncountable set: a set that is not countable

Ro (aleph null): the cardinality of a countable set

c: the cardinality of the set of real numbers

Cantor diagonalization argument: a proof technique used to
show that the set of real numbers is uncountable

computable function: a function for which there is a com-
puter program in some programming language that finds its
values

uncomputable function: a function for which no computer
program in a programming language exists that finds its
values

continuum hypothesis: the statement there no set A exists
suchthat®g < |A] < ¢

matrix: a rectangular array of numbers

matrix addition: see page 178

matrix multiplication: see page 179

I,, (identity matrix of order n): the n x n matrix that has
entries equal to 1 on its diagonal and Os elsewhere

A! (transpose of A): the matrix obtained from A by interchang-
ing the rows and columns

symmetric matrix: a matrix is symmetric if it equals its trans-
pose

zero—one matrix: a matrix with each entry equal to either 0 or
1

A v B (the join of A and B): see page 181

A A B (the meet of A and B): see page 181

A © B (the Boolean product of A and B): see page 182

RESULTS

The set identities given in Table 1 in Section 2.2
The summation formulae in Table 2 in Section 2.4
The set of rational numbers is countable.

The set of real numbers is uncountable.

1. Explain what it means for one set to be a subset of another
set. How do you prove that one set is a subset of another
set?

2. What is the empty set? Show that the empty set is a subset
of every set.

3. a) Define | S|, the cardinality of the set S.

b) Give a formula for |[A U B|, where A and B are sets.

4. a) Define the power set of a set S.
b) When is the empty set in the power set of a set §?

¢) How many elements does the power set of a set S with
n elements have?

5. a) Define the union, intersection, difference, and sym-
metric difference of two sets.

b) What are the union, intersection, difference, and sym-
metric difference of the set of positive integers and the
set of odd integers?

6. a) Explain what it means for two sets to be equal.

b) Describe as many of the ways as you can to show that
two sets are equal.

c) Show in at least two different ways that the sets
A—(BNC)and (A — B)U (A — C) are equal.



7.

8.

Explain the relationship between logical equivalences and
set identities.

a) Define the domain, codomain, and range of a function.

b) Let f(n) be the function from the set of integers to the
set of integers such that f(n) = n? + 1. What are the
domain, codomain, and range of this function?

a) Define what it means for a function from the set of
positive integers to the set of positive integers to be
one-to-one.

b) Define what it means for a function from the set of
positive integers to the set of positive integers to be
onto.

c) Give an example of a function from the set of posi-
tive integers to the set of positive integers that is both
one-to-one and onto.

d) Give an example of a function from the set of positive
integers to the set of positive integers that is one-to-one
but not onto.

e) Give an example of a function from the set of posi-
tive integers to the set of positive integers that is not
one-to-one but is onto.

f) Give an example of a function from the set of positive
integers to the set of positive integers that is neither
one-to-one nor onto.

Supplementary Exercises

10.

11.

12.

13.

14.

15.
16.
17.

18.
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a) Define the inverse of a function.
b) When does a function have an inverse?

c) Doesthe function f(n) = 10 — n from the set of inte-
gers to the set of integers have an inverse? If so, what
is it?

a) Define the floor and ceiling functions from the set of
real numbers to the set of integers.

b) For which real numbers x is it true that | x| = [x]?

Conjecture a formula for the terms of the sequence that
begins 8, 14, 32, 86, 248 and find the next three terms of
your sequence.

Suppose thata, = a,—1 —5forn =1, 2,.... Find a for-
mula for a,,.

What is the sum of the terms of the geometric progression
a+ar+---+arwhenr #1?

Show that the set of odd integers is countable.
Give an example of an uncountable set.

Define the product of two matrices A and B. When is this
product defined?

Show that matrix multiplication is not commutative.

1.

Let A be the set of English words that contain the letter

x, and let B be the set of English words that contain the

letter g. Express each of these sets as a combination of A

and B.

a) The set of English words that do not contain the letter
X.

b) The set of English words that contain both an x and a

q.
c) The set of English words that contain an x but nota g.
d) The set of English words that do not contain either an
xoragqg.
e) The set of English words that contain an x or a ¢, but
not both.

. Show that if A is a subset of B, then the power set of A

is a subset of the power set of B.

. Suppose that A and B are sets such that the power set of

A is a subset of the power set of B. Does it follow that A
is a subset of B?

. Let E denote the set of even integers and O denote the

set of odd integers. As usual, let Z denote the set of all
integers. Determine each of these sets.

a)EUO  b)ENO ¢Z-E d)z-0

. Show that if A and B are sets, then A — (A — B) =

ANB.

. Let A and B be sets. Show that A € B if and only if

ANB=A.

10.

11.

12.

13.

14.

. Let A, B, and C be sets. Show that (A — B) — C is not

necessarily equal to A — (B — C).

. Suppose that A, B, and C are sets. Prove or disprove that

(A—B)—C=(A-C)—B.

. Suppose that A, B, C, and D are sets. Prove or disprove

that (A — B) — (C — D) = (A — C) — (B — D).

Show that if A and B are finite sets, then |[A N B| <

|A U B|. Determine when this relationship is an equality.

Let A and B be sets in a finite universal set U. List the

following in order of increasing size.

a) |Al,|AU B, |ANB|, U, 9|

b) |A— B|,|A® B|, |A| +|B|.|AU B|, 9|

Let A and B be subsets of the finite universal set U. Show

that ANB| = |U| — |A| — |B| + |AN B|.

Let f and g be functions from {1, 2, 3, 4} to {a, b, ¢, d}

and from {a, b, c,d} to {1, 2, 3, 4}, respectively, with

f)=d, f@=c, fQB) =a, and f(4) =b, and

gla) =2,g(b) =1, g(c) =3,and g(d) = 2.

a) Is f one-to-one? Is g one-to-one?

b) Is f onto? Is g onto?

¢) Does either f or g have an inverse? If so, find this
inverse.

Suppose that f is a function from A to B where A and B
are finite sets. Explain why | £ (S)| < |S| for all subsets S
of A.
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15.

Suppose that f is a function from A to B where A and B
are finite sets. Explain why | (S)| = | S| for all subsets S
of A if and only if f is one-to-one.

Suppose that f is a function from A to B. We define the func-
tion Sy from P(A) to P(B) by the rule S¢(X) = f(X) for
each subset X of A. Similarly, we define the function S ;-
from P(B) to P(A) by the rule Sp(Y) = f~1(Y) for each
subset Y of B. Here, we are using Definition 4, and the defi-
nition of the inverse image of a set found in the preamble to
Exercise 42, both in Section 2.3.

*16.

17.

18.

19.

20.

21.

22.
23.

24.
25.

26.

*27.

Suppose that f is a function from the set A to the set B.

Prove that

a) if f is one-to-one, then S is a one-to-one function
from P(A) to P(B).

b) if f is onto function, then S is an onto function from
P(A) to P(B).

¢) if £ is onto function, then S;-1 is a one-to-one func-
tion from P(B) to P(A).

d) if f is one-to-one, then S ;-1 is an onto function from
P(B) to P(A).

e) if f is aone-to-one correspondence, then Sy is a one-
to-one correspondence from P(A) to P(B) and S -1
is a one-to-one correspondence from P(B) to P(A).
[Hint: Use parts (a)-(d).]

Prove that if f and g are functions from A to B and

Sy = S, (using the definition in the preamble to Exercise

16), then f(x) = g(x) forall x € A.

Show that if n is an integer, then n = [n/2] + |n/2].

For which real numbers x and y is it true that |x + y] =

x|+ Ly]?

For which real numbers x and y is it true that [x + y] =

[x1+y1?

For which real numbers x and y is it true that [x + y] =

[xT+ Ly]?

Prove that |1n/2][n/2] = |n?/4] for all integers n.

Prove that if m is an integer, then |x] + m —x] =

m — 1, unless x is an integer, in which case, it equals m.

Prove that if x is a real number, then [ | x/2]/2] = |x/4].

Prove that if n is an odd integer, then fn2/4] =

(n?+3)/4.

Prove that if m and n are positive integers and x is a real

number, then

[x]+n| |x+n
m - m ’
Prove that if m is a positive integer and x is a real number,
then

1 2
et =t 2[4 2]
m m

]
+|x+—1.
m

*28.

29.

*30.

*31.

32.

33.

34.

*%35.

*% 36.

37.

38.

39.

40.

We define the Ulam numbers by setting u1 =1 and
up = 2. Furthermore, after determining whether the in-
tegers less than n are Ulam numbers, we set n equal to
the next Ulam number if it can be written uniquely as the
sum of two different Ulam numbers. Note that uz = 3,
ugs =4, us =6, and ug = 8.

a) Find the first 20 Ulam numbers.

b) Prove that there are infinitely many Ulam numbers.

Determine the value of [+ +L. (The notation used
here for products is defined in the preamble to Exercise

43 in Section 2.4.)

Determine a rule for generating the terms of the sequence
that begins 1, 3, 4, 8, 15, 27, 50, 92, . . ., and find the next
four terms of the sequence.

Determine a rule for generating the terms of the sequence
that begins 2,3,3,5,10, 13, 39,43,172,177, 885,
891, ..., and find the next four terms of the sequence.
Show that the set of irrational numbers is an uncountable
set.

Show that the set S is a countable set if there is a func-
tion f from S to the positive integers such that £ ~1(;) is
countable whenever ; is a positive integer.

Show that the set of all finite subsets of the set of positive
integers is a countable set.

Show that |R x R| = |R|. [Hint: Use the Schroder-
Bernstein theorem to show that |(0,1) x (0,1)| =
[(0, 1)|. To construct an injection from (0, 1) x (0, 1) to
(0, 1), suppose that (x, y) € (0,1) x (0,1). Map (x, y)
to the number with decimal expansion formed by alter-
nating between the digits in the decimal expansions of x
and y, which do not end with an infinite string of 9s.]
Show that C, the set of complex numbers has the same
cardinality as R, the set of real numbers.

Find A" if A'is

5o

Show that if A = cl, where c is a real number and | is the
n x n identity matrix, then AB = BA whenever B is an
n x n matrix.

Showthatif Aisa2 x 2 matrix such that AB = BA when-
ever B is a 2 x 2 matrix, then A = cl, where c is a real
number and | is the 2 x 2 identity matrix.

Show that if A and B are invertible matrices and AB exists,
then (AB)~1 = B-1A-L.

. Let A be an n x n matrix and let 0 be the n x n matrix

all of whose entries are zero. Show that the following are
true.

a) AO0O=00A=0

b) AVO=0VA=A

c) AAO=0AA=0
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Write programs with the specified input and output.

. Given subsets A and B of a set with n elements, use bit
stringstofind A, AUB, ANB,A— B,and A @ B.

. Given multisets A and B from the same universal set, find
AUB,ANB,A— B,and A + B (see preamble to Exer-
cise 61 of Section 2.2).

. Given fuzzy sets A and B, find A, AU B, and A N B (see
preamble to Exercise 63 of Section 2.2).

. Givenafunction f from {1, 2, ..., n} to the set of integers,
determine whether f is one-to-one.
. Given a function f from {1, 2, ..., n} to itself, determine

whether f is onto.

Computations and Explorations

11.

12.

. Given a bijection f fromthe set {1, 2, ..., n} toitself, find

L

. Givenanm x k matrix A and a k x n matrix B, find AB.
. Given a square matrix A and a positive integer n, find A”.
. Given a square matrix, determine whether it is symmetric.
10.

Given two m x n Boolean matrices, find their meet and
join.

Given an m x k Boolean matrix A and a k x n Boolean
matrix B, find the Boolean product of A and B.

Given a square Boolean matrix A and a positive integer n,
find A1,

. Giventwo finite sets, list all elements in the Cartesian prod-
uct of these two sets.

. Given a finite set, list all elements of its power set.

. Calculate the number of one-to-one functions from a set S
toaset T, where S and T are finite sets of various sizes. Can
you determine a formula for the number of such functions?
(We will find such a formula in Chapter 6.)

. Calculate the number of onto functions from a set S to a
set T, where S and T are finite sets of various sizes. Can

Writing Projects

*5.

Use a computational program or programs you have written to do these exercises.

you determine a formula for the number of such functions?
(We will find such a formula in Chapter 8.)

Develop a collection of different rules for generating the
terms of a sequence and a program for randomly selecting
one of these rules and the particular sequence generated
using these rules. Make this part of an interactive program
that prompts for the next term of the sequence and deter-
mines whether the response is the intended next term.

Respond to these with essays using outside sources.

. Discuss how an axiomatic set theory can be developed to
avoid Russell’s paradox. (See Exercise 46 of Section 2.1.)

. Research where the concept of a function first arose, and
describe how this concept was first used.

. Explain the different ways in which the Encyclopedia of
Integer Sequences has been found useful. Also, describe
a few of the more unusual sequences in this encyclopedia
and how they arise.

. Define the recently invented EKG sequence and describe

some of its properties and open questions about it.

. Look up the definition of a transcendental number. Explain

how to show that such numbers exist and how such num-
bers can be constructed. Which famous numbers can be
shown to be transcendental and for which famous numbers
is it still unknown whether they are transcendental?

. Expand the discussion of the continuum hypothesis in the

text.
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Algorithms

any problems can be solved by considering them as special cases of general problems.

For instance, consider the problem of locating the largest integer in the sequence 101,
12,144,212, 98. Thisisaspecific case of the problem of locating thelargest integer inasequence
of integers. To solvethisgeneral problem we must give an algorithm, which specifies asequence
of steps used to solve this general problem. We will study algorithmsfor solving many different
types of problems in this book. For example, in this chapter we will introduce algorithms for
two of the most important problems in computer science, searching for an element in alist and
sorting a list so its elements are in some prescribed order, such as increasing, decreasing, or
aphabetic. Later in the book we will develop algorithms that find the greatest common divisor
of two integers, that generate all the orderings of afinite set, that find the shortest path between
nodes in a network, and for solving many other problems.

We will aso introduce the notion of an algorithmic paradigm, which provides a general
method for designing algorithms. In particular we will discuss brute-force algorithms, which
find solutions using astraightforward approach without introducing any cleverness. Wewill also
discuss greedy algorithms, aclass of algorithms used to solve optimization problems. Proofsare
important in the study of algorithms. In this chapter weillustrate thisby proving that a particular
greedy algorithm always finds an optimal solution.

One important consideration concerning an algorithm is its computational complexity,
which measures the processing time and computer memory required by the agorithm to solve
prablems of a particular size. To measure the complexity of algorithms we use big-O and big-
Thetanotation, which wedevel op inthischapter. Wewill illustrate the analysis of the complexity
of algorithms in this chapter, focusing on the time an algorithm takes to solve a problem. Fur-
thermore, we will discuss what the time complexity of an algorithm means in practical and
theoretical terms.

Algorithms

DEFINITION 1

Introduction

There are many general classes of problems that arise in discrete mathematics. For instance:
given a sequence of integers, find the largest one; given a set, list al its subsets; given a set
of integers, put them in increasing order; given a network, find the shortest path between two
vertices. When presented with such a problem, the first thing to do is to construct a model that
transdlates the problem into a mathematical context. Discrete structures used in such models
include sets, sequences, and functions—structures discussed in Chapter 2—as well as such
other structures as permutations, relations, graphs, trees, networks, and finite state machines—
concepts that will be discussed in later chapters.

Setting up the appropriate mathematical model is only part of the solution. To complete the
solution, a method is needed that will solve the general problem using the model. Ideally, what
isrequired is aprocedure that follows a sequence of stepsthat leads to the desired answer. Such
asequence of stepsis called an algorithm.

An algorithm is afinite sequence of precise instructions for performing a computation or for
solving a problem.

191
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EXAMPLE 1

Extra
Examples <

Links e

The term algorithm is a corruption of the name al-Khowarizmi, a mathematician of the ninth
century, whose book on Hindu numerals is the basis of modern decimal notation. Originaly,
the word algorism was used for the rules for performing arithmetic using decimal notation.
Algorism evolved into the word algorithm by the eighteenth century. With the growing interest
in computing machines, the concept of an algorithm was given a more genera meaning, to
include all definite procedures for solving problems, not just the procedures for performing
arithmetic. (We will discuss algorithms for performing arithmetic with integersin Chapter 4.)

In this book, we will discuss algorithms that solve a wide variety of problems. In this
section we will use the problem of finding the largest integer in afinite sequence of integersto
illustrate the concept of an algorithm and the properties algorithms have. Also, we will describe
algorithms for locating a particular element in a finite set. In subsequent sections, procedures
for finding the greatest common divisor of two integers, for finding the shortest path between
two pointsin a network, for multiplying matrices, and so on, will be discussed.

Describe an algorithm for finding the maximum (largest) value in afinite sequence of integers.

Even though the problem of finding the maximum element in asequenceisrelatively trivial,
it provides a good illustration of the concept of an algorithm. Also, there are many instances
where the largest integer in a finite sequence of integersis required. For instance, a university
may need to find the highest score on a competitive exam taken by thousands of students. Or
a sports organization may want to identify the member with the highest rating each month.
We want to develop an algorithm that can be used whenever the problem of finding the largest
element in afinite sequence of integers arises.

We can specify aprocedurefor solving thisproblemin several ways. Onemethodissimply to
usethe English language to describe the sequence of steps used. We now provide such asolution.

Solution of Example 1: We perform the following steps.

1. Set the temporary maximum equal to the first integer in the sequence. (The temporary
maximum will be the largest integer examined at any stage of the procedure.)

2. Compare the next integer in the sequence to the temporary maximum, and if it is larger
than the temporary maximum, set the temporary maximum equal to this integer.

3. Repeat the previous step if there are more integers in the sequence.

4. Stop when there are no integers left in the sequence. The temporary maximum at this
point is the largest integer in the sequence. <

An algorithm can al so be described using acomputer language. However, when that isdone,
only those instructions permitted in the language can be used. This often leads to a description
of the algorithm that is complicated and difficult to understand. Furthermore, because many
programming languages are in common use, it would be undesirable to choose one particular
language. So, instead of using a particular computer language to specify algorithms, a form
of pseudocode, described in Appendix 3, will be used in this book. (We will also describe
algorithms using the English language.) Pseudocode provides an intermediate step between

ABU JA'FAR MOHAMMED IBN MUSA AL-KHOWARIZMI (C. 780—-C. 850) a-Khowarizmi, an as-
tronomer and mathematician, was a member of the House of Wisdom, an academy of scientists in Baghdad.
The name a-Khowarizmi means “from the town of Kowarzizm,” which was then part of Persia, but is now
called Khiva and is part of Uzbekistan. al-Khowarizmi wrote books on mathematics, astronomy, and geography.
Western Europeans first learned about algebra from his works. The word algebra comes from al-jabr, part of
thetitle of his book Kitab al-jabr w’al muquabala. This book was translated into Latin and was awidely used
textbook. His book on the use of Hindu numerals describes procedures for arithmetic operations using these
numerals. European authors used a L atin corruption of his name, which later evolved to the word algorithm, to
describe the subject of arithmetic with Hindu numerals.



EXAMPLE 2

3.1Algorithms 193

an English language description of an algorithm and an implementation of this algorithmin a
programming language. The steps of the algorithm are specified using instructions resembling
those used in programming languages. However, in pseudocode, the instructions used can
include any well-defined operations or statements. A computer program can be produced in
any computer language using the pseudocode description as a starting point.

The pseudocode used in this book is designed to be easily understood. It can serve as an
intermediate step in the construction of programsimplementing algorithmsin one of avariety of
different programming languages. Although this pseudocode does not follow the syntax of Java,
C, C++, or any other programming language, students familiar with a modern programming
language will find it easy to follow. A key difference between this pseudocode and code in a
programming language is that we can use any well-defined instruction even if it would take
many lines of code to implement thisinstruction. The details of the pseudocode used in the text
are given in Appendix 3. The reader should refer to this appendix whenever the need arises.

A pseudocode description of the algorithm for finding the maximum element in a finite
sequence follows.

ALGORITHM 1 Finding the Maximum Element in a Finite Sequence.

procedure max(as, az, ..., a,: integers)
max := ag
fori:=2ton

if max < g; then max := g;
return max{max isthe largest element}

This agorithm first assigns the initial term of the sequence, a1, to the variable max. The “for”
loop is used to successively examine terms of the sequence. If aterm is greater than the current
value of max, it is assigned to be the new value of max.

PROPERTIES OF ALGORITHMS There are several properties that algorithms generaly
share. They are useful to keep in mind when algorithms are described. These properties are:

B Input. An algorithm has input values from a specified set.

m OQutput. From each set of input values an algorithm produces output values from a spec-
ified set. The output values are the solution to the problem.

m Definiteness. The steps of an algorithm must be defined precisely.

B Correctness. An algorithm should produce the correct output values for each set of input
values.

B Finiteness. An algorithm should produce the desired output after a finite (but perhaps
large) number of steps for any input in the set.

| Effectiveness. It must be possible to perform each step of an algorithm exactly and in a
finite amount of time.

B Generality. The procedure should be applicable for all problems of the desired form, not
just for a particular set of input values.

Show that Algorithm 1 for finding the maximum element in afinite sequence of integers has all
the properties listed.

Solution: The input to Algorithm 1 is a sequence of integers. The output is the largest integer
in the sequence. Each step of the algorithm is precisely defined, because only assignments, a
finite loop, and conditional statements occur. To show that the algorithm is correct, we must
show that when the algorithm terminates, the value of the variable max equals the maximum
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of the terms of the sequence. To see this, note that the initial value of max is the first term of
the sequence; as successive terms of the sequence are examined, max is updated to the value
of aterm if the term exceeds the maximum of the terms previously examined. This (informal)
argument shows that when all the terms have been examined, max equalsthe value of the largest
term. (A rigorous proof of this requires techniques developed in Section 5.1.) The algorithm
uses a finite number of steps, because it terminates after al the integers in the sequence have
been examined. The algorithm can be carried out in afinite amount of time because each step is
either acomparison or an assignment, there are afinite number of these steps, and each of these
two operations takes afinite amount of time. Finally, Algorithm 1 is general, because it can be
used to find the maximum of any finite sequence of integers. <

Searching Algorithms

The problem of locating an element in an ordered list occurs in many contexts. For instance, a
program that checks the spelling of words searches for them in a dictionary, which isjust an
ordered list of words. Problems of this kind are called searching problems. We will discuss
several algorithmsfor searching in this section. We will study the number of steps used by each
of these algorithmsin Section 3.3.

The general searching problem can be described asfollows: Locate an element x in alist of
distinct elementsay, as, . . ., a,, or determinethat it isnot in thelist. The solution to this search
problem is the location of the term in the list that equals x (that is, i isthe solution if x = a;)
andisOif x isnotinthelist.

THE LINEAR SEARCH The first algorithm that we will present is called the linear search,
or sequential search, algorithm. The linear search algorithm begins by comparing x and a1.
When x = a1, the solution isthe location of aj, namely, 1. When x # a3, compare x with as. If
x = ap, thesolutionisthelocation of az, namely, 2. When x # a», compare x with az. Continue
Links this process, comparing x successively with each term of the list until a match is found, where
the solution is the location of that term, unless no match occurs. If the entire list has been
searched without locating x, the solution is 0. The pseudocode for the linear search algorithm
is displayed asAlgorithm 2.

ALGORITHM 2 The Linear Search Algorithm.

procedure linear search(x: integer, a1, az, ..., a,: distinct integers)
i=1
while (i <nandx # a;)
i=i+1
if i < n then location :=i
else location := 0
return location{location is the subscript of the term that equals x, or is O if x is not found}

THE BINARY SEARCH We will now consider another searching algorithm. This algorithm

can be used when the list has terms occurring in order of increasing size (for instance: if the

i terms are numbers, they are listed from smallest to largest; if they are words, they are listed

Links 5 in lexicographic, or alphabetic, order). This second searching algorithm is called the binary

search algorithm. It proceeds by comparing the element to be located to the middle term of

the list. The list is then split into two smaller sublists of the same size, or where one of these

smaller lists has one fewer term than the other. The search continues by restricting the search

to the appropriate sublist based on the comparison of the element to be located and the middle

term. In Section 3.3, it will be shown that the binary search agorithm is much more efficient
than the linear search algorithm. Example 3 demonstrates how a binary search works.

(
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EXAMPLE 3 Tosearchfor 19inthelist
12356781012131516 181920 22,
first split thislist, which has 16 terms, into two smaller lists with eight terms each, namely,
123567810 121315161819 20 22.

Then, compare 19 and the largest term in the first list. Because 10 < 19, the search for 19 can
be restricted to the list containing the 9th through the 16th terms of the original list. Next, split
thislist, which has eight terms, into the two smaller lists of four terms each, namely,

12131516 181920 22.

Because 16 < 19 (comparing 19 with the largest term of thefirst list) the search isrestricted to
the second of these lists, which contains the 13th through the 16th terms of the original list. The
list 18 19 20 22 is split into two lists, namely,

1819 20 22.

Because 19 isnot greater than the largest term of thefirst of thesetwo lists, whichisalso 19, the
search isrestricted to the first list: 18 19, which contains the 13th and 14th terms of the original
list. Next, this list of two terms is split into two lists of one term each: 18 and 19. Because
18 < 19, the search is restricted to the second list: the list containing the 14th term of the list,
which is 19. Now that the search has been narrowed down to one term, a comparison is made,
and 19 islocated as the 14th term in the original list. <

We now specify the steps of the binary search algorithm. To search for the integer x in the
listas, az, ..., a,, whereas < az < --- < a,, begin by comparing x with the middle term a,,
of thelist, wherem = | (n + 1)/2]. (Recall that | x| isthe greatest integer not exceeding x.) If
X > a,, thesearch for x isrestricted to the second half of thelist, whichisa,, 11, a2, ..., an.
If x is not greater than «,,, the search for x is restricted to the first half of the list, which is
ai,az, ...,dy.

The search has now been restricted to alist with no morethan [n/2] elements. (Recall that
[x] isthe smallest integer greater than or equal to x.) Using the same procedure, compare x to
the middle term of the restricted list. Then restrict the search to the first or second half of the
list. Repeat this process until alist with one term is obtained. Then determine whether thisterm
is x. Pseudocode for the binary search algorithm is displayed as Algorithm 3.

ALGORITHM 3 The Binary Search Algorithm.

procedure binary search (x: integer, ai, az, ..., a,: increasing integers)
i := 1{i isleft endpoint of search interval}
J :=n {j isright endpoint of search interval}
whilei < j
m:= (i +j)/2]
ifx>a,theni =m+1
else j :=m
if x = a; then location := i
else location := 0
return location{location is the subscript i of theterm a; equal to x, or O if x isnot foundy}
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Demo

Sorting is thought to hold
the record as the problem
solved by the most
fundamentally different
algorithms!

Links

EXAMPLE 4

Algorithm 3 proceeds by successively narrowing down the part of the sequence being
searched. At any given stage only the terms from a; to a; are under consideration. In other
words, i and j are the smallest and largest subscripts of the remaining terms, respectively.
Algorithm 3 continues narrowing the part of the sequence being searched until only one term
of the sequence remains. When this is done, a comparison is made to see whether this term
equalsx.

Sorting

Ordering theelementsof alistisaproblem that occursin many contexts. For example, to produce
atelephonedirectory itisnecessary to al phabetize the namesof subscribers. Similarly, producing
adirectory of songsavailablefor downloading requiresthat their titles be put in al phabetic order.
Putting addresses in order in an e-mail mailing list can determine whether there are duplicated
addresses. Creating auseful dictionary requiresthat wordsbe put in al phabetical order. Similarly,
generating a parts list requires that we order them according to increasing part number.

Suppose that we have alist of elements of aset. Furthermore, suppose that we have away to
order elements of the set. (The notion of ordering elements of setswill be discussed in detail in
Section 9.6.) Sorting is putting these elementsinto alist in which the elementsarein increasing
order. For instance, sorting the list 7, 2, 1, 4, 5, 9 produces the list 1, 2, 4, 5, 7, 9. Sorting the
listd, h, c, a, f (using aphabetical order) producesthelist a, c, d, f, h.

An amazingly large percentage of computing resources is devoted to sorting one thing
or another. Hence, much effort has been devoted to the development of sorting algorithms.
A surprisingly large number of sorting algorithms have been devised using distinct strate-
gies, with new ones introduced regularly. In his fundamental work, The Art of Computer
Programming, Donald Knuth devotes close to 400 pages to sorting, covering around 15
different sorting algorithms in depth! More than 100 sorting algorithms have been de-
vised, and it is surprising how often new sorting algorithms are developed. Among the
newest sorting algorithms that have caught on is the the library sort, also known as the
gapped insertion sort, invented as recently as 2006. There are many reasons why sort-
ing algorithms interest computer scientists and mathematicians. Among these reasons are
that some algorithms are easier to implement, some algorithms are more efficient (either
in general, or when given input with certain characteristics, such as lists dightly out of
order), some agorithms take advantage of particular computer architectures, and some al-
gorithms are particularly clever. In this section we will introduce two sorting agorithms,
the bubble sort and the insertion sort. Two other sorting algorithms, the selection sort
and the binary insertion sort, are introduced in the exercises, and the shaker sort is in-
troduced in the Supplementary Exercises. In Section 5.4 we will discuss the merge sort
and introduce the quick sort in the exercises in that section; the tournament sort is in-
troduced in the exercise set in Section 11.2. We cover sorting algorithms both because
sorting is an important problem and because these algorithms can serve as examples
for many important concepts.

THE BUBBLE SORT The bubble sort is one of the simplest sorting algorithms, but not one
of the most efficient. It puts a list into increasing order by successively comparing adjacent
elements, interchanging them if they are in the wrong order. To carry out the bubble sort, we
perform the basic operation, that is, interchanging alarger element with asmaller one following
it, starting at the beginning of the list, for afull pass. We iterate this procedure until the sort is
complete. Pseudocode for the bubble sort is given asAlgorithm 4. We can imagine the el ements
in the list placed in a column. In the bubble sort, the smaller elements “bubble” to the top as
they are interchanged with larger elements. The larger elements “sink” to the bottom. Thisis
illustrated in Example 4.

Use the bubble sort to put 3, 2, 4, 1, 5 into increasing order.
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FIGURE 1 The Steps of a Bubble Sort.

Solution: The stepsof thisalgorithm areillustrated in Figure 1. Begin by comparing thefirst two
elements, 3 and 2. Because 3 > 2, interchange 3 and 2, producing thelist 2, 3, 4, 1, 5. Because
3 < 4, continue by comparing 4 and 1. Because 4 > 1, interchange 1 and 4, producing the list
2,3,1,4,5. Because 4 < 5, thefirst passis complete. Thefirst pass guarantees that the largest
element, 5, isin the correct position.

The second pass begins by comparing 2 and 3. Because these arein the correct order, 3and 1
are compared. Because 3 > 1, these numbers areinterchanged, producing 2, 1, 3, 4, 5. Because
3 < 4, these numbers are in the correct order. It is not necessary to do any more comparisons
for this pass because 5 is aready in the correct position. The second pass guarantees that the
two largest elements, 4 and 5, are in their correct positions.

Thethird pass beginsby comparing 2 and 1. These areinterchanged because 2 > 1, produc-
ingl, 2,3, 4,5.Because2 < 3, thesetwo elementsarein the correct order. It isnot necessary to
do any more comparisons for this pass because 4 and 5 are already in the correct positions. The
third pass guarantees that the three largest elements, 3, 4, and 5, are in their correct positions.

The fourth pass consists of one comparison, namely, the comparison of 1 and 2. Because
1 < 2, these elements are in the correct order. This completes the bubble sort. <

ALGORITHM 4 The Bubble Sort.

procedure bubblesort(as, . ..
fori :==1ton—-1
for j:=1ton—i
if a; > a;y1 theninterchangea; and a1
., an isinincreasing order}

, ay, - real numberswithn > 2)

{ay, ..

THE INSERTION SORT The insertion sort is a simple sorting algorithm, but it is usually
not the most efficient. To sort alist with n elements, the insertion sort begins with the second
element. The insertion sort compares this second element with the first element and inserts it
before the first element if it does not exceed the first element and after the first element if it
exceeds the first element. At this point, the first two elements are in the correct order. The third
element is then compared with the first element, and if it is larger than the first element, it is
compared with the second element; it is inserted into the correct position among the first three
elements.

In general, in the jth step of the insertion sort, the jth element of the list is inserted into
the correct position in thelist of the previously sorted j — 1 elements. To insert the jth element
in the list, alinear search technique is used (see Exercise 43); the jth element is successively
compared with the already sorted j — 1 elementsat the start of thelist until the first element that
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EXAMPLE 5

“Greed isgood ... Greed
isright, greed works.
Greed clarifies..” —
spoken by the character
Gordon Gecko in the film
Wall Street.

Links

You have to prove that a
greedy agorithm always
finds an optimal solution.

isnot lessthan thiselement isfound or until it hasbeen compared withal j — 1 elements; the jth
element isinserted in the correct position so that thefirst j elements are sorted. The algorithm
continues until the last element is placed in the correct position relative to the already sorted list
of thefirst n — 1 elements. The insertion sort is described in pseudocode in Algorithm 5.

Use the insertion sort to put the elements of the list 3, 2, 4, 1, 5in increasing order.

Solution: Theinsertion sort first compares 2 and 3. Because 3 > 2, it places2 inthefirst position,
producing thelist 2, 3, 4, 1, 5 (the sorted part of thelist isshownin color). At thispoint, 2 and 3
areinthe correct order. Next, it insertsthe third element, 4, into the already sorted part of thelist
by making the comparisons 4 > 2 and 4 > 3. Because 4 > 3, 4 remains in the third position.
At this point, the list is 2, 3, 4, 1, 5 and we know that the ordering of the first three elements
is correct. Next, we find the correct place for the fourth element, 1, anong the already sorted
elements, 2, 3, 4. Because 1 < 2, we obtain the list 1, 2, 3, 4, 5. Findly, we insert 5 into the
correct position by successively comparingitto 1, 2, 3, and 4. Because 5 > 4, it staysat theend
of thelist, producing the correct order for the entire list. <

ALGORITHM 5 The Insertion Sort.

procedure insertion sort(az, az, ..., a,: real numberswithn > 2)
for j:=2ton
i:=1
while aj > a;
i=i+1
m .= aj
fork:=0toj—i—1
Aj—k = aj—k-1
a ‘=m
{ai, ..., a, isinincreasing order}

Greedy Algorithms

Many agorithms we will study in this book are designed to solve optimization problems.
The goal of such problemsis to find a solution to the given problem that either minimizes or
maximizesthe value of some parameter. Optimization problems studied later in thistext include
finding a route between two cities with smallest total mileage, determining a way to encode
messages using the fewest bits possible, and finding a set of fiber links between network nodes
using the least amount of fiber.

Surprisingly, one of the simplest approaches often leads to a solution of an optimization
problem. This approach selects the best choice at each step, instead of considering all sequences
of steps that may lead to an optimal solution. Algorithmsthat make what seemsto be the “ best”
choice at each step are called greedy algorithms. Once we know that agreedy algorithmfindsa
feasible solution, we need to determine whether it has found an optimal solution. (Note that we
call thealgoritm “ greedy” whether or not it findsan optimal solution.) To do this, we either prove
that the solution isoptimal or we show that thereis acounterexample wherethe algorithm yields
a nonoptimal solution. To make these concepts more concrete, we will consider an algorithm
that makes change using coins.



3.1Algorithms 199

EXAMPLE 6 Consider the problem of making n cents change with quarters, dimes, nickels, and pennies, and

Demo

LEMMA 1

THEOREM 1

using the least total number of coins. We can devise a greedy algorithm for making change for
n cents by making alocally optimal choice at each step; that is, at each step we choose the coin
of the largest denomination possible to add to the pile of change without exceeding n cents. For
example, to make changefor 67 cents, wefirst select aquarter (leaving 42 cents). We next select
asecond quarter (leaving 17 cents), followed by a dime (leaving 7 cents), followed by a nickel
(leaving 2 cents), followed by a penny (leaving 1 cent), followed by a penny. <

We display agreedy change-making algorithm for n cents, using any set of denominations
of coins, as Algorithm 6.

ALGORITHM 6 Greedy Change-Making Algorithm.

procedure change(cs, c2, .. ., ¢, values of denominations of coins, where
c1 > c2 > --- > cp; n. apositive integer)
fori:=1tor
d; := 0{d; countsthe coins of denomination ¢; used}
while n > ¢;
d; '=d; + 1 {add acoin of denomination c¢;}
n:=n-—c¢
{d; isthe number of coins of denomination ¢; inthechangefori =1,2,...,r}

We have described a greedy algorithm for making change using any finite set of coinswith
denominations c1, ¢, ..., ¢,. In the particular case where the four denominations are quarters
dimes, nickels, and pennies, we have ¢1 = 25, ¢2 = 10, ¢3 = 5, and ¢4 = 1. For this case, we
will show that this algorithm leads to an optimal solution in the sense that it uses the fewest
coins possible. Before we embark on our proof, we show that there are sets of coins for which
the greedy a gorithm (Algorithm 6) does not necessarily produce change using the fewest coins
possible. For example, if we have only quarters, dimes, and pennies (and no nickels) to use,
the greedy algorithm would make change for 30 cents using six coins—a quarter and five
pennies—whereas we could have used three coins, namely, three dimes.

If n is a positive integer, then n cents in change using quarters, dimes, nickels, and pennies
using the fewest coins possible has at most two dimes, at most one nickel, at most four
pennies, and cannot have two dimes and a nickel. The amount of change in dimes, nickels,
and pennies cannot exceed 24 cents.

Proof: We use a proof by contradiction. We will show that if we had more than the specified
number of coins of each type, we could replace them using fewer coinsthat have the same value.
We note that if we had three dimes we could replace them with a quarter and a nickel, if we
had two nickels we could replace them with a dime, if we had five pennies we could replace
them with anickel, and if we had two dimes and a nickel we could replace them with a quarter.
Because we can have at most two dimes, one nickel, and four pennies, but we cannot have two
dimes and a nickel, it follows that 24 cents is the most money we can have in dimes, nickels,
and pennies when we make change using the fewest number of coinsfor n cents. <

The greedy algorithm (Algorithm 6) produces change using the fewest coins possible.
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EXAMPLE 7

Proof: Wewill useaproof by contradiction. Suppose that there is a positive integer n such that
thereis away to make change for n cents using quarters, dimes, nickels, and pennies that uses
fewer coins than the greedy algorithm finds. We first note that ¢’, the number of quarters used
in this optimal way to make change for n cents, must be the same as ¢, the number of quarters
used by the greedy algorithm. To show this, first note that the greedy algorithm uses the most
guarters possible, so ¢’ < ¢q. However, it isalso the case that ¢’ cannot be lessthan g. If it were,
we would need to make up at least 25 cents from dimes, nickels, and pennies in this optimal
way to make change. But thisisimpossible by Lemma 1.

Because there must be the same number of quarters in the two ways to make change, the
value of the dimes, nickels, and pennies in these two ways must be the same, and these coins
are worth no more than 24 cents. There must be the same number of dimes, because the greedy
algorithm used the most dimes possible and by Lemma 1, when change is made using the fewest
coins possible, at most one nickel and at most four pennies are used, so that the most dimes
possible are also used in the optimal way to make change. Similarly, we have the same number
of nickels and, finally, the same number of pennies. <

A greedy agorithm makes the best choice at each step according to a specified criterion.
The next example shows that it can be difficult to determine which of many possible criteriato
choose.

Suppose we have a group of proposed talks with preset start and end times. Devise a greedy
algorithm to schedule as many of these talks as possible in alecture hall, under the assumptions
that once atalk starts, it continues until it ends, no two talks can proceed at the same time, and
atalk can begin at the same time another one ends. Assume that talk j beginsat times; (where
s stands for start) and ends at time e; (where e stands for end).

Solution: To use agreedy algorithm to schedule the most talks, that is, an optimal schedule, we
need to decide how to choose which talk to add at each step. There are many criteria we could
useto select atalk at each step, where we chose from the talks that do not overlap talks already
selected. For example, we could add talks in order of earliest start time, we could add talks in
order of shortest time, we could add talksin order of earliest finish time, or we could use some
other criterion.

We now consider these possible criteria. Suppose we add the talk that starts earliest among
the talks compatible with those already selected. We can construct a counterexample to see that
the resulting algorithm does not always produce an optimal schedule. For instance, suppose that
we have three talks: Talk 1 startsat 8 A.m. and ends at 12 noon, Talk 2 starts at 9 A.M. and ends
at 10 a.m., and Talk 3 startsat 11 a.m. and ends at 12 noon. We first select the Talk 1 because it
starts earliest. But once we have selected Talk 1 we cannot select either Talk 2 or Talk 3 because
both overlap Talk 1. Hence, this greedy algorithm selects only one talk. This is not optimal
because we could schedule Talk 2 and Talk 3, which do not overlap.

Now supposewe add thetalk that is shortest among the talksthat do not overlap any of those
already selected. Again we can construct a counterexample to show that this greedy algorithm
does not always produce an optimal schedule. So, suppose that we have threetalks: Talk 1 starts
at 8 A.M. and ends at 9:15 a.m., Talk 2 starts at 9 a.m. and ends at 10 A.Mm., and Talk 3 starts at
9:45 a.m. and ends at 11 a.m. We select Talk 2 because it is shortest, requiring one hour. Once
we select Talk 2, we cannot select either Talk 1 or Talk 3 because neither is compatible with
Talk 2. Hence, this greedy algorithm selects only one talk. However, it is possible to select two
talks, Talk 1 and Talk 3, which are compatible.

However, it can be shown that we schedul e the most talks possible if in each step we select
the talk with the earliest ending time among the talks compatible with those already selected.
We will prove thisin Chapter 5 using the method of mathematical induction. The first step we
will make isto sort the talks according to increasing finish time. After this sorting, we relabel
thetalkssothat e; < e2 < ... < e,. Theresulting greedy agorithm is given as Algorithm 7. <
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ALGORITHM 7 Greedy Algorithm for Scheduling Talks.

procedure schedule(sy < s2 < --- < s,,: start times of talks,
e1 <ep <---<e,: endingtimes of talks)

sort talks by finishtime and reorder sothate1 < ez < ... < e,
S:=0
for j:=1ton

if talk j iscompatible with S then

S :=Suf{tak j}

return S{S isthe set of talks scheduled}

The Halting Problem

We will now describe a proof of one of the most famous theorems in computer science. We will
show that thereisa problem that cannot be solved using any procedure. That is, we will show
thereareunsolvableproblems. The problemwewill study isthehalting problem. It askswhether
thereisaprocedure that doesthis: It takes asinput acomputer program and input to the program
and determines whether the program will eventually stop when run with thisinput. It would be
convenient to have such aprocedure, if it existed. Certainly being ableto test whether aprogram
entered into an infinite loop would be hel pful when writing and debugging programs. However,
in 1936 Alan Turing showed that no such procedure exists (see his biography in Section 13.4).

Before we present a proof that the halting problem is unsolvable, first note that we cannot
simply run a program and observe what it does to determine whether it terminates when run
with the given input. If the program halts, we have our answer, but if it is still running after any
fixed length of time has elapsed, we do not know whether it will never halt or we just did not
wait long enough for it to terminate. After al, it is not hard to design a program that will stop
only after more than a billion years has el apsed.

We will describe Turing’s proof that the halting problem is unsolvable; it is a proof by
contradiction. (The reader should note that our proof is not completely rigorous, because we
have not explicitly defined what a procedureis. To remedy this, the concept of a Turing machine
is needed. This concept isintroduced in Section 13.5.)

Proof: Assume there is a solution to the halting problem, a procedure caled H(P, I). The
procedure H (P, ) takes two inputs, one aprogram P and the other 7, an input to the program
P. H(P,I) generates the string “halt” as output if H determines that P stops when given I as
input. Otherwise, H (P, I) generates the string “loops forever” as output. We will now derive a
contradiction.

When a procedure is coded, it is expressed as a string of characters; this string can be
interpreted as a sequence of bits. Thismeansthat a program itself can be used asdata. Therefore
a program can be thought of as input to another program, or even itself. Hence, H can take a
program P as both of its inputs, which are a program and input to this program. H should be
able to determine whether P will halt when it is given a copy of itself asinput.

To show that no procedure H exists that solves the halting problem, we construct asimple
procedure K (P), which works as follows, making use of the output H (P, P). If the output of
H (P, P) is “loops forever,” which means that P loops forever when given a copy of itself as
input, then K (P) halts. If the output of H (P, P) is“halt,” which meansthat P haltswhen given
acopy of itself asinput, then K (P) loopsforever. That is, K (P) does the opposite of what the
output of H (P, P) specifies. (See Figure 2.)

Now supposewe provide K asinput to K . We note that if the output of H (K, K) is*“loops
forever,” then by thedefinition of K weseethat K (K) halts. Otherwise, if theoutput of H (K, K)
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If H(P, P) = “halts”

P asprogram then loop forever
™1 Program Program | —
Input HP 1) Output _ K(P)
Program P H(P, P)
- >
P asinput If H(P, P) = “loops forever,”
then halt

FIGURE 2 Showing that the Halting Problem is Unsolvable.

is “halt,” then by the definition of K we see that K (K) loops forever, in violation of what H
tells us. In both cases, we have a contradiction.
Thus, H cannot always give the correct answers. Consequently, there is no procedure that

solves the halting problem.

Exercises

<

. Listall thestepsused by Algorithm 1 tofind themaximum
of thelist 1, 8, 12, 9, 11, 2, 14, 5, 10, 4.

. Determine which characteristics of an agorithm de-
scribed in the text (after Algorithm 1) the following pro-
cedures have and which they lack.
a) procedure double(n: positive integer)
whilen > 0
n:=2n

b) procedure divide(n: positive integer)

whilen >0
m:=1/n
n:=n-—1

¢) procedure sum(n: positive integer)
sum:=0
whilei < 10
sum :=sum —+ i

d) procedure choose(a, b: integers)

x :=eithera orb
. Devise an agorithm that finds the sum of all the integers
inalist.

. Describe an agorithm that takes as input a list of n in-
tegers and produces as output the largest difference ob-
tained by subtracting an integer in the list from the one
following it.

. Describe an algorithm that takes as input alist of n inte-
gers in nondecreasing order and produces the list of all
values that occur more than once. (Recall that a list of
integersis nondecreasing if each integer inthe list is at
least as large as the previous integer in the list.)

. Describe an agorithm that takes as input a list of n in-
tegers and finds the number of negative integers in the
list.

. Describe an agorithm that takes as input alist of » inte-
gers and finds the location of the last even integer in the
list or returns O if there are no even integersin the list.

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Describe an algorithm that takes asinput alist of n dis-

tinct integers and finds the location of the largest even
integer inthelist or returns O if there are no even integers
inthelist.

. A palindrome is a string that reads the same forward

and backward. Describe an algorithm for determining
whether a string of n charactersis a palindrome.

Devise an agorithm to compute x”, where x is a red
number and » is an integer. [Hint: First give a procedure
for computing x" when n is nonnegative by successive
multiplication by x, starting with 1. Then extend this pro-
cedure, and use the fact that x =" = 1/x" to compute x"
when n is negative.]

Describe an algorithm that interchanges the values of the
variables x and y, using only assignments. What is the
minimum number of assignment statements needed to do
this?

Describe an agorithm that uses only assignment state-
ments that replaces the triple (x, y, z) with (v, z, x).
What is the minimum number of assignment statements
needed?

List al the steps used to search for 9 in the sequence 1,
3,4,5,6,8,9 11using

a) alinear search. b) abinary search.

List all thestepsusedto search for 7 in the sequencegiven
in Exercise 13 for both alinear search and abinary search.

Describe an algorithm that inserts an integer x in the ap-
propriate position into the list a1, as, .. ., a, of integers
that are in increasing order.

Describe an algorithm for finding the smallest integer in
afinite sequence of natural numbers.

Describe an agorithm that locates the first occurrence of
the largest element in afinite list of integers, where the
integersin the list are not necessarily distinct.
Describe an algorithm that locates the last occurrence of
the smallest element in afinite list of integers, where the
integersin the list are not necessarily distinct.



19. Describe an agorithm that produces the maximum, me-
dian, mean, and minimum of a set of three integers. (The
median of aset of integersisthemiddleelementinthelist
when these integers are listed in order of increasing size.
The mean of a set of integers is the sum of the integers
divided by the number of integersin the set.)

20. Describe an agorithm for finding both the largest and the
smallest integers in afinite sequence of integers.

21. Describe an agorithm that puts the first three terms of
a sequence of integers of arbitrary length in increasing
order.

22. Describe an algorithm to find the longest word in an En-
glish sentence (whereasentenceisasequenceof symbols,
either aletter or a blank, which can then be broken into
aternating words and blanks).

23. Describean algorithm that determineswhether afunction
from afinite set of integersto another finite set of integers
isonto.

24. Describean agorithm that determineswhether afunction
from afinite set to another finite set is one-to-one.

25. Describe an agorithm that will count the number of 1sin
a bit string by examining each bit of the string to deter-
mine whether itisal bit.

26. Change Algorithm 3 so that the binary search procedure
compares x to a,, a each stage of the algorithm, with the
algorithm terminating if x = a,,. What advantage does
this version of the algorithm have?

27. Theternary search algorithm locatesan elementinalist
of increasingintegersby successively splittingthelistinto
three sublists of equal (or as close to equal as possible)
size, and restricting the search to the appropriate piece.
Specify the steps of this algorithm.

28. Specify the steps of an algorithm that locates an element
in alist of increasing integers by successively splitting
thelist into four sublists of equal (or as close to equal as
possible) size, and restricting the search to the appropriate
piece.

In alist of elements the same element may appear severa

times. A mode of such alist is an element that occurs at |east

as often as each of the other elements; a list has more than
one mode when more than one el ement appears the maximum
number of times.

29. Devise an agorithm that findsamodein alist of nonde-
creasing integers. (Recall that alist of integersis nonde-
creasing if each term is at least as large as the preceding
term.)

30. Devise an agorithm that finds all modes. (Recall that a
list of integersis nondecreasing if each term of thelistis
at least as large as the preceding term.)

31. Devise an agorithm that finds the first term of a se-
guence of integers that equals some previous term in the
sequence.

32. Devise an agorithm that finds al terms of a finite se-
guence of integers that are greater than the sum of al
previous terms of the sequence.
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33. Devisean agorithmthat findsthefirst term of asequence
of positive integers that isless than the immediately pre-
ceding term of the sequence.

34. Use the bubble sort to sort 6, 2, 3, 1, 5, 4, showing the

lists obtained at each step.

35. Usethe bubble sort to sort 3, 1, 5, 7, 4, showing the lists
obtained at each step.

36. Use the bubble sort to sort d, f, k, m, a, b, showing the
lists obtained at each step.

*37. Adapt the bubble sort algorithm so that it stops when
no interchanges are required. Express this more efficient
version of the algorithm in pseudocode.

38. Usetheinsertion sort to sort thelist in Exercise 34, show-
ing the lists obtained at each step.
39. Usetheinsertion sort to sort thelist in Exercise 35, show-
ing the lists obtained at each step.
40. Usetheinsertion sort to sort thelist in Exercise 36, show-
ing the lists obtained at each step.
The selection sort begins by finding the least element in the
list. Thiselement ismoved to the front. Then theleast element
among the remaining elementsis found and put into the sec-
ond position. This procedure is repeated until the entire list
has been sorted.
41. Sort these lists using the selection sort.
a) 3,54,1,2 b) 54,3,2,1
c) 1,2,3 4,5
42. Write the selection sort algorithm in pseudocode.

L5"43. Describe an algorithm based on the linear search for de-

termining the correct position in which to insert a new
element in an already sorted list.

44. Describe an algorithm based on the binary search for de-
termining the correct position in which to insert a new
element in an already sorted list.

45. How many comparisons doestheinsertion sort useto sort
thelist1,2,...,n?

46. How many comparisons doestheinsertion sort useto sort
thelistn,n —1,...,2,1?

The binary insertion sort is avariation of the insertion sort

that uses a binary search technique (see Exercise 44) rather

than alinear search technique to insert the ith element in the
correct place among the previously sorted elements.

47. Show all the steps used by the binary insertion sort to sort
thelist 3,2,4,5,1, 6.

48. Compare the number of comparisons used by the inser-
tion sort and the binary insertion sort to sort the list 7, 4,
3,81,542.

*49. Express the binary insertion sort in pseudocode.

50. a) Deviseavariation of theinsertion sort that usesalin-
ear search techniquethat insertsthe jth elementinthe
correct place by first comparing it with the (j — 1)st
element, then the (; — 2)th element if necessary, and
so on.

b) Useyour agorithmtosort 3,2, 4,5, 1, 6.
c) Answer Exercise 45 using this algorithm.
d) Answer Exercise 46 using this algorithm.
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51. When alist of elementsisin close to the correct order,
would it be better to use an insertion sort or its variation
described in Exercise 50?

Usethe greedy algorithm to make change using quarters,

dimes, nickels, and pennies for

a) 87 cents. b) 49 cents.

c) 99 cents. d) 33cents.

Use the greedy algorithm to make change using quarters,

dimes, nickels, and pennies for

a) 51 cents. b) 69 cents.

c) 76 cents. d) 60 cents.

Use the greedy agorithm to make change using quar-

ters, dimes, and pennies (but no nickels) for each of the

amountsgivenin Exercise52. For which of theseamounts
does the greedy algorithm use the fewest coins of these
denominations possible?

Use the greedy agorithm to make change using quar-

ters, dimes, and pennies (but no nickels) for each of the

amountsgivenin Exercise53. For which of theseamounts
does the greedy algorithm use the fewest coins of these
denominations possible?

Show that if there were a coin worth 12 cents, the greedy

agorithm using quarters, 12-cent coins, dimes, nickels,

and pennies would not always produce change using the
fewest coins possible.

Use Algorithm 7 to schedule the largest number of talks

inalecturehall from aproposed set of talks, if thestarting

and ending times of thetalksare 9:00 A.m. and 9:45 A.M.;

9:30 a.m. and 10:00 a.m.; 9:50 A.m. and 10:15 A.M.;

10:00 a.m. and 10:30 a.M.; 10:10 a.M. and 10:25 A.Mm.;

10:30 a.M. and 10:55 a.Mm.; 10:15 a.M. and 10:45 A.M.;

10:30 A.m. and 11:00 A.m.; 10:45 a.m. and 11:30 A.Mm.;

10:55 a.m. and 11:25 a.M.; 11:00 A.M. and 11:15 A.m.

Show that agreedy algorithm that schedulestalksinalec-

ture hall, as described in Example 7, by selecting at each

step the talk that overlaps the fewest other talks, does not
aways produce an optimal schedule.

#59. a) Deviseagreedy agorithm that determines the fewest
lecture halls needed to accommodate n talks given the
starting and ending time for each talk.

b) Prove that your algorithm is optimal.
Suppose we have s men mi,mp,...,my and s women
W1, Wo, ..., Wy. Wewish to match each person with amember

52.
53.

54.
55.

56.

57.

58.

The Growth of Functions

el

of the opposite gender. Furthermore, suppose that each person
ranks, in order of preference, with no ties, the people of the
opposite gender. We say that amatching of people of opposite
genders to form couples is stable if we cannot find a man m
and awoman w who are not assigned to each other such that
m prefersw over his assigned partner and w prefersm to her
assigned partner.

60. Suppose we have three men m1, m2, and m3 and three
women w1, Wp, and ws. Furthermore, suppose that the
preference rankings of the men for thethreewomen, from
highesttolowest, arem: W3, W1, Wo; ma: W1, Wo, W3; m3:
Wo, W3, Wy ; and the preference rankings of the women for
the three men, from highest to lowest, are wi: m1, ma,
ms3; Wo: mp, m1, m3; W3 m3, mo, my. For each of the
six possible matchings of men and women to form three
couples, determine whether this matching is stable.

Thedeferred acceptance algorithm, also known asthe Gale-
Shapley algorithm, can beused to construct astablematching
of men and women. In this algorithm, members of one gender
are the suitors and members of the other gender the suitees.
The algorithm uses a sequence of rounds; in each round every
suitor whose proposal was rejected in the previous round pro-
posesto hisor her highest ranking suitee who has not already
rejected a proposal from this suitor. A suitee rejects all pro-
posals except that from the suitor that this suitee ranks highest
among all the suitors who have proposed to this suitee in this
round or previousrounds. Theproposal of thishighest ranking
suitor remainspending andisrejectedinalater roundif amore
appealing suitor proposesin that round. The series of rounds
ends when every suitor has exactly one pending proposal. All
pending proposals are then accepted.

61.
62.
*63.

Write the deferred acceptance algorithm in pseudocode.
Show that the deferred acceptance algorithm terminates.

Show that the deferred acceptance alwaysterminateswith
a stable assignment.

64. Show that the problem of determining whether aprogram

with a given input ever printsthe digit 1 is unsolvable.

65. Show that the following problem is solvable. Given two
programswiththeir inputsand the knowledgethat exactly

one of them halts, determine which halts.

66. Show that the problem of deciding whether a specific

program with a specific input haltsis solvable.

Introduction

In Section 3.1 we discussed the concept of an algorithm. We introduced algorithms that solve a
variety of problems, including searching for an element in alist and sorting alist. In Section 3.3
wewill study the number of operations used by these algorithms. In particular, we will estimate
the number of comparisons used by the linear and binary search algorithms to find an element
in a sequence of n elements. We will also estimate the number of comparisons used by the
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bubble sort and by the insertion sort to sort alist of n elements. The time required to solve a
problem depends on more than only the number of operations it uses. The time also depends
on the hardware and software used to run the program that implements the algorithm. However,
when we change the hardware and software used to implement an algorithm, we can closely
approximate the time required to solve a problem of size n by multiplying the previous time
required by a constant. For example, on a supercomputer we might be able to solve a problem
of size n amillion times faster than we can on a PC. However, this factor of one million will
not depend on n (except perhaps in some minor ways). One of the advantages of using big-0
notation, which we introduce in this section, is that we can estimate the growth of a function
without worrying about constant multipliers or smaller order terms. This meansthat, using big-
O notation, we do not have to worry about the hardware and software used to implement an
algorithm. Furthermore, using big-O notation, we can assume that the different operations used
in an algorithm take the same time, which simplifies the analysis considerably.

Big- O notation is used extensively to estimate the number of operations an algorithm uses
as its input grows. With the help of this notation, we can determine whether it is practical to
use a particular algorithm to solve a problem as the size of the input increases. Furthermore,
using big-O notation, we can compare two a gorithms to determine which is more efficient as
the size of the input grows. For instance, if we have two agorithms for solving a problem, one
using 1002 + 17n + 4 operations and the other using »2 operations, big-O notation can help
us seethat thefirst algorithm usesfar fewer operationswhen r islarge, even though it uses more
operations for small values of n, such asn = 10.

This section introduces big- O notation and the related big-Omega and big-Theta notations.
We will explain how big- 0, big-Omega, and big-Theta estimates are constructed and establish
estimates for some important functions that are used in the analysis of algorithms.

Big-O Notation

The growth of functions is often described using a special notation. Definition 1 describes this
notation.

Let f and g be functions from the set of integers or the set of real numbers to the set of real
numbers. We say that f(x) is O(g(x)) if there are constants C and k such that

lf ()] < Clg()]

whenever x > k. [Thisisread as” f (x) isbig-oh of g(x)."]

Remark: Intuitively, the definitionthat f(x) is O(g(x)) saysthat f (x) growsslower that some
fixed multiple of g(x) as x grows without bound.

The constants C and & in the definition of big-O notation are called witnesses to the
relationship f(x) is O(g(x)). To establish that f(x) is O(g(x)) we need only one pair of
witnessesto thisrelationship. That is, to show that f(x) is O (g(x)), we need find only one pair
of constants C and k, the witnesses, such that | f (x)| < C|g(x)| whenever x > k.

Note that when there is one pair of witnesses to therelationship f(x) is O(g(x)), thereare
infinitely many pairs of witnesses. To see this, note that if C and k are one pair of witnesses,
then any pair C’ and k', whereC < C’ andk < k’, isalso apair of witnesses, because | f (x)| <
Clg(x)| < C’'|g(x)| whenever x > k' > k.
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THE HISTORY OF BIG-O0 NOTATION Big-O notation has been used in mathematics for
more than a century. In computer science it is widely used in the analysis of algorithms, as
will be seen in Section 3.3. The German mathematician Paul Bachmann first introduced big-O
notation in 1892 in an important book on number theory. The big-O symbol is sometimes called
a Landau symbol after the German mathematician Edmund Landau, who used this notation
throughout hiswork. The use of big-O notation in computer science was popularized by Donald
Knuth, who also introduced the big-2 and big-® notations defined later in this section.

WORKING WITHTHE DEFINITION OF BIG-0O NOTATION A useful approach for find-
ing a pair of witnessesisto first select avalue of k for which the size of | f(x)| can be readily
estimated when x > k and to see whether we can use thisestimate to find avalue of C for which
|f(x)] < Clgx)| for x > k. Thisapproach isillustrated in Example 1.

Show that f(x) = x? + 2x 4+ 1is O (x?).

Solution: We observe that we can readily estimate the size of f(x) whenx > 1 becausex < x?
and 1 < x? when x > 1. It follows that

0§x2+2x—|-l§x2+2x2+x2=4x2

whenever x > 1, asshowninFigure 1. Consequently, wecantake C = 4and k = 1 aswitnesses
to show that f(x) is O(x2). Thatis, f(x) = x% + 2x + 1 < 4x2 whenever x > 1. (Notethat it
is not necessary to use absol ute values here because all functionsin these equalities are positive
when x is positive.)

Alternatively, we can estimate the size of f(x) whenx > 2. Whenx > 2, wehave2x < x2
and 1 < x2. Consequently, if x > 2, we have

0§x2—|—2x+1§x2+x2—|—x2=3x2.

It followsthat C = 3 and k = 2 are also witnesses to the relation £ (x) is O (x?).

4x2) ;x2+2x+1 x2

The part of the graph of f(x) = x2+2x + 1
that satisfies f(x) < 4x2 is shown in blue.

1 X2+ 2x+ 1< 4x2forx > 1

1 2

FIGURE 1 The Function x2 4 2x + 1 is O (x?).
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Observe that in the relationship “ £ (x) is O (x2),” x2 can be replaced by any function with
larger values than x2. For example, f(x) is O(x%), f(x) is O(x2 + x + 7), and so on.

Itisalsotruethat x2is O (x2 4+ 2x + 1), because x2 < x2 + 2x + 1 whenever x > 1. This
meansthat C = 1 and k = 1 are witnesses to the relationship x2 is O (x? + 2x + 1). <

Note that in Example 1 we have two functions, f(x) = x2 + 2x + 1 and g(x) = x?, such
that f(x) is O(g(x)) and g(x) is O(f(x))—the latter fact following from the inequality
x? < x? 4 2x + 1, which holds for al nonnegative real numbers x. We say that two func-
tions f(x) and g(x) that satisfy both of these big-O relationships are of the same order. We
will return to this notion later in this section.

Remark: The fact that f(x) is O(g(x)) is sometimes written f(x) = O(g(x)). However, the
equals sign in this notation does not represent a genuine equality. Rather, this notation tells
us that an inequality holds relating the values of the functions f and g for sufficiently large
numbers in the domains of these functions. However, it is acceptable to write f(x) € O(g(x))
because O (g(x)) represents the set of functionsthat are O (g(x)).

When f(x)isO(g(x)), and h(x) isafunction that haslarger absolute valuesthan g (x) does
for sufficiently large values of x, it followsthat f(x) is O (k(x)). In other words, the function
g(x) in the relationship f(x) is O(g(x)) can be replaced by a function with larger absolute
values. To see this, note that if

[f ()] = Clgx)] if x >k,
andif |h(x)| > |g(x)| forall x > k, then
[f(x)] < Clh(x)] if x > k.
Hence, f(x) is O (h(x)).
When big-O notation is used, the function g in therelationship f(x) is O(g(x)) ischosen

to be assmall as possible (sometimes from a set of reference functions, such as functions of the
form x", where n is a positive integer).

PAUL GUSTAV HEINRICH BACHMANN (1837-1920)  Paul Bachmann, the son of aL utheran pastor, shared
hisfather’spiouslifestyleand love of music. Hismathematical talent was discovered by one of histeachers, even
though he had difficulties with some of his early mathematical studies. After recuperating from tuberculosis
in Switzerland, Bachmann studied mathematics, first at the University of Berlin and later at Gottingen, where
he attended lectures presented by the famous number theorist Dirichlet. He received his doctorate under the
German number theorist Kummer in 1862; histhesiswas on group theory. Bachmann was a professor at Breslau
and later at Mnster. After he retired from his professorship, he continued his mathematical writing, played the
piano, and served as a music critic for newspapers. Bachmann's mathematical writings include a five-volume
survey of results and methods in number theory, a two-volume work on elementary number theory, a book on

irrational numbers, and a book on the famous conjecture known as Fermat’s Last Theorem. He introduced big-O notation in his
1892 book Analytische Zahlentheorie.

Links s

EDMUND LANDAU (1877-1938) Edmund Landau, the son of a Berlin gynecologist, attended high school
and university in Berlin. He received his doctoratein 1899, under the direction of Frobenius. Landau first taught
at the University of Berlin and then moved to Gottingen, where he was a full professor until the Nazis forced
him to stop teaching. Landau’s main contributions to mathematics were in the field of analytic number theory.
In particular, he established several important results concerning the distribution of primes. He authored a
three-volume exposition on number theory aswell as other books on humber theory and mathematical analysis.
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Cg(x)
f(x)
The part of the graph of f (x) that satisfies

f(x) < Cg(x) isshownin color.
g(x)

f(x) <Cg(x) forx >k

k

FIGURE 2 The Function f(x) is O(g(x)).

In subsequent discussions, we will aimost always deal with functions that take on only
positive values. All references to absolute values can be dropped when working with big-O
estimates for such functions. Figure 2 illustrates the relationship f(x) is O (g(x)).

Example 2 illustrates how big-O notation is used to estimate the growth of functions.

EXAMPLE 2  Show that 7x2 is O (x3).

Solution: Notethatwhenx > 7, wehave7x? < x2. (Wecan obtainthisinequality by multiplying
bothsidesof x > 7 by x2.) Consequently, wecantake C = 1andk = 7 aswitnessesto establish

Links a

DONALD E. KNUTH (BORN 1938) Knuth grew up in Milwaukee, where his father taught bookkeeping at
a Lutheran high school and owned a small printing business. He was an excellent student, earning academic
achievement awards. He applied hisintelligence in unconventional ways, winning a contest when he wasin the
eighth grade by finding over 4500 words that could be formed from the letters in “ Ziegler's Giant Bar.” This
won atelevision set for his school and a candy bar for everyone in his class.

Knuth had a difficult time choosing physics over music as hismajor at the Case Ingtitute of Technology. He
then switched from physics to mathematics, and in 1960 he received his bachelor of science degree, simultane-
ously receiving amaster of science degreeby aspecial award of thefaculty who considered hiswork outstanding.
At Case, he managed the basketball team and applied histalents by constructing aformulafor the value of each
player. Thisnovel approach was covered by Newsweek and by Walter Cronkite on the CBStelevision network. Knuth began graduate
work at the Californialnstitute of Technology in 1960 and received hisPh.D. therein 1963. During thistime heworked asaconsultant,
writing compilers for different computers.

Knuth joined the staff of the California Institute of Technology in 1963, where he remained until 1968, when hetook ajob asa
full professor at Stanford University. He retired as Professor Emeritusin 1992 to concentrate on writing. He is especially interested
in updating and completing new volumes of his series The Art of Computer Programming, awork that has had a profound influence
on the development of computer science, which he began writing as a graduate student in 1962, focusing on compilers. In common
jargon, “Knuth,” referring to The Art of Computer Programming, has come to mean the reference that answers all questions about
such topics as data structures and algorithms.

Knuthisthe founder of the modern study of computational complexity. He has made fundamental contributionsto the subject of
compilers. His dissatisfaction with mathematics typography sparked him to invent the now widely used TeX and Metafont systems.
TeX has become a standard language for computer typography. Two of the many awards Knuth has received are the 1974 Turing
Award and the 1979 National Medal of Technology, awarded to him by President Carter.

Knuth has written for a wide range of professional journals in computer science and in mathematics. However, his first
publication, in 1957, when he was a college freshman, was a parody of the metric system called “ The Potrzebie Systems of Weights
and Measures,” which appeared in MAD Magazine and has been in reprint several times. He is a church organist, as his father was.
Heisalso acomposer of music for the organ. Knuth believes that writing computer programs can be an aesthetic experience, much
like writing poetry or composing music.

Knuth pays $2.56 for the first person to find each error in his books and $0.32 for significant suggestions. If you send him
a letter with an error (you will need to use regular mail, because he has given up reading e-mail), he will eventualy inform you
whether you were the first person to tell him about this error. Be prepared for along wait, because he receives an overwhelming
amount of mail. (The author received a letter years after sending an error report to Knuth, noting that this report arrived severa
months after the first report of thiserror.)
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the relationship 7x2 is O (x3). Alternatively, when x > 1, we have 7x2 < 7x3, so that C = 7
and k = 1 are also witnesses to the relationship 7x2 is O (x3). <

Example 3 illustrates how to show that abig- O relationship does not hold.
Show that n2 isnot O (n).

Solution: To show that n2 isnot O (), we must show that no pair of witnesses C and k exist
such that n2 < Cn whenever n > k. We will use a proof by contradiction to show this.
Suppose that there are constants C and k for which n? < Cn whenever n > k. Observethat
when n > 0 we can divide both sides of the inequality n2 < Cn by n to obtain the equivalent
inequality n < C. However, no matter what C and k are, the inequality n < C cannot hold for
al n with n > k. In particular, once we set a value of k, we see that when n is larger than the
maximum of k and C, it is not true that n < C even though n > k. This contradiction shows
that 2 in not O (n). <

Example 2 shows that 7x2 is O (x2). Isit aso true that x3 is O (7x2)?

Solution: To determine whether x3 is O (7x2), we need to determine whether witnesses C and
k exist, so that x3 < C(7x2) whenever x > k. We will show that no such witnesses exist using
aproof by contradiction.

If C and k are witnesses, theinequality x2 < C(7x?) holds for al x > k. Observe that the
inequality x3 < C(7x?) isequivalent to theinequality x < 7C, which follows by dividing both
sides by the positive quantity x2. However, no matter what C is, it is not the case that x < 7C
for al x > k no matter what & is, because x can be made arbitrarily large. It follows that no
witnesses C and k exist for this proposed big-O relationship. Hence, x3 isnot O (7x2). |

Big-O Estimates for Some Important Functions

Polynomials can often be used to estimate the growth of functions. Instead of analyzing the
growth of polynomials each time they occur, we would like aresult that can always be used to
estimate the growth of a polynomial. Theorem 1 does this. It shows that the leading term of a
polynomial dominates its growth by asserting that a polynomial of degreen or lessis O (x™).

Let f(x) = apx" + ap—1x""1+ -+ + a1x + ao, where ag, a1, .. ., ay—1, a, are real num-
bers. Then f(x) is O (x").

Proof: Using the triangle inequality (see Exercise 7 in Section 1.8), if x > 1 we have

|f )| = |apx™ + ap_1x" "1 + - 4 a1x + ao|
< lan|x" + lap—1|x" "1 + - - + |aa|x + |aol
= x" (lan] + lan—11/x + - - + la1l/x" "1 + |ag| /x")
< X" (lan| + lan—1] + - - + laa| + laol) -
This shows that

lf ()l < Cx",
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whereC = |a,| + |ay—1| + - - - + |aog| whenever x > 1. Hence, thewitnessesC = |a,| + |a,—1|
+ .-+ |agl and k = 1 show that f(x) is O (x").

We now give some examples involving functions that have the set of positive integers as
their domains.

How can big-O notation be used to estimate the sum of the first n positive integers?

Solution: Because each of the integersin the sum of thefirst n positive integers does not exceed
n, it follows that

1424 +n<n+n+---+n=n?

From this inequality it followsthat 1+ 2+ 3+ --- 4+ nis O(n?), taking C = 1and k = 1 as
witnesses. (In this example the domains of the functionsin the big-O relationship are the set of
positive integers.) <

In Example 6 big-O estimates will be developed for the factorial function and its loga-
rithm. These estimates will be important in the analysis of the number of steps used in sorting
procedures.

Givebig- 0 estimatesfor thefactorial function and thelogarithm of the factorial function, where
the factorial function f(n) = n! isdefined by

M=1-2.3. .- .n
whenever n isapositive integer, and 0! = 1. For example,

=1 21=1.2=2, 31=1.-2-3=6, 4=1.-2-3-4=24
Note that the function n! grows rapidly. For instance,

20! = 2,432,902,008,176,640,000.
Solution: A big-O estimate for n! can be obtained by noting that each term in the product does
not exceed n. Hence,

M=1.2.3. ... .n

=n".

Thisinequality showsthat n!is O (n"), taking C = 1and k = 1 aswitnesses. Taking logarithms
of both sides of the inequality established for n!, we obtain

logn! <logn™ = nlogn.

Thisimpliesthat logn! is O(nlogn), again taking C = 1 and k = 1 as witnesses. <
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In Section 4.1, we will show that n < 2" whenever n is a positive integer. Show that this
inequality impliesthat n is O (2"), and use thisinequality to show that logn is O (n).

Solution: Using the inequality n < 2", we quickly can conclude that n is O (2") by taking k =
C = 1 aswitnesses. Note that because the logarithm function is increasing, taking logarithms
(base 2) of both sides of thisinequality shows that

logn < n.
It follows that
logn is O (n).

(Againwetake C = k = 1 aswitnesses.)
If we have logarithms to abase b, where b is different from 2, we still have logy, n is O (n)
because

logn n

l0g, n = logh ~ logh

whenever n is apositive integer. Wetake C = 1/logb and k = 1 as witnesses. (We have used
Theorem 3 in Appendix 2 to seethat log, n = logn /logb.) <4

Asmentioned before, big- O notation is used to estimate the number of operations needed to
solve aproblem using a specified procedure or a gorithm. The functions used in these estimates
often include the following:

1, logn, n, nlogn, n?, 2" n!

Using calculus it can be shown that each function in the list is smaller than the succeeding
function, in the sense that the ratio of a function and the succeeding function tends to zero
as n grows without bound. Figure 3 displays the graphs of these functions, using a scale for
the values of the functions that doubles for each successive marking on the graph. That is, the
vertical scalein this graph islogarithmic.

FIGURE 3 A Display of the Growth of Functions Commonly Used in Big-O Estimates.
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USEFUL BIG-0 ESTIMATES INVOLVING LOGARITHMS, POWERS, AND EXPONEN-
TIAL FUNCTIONS We now give some useful facts that help us determine whether big-O
relationships hold between pairs of functions when each of the functions is a power of aloga-
rithm, a power, or an exponential function of the form 5" where b > 1. Their proofs are | eft as
Exercises 57-60 for readers skilled with calculus.

Theorem 1 shows that if f(n) isapolynomial of degree d, then f(n) is O (n?). Applying
this theorem, we see that if d > ¢ > 1, then n¢ is O (n?). We leave it to the reader to show
that the reverse of this relationship does not hold. Putting these facts together, we see that if
d > c > 1,then

n¢is 0(n%), but n? isnot O(n°).

In Example 7 we showed that log, n is O (n) whenever b > 1. More generally, whenever b > 1
and ¢ and d are positive, we have

(logy n)¢ is O(n), but n? isnot (O(log, n)°).
Thistellsusthat every positive power of thelogarithm of » to the base b, whereb > 1, isbig-O
of every positive power of n, but the reverse relationship never holds.

In Example 7, we also showed that  is O (2"). More generally, whenever d is positive and
b > 1, we have

nd is O(b"), but " isnot O(n?).
This tells us that every power of n is big-O of every exponential function of n with a base
that is greater than one, but the reverse relationship never holds. Furthermore, we have when
c>b>1,

b" is O(c™) but " isnot Ob").
Thistellsusthat if we have two exponential functionswith different bases greater than one, one

of these functionsisbig-O of the other if and only if its base is smaller or equal.

The Growth of Combinations of Functions

Many algorithms are made up of two or more separate subprocedures. The number of steps
used by a computer to solve a problem with input of a specified size using such an algorithmis
the sum of the number of steps used by these subprocedures. To give a big-O estimate for the
number of steps needed, it is necessary to find big- O estimates for the number of steps used by
each subprocedure and then combine these estimates.

Big- O estimatesof combinationsof functionscan be provided if careistaken when different
big-O estimates are combined. In particular, it is often necessary to estimate the growth of the
sum and the product of two functions. What can be said if big-O estimates for each of two
functions are known? To see what sort of estimates hold for the sum and the product of two
functions, suppose that f1(x) is O(g1(x)) and fa(x) is O(g2(x)).

From the definition of big-O notation, there are constants C1, C», k1, and k such that

/1)) = C1lga(x)]

when x > k1, and

| f2(0)| = C2lg2(x)]
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when x > k». To estimate the sum of f1(x) and f>(x), note that

[(f1+ 2 (0] = [ faix) + fa(x)]
< |fax)| + | fo(x)| usingthetriangleinequality |a + b| < |a| + |b].
When x is greater than both k1 and ko, it follows from the inequalities for | f1(x)| and | f2(x)|
that
[f1(0)] + [ f2(x)] < C1lg1(x)] + C2lg2(x)]
< Ci1lg(x)| + C2|g(x)]
=(C1+ C2)|g(x)]
= Clg(x)],
whereC = C1 + Coand g(x) = max(|g1(x)|, |g2(x)]). [Heremax(a, b) denotesthe maximum,
or larger, of a and b.]

This inequality shows that |(f1+ f2)(x)| < C|g(x)| whenever x >k, where k =
max(k1, ko). We state this useful result as Theorem 2.

Suppose that fi(x) is O(gi(x)) and that f2(x) is O(g2(x)). Then (f1+ f2)(x) is
O (max(|g1(x)[, |g2(x)]))-

Weoftenhavebig- O estimatesfor f1 and f»> intermsof thesamefunction g. Inthissituation,
Theorem 2 can be used to show that ( f1 4+ f2)(x) isalso O (g(x)), because max(g(x), g(x)) =
g(x). Thisresult is stated in Corollary 1.

Suppose that f1(x) and fa(x) are both O (g(x)). Then (f1 + f2)(x) is O(g(x)).

Inasimilar way big-O estimates can be derived for the product of the functions f1 and f>.
When x is greater than max(k1, k2) it follows that

[(f1f2) ()] = [f1(0)]]f2(x)]
< C1]g1(x)|C2|g2(x)|
< C1C2|(g182)(x)|
< Cl(g182)(x)|,
where C = C1C». From this inequality, it follows that f1(x) f2(x) is O(g1g2(x)), because

there are constants C and k, namely, C = C1C2 and k = max(k1, k2), such that |(f1/2)(x)| <
Clg1(x)g2(x)| whenever x > k. Thisresult is stated in Theorem 3.

Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)). Then (f1f2)(x) is O(g1(x)g2(x)).

Thegoal in using big- O notation to estimate functionsisto chooseafunction g(x) assimple
as possible, that grows relatively slowly so that f(x) is O(g(x)). Examples 8 and 9 illustrate
how to use Theorems 2 and 3 to do this. The type of analysis given in these examplesis often
used in the analysis of the time used to solve problems using computer programs.
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Q and © arethe Greek
uppercase | etters omega
and theta, respectively.

DEFINITION 2

EXAMPLE 10

Giveabig-0 estimatefor f(n) = 3nlog(n!) + (n2 + 3) logn, where n is a positive integer.

Solution: First, the product 3n log(n!) will be estimated. From Example 6 we know that log(n!)
is O(nlogn). Using this estimate and the fact that 3n is O (n), Theorem 3 gives the estimate
that 3n log(n!) is O (n?logn).

Next, the product (n2 + 3) log n will be estimated. Because (n° + 3) < 2n° whenn > 2, it
followsthat n2 + 3is O (n2). Thus, from Theorem 3it followsthat (n2 + 3) logn is O (n2logn).
Using Theorem 2 to combine the two big-O estimates for the products shows that f(n) =
3nlog(n!) + (n2 + 3)logn is O (n?logn). <

Giveabig-0 estimatefor f(x) = (x + 1) log(x2 + 1) + 3x2.

Solution: First, a big-O estimate for (x + 1) log(x? + 1) will be found. Note that (x + 1) is
O (x). Furthermore, x2 + 1 < 2x2 when x > 1. Hence,

log(x? + 1) < log(2x?) = log2 + logx? = log2 + 2logx < 3logx,
if x > 2. Thisshowsthat log(x2 + 1) is O (log x).
From Theorem 3 it follows that (x + 1) log(x? + 1) is O (x logx). Because 3x2 is O (x?),

Theorem 2tellsusthat £ (x) is O (max(x logx, x2)). Becausex logx < x2,forx > 1,itfollows
that f(x) is O(x?). <

Big-Omega and Big-Theta Notation

Big-O notation is used extensively to describe the growth of functions, but it has limitations. In
particular, when f(x) is O (g(x)), wehavean upper bound, intermsof g(x), for thesizeof f(x)
for largevaluesof x. However, big- O notation doesnot providealower bound for thesizeof f (x)
for large x. For this, we use big-Omega (big-2) notation. When we want to give both an upper
and alower bound onthesize of afunction f (x), relativeto areferencefunction g (x), weusebig-
Theta (big-®) notation. Both big-Omega and big-Theta notation were introduced by Donald
Knuth in the 1970s. His motivation for introducing these notations was the common misuse of
big- O notation when both an upper and a lower bound on the size of a function are needed.

We now define big-Omega notation and illustrate its use. After doing so, we will do the
same for big-Theta notation.

Let f and g be functions from the set of integers or the set of real numbers to the set of real
numbers. We say that f(x) isQ(g(x)) if there are positive constants C and & such that

|f ()] = Clg(x)]

whenever x > k. [Thisisread as” f (x) ishig-Omegaof g(x)."]

Thereisastrong connection between big-O and big-Omega notation. In particular, f(x) is
Q(gx))ifandonlyif g(x)isO(f(x)). Weleavetheverification of thisfact asastraightforward
exercise for the reader.

The function f(x) = 8x3 + 5x2 + 7 is Q(g(x)), where g(x) is the function g(x) = x3. This
is easy to see because f(x) = 8x3 + 5x% + 7 > 8x° for al positive real numbers x. This is
equivalent to saying that g(x) = x3is O (8x3 + 5x2 + 7), which can be established directly by
turning the inequality around. <
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Often, it isimportant to know the order of growth of afunction in terms of some relatively
simple reference function such as x” when n isapositive integer or ¢*, where ¢ > 1. Knowing
the order of growth requires that we have both an upper bound and alower bound for the size of
the function. That is, given afunction f(x), we want areference function g(x) such that f(x)
iIsO(g(x)) and f(x)is2(g(x)). Big-Thetanotation, defined asfollows, is used to express both
of these relationships, providing both an upper and alower bound on the size of a function.

Let f and g be functions from the set of integers or the set of real numbersto the set of real
numbers. We say that f(x) is®(g(x)) if f(x)isO(g(x)) and f(x) is(g(x)). When f(x)
is®(g(x)) wesay that f isbig-Thetaof g(x), that f(x) isof order g(x), andthat f(x) and
g(x) are of the same order.

When f(x) is®(g(x)), itisasothecasethat g(x) is®(f(x)). Alsonotethat f(x) is®(g(x))
if and only if f(x)is O(g(x)) and g(x) is O(f(x)) (see Exercise 31). Furthermore, note that
S (x) is®(g(x)) if and only if there are real numbers C1 and C» and a positive real number k
such that

Cilg()| = 1f(x)| = C2[g(x)]

whenever x > k. The existence of the constants C1, C2, and k tellsusthat f(x) is(g(x)) and
that f(x) is O(g(x)), respectively.

Usually, when big-Thetanotationisused, thefunction g(x) in®(g(x)) isarelatively smple
reference function, such as x”, ¢*, log x, and so on, while f (x) can be relatively complicated.

We shogved (in Example 5) that the sum of the first n positive integersis O (n?). Is this sum of
order n<?

Solution: Let f(n) =142+ 3+ --- + n. Because we aready know that f(n) is O(n?), to
show that f(n) is of order n2 we need to find a positive constant C such that f(n) > Cn? for
sufficiently large integers n. To obtain alower bound for this sum, we can ignore the first half
of the terms. Summing only the terms greater than [n/2], we find that

1424 4+n=Mn/21+([n/21+ D+ - +n
= [n/2]1 4 [n/2] + -+ [n/2]
=(n—Tn/214+1) [n/2]
> (n/2)(n/2)
=n?/4.

Thiszshows that f(n) is Q(n?). We conclude that f(n) is of order n?, or in symbols, f(n) is
O?). <

Show that 3x? + 8x logx is O (x?).

Solution: Because 0 < 8xlogx < 8x2, it follows that 3x2 + 8xlogx < 11x? for x > 1.
Consequently, 3x2+ 8xlogx is O(x?). Clearly, x2 is O(3x2+ 8xlogx). Consequently,
3x2 + 8x logx is O (x?). <
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One useful fact isthat the leading term of a polynomial determinesits order. For example,
if £(x)=3x°+x*+17x3+ 2, then f(x) isof order x°. Thisis stated in Theorem 4, whose

proof isleft as Exercise 50.

., a, arereal numberswith

The polynomials 3x8 + 10x” + 221x2 + 1444, x1° — 18x* — 10,112, and —x°° + 40,001x%

+ 100,003x are of orders x8, x19, and x°°, respectively. <

Unfortunately, as Knuth observed, big-O notation is often used by careless writers and
speakers as if it had the same meaning as big-Theta notation. Keep thisin mind when you see
big- O notation used. The recent trend has been to use big-Theta notation whenever both upper

THEOREM 4  Let f(x) = ayx" + ay_1x" "1+ - - - + a1x + ag, whereao, a, . .
a, #0.Then f(x) isof order x".
EXAMPLE 13
and lower bounds on the size of afunction are needed.
Exercises

In Exercises 1-14, to establish abig- O relationship, find wit-
nesses C and k suchthat | f(x)| < C|g(x)| whenever x > k.

1

10.
11.

Determine whether each of these functionsis O (x).
a) f(x)=10 b) f(x) =3x+7

¢ fx)=x?>+x+1 d) f(x) =5logx

e) f(x)=|x] f) f(x)=1[x/2]

. Determine whether each of these functionsis O (x?2).

a) f(x)=17x + 11
c) f(x)=xlogx
e) fr)y=2°

b) f(x) = x?+ 1000
d) f(x)=x%/2
f) f(x) = Lx]-[x]

. Use the definition of “ f(x) is O(g(x))” to show that

A 4+93+4x +7is0E?).

. Use the definition of “ f(x) is O(g(x))” to show that

2+ 17is0(3).

. Show that (x2 + 1)/(x + 1) is O(x).
. Show that (x3 + 2x)/(2x + 1) is O (x?).
. Find the least integer n such that f(x) is O (x") for each

of these functions.

a) f(x) =2x%+x%logx

b) f(x) = 3x3+ (logx)*

0) fx)=@*+x2+1)/x3+1)
d) f(x)=x*+5logx)/(x*+ 1)

. Find the least integer n such that f(x) is O (x™) for each

of these functions.

a) f(x)=2x2+x3logx

b) f(x) = 3x°+ (logx)*

0) f(x) =@ +x24+1)/(x*+1)
d) f(x)=(x3+5logx)/(x*+1)

. Show that x2 + 4x + 17 is O(x3) but that x3 is not

O(x2 + 4x + 17).
Show that x3 is O (x#) but that x* isnot O (x3).
Show that 3x* + 1is O(x*/2) and x*/2is O (3x* + 1).

12.
13.

14.

15.
16.
17.

18.

19.

20.

21.

22.

23.

24.

Show that x logx is O (x2) but that xZ isnot O (x logx).
Show that 2" is O (3") but that 3" isnot O (2"). (Notethat
thisis a specia case of Exercise 60.)

Determine whether x3 is O (g(x)) for each of these func-
tions g(x).

a) g(x) = x2 b) g(x) = x3

c) g(x) =x2+x8 d) g(x) =x%+x*

&) g(x) =3 f) g(x) =x%2

Explain what it means for afunction to be O (1).

Show that if f(x) is O(x), then f(x) is O(x?).
Supposethat f(x), g(x), and h(x) arefunctionssuch that
f(x)is0(g(x)) and g(x) is O (h(x)). Show that f(x) is
O (h(x)).

Let k beapositiveinteger. Show that 1% + 2% + ... + ¥
is O(n* 1.

Determine whether each of the functions 2*11 and 22 is
o(2").

Determine whether each of the functionslog(n + 1) and
log(n? + 1) is O(logn).

Arrangethefunctions./n, 1000logn, n logn, 2n!, 2", 3",
and n2/1,000,000 in alist so that each function isbig-O
of the next function.

Arrangethefunction (1.5)",n1%, (logn)2, \/n logn, 107,
(n)2,andn® + n®inalist sothat each functionisbig-O
of the next function.

Suppose that you have two different algorithms for solv-
ing a problem. To solve a problem of size n, the first
algorithm uses exactly n(logn) operations and the sec-
ond agorithm uses exactly n®/2 operations. Asn grows,
which algorithm uses fewer operations?

Suppose that you have two different algorithms for solv-
ing a problem. To solve a problem of size n, the first
agorithm uses exactly n22" operations and the second
algorithm uses exactly n! operations. Asn grows, which
algorithm uses fewer operations?



25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.
38.

Give as good a big-O estimate as possible for each of
these functions.

a) n2+8)(n+1) b) (nlogn + n?)n®+ 2)
c) (n!+2)(n®+log(n? + 1))

Giveabig- O estimatefor each of these functions. For the
function g inyour estimate f (x) isO(g(x)), useasimple
function g of smallest order.

a) (n3+n?logn)(logn+1) + (17logn+19)(n3+2)

b) (2" 4+ n?)(n®+3")

¢) (n" +n2" +5)(n!+ 5"

Giveabig- O estimatefor each of these functions. For the
function g in your estimate that f(x) is O(g(x)), use a
simple function g of the smallest order.

a) nlog(n®+ 1) +n2logn

b) (nlogn + 1)? + (logn 4+ 1)(n? + 1)

c) n? + '

For each function in Exercise 1, determine whether that
function is Q (x) and whether it is ®(x).

For each function in Exercise 2, determine whether that

function is 2 (x?) and whether it is © (x?).

Show that each of these pairs of functions are of the same

order.

a) Ix+7,x

b) 2%2 4+ x —7,x2

c) lx+1/2],x

d) log(x? + 1), log, x

e) logqgx, logs x

Show that f(x)is®(g(x))ifandonlyif f(x)isO(g(x))

and g(x) is O(f (x)).

Show that if f(x) and g(x) are functions from the set

of real numbers to the set of real numbers, then f(x) is

O(g(x)) ifandonly if g(x) isQ(f(x)).

Show that if f(x) and g(x) are functions from the set

of real numbers to the set of real numbers, then f(x) is

®(g(x)) if and only if there are positive constants k, C1,
and Cz such that C1|g(x)| < |f(x)] < Cz|g(x)| when-

ever x > k.

a) Show that 3x2 4 x 4 1is ©(3x?) by directly finding
the constants k, C1, and C2 in Exercise 33.

b) Express the relationship in part (a) using a picture
showing the functions 3x? + x + 1, C1 - 3x?, and
C, - 3x2, and the constant k on the x-axis, where
C1, Co, and k are the constants you found in part (8)
to show that 3x2 + x + 1is ©(3x?).

Expresstherelationship f(x) is®(g(x)) using apicture.
Show the graphs of the functions f(x), C1|g(x)|, and
C2|g(x)|, aswell asthe constant k on the x-axis.

Explain what it means for afunction to be Q(1).
Explain what it means for afunction to be ®(1).

Give a big-O estimate of the product of the first » odd
positive integers.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
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Show that if f and g are real-valued functions such that
f(x)isO(g(x)), thenfor every positiveinteger n, f(x)
isO(g"(x)). [Notethat f*(x) = f(x)"]

Show that for all real numbers a and » witha > 1 and
b > 1,if f(x)isO(log, x), then f(x) is O(log, x).
Suppose that f(x) is O(g(x)) where f and g are in-
creasing and unbounded functions. Show that log | f (x)|
isO(log|g(x)))-

Suppose that f (x) is O(g(x)). Doesit follow that 2/ )
is0(28®)?

Let f1(x) and fo(x) be functions from the set of red
numbersto the set of positive real numbers. Show that if
f1(x) and f>(x) areboth ® (g(x)), where g(x) isafunc-
tion from the set of real numbersto the set of positiverea
numbers, then f1(x) + f2(x) is®(g(x)). Isthisstill true
if f1(x) and f2(x) can take negative values?
Supposethat f(x), g(x), and h(x) arefunctions such that
f(x)isO(g(x)) and g(x) isO(h(x)). Show that f(x) is
Oh(x)).

If f1(x) and f2(x) are functions from the set of positive
integersto the set of positive real numbersand £ (x) and
f2(x) are both ©(g(x)), is (f1 — f2)(x) as0 O(g(x))?
Either prove that it is or give a counterexample.

Show that if f1(x) and f2(x) are functions from the set
of positive integers to the set of real numbers and fi(x)
is ©(g1(x)) and f2(x) is O(ga2(x)), then (f1/2)(x) is
©((g182)(x)).

Find functions f and g from the set of positive integers
to the set of real numbers such that f(n) isnot O(g(n))
and g(n) isnot O(f (n)).

Expresstherelationship f(x) isQ(g(x)) using apicture.
Show the graphsof thefunctions f (x) and Cg(x), aswell
as the constant k& on thereal axis.

Show that if f1(x) is ©(g1(x)), f2(x) is ©(ga(x)), and
f2(x) # 0and g2(x) # Oforall real numbersx > 0,then
(f1/f2)(x) isO((g1/82)(x)).

Show that if f(x) = anx” + ap_1x" "1+ +arx +
ag, whereag, ay, . . ., a,—1, and a, arerea numbers and
a, # 0, then f(x) is®(x™).

Big-0, big-Theta, and big-Omega notation can be extended
to functionsin more than one variable. For example, the state-
ment f(x, y)isO(g(x, y)) meansthat thereexist constantsC,
k1, and ko such that | f (x, y)| < C|g(x, y)| whenever x > k1
and y > kp.

51.
52.
53.
54.
55.
56.
57.

58.

Define the statement f (x, y) is®(g(x, y)).
Define the statement f (x, y) isQ(g(x, y)).

Show that (x2 + xy + x log y)2 is 0 (x8y?).

Show that x%y2 + x4y + x3y% is Q(x3y3).

Show that [xy] is O(xy).

Show that [xy] isQ(xy).

(Requires calculus) Show that if ¢ > d > 0, then n¢ is
0 (n°), but n¢ isnot O (n?).

(Requires calculus) Show that if » > 1 and ¢ and d
are positive, then (log, n)¢ is O (n?), but n¢ is not
O((log, n)°).
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59. (Requires calculus) Show that if d ispositiveand b > 1,
then n? is O (b™) but b" isnot O (n?).

60. (Requires calculus) Show that if ¢ > b > 1, then b" is
O(c™) but ¢ isnot O(b™).

Thefollowing problems deal with another type of asymptotic

notation, called little-o notation. Because little-o notation is

based on the concept of limits, a knowledge of calculus is

needed for these problems. We say that f (x) iso(g(x)) [read

f(x) is“little-oh” of g(x)], when

jim £ _

x—00 g(x)

0.

61. (Requires calculus) Show that
a) x%iso(xd). b) xlogx iso(x?).

c) x2iso(2). d) x2+x + Lisnoto(x?).

62. (Requires calculus)

a) Show that if f(x) and g(x) are functions such that
f(x) iso(g(x)) and ¢ is a constant, then cf (x) is
o(g(x)), where (cf)(x) = cf (x).

b) Show that if fi(x), f2(x), and g(x) are functions
such that f1(x) is o(g(x)) and fa(x) is o(g(x)),
then (f1 + f2)(x) iso(g(x)), where (f1 + f2)(x) =
S1(x) + fa(x).

63. (Requires calculus) Represent pictorialy that x logx is
o(x?) by graphing x logx, x2, and x logx/x2. Explain
how this picture shows that x log x iso(x?).

64. (Requires calculus) Express the relationship f(x) is
o(g(x)) using a picture. Show the graphs of f(x), g(x),
and f(x)/g(x).

*#65. (Requires calculus) Suppose that f(x) iso(g(x)). Does
it follow that 2/ ™) js0(28¢))?

*66. (Requires calculus) Suppose that f(x) iso(g(x)). Does
it follow that log | f (x)| iso(log|g(x)])?

67. (Requires calculus) Thetwo partsof thisexercisedescribe
the relationship between little-o and big-O notation.

a) Show that if f(x) and g(x) are functions such that
f(x)iso(g(x)), then f(x) is O(g(x)).

b) Show that if f(x) and g(x) are functions such that
f(x)is O(g(x)), then it does not necessarily follow
that f(x) iso(g(x)).

68. (Requires calculus) Show that if f(x) isapolynomial of
degree n and g(x) is a polynomia of degree m where
m > n, then f(x) iso(g(x)).

Complexity of Algorithms

69. (Requires calculus) Show that if f1(x) is O(g(x)) and
f2(x) iso(g(x)), then fi(x) + f2(x) is O(g(x)).
70. (Requires calculus) Let H,, bethenth harmonic number

Hy=14 4ty 4t

" 2 3 n’
Show that H, is O(logn). [Hint: First establish the in-
equality

"1 /" 1
Zf < —dx
1 X

=27

by showing that the sum of the areas of the rectangles of
height 1/ withbasefrom j — 1to j,forj =2,3,...,n,
islessthan theareaunder thecurve y =1/x from2ton.]

*#71. Show that nlogn is O(logn!).

L5772, Determine whether logn! is ®(n logn). Justify your an-

swer.
#73. Show that log n! is greater than (nlogn)/4 for
n > 4. [Hint: Begin with the inequdity n!>
nin—1n-2---n/2]]
Let f(x) and g(x) be functions from the set of rea num-
bers to the set of real numbers. We say that the func-
tions f and g are asymptotic and write f(x) ~ g(x)
iflim, 500 f(x)/g(x) =1
74. (Requires calculus) For each of these pairs of functions,
determine whether f and g are asymptotic.
a) fx) =x243x+7 g(x) =x2+10
b) f(x) =x2logx, g(x) = x3
¢) f(x)=x*+log(3x8+7),
g(x) = (x? + 17x + 3)2
d) ) =G3+x2+x+ 14
glx) = (x*+x3+x2+x 4+ 1)
75. (Requires calculus) For each of these pairs of functions,
determine whether f and g are asymptotic.
a) f(x)=log(x?+ 1), g(x) = logx
b) f(x) =23, g(x) = 2+7
Q) fx) =2, g(x) =2
d) fx) =27 g(x) = 2742

Introduction

When does an agorithm provide a satisfactory solution to a problem? First, it must always
produce the correct answer. How this can be demonstrated will be discussed in Chapter 5.
Second, it should be efficient. The efficiency of agorithmswill be discussed in this section.
How can the efficiency of an algorithm be analyzed? One measure of efficiency isthetime
used by acomputer to solve a problem using the algorithm, when input values are of a specified
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size. A second measureisthe amount of computer memory required to implement the algorithm
when input values are of a specified size.

Questionssuch astheseinvolvethecomputational complexity of thealgorithm. Ananalysis
of the time required to solve a problem of aparticular size involves the time complexity of the
agorithm. An anaysis of the computer memory required involves the space complexity of
the algorithm. Considerations of the time and space complexity of an algorithm are essential
when algorithms are implemented. It is obviously important to know whether an algorithm will
produce an answer in amicrosecond, aminute, or abillion years. Likewise, the required memory
must be available to solve a problem, so that space complexity must be taken into account.

Considerations of space complexity are tied in with the particular data structures used to
implement the algorithm. Because data structures are not dealt with in detail in this book, space
complexity will not be considered. We will restrict our attention to time complexity.

Time Complexity

The time complexity of an agorithm can be expressed in terms of the number of operations
used by the a gorithm when the input has aparticular size. The operations used to measure time
complexity can be the comparison of integers, the addition of integers, the multiplication of
integers, the division of integers, or any other basic operation.

Time complexity isdescribed intermsof the number of operationsrequired instead of actual
computer time because of the differencein time needed for different computersto perform basic
operations. Moreover, it is quite complicated to break all operations down to the basic bit oper-
ations that a computer uses. Furthermore, the fastest computers in existence can perform basic
bit operations (for instance, adding, multiplying, comparing, or exchanging two bits) in 10~1%
second (10 picoseconds), but personal computers may require 10~8 second (10 nanoseconds),
which is 1000 times as long, to do the same operations.

Weillustrate how to analyzethetime complexity of an algorithm by considering Algorithm 1
of Section 3.1, which finds the maximum of afinite set of integers.

Describe the time complexity of Algorithm 1 of Section 3.1 for finding the maximum element
in afinite set of integers.

Solution: The number of comparisonswill be used as the measure of the time complexity of the
algorithm, because comparisons are the basic operations used.

To find the maximum element of a set with n elements, listed in an arbitrary order, the
temporary maximum is first set equal to the initial term in the list. Then, after a comparison
i < n hasbeen doneto determinethat the end of thelist has not yet been reached, the temporary
maximum and second term are compared, updating the temporary maximum to the value of
the second term if it is larger. This procedure is continued, using two additional comparisons
for each term of the list—one i < n, to determine that the end of the list has not been reached
and another max < a;, to determine whether to update the temporary maximum. Because two
comparisons are used for each of the second through the nth elements and one more comparison
is used to exit theloop wheni = n + 1, exactly 2(n — 1) + 1 = 2n — 1 comparisons are used
whenever this algorithm is applied. Hence, the algorithm for finding the maximum of a set
of n elements has time complexity ®(n), measured in terms of the number of comparisons
used. Note that for this a gorithm the number of comparisons isindependent of particular input
of n numbers. <

Next, we will analyze the time complexity of searching algorithms.



220 3/ Algorithms
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EXAMPLE 3

Describe the time complexity of the linear search algorithm (specified as Algortihm 2 in
Section 3.1).

Solution: The number of comparisons used by Algorithm 2 in Section 3.1 will be taken as the
measure of the time complexity. At each step of the loop in the algorithm, two comparisons
are performed—one i < n, to see whether the end of the list has been reached and one x < a;,
to compare the element x with aterm of the list. Finally, one more comparison i < n is made
outside theloop. Conseguently, if x = a;, 2i + 1 comparisons are used. The most comparisons,
2n + 2, are required when the element is not in the list. In this case, 2n comparisons are used
to determine that x isnot a;, fori = 1,2, ..., n, an additional comparison is used to exit the
loop, and one comparison is made outside theloop. So when x isnot inthelist, atotal of 2n + 2
comparisons are used. Hence, a linear search requires ®(n) comparisons in the worst case,
because 2n + 2is ®(n). |

WORST-CASE COMPLEXITY Thetypeof complexity analysisdonein Example2isaworst-
case analysis. By the worst-case performance of an algorithm, we mean the largest number of
operations needed to solve the given problem using this algorithm on input of specified size.
Worst-case analysis tells us how many operations an algorithm requires to guarantee that it will
produce a solution.

Describe the time complexity of the binary search agorithm (specified as Algorithm 3 in
Section 3.1) in terms of the number of comparisons used (and ignoring the time required to
computem = | (i + j)/2] in each iteration of the loop in the algorithm).

Solution: For simplicity, assumetherearen = 2¢ lementsinthelistay, ay, . .., a,, wherek isa
nonnegative integer. Note that k = logn. (If n, the number of elementsinthelist, isnot a power
of 2, the list can be considered part of alarger list with 2¢+1 elements, where 28 < n < 2¢+1,
Here 21 isthe smallest power of 2 larger than n.)

At each stage of the algorithm, i and j, the locations of the first term and the last term of
therestricted list at that stage, are compared to see whether the restricted list has more than one
term. If i < j, acomparison is done to determine whether x is greater than the middle term of
therestricted list.

At the first stage the search is restricted to a list with 2¢—1 terms. So far, two comparisons
have been used. This procedure is continued, using two comparisons at each stage to restrict
the search to alist with half as many terms. In other words, two comparisons are used at the
first stage of the algorithm when the list has 2 elements, two more when the search has been
reduced to alist with 25~ elements, two more when the search has been reduced to a list with
2k=2 elements, and so on, until two comparisons are used when the search has been reduced to a
list with 21 = 2 elements. Finally, when one term isleft in the list, one comparison tells us that
thereare no additional termsleft, and one more comparison isused to determineif thistermis x.

Hence, at most 2k + 2 = 2logn + 2 comparisons are required to perform a binary search
whenthelist being searched has 2% elements. (If n isnot apower of 2, theoriginal listisexpanded
to a list with 21 terms, where k = [logn ], and the search requires at most 2 [logn] + 2
comparisons.) It follows that in the worst case, binary search requires O (logn) comparisons.
Note that in the worst case, 21ogn + 2 comparisons are used by the binary search. Hence, the
binary search uses ®(logn) comparisons in the worst case, because 2logn + 2 = ©(logn).
From thisanalysisit followsthat in the worst case, the binary search algorithm is more efficient
than thelinear search algorithm, because we know by Example 2 that thelinear search algorithm
has © (n) worst-case time complexity. <

AVERAGE-CASE COMPLEXITY Another important type of complexity analysis, besides
worst-case analysis, is called average-case analysis. The average number of operations used to
solvetheproblemover all possibleinputsof agiven sizeisfoundinthistypeof analysis. Average-
case time complexity analysis is usualy much more complicated than worst-case analysis.
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However, theaverage-case analysisfor thelinear search algorithm can be done without difficulty,
as shown in Example 4.

Describe the average-case performance of the linear search algorithm in terms of the average
number of comparisons used, assuming that the integer x isin the list and it is equally likely
that x isin any position.

Solution: By hypothesis, the integer x isone of theintegersas, az, . . ., a, inthelist. If x isthe
first term a1 of the list, three comparisons are needed, onei < n to determine whether the end
of the list has been reached, one x # a; to compare x and the first term, and onei < n outside
theloop. If x isthe second term a; of thelist, two more comparisons are needed, so that atotal
of five comparisons are used. In general, if x istheith term of thelist a;, two comparisons will
be used at each of the i steps of the loop, and one outside the loop, so that a total of 2i + 1
comparisons are needed. Hence, the average number of comparisons used equals

3+5+7+ -+ @+1) 20+2+3+---+n)+n
n n '

Using the formulafrom line 2 of Table 2 in Section 2.4 (and see Exercise 37(b) of Section 2.4),

1
1+2+3+-~+n:”(”2+ ).

Hence, the average number of comparisons used by the linear search algorithm (when x is
known to bein thelist) is

2[n(n : v/2l

=n+2,

whichis®(n). |

Remark: Inthe analysisin Example 4 we assumed that x isin the list being searched. It isaso
possible to do an average-case analysis of this algorithm when x may not be in the list (see
Exercise 23).

Remark: Although we have counted the comparisons needed to determine whether we have
reached the end of aloop, these comparisons are often not counted. From this point on we will
ignore such comparisons.

WORST-CASE COMPLEXITY OF TWO SORTING ALGORITHMS We anayze the
worst-case complexity of the bubble sort and the insertion sort in Examples 5 and 6.

What is the worst-case complexity of the bubble sort in terms of the number of comparisons
made?

Solution: The bubble sort described before Example 4 in Section 3.1 sorts alist by performing
a sequence of passes through the list. During each pass the bubble sort successively compares
adjacent elements, interchanging them if necessary. When the ith pass begins, thei — 1 largest
elements are guaranteed to be in the correct positions. During this pass, n — i comparisons are
used. Consequently, the total number of comparisons used by the bubble sort to order alist of
n elementsis

(n=1n

=D+ =2+ 2+ 1=
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EXAMPLE 6

using a summation formula from line 2 in Table 2 in Section 2.4 (and Exercise 37(b) in
Section 2.4). Note that the bubble sort always uses this many comparisons, because it con-
tinues even if the list becomes completely sorted at some intermediate step. Consequently, the
bubble sort uses (n — 1)n/2 comparisons, so it has © (n2) worst-case complexity in terms of
the number of comparisons used. <

What is the worst-case complexity of the insertion sort in terms of the number of comparisons
made?

Solution: The insertion sort (described in Section 3.1) inserts the jth element into the correct
position among thefirst j — 1 elementsthat have already been put into the correct order. It does
thisby using alinear search technique, successively comparing the jth element with successive
termsuntil atermthat isgreater than or equal toitisfound or it comparesa; withitself and stops
because a; is not less than itself. Consequently, in the worst case, j comparisons are required
to insert the jth element into the correct position. Therefore, the total number of comparisons
used by the insertion sort to sort alist of n elementsis

2+3+~--+n=n(n—2+1)—1,
using the summation formula for the sum of consecutive integers in line 2 of Table 2 of
Section 2.4 (and see Exercise 37(b) of Section 2.4), and noting that the first term, 1, is missing
in this sum. Note that the insertion sort may use considerably fewer comparisons if the smaller
elements started out at the end of the list. We conclude that the insertion sort has worst-case
complexity ® (n?). <

In Examples 5 and 6 we showed that both the bubble sort and the insertion sort have
worst-case time complexity ® (n2). However, the most efficient sorting algorithms can sort
itemsin O (n logn) time, aswewill show in Sections8.3and 11.1 using techniqueswedevelopin
those sections. From this point on, we will assumethat sorting n itemscan bedonein O (n logn)
time.

Complexity of Matrix Multiplication

The definition of the product of two matrices can be expressed as an algorithm for computing
the product of two matrices. Supposethat C = [¢;;]isthem x n matrix that isthe product of the
m x k matrix A = [a;;] and the k x n matrix B = [b;;]. The algorithm based on the definition
of the matrix product is expressed in pseudocode in Algorithm 1.

ALGORITHM 1 Matrix Multiplication.

procedure matrix multiplication(A, B: matrices)
fori:=1tom
for j:=1ton
Cij = 0
forg:=1tok
¢ij 1= Cij + dighy,
return C {C = [c¢;;] isthe product of A and B}

We can determine the complexity of this algorithm in terms of the number of additions and
multiplications used.
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EXAMPLE 7 How many additions of integers and multiplications of integers are used by Algorithm 1 to

EXAMPLE 8

Links

EXAMPLE 9

multiply two n x n matrices with integer entries?

Solution: There are n? entries in the product of A and B. To find each entry requires a total
of n multiplications and n — 1 additions. Hence, a total of »3 multiplications and n2(n — 1)
additions are used. <

Surprisingly, there are more efficient algorithms for matrix multiplication than that givenin
Algorithm 1. As Example 7 shows, multiplying two n x n matrices directly from the definition
requires O (n3) multiplications and additions. Using other algorithms, two n x n matrices can
be multiplied using O(n‘ﬁ ) multiplications and additions. (Details of such algorithms can be
found in [CoLeRiSt09].)

We can also analyzethe compl exity of thealgorithm wedescribedin Chapter 2 for computing
the Boolean product of two matrices, which we display as Algorithm 2.

ALGORITHM 2 The Boolean Product of Zero-One Matrices.

procedure Boolean product of Zero-One Matrices (A, B: zero—one matrices)
fori:=1tom

forj:=1ton
Cij = 0
forg:=1tok
Cij = Cij V (a,-q A bq_,')

return C {C = [¢;;] isthe Boolean product of A and B}

The number of bit operations used to find the Boolean product of two n x n matrices can
be easily determined.

How many bit operationsare used to find A © B, where A and B aren x n zero—one matrices?

Solution: There are n? entriesin A © B. Using Algorithm 2, atotal of n ORs and n ANDs are
used to find an entry of A © B. Hence, 2n hit operations are used to find each entry. Therefore,
22 bit operations are required to compute A © B using Algorithm 2. <

MATRIX-CHAIN MULTIPLICATION There is another important problem involving the
complexity of themultiplication of matrices. How shouldthematrix-chain A1Az - - - A, becom-
puted using the fewest multiplications of integers, where A1, Ao, ..., A, &emy X mo, ma X
ms, ..., m, X m,y1 matrices, respectively, and each has integers as entries? (Because matrix
multiplication is associative, as shown in Exercise 13 in Section 2.6, the order of the mul-
tiplication used does not change the product.) Note that m1moms multiplications of integers
are performed to multiply an m1 x m» matrix and an mo x m3 matrix using Algorithm 1.
Example 9 illustrates this problem.

In which order should the matrices A1, A2, and As—where A1 is30 x 20, A2 is20 x 40, and
As3is40 x 10, all with integer entries—be multiplied to use the least number of multiplications
of integers?

Solution: Therearetwo possiblewaysto compute A1 A>As. Theseare A1 (A2A3) and (A1A2)As.

If A and A3 are first multiplied, a total of 20 - 40 - 10 = 8000 multiplications of inte-
gers are used to obtain the 20 x 10 matrix A2Az. Then, to multiply A1 and AAs3 requires
30 - 20 - 10 = 6000 multiplications. Hence, atotal of

8000 + 6000 = 14,000
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multiplications are used. On the other hand, if A1 and Az arefirst multiplied, then 30 - 20 - 40 =
24,000 multiplications are used to obtain the 30 x 40 matrix A1A2. Then, to multiply A1A;
and Az requires 30 - 40 - 10 = 12,000 multiplications. Hence, atotal of

24,000 + 12,000 = 36,000

multiplications are used.
Clearly, the first method is more efficient. <

We will return to this problem in Exercise 57 in Section 8.1. Algorithms for determining
the most efficient way to carry out matrix-chain multiplication are discussed in [CoLeRiSt09].

Algorithmic Paradigms

In Section 3.1 we introduced the basic notion of an algorithm. We provided examples of many
different algorithms, including searching and sorting algorithms. We al so introduced the concept
of agreedy algorithm, giving examples of severa problems that can be solved by greedy algo-
rithms. Greedy algorithms provide an example of an algorithmic paradigm, that is, a genera
approach based on a particular concept that can be used to construct algorithms for solving a
variety of problems.

In this book we will construct algorithms for solving many different problems based on a
variety of algorithmic paradigms, including the most widely used algorithmic paradigms. These
paradigms can serve as the basis for constructing efficient algorithms for solving a wide range
of problems.

Someof thealgorithmswe haveal ready studied are based on an algorithmic paradigm known
as brute force, which we will describe in this section. Algorithmic paradigms, studied later in
this book, include divide-and-conquer a gorithms studied in Chapter 8, dynamic programming,
also studied in Chapter 8, backtracking, studied in Chapter 10, and probabilistic algorithms,
studied in Chapter 7. There are many important algorithmic paradigms besides those described
in this book. Consult books on algorithm design such as [KITa06] to learn more about them.

BRUTE-FORCE ALGORITHMS Brute force is an important, and basic, algorithmic
paradigm. In a brute-force algorithm, aproblem is solved in the most straightforward manner
based on the statement of the problem and the definitions of terms. Brute-force algorithms are
designed to solve problems without regard to the computing resources required. For example,
in some brute-force algorithms the solution to a problem is found by examining every possible
solution, looking for the best possible. In general, brute-force algorithms are naive approaches
for solving problemsthat do not take advantage of any special structure of the problem or clever
ideas.

Note that Algorithm 1 in Section 3.1 for finding the maximum number in a sequence is
a brute-force algorithm because it examines each of the n numbers in a sequence to find the
maximum term. The algorithm for finding the sum of » numbers by adding one additional
number at atimeis also a brute-force algorithm, as is the algorithm for matrix multiplication
based on its definition (Algorithm 1). The bubble, insertion, and selection sorts (described in
Section 3.1 in Algorithms 4 and 5 and in Exercise 42, respectively) are also considered to be
brute-forcealgorithms; all three of these sorting al gorithmsare strai ghtf orward approachesmuch
less efficient than other sorting algorithms such as the merge sort and the quick sort discussed
in Chapters5 and 8.

Although brute-force algorithms are often inefficient, they are often quite useful. A brute-
force algorithm may be ableto solve practical instances of problems, particularly when theinput
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is not too large, even if it is impractical to use this algorithm for larger inputs. Furthermore,
when designing new algorithms to solve a problem, the goal is often to find a new agorithm
that is more efficient than a brute-force algorithm. One such problem of this type is described
in Example 10.

Construct a brute-force algorithm for finding the closest pair of pointsin a set of n pointsin
the plane and provide aworst-case big-O estimate for the number of bit operations used by the
agorithm.

Solution: Suppose that we are given as input the points (x1, y1), (x2, ¥2), ..., (x,, y,). Recall
that the distance between (x;, y;) and (x;, y;) is\/(xj —xi)%2+ (yj — yi)?. A brute-force algo-
rithm can find the closest pair of these points by computing the distances between all pairs of
the n points and determining the smallest distance. (We can make one small simplification to
make the computation easier; we can compute the square of the distance between pairs of points
to find the closest pair, rather than the distance between these points. We can do this because
the square of the distance between a pair of pointsis smallest when the distance between these
pointsis smallest.)

ALGORITHM 3 Brute-Force Algorithm for Closest Pair of Points.

procedure closest-pair((x1, y1), (x2, y2), ..., (xn, y»): pairsof real numbers)
min= o0
fori:=2ton
for j:=1toi—1
if (x; — xi)2 + (v — y,')2 < min then

min = (xj — x)% + (yj — y)?

closest pair := ((x;, y;), (xj, ¥;))
return closest pair

To estimate the number of operations used by the agorithm, first note that there are
n(n — 1)/2 pairsof points ((x;, y;), (x;, y;)) that weloop through (as the reader should verify).
For each such pair we compute (x; — xi)? + (yj — y;)2, compare it with the current value of
min, and if it issmaller than min replace the current value of min by this new value. It follows
that this algorithm uses © (n?) operations, in terms of arithmetic operations and comparisons.

In Chapter 8wewill devisean algorithm that determinesthe closest pair of pointswhengiven
n pointsin the plane asinput that has O (n log n) worst-case complexity. The original discovery
of such an algorithm, much more efficient than the brute-force approach, was considered quite
surprising. <

Understanding the Complexity of Algorithms

Table 1 displays some common terminol ogy used to describe the time complexity of algorithms.
For example, an algorithm that finds the largest of the first 100 terms of alist of n elements
by applying Algorithm 1 to the sequence of the first 100 terms, where n is an integer with
n > 100, has constant complexity because it uses 99 comparisons no matter what » is (as
the reader can verify). The linear search algorithm has linear (worst-case or average-case)
complexity and the binary search algorithm has logarithmic (worst-case) complexity. Many
important algorithms have n log n, or linearithmic (worst-case) complexity, such asthe merge
sort, whichwewill introducein Chapter 4. (Theword linearithmic isacombination of thewords
linear and logarithmic.)
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TABLE 1 Commonly Used Terminology for the
Complexity of Algorithms.
Complexity Terminology
e() Constant complexity
O(logn) L ogarithmic complexity
O(n) Linear complexity
O(n logn) Linearithmic complexity
O Polynomial complexity
"), whereb > 1 Exponential complexity
O(n!) Factorial complexity

An algorithm has polynomial complexity if it has complexity © (n”), where b isan integer
with b > 1. For example, the bubble sort algorithm is a polynomial-time algorithm because
it uses ®(n?) comparisons in the worst case. An algorithm has exponential complexity if it
has time complexity © ("), where b > 1. The algorithm that determines whether a compound
proposition in n variables is satisfiable by checking all possible assignments of truth variables
is an agorithm with exponential complexity, because it uses ©(2") operations. Finaly, an
algorithm has factorial complexity if it has ® (n!) time complexity. The algorithm that finds all
orders that a traveling salesperson could use to visit n cities has factorial complexity; we will
discuss this algorithm in Chapter 9.

TRACTABILITY A problem that is solvable using an agorithm with polynomial worst-case
complexity is called tractable, because the expectation is that the algorithm will produce the
solution to the problem for reasonably sized input in a relatively short time. However, if the
polynomial in the big-© estimate has high degree (such as degree 100) or if the coefficients
are extremely large, the algorithm may take an extremely long time to solve the problem.
Consequently, that a problem can be solved using an agorithm with polynomial worst-case
time complexity is no guarantee that the problem can be solved in areasonable amount of time
for even relatively small input values. Fortunately, in practice, the degree and coefficients of
polynomialsin such estimates are often small.

The situation is much worse for problems that cannot be solved using an algorithm with
worst-case polynomial time complexity. Such problems are called intractable. Usually, but not
always, an extremely large amount of time is required to solve the problem for the worst cases
of even small input values. In practice, however, there are situations where an algorithm with a
certain worst-case time complexity may be able to solve a problem much more quickly for most
cases than for its worst case. When we are willing to allow that some, perhaps small, number
of cases may not be solved in areasonable amount of time, the average-case time complexity is
a better measure of how long an algorithm takes to solve a problem. Many problems important
in industry are thought to be intractable but can be practically solved for essentially all sets of
input that arisein daily life. Another way that intractable problems are handled when they arise
in practical applicationsisthat instead of looking for exact solutions of a problem, approximate
solutionsare sought. It may bethe casethat fast algorithmsexist for finding such approximate so-
lutions, perhapseven with aguaranteethat they do not differ by very much froman exact solution.

Some problems even exist for which it can be shown that no algorithm exists for solving
them. Such problems are called unsolvable (as opposed to solvable problems that can be
solved using an algorithm). The first proof that there are unsolvable problems was provided by
the great English mathematician and computer scientist Alan Turing when he showed that the
halting problem is unsolvable. Recall that we proved that the halting problem is unsolvable in
Section 3.1. (A biography of Alan Turing and a description of some of his other work can be
found in Chapter 13.)
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P VERSUS NP The study of the complexity of algorithms goes far beyond what we can
describe here. Note, however, that many solvable problems are believed to have the property
that no algorithm with polynomial worst-case time complexity solves them, but that a solution,
if known, can be checked in polynomial time. Problems for which a solution can be checked
in polynomial time are said to belong to the class NP (tractable problems are said to belong to
class P). The abbreviation NP stands for nondeterministic polynomial time. The satisfiability
problem, discussed in Section 1.3, is an example of an NP problem—we can quickly verify that
an assignment of truth values to the variables of a compound proposition makes it true, but no
polynomial time algorithm has been discovered for finding such an assignment of truth values.
(For example, an exhaustive search of all possible truth values requires 2(2") bit operations
wheren isthe number of variables in the compound proposition.)

There is also an important class of problems, called NP-complete problems, with the

a property that if any of these problems can be solved by apolynomial worst-case time algorithm,
Links then al problems in the class NP can be solved by polynomia worst-case time algorithms.
The satisfiability problem, isaso an example of an NP-complete problem. It isan NP problem
and if apolynomial time algorithm for solving it were known, there would be polynomial time
algorithmsfor all problemsknown to beinthisclassof problems (and there are many important
problems in this class). This last statement follows from the fact that every problem in NP
can be reduced in polynomial time to the satisfiability problem. Although more than 3000 NP-
complete problems are now known, the satisfiability problem wasthefirst problem shown to be
NP-complete. The theorem that assertsthisis known asthe Cook-Levin theorem after Stephen

Cook and Leonid Levin, who independently proved it in the early 1970s.

The P versus NP problem asks whether NP, the class of problems for which it is possible
to check solutionsin polynomial time, equals P, the class of tractable problems. If PANP, there
would be some problems that cannot be solved in polynomial time, but whose solutions could
be verified in polynomial time. The concept of NP-completeness is helpful in research aimed

@ at solving the P versus NP problem, because NP-complete problems are the problems in NP
considered most likely not to bein P, as every problem in NP can be reduced to an NP-complete
problem in polynomial time. A large majority of theoretical computer scientists believe that
P -£ NP, which would mean that no NP-complete problem can be solved in polynomial time.
Onereason for thisbelief isthat despite extensive research, no one has succeeded in showing that

) a P = NP. In particular, no one has been able to find an algorithm with worst-case polynomial time
Links complexity that solves any NP-complete problem. The P versus NP problem is one of the most
famous unsolved problems in the mathematical sciences (which include theoretical computer
science). Itisoneof the seven famousMillennium Prize Problems, of which six remain unsol ved.

A prize of $1,000,000 is offered by the Clay Mathematics Institute for its solution.

Links
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For more information about the complexity of algorithms, consult the references, including
[CoLeRiSt09], for this section listed at the end of thisbook. (Also, for amoreformal discussion
of computational complexity in terms of Turing machines, see Section 13.5.)

PRACTICAL CONSIDERATIONS Notethat abig-® estimate of the time complexity of an
algorithm expresses how the time required to solve the problem increases as the input grows
in size. In practice, the best estimate (that is, with the smallest reference function) that can be
shown is used. However, big-® estimates of time complexity cannot be directly translated into
the actual amount of computer time used. One reason isthat abig-© estimate f(n) is®(g(n)),
where f(n) is the time complexity of an algorithm and g(n) is a reference function, means
that C1g(n) < f(n) < Cog(n) when n > k, where C1, C2, and k are constants. So without
knowing the constants C1, C», and k in theinequality, this estimate cannot be used to determine
a lower bound and an upper bound on the number of operations used in the worst case. As
remarked before, the time required for an operation depends on the type of operation and the
computer being used. Often, instead of abig-® estimate on the worst-case time complexity of
an agorithm, we have only abig-O estimate. Note that abig- O estimate on the time complexity
of an algorithm provides an upper, but not a lower, bound on the worst-case time required for
the algorithm as a function of the input size. Nevertheless, for simplicity, we will often use
big-O estimates when describing the time complexity of agorithms, with the understanding
that big-® estimates would provide more information.

Table 2 displays the time needed to solve problems of various sizes with an algorithm using
theindicated number n of bit operations, assuming that each bit operation takes 10~ 11 seconds, a
reasonable estimate of the time required for abit operation using the fastest computers available
today. Times of more than 101® years are indicated with an asterisk. In the future, these times
will decrease as faster computers are devel oped. We can use the times shown in Table 2 to see
whether it is reasonable to expect a solution to a problem of a specified size using an algorithm
with known worst-case time complexity when we run this algorithm on a modern computer.
Note that we cannot determine the exact time a computer uses to solve a problem with input of
aparticular size because of amyriad of issues involving computer hardware and the particular
software implementation of the algorithm.

It isimportant to have a reasonabl e estimate for how long it will take a computer to solve a
problem. For instance, if an algorithm requires approximately 10 hours, it may be worthwhileto
spend the computer time (and money) required to solvethisproblem. But, if analgorithm requires
approximately 10 billion yearsto solve a problem, it would be unreasonabl e to use resources to
implement this algorithm. One of the most interesting phenomena of modern technology isthe
tremendous increase in the speed and memory space of computers. Another important factor
that decreases the time needed to solve problems on computers is parallel processing, which
is the technique of performing sequences of operations simultaneously.

Efficient algorithms, including most algorithms with polynomial time complexity, benefit
most from significant technology improvements. However, these technology improvements

TABLE 2 The Computer Time Used by Algorithms.
Problem Size Bit Operations Used
n logn n nlogn n? 2n n!
10 3x10 s 10005  3x100s 109%s 1078 s 3x1077s
102 7x1071s  10°9s 7x1079%s 107s 4x10Myr o+
108 10x10710s 1085 1x1077s 1055 * *
104 13x1070s 107s 1x106s 107 3s * *
10° 17x1070s 10765 2x1075s 0.1ls * *
108 2x10710s 10755 2x1074s 0.17min  * *
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offer little help in overcoming the complexity of algorithms of exponentia or factorial time
complexity. Because of theincreased speed of computation, increasesin computer memory, and
the use of agorithms that take advantage of parallel processing, many problems that were con-
sidered impossibleto solvefive years ago are now routinely solved, and certainly fiveyearsfrom
now this statement will still be true. Thisis even true when the algorithms used are intractable.

Exercises

. Give a big-O estimate for the number of operations
(where an operation is an addition or a multiplication)
used in this segment of an algorithm.
t:=0
fori:=1t03
for j:=1to4
t:=t+ij
. Give a big-O estimate for the number additions used in
this segment of an algorithm.
t:=0
fori:=1ton
for j:=1ton
ti=t+i+]j
. Give a big-O estimate for the number of operations,
where an operation is a comparison or a multiplication,
used in this segment of an algorithm (ignoring compar-
isons used to test the conditions in the for loops, where
ai, a, ..., a, are positive real numbers).
m:=0
fori :=1ton
for j:=i+1ton
m = max(a;a;, m)

. Give a hig-O estimate for the number of operations,
where an operation isan addition or amultiplication, used
in this segment of an algorithm (ignoring comparisons
used to test the conditions in the while loop).
i=1
t:=0
whilei <n
ti=t+1
i:=2i

. How many comparisons are used by the algorithm given

in Exercise 16 of Section 3.1 to find the smallest natura

number in a sequence of n natural numbers?

. @) Usepseudocodeto describethealgorithmthat putsthe
first four terms of alist of real numbers of arbitrary
length in increasing order using the insertion sort.

b) Show that thisalgorithm hastime complexity O (1) in
terms of the number of comparisons used.

. Suppose that an element is known to be among the first

four elements in a list of 32 elements. Would a lin-

ear search or a binary search locate this element more
rapidly?

. Given areal number x and apositiveinteger k, determine

the number of multiplications used to find x2 starting

*10.

11.

12.

with x and successively squaring (to fi ndkxz, x* and s0
on). Is this amore efficient way to find x2 than by mul-
tiplying x by itself the appropriate number of times?

. Give a big-O estimate for the number of comparisons

used by the algorithm that determines the number of 1s
inabit string by examining each bit of the string to deter-
minewhether itisal bit (see Exercise 25 of Section 3.1).

a) Show that this algorithm determines the number of 1
bitsin the bit string S:

procedure bit count(S: bit string)

count:=0

while S #0
count :=count + 1
S=SA(S-1)

return count {count isthe number of 1sin S}

Here S — 1isthe bit string obtained by changing the
rightmost 1 bit of S to a0 and all the O bitsto theright
of thisto 1s. [Recall that S A (S — 1) is the bitwise
AND of Sand § — 1]

b) How many bitwise AND operations are needed to find
the number of 1 bitsin astring S using the algorithm
inpart (8)?

a) Suppose we have n subsets S1, So, ..., S, of the set
{1, 2,...,n}. Expressabrute-force agorithmthat de-
termines whether thereisadigoint pair of these sub-
sets. [Hint: The algorithm should loop through the
subsets; for each subset S;, it should then loop through
all other subsets; and for each of these other subsets
S, it should loop through all elements k in S; to de-
termine whether k also belongsto S;.]

b) Give a big-O estimate for the number of times the
algorithm needs to determine whether an integer isin
one of the subsets.

Consider the following agorithm, which takes asinput a
sequenceof n integersas, ap, . . . , a, and producesasout-
put amatrix M = {m;;} where m;; isthe minimum term
inthesequence of integersa;, a; 41, ..., aj for j > i and
mi; = 0 otherwise.
initialize M so that mjj = a; If] > i and mij = 0
otherwise
fori:=1ton
forj:=i+1ton
fork:=i+1toj
mjj = min(m,-j, ak)
return M= {m;;} {m;; isthe minimum term of
ai, aiy1,...,4a;}
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13.

14.

15.

16.

a) Show that this algorithm uses O (n3) comparisons to
compute the matrix M.

b) Show that this algorithm uses Q (#®) comparisons to
compute the matrix M. Using this fact and part (a),
concludethat thealgorithmsuses © (n2) comparisons.
[Hint: Only consider the cases where i < n/4 and
Jj > 3n/4inthetwo outer loopsin the algorithm.]

The conventional algorithm for evaluating a polynomia
apx™ + ap_1x" 1+ -+ ax +ag @ x = c can beex-
pressed in pseudocode by

procedure polynomial(c, ag, a1, . ..
power :=1
y:=ao
fori:=1ton
pOwWer := power * ¢
y =Yy + a; * power
return y {y = a,c" + ap_1c" 1+t aic+ ap}

where the final value of y isthe value of the polynomia

ax =c.

a) Evaluate 3x + x + 1 at x = 2 by working through
each step of thealgorithm showing thevaluesassigned
at each assignment step.

b) Exactly how many multiplications and additions are
used to evaluate a polynomial of degreen at x = ¢?
(Do not count additions used to increment the loop
variable))

Thereis amore efficient algorithm (in terms of the num-
ber of multiplications and additions used) for evaluating
polynomials than the conventional algorithm described
in the previous exercise. It is called Horner’s method.
Thispseudocode shows how to usethismethod to find the
vaueof a,x" + ay_1x" 1+ - +aix +apatx = c.

, a,: real numbers)

procedure Horner(c, ag, a1, az, ..., a,:
yi=an
fori:=1ton
Yi=y#C+an—
return y {y = a,c" + an_1c""1+ - + aic + ag}

real numbers)

a) Evauate 3x? + x + 1 a x = 2 by working through
each step of thealgorithm showing thevaluesassigned
at each assignment step.

b) Exactly how many multiplications and additions are
used by this algorithm to evaluate a polynomial of
degree n at x = ¢? (Do not count additions used to
increment the loop variable.)

What isthe largest n for which one can solve within one

second a problem using an agorithm that requires f (n)

bit operations, where each bit operation is carried out in

10~ seconds, with these functions f(1)?

a) logn b) n c) nlogn

d) n? e) 2" f) n!

What is the largest n for which one can solve within a

day using an agorithm that requires f (n) bit operations,

where each bit operation is carried out in 10~11 seconds,

with these functions f (n)?

17.

18.

19.

20.

21.

22.

23.

24.

a) logn b) 1000n c) n?
d) 1000n2 e) n® f) 2"
g) 22n h) 22"

What is the largest n for which one can solve within
a minute using an agorithm that requires f(n) bit op-
erations, where each bit operation is carried out in
1012 seconds, with these functions f (n)?

a) loglogn b) logn c) (logn)?
d) 10000001 €) n2 f) o

}12
g) 2

How much time does an algorithm take to solve a prob-
lem of size n if this algorithm uses 212 + 2" operations,
each requiring 10~° seconds, with these values of n?

a) 10 b) 20 c) 50 d) 100

How much time does an algorithm using 2%° operations
need if each operation takes these amounts of time?

a) 10°%s b) 10°s c) 107125

What is the effect in the time required to solve a prob-
lem when you double the size of the input from n to 2n,
assuming that the number of milliseconds the algorithm
usesto solvethe problemwithinput sizen iseach of these
function?[Expressyour answer in the simplest form pos-
sible, either as aratio or a difference. Your answer may
be afunction of n or aconstant.]

a) loglogn b) logn c) 100n
d) nlogn e) n? f) nd
9 2

What isthe effect in the time required to solve a problem
when you increase the size of theinput fromn ton + 1,
assuming that the number of milliseconds the algorithm
usesto solvethe problemwithinput sizen iseach of these
function?[Expressyour answer in the simplest form pos-
sible, either as aratio or a difference. Your answer may
be afunction of n or aconstant.]

a) logn b) 100n c) n?
d) n3 g) 2" f) 2
g) n!

Determine the least number of comparisons, or best-case

performance,

a) required to find the maximum of a sequence of n in-
tegers, using Algorithm 1 of Section 3.1.

b) used to locate an element in alist of n terms with a
linear search.

c) used to locate an element in alist of n terms using a
binary search.

Analyze the average-case performance of the linear

search agorithm, if exactly half thetimetheelement x is

not inthelist and if x isinthelist it is equaly likely to

bein any position.

Anagorithmiscalled optimal for the solution of aprob-
lem with respect to a specified operation if there is no
algorithm for solving this problem using fewer opera-
tions.



25.

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

a) Show that Algorithm 1 in Section 3.1 is an optimal
algorithm with respect to the number of comparisons
of integers. [Note: Comparisons used for bookkeep-
ing in the loop are not of concern here.]

b) Isthelinear search algorithm optimal with respect to
the number of comparisons of integers (not including
comparisons used for bookkeeping in the loop)?

Describe the worst-case time complexity, measured in

terms of comparisons, of the ternary search algorithm

described in Exercise 27 of Section 3.1.

Describe the worst-case time complexity, measured in

terms of comparisons, of the search algorithm described

in Exercise 28 of Section 3.1.

Analyze the worst-case time complexity of the algorithm

you devised in Exercise 29 of Section 3.1 for locating a

mode in alist of nondecreasing integers.

Analyze the worst-case time complexity of the algorithm

you devised in Exercise 30 of Section 3.1 for locating al

modesin alist of nondecreasing integers.

Analyze the worst-case time complexity of the algorithm

you devised in Exercise 31 of Section 3.1 for finding the

first term of asequence of integersequal to some previous
term.

Analyze the worst-case time complexity of the algorithm

you devised in Exercise 32 of Section 3.1 for finding all

terms of a sequence that are greater than the sum of al
previous terms.

Analyze the worst-case time complexity of the algorithm

you devised in Exercise 33 of Section 3.1 for finding the

first term of asegquencelessthan theimmediately preced-
ing term.

Determine the worst-case complexity in terms of com-

parisons of the algorithm from Exercise 5 in Section 3.1

for determining all values that occur more than oncein a

sorted list of integers.

Determinetheworst-case complexity in terms of compar-

isons of the algorithm from Exercise 9 in Section 3.1 for

determining whether a string of n charactersis a palin-
drome.

How many comparisons does the selection sort (see

preamble to Exercise 41 in Section 3.1) use to sort n

items? Use your answer to give a big-O estimate of the

complexity of the selection sort in terms of number of
comparisons for the selection sort.

Find a big-O estimate for the worst-case complexity in

terms of number of comparisons used and the number of

terms swapped by the binary insertion sort described in

the preamble to Exercise 47 in Section 3.1.

Show that the greedy algorithm for making change for n

centsusing quarters, dimes, nickels, and pennieshas O (n)

complexity measured in terms of comparisons needed.

Exercises 37 and 38 deal with the problem of scheduling the
most talks possible given the start and end times of » talks.

37.

Find the complexity of a brute-force agorithm for
scheduling the talks by examining all possible subsets
of thetaks. [Hint: Usethefact that a set with n elements
has 2" subsets.]

38.

39.

40.
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Find the complexity of the greedy algorithm for schedul -
ing the most talks by adding at each step the talk with the
earliest end time compatiblewith thosea ready scheduled
(Algorithm 7 in Section 3.1). Assume that the talks are
not aready sorted by earliest end time and assume that
the worst-case time complexity of sorting is O (nlogn).

Describe how the number of comparisons used in the
worst case changes when these algorithms are used to
search for an element of a list when the size of the list
doubles from n to 2n, where n is a positive integer.

a) linear search b) binary search

Describe how the number of comparisons used in the
worst case changes when the size of the list to be sorted
doubles from n to 2n, where n is a positive integer when
these sorting algorithms are used.

a) bubble sort b) insertion sort
c) selection sort (described in the preamble to Exer-
cise4lin Section 3.1)

d) binary insertion sort (described in the preambleto Ex-
ercise 47 in Section 3.1)

Ann x n matrix is called upper triangular if a;; = 0 when-
everi > j.

41.

42.

43.

From the definition of the matrix product, describe an
agorithm in English for computing the product of two
upper triangular matrices that ignores those products in
the computation that are automatically equal to zero.

Give a pseudocode description of the algorithm in Exer-
cise 41 for multiplying two upper triangular matrices.

How many multiplications of entries are used by the al-
gorithm found in Exercise 41 for multiplying two n x n
upper triangular matrices?

In Exercises 4445 assume that the number of multiplications
of entriesused to multiply a p x ¢ matrix and ag x r matrix

ispqr.

44,

45.

*46.

What is the best order to form the product ABC if A, B,
and C are matrices with dimensions 3 x 9, 9 x 4, and
4 x 2, respectively?

What isthe best order to form the product ABCD if A, B,
C, and D arematriceswithdimensions 30 x 10, 10 x 40,
40 x 50, and 50 x 30, respectively?.

Inthisexercisewedeal withtheproblemof string match-

ing.

a) Explain how to use a brute-force algorithm to find
the first occurrence of a given string of m characters,
caled the target, in a string of n characters, where
m < n, called the text. [Hint: Think in terms of find-
ing a match for the first character of the target and
checking successive characters for a match, and if
they do not all match, moving the start location one
character to the right.]

b) Express your agorithm in pseudocode.

c) Give abig-O estimate for the worst-case time com-
plexity of the brute-force algorithm you described.



232 3/ Algorithms

Key Terms and Results

TERMS

algorithm: a finite sequence of precise instructions for per-
forming a computation or solving a problem

searching algorithm: the problem of locating an elementin a
list

linear search algorithm: aprocedure for searching alist ele-
ment by element

binary search algorithm: a procedure for searching an or-
dered list by successively splitting the list in half

sorting: thereordering of the elements of alist into prescribed
order

f(x) is 0(9(x)): the fact that | f(x)| < C|g(x)| for al x > k
for some constants C and k

witness to the relationship f(x) is O(g(x)): apar C and k
suchthat | f(x)| < Clg(x)| whenever x > k

f(x) is R(g(x)): the fact that | f(x)| > C|g(x)| for dl x > k
for some positive constants C and k

f(x) is ©(g(x)): thefactthat £ (x)isboth O(g(x))and 2 (g(x))

time complexity: theamount of timerequired for an algorithm
to solve a problem

space complexity: the amount of space in computer memory
required for an algorithm to solve a problem

worst-case time complexity: the greatest amount of time re-
quired for an algorithm to solve a problem of agiven size

average-case time complexity: the average amount of time
required for an algorithm to solve a problem of agiven size

algorithmic paradigm: a general approach for constructing
agorithms based on a particular concept

brute force: the algorithmic paradigm based on constructing
agorithmsfor solving problemsin anaive manner from the
statement of the problem and definitions

Review Questions

greedy algorithm: an agorithm that makes the best choice at
each step according to some specified condition

tractable problem: aproblem for which thereis aworst-case
polynomial-time algorithm that solvesit

intractable problem: a problem for which no worst-case
polynomial-time algorithm exists for solving it

solvable problem: a problem that can be solved by an ago-
rithm

unsolvable problem: a problem that cannot be solved by an
agorithm

RESULTS

linear and binary search algorithms: (given in Section 3.1)

bubble sort: asorting that uses passes where successive items
areinterchanged if they in the wrong order

insertion sort: asorting that at the jth step inserts the jth el-
ement into the correct position in in the list, when the first
Jj — 1 elements of thelist are aready sorted

The linear search has O (n) worst case time complexity.

The binary search has O (logn) worst case time complexity.

The bubble and insertion sorts have O (n?) worst case time
complexity.

logn!is O(nlogn).

If f1(x)isO(g1(x)) and f2(x) iSO (g2(x)), then (f1 + f2)(x)
is O(max(g1(x), g2(x))) and (f1f2)(x) is O((g182(x)).

If ag, a1, ..., a, are rea numbers with a,, # O, then a,x" +
ap_1x" 1+ 4 a1x + agis®(x™), and hence O (n) and
Q(n).

1. a) Definetheterm algorithm.
b) What are the different ways to describe algorithms?

¢) What isthe difference between an a gorithm for solv-
ing aproblem and acomputer program that solvesthis
problem?

2. a) Describe, using English, an algorithm for finding the
largest integer in alist of n integers.
b) Express this algorithm in pseudocode.
¢) How many comparisons does the algorithm use?

3. a) State the definition of the fact that f(n) is O(g(n)),
where f(n) and g(n) are functions from the set of
positive integers to the set of real numbers.

b) Use the definition of the fact that f(n) is O(g(n))
directly to prove or disprove that n? + 187 + 107 is
0n3).

c) Use the definition of the fact that f(n) is
O(g(n)) directly to prove or disprove that n3 is
O (n? + 18n + 107).

4. List these functions so that each function is big-O of
the next function in the list: (logn)3, n2/1000000, /x,
100n + 101, 3", n!, 2"n2.

5. a) How canyou produce abig-O estimatefor afunction
that is the sum of different terms where each term is
the product of severa functions?

b) Give a big-O estimate for the function f(n) =
'+ D@ +1)+ @ 2+8" 30 +2"). For
thefunction g in your estimate f (x) is O(g(x)) usea
simple function of smallest possible order.

6. a) Definewhat the worst-case time complexity, average-
case time complexity, and best-case time complexity
(in terms of comparisons) mean for an agorithm that
finds the smallest integer in alist of n integers.

b) What are the worst-case, average-case, and best-case
time complexities, in terms of comparisons, of the al-
gorithm that finds the smallest integer in alist of n
integers by comparing each of the integers with the
smallest integer found so far?



7. a) Describethelinear search and binary search algorithm

for finding aninteger in alist of integersin increasing
order.
b) Compare the worst-case time complexities of these
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b) Usetheinsertion sort algorithm to sort thelist 2, 5, 1,
4,3.

c) Giveabig-0O estimatefor the number of comparisons
used by the insertion sort.

mum and the minimum of a sequence of n elements
by employing atemporary maximum and atemporary
minimum that is updated as each successive element
is examined.

b) Describe the algorithm from part (a) in pseudocode.

c) How many comparisons of elements in the sequence
are carried out by this agorithm? (Do not count com-
parisons used to determine whether the end of the se-
quence has been reached.)

two algorithms. 10. a) Explain the concept of agreedy algorithm.
c) Isoneof these algorithms alwgysfaster than the other b) Provide an example of a greedy algorithm that pro-
(measured in terms of comparisons)? ducesan optimal solution and explain why it produces
. a) Describe the bubble sort algorithm. an optimal solution.
b) Use the bubble sort algorithm to sort the list 5, 2, 4, ¢) Provide an example of a greedy algorithm that does
1,3 not always produce an optimal solution and explain
c) Giveabig-O estimatefor the number of comparisons why it failsto do so.
used by the bubble sort. 11. Define what it means for a problem to be tractable and
9. a) Describe theinsertion sort algorithm. what it means for a problem to be solvable.
Supplementary Exercises
1. a) Describeanagorithm for locating the last occurrence ¢) How many comparisons of elements of the sequence
of the largest number in alist of integers. are carried out by this algorithm? (Do not count com-
b) Estimate the number of comparisons used. parisons used to determine whether the end of the se-
. . o ' guence has been reached.) How does this compare to
- @) Describean 6"9°F'thm. for f|pd| ng thefirst and second the number of comparisons used by the algorithm in
largest elementsin alist of integers. Exercise 57
b) E_St' mate the n.umber of compansons used. o #7. Show that the worst-case complexity in terms of compar-
. @) Give an agorithm to determine whether a bit string isons of an agorithm that finds the maximum and mini-
contains a pair of consecutive zeros. mum of n elementsisat least [3n/2] — 2.
b) How many comparisons does the algorithm use? 8. Devise an efficient algorithm for finding the second
. a) Suppose that a list contains integers that are in order largest element in a sequence of n elements and deter-
of largest to smallest and an integer can appear repeat- mine the worst-case complexity of your algorithm.
edly in this list. Devise an agorithm that locates all 9. Devise an agorithm that finds all equal pairs of sums of
occurrences of an integer x in thelist. two terms of a sequence of n numbers, and determine the
b) Estimate the number of comparisons used. worst-case complexity of your algorithm.
. a) Adapt Algorithm 1 in Section 3.1 to find the maxi- 10. Devise an agorithm that finds the closest pair of integers

in aseguence of n integers, and determine the worst-case
complexity of your algorithm. [Hint: Sort the sequence.
Usethefact that sorting can be done with worst-casetime
complexity O(nlogn).]

The shaker sort (or bidirectional bubble sort) successively
compares pairs of adjacent elements, exchanging them if they
are out of order, and alternately passing through the list from
the beginning to the end and then from the end to the beginning
until no exchanges are needed.

. . . . 11. Show the steps used by the shaker sort to sort the list 3,
. a) Describein detail (and in English) the steps of an al- 5146 2

gorithm that finds the maximum and minimum of a e .
sequence of n elements by examining pairs of suc- 12. Expressthe shaker sort in pseudozcode. ]
cessive elements, keeping track of atemporary maxi- 13. Show that the shaker sort has O (n ) com_plexny measured
mum and atemporary minimum. If n is odd, both the in terms of the number of comparisonsiit uses.
temporary maximum and temporary minimum should 14. Explain why the shaker sort is efficient for sorting lists
initially equal the first term, and if » is even, the tem- that are already in close to the correct order.
porary minimum and temporary maximum should be 15. Show that (nlogn + n?)3is O (n®).
porery masimum i temporery minmm shoulgpe 16 Sow (0 8+ 12x + 100l0g 5 0%

i ; : 2 3 3
updated by comparing them with the maximum and 17. Giveabig-0 estimatefor (x i x.(llogx %) (274 X7,
minimum of the pair of elements being examined. 18. Find abig-O estimatefor > _; j(j + 1).

b) Express the algorithm described in part (a) in pseu- *19. Show that n!isnot 0(2").
docode. #20. Show that n” isnot O (n!).
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21.

22.

23.

24.
*25.

*26.

*27.

28.

29.

30.

Find all pairs of functions of the same order in this
list of functions: n2 + (logn)?2, n? + n, n? +log2" + 1,
(n+1)°% - — 123, and (n + logn)?.

Find all pairs of functions of the same order in thislist of
functionsn? + 2", n2 4 2100 p2 4 221 2 4 py p2 4 31,
and (n? + 1)2.

Find an integer n withn > 2 for which n2'* < 2/.

Find aninteger n withn > 2 for which (logn)?'* < /x.

Arrange the functions n”, (logn)?2, n%-0%% (1.0001)",

219927 and n(logn)1% in alist so that each function
is big-O of the next function. [Hint: To determine the
relative size of some of these functions, take logarithms.]

Arrange the function 2100n 2n%  on! 22" logn
nlognloglogn, n¥2, n(logn)¥2, and n*3(logn)? in a
list so that each function is big-O of the next function.
[Hint: To determine the relative size of some of these
functions, take logarithms.]

Give an example of two increasing functions f(n) and
g(n) from the set of positive integers to the set of posi-
tive integers such that neither f(n) is O(g(n)) nor g(n)
isO(f(n)).

1 k

Show that if thedenominationsof coinsarec®, ¢1, .. ., ct,
where k is a positive integer and ¢ is a positive integer,
¢ > 1, the greedy agorithm aways produces change us-
ing the fewest coins possible.

a) Usepseudocodeto specify abrute-forcealgorithm that
determines when given as input a sequence of n pos-
itive integers whether there are two distinct terms of
the sequence that have as sum athird term. The algo-
rithm should loop through all triples of terms of the
sequence, checking whether the sum of the first two
terms equals the third.

b) Giveabig-0O estimatefor the complexity of the brute-
force algorithm from part (a).

a) Deviseamoreefficient agorithm for solving the prob-
lem described in Exercise 29 that first sorts the in-
put sequence and then checks for each pair of terms
whether their difference isin the sequence.

b) Give a big-O estimate for the complexity of this al-
gorithm. Isit more efficient than the brute-force algo-
rithm from Exercise 297

Suppose we have s men and s women each with their prefer-
encelistsfor the members of the opposite gender, asdescribed
in the preamble to Exercise 60 in Section 3.1. We say that a
woman w isavalid partner for aman m if thereis some sta-
ble matching in which they are paired. Similarly, amanm isa
valid partner for awomanw if thereis some stable matching
inwhich they are paired. A matchingin which eachmanisas-
signed his valid partner ranking highest on his preference list
iscalled male optimal, and amatching in which each woman
isassigned her valid partner ranking lowest on her preference
list is called female pessimal.

31.

*32.

33.

#34.

Find al valid partners for each man and each woman if
there arethree men m1, m2, and m3 and threewomen wy,
W2, w3 with these preference rankings of the men for the
women, from highest to lowest: m1: w3, W1, Wo; m2: W3,
Wo, W1; m3: W2, W3, W1; and with these preference rank-
ings of the women for the men, from highest to lowest:
W1: m3, mp, m1, Wo: my1, m3, m2; W3: m3, mp, m1.
Show that the deferred acceptance algorithm given in the
preamble to Exercise 61 of Section 3.1, always produces
amale optimal and female pessimal matching.
Definewhat it means for amatching to be female optimal
and for amatching to be male pessimal.

Show that when woman do the proposing in the deferred
acceptance agorithm, the matching produced is female
optimal and male pessimal.

In Exercises 35 and 36 we consider variations on the problem
of finding stable matchings of men and women described in
the preamble to Exercise 61 in Section 3.1.

*35.

*36.

In this exercise we consider matching problems where
there may be different numbers of men and women, so
that it isimpossible to match everyone with a member of
the opposite gender.

a) Extend the definition of a stable matching from that
given in the preamble to Exercise 60 in Section 3.1
to cover the case where there are unequal numbers of
men and women. Avoid all cases where aman and a
woman would prefer each other to their current sit-
uation, including those involving unmatched people.
(Assume that an unmatched person prefers a match
with a member of the opposite gender to remaining
unmatched.)

b) Adapt the deferred acceptance algorithm to find sta-
ble matchings, using the definition of stablematchings
from part (a), when there are different numbers of men
and women.

c) Prove that all matchings produced by the algorithm
from part (b) are stable, according to the definition
from part (a).

In this exercise we consider matching problems where

some man-woman pairs are not alowed.

a) Extend the definition of a stable matching to cover
the situation where there are the same number of men
and women, but certain pairs of men and women are
forbidden. Avoid &l cases where a man and a woman
would prefer each other to their current situation, in-
cluding those involving unmatched people.

b) Adapt the deferred acceptance algorithm to find stable
matchings when there are the same number of men
and women, but certain man-woman pairs are forbid-
den. Be sureto consider people who are unmatched at
the end of the algorithm. (Assume that an unmatched
person prefers amatch with amember of the opposite
gender who is not a forbidden partner to remaining
unmatched.)

c) Prove that all matchings produced by the algorithm
from (b) are stable, according to the definition in part

(a).



Exercises37-40 deal with the problem of scheduling » jobson
asingle processor. To complete job j, the processor must run
job j for time ¢; without interruption. Each job has a dead-
lined;. If we start job ;j at time s;, it will be completed at
timee; = s; + ;. Thelateness of thejob measures how long
it finishes after its deadline, that is, the lateness of job j is
max(0, e; — d;). We wish to devise a greedy algorithm that
minimizes the maximum lateness of ajob among the n jobs.

37. Suppose we have five jobs with specified required times
and deadlines: 11 = 25, dy = 50; 12 = 15,d> = 60; 13 =
20,d3 = 60; 14 = 5,d4 = 55; t5 = 10, ds = 75. Find the
maximum lateness of any job when thejobsare scheduled
inthisorder (and they start at time 0): Job 3, Job 1, Job 4,
Job 2, Job 5. Answer the same question for the schedule
Job 5, Job 4, Job 3, Job 1, Job 2.

38. Theslackness of ajob requiring time and with deadline
d is d — t, the difference between its deadline and the
timeit requires. Find an example that showsthat schedul-
ing jobs by increasing slackness does not alwaysyield a
schedule with the smallest possible maximum |ateness.

39. Find an example that shows that scheduling jobs in or-
der of increasing time required does not always yield a
schedule with the smallest possible maximum |ateness.

*40. Provethat schedulingjobsinorder of increasing deadlines
always produces a schedul e that minimizes the maximum
lateness of ajob. [Hint: First show that for a schedule to
be optimal, jobs must be scheduled with no idle time be-
tween them and so that no job is scheduled before another
with an earlier deadline.]

41, Suppose that we have a knapsack with total capacity of
W kg. We aso have n items where item j has mass w;.
Theknapsack problem asksfor asubset of thesen items
with the largest possible total mass not exceeding W.

a) Devise a brute-force agorithm for solving the knap-
sack problem.

b) Solve the knapsack problem when the capacity of the
knapsack is 18 kg and there are five items. a 5-kg
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sleeping bag, an 8-kg tent, a 7-kg food pack, a 4-kg
container of water, and an 11-kg portable stove.

In Exercises 4246 we will study the problem of load balanc-
ing. The input to the problem is a collection of p processors
andn jobs, 7; isthetimerequiredtorunjob j, jobsrunwithout
interruption on a single machine until finished, and a proces-
sor can run only one job at atime. The load L of processor
k isthe sum over al jobs assigned to processor k of the times
required to run these jobs. The makespan is the maximum
load over al the p processors. The load balancing problem
asks for an assignment of jobs to processors to minimize the
makespan.

42. Suppose we have three processors and five jobs requiring
timest =3,0=5 =4, 1=7, and 15 = 8. Solve
the load balancing problem for this input by finding the
assignment of the five jobs to the three processors that
minimizes the makespan.

43. Suppose that L* is the minimum makespan when p pro-
cessors are given n jobs, where ¢; is the time required to
runjob ;.

a) Showthat L* > max;—12 . .t;.
b) Show that L* > &3 1;.

44, Write out in pseudocode the greedy algorithm that goes
through the jobs in order and assigns each job to the pro-
cessor withthe smallest |oad at that point inthe a gorithm.

45, Runthe agorithm from Exercise 44 on the input givenin
Exercise 42.

An approximation algorithm for an optimization problem
produces a solution guaranteed to be close to an optimal so-
lution. More precisely, suppose that the optimization problem
asks for an input S that minimizes F(X) where F is some
function of theinput X. If an agorithm always finds an input
T with F(T) < ¢F(S) wherec isafixed positiverea number,
the algorithm is called a c-approximation algorithm for the
problem.
*46. Prove that the agorithm from Exercise 44 is a 2-
approximation algorithm for the load balancing problem.
[Hint: Use both parts of Exercise 43.]

Write programs with these inputs and outputs.

1. Given alist of n integers, find the largest integer in the
list.

2. Givenalistof n integers, find thefirst and last occurrences
of the largest integer in thelist.

3. Given alist of n distinct integers, determine the position
of aninteger in the list using alinear search.

4. Given an ordered list of n distinct integers, determine the
position of an integer in the list using a binary search.

5. Given alist of n integers, sort them using a bubble sort.

6. Given a list of n integers, sort them using an insertion
sort.

7. Given an integer n, use the greedy algorithm to find the
change for n cents using quarters, dimes, nickels, and
pennies.

8. Given the starting and ending times of n taks, use the
appropriate greedy algorithm to schedule the most talks
possiblein asingle lecture hall.
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9.

Given an ordered list of n integers and aninteger x in the
list, find the number of comparisons used to determine
the position of x inthelist using alinear search and using
abinary search.

Computations and Explorations

10.

Given alist of integers, determine the number of compar-
isons used by the bubble sort and by the insertion sort to
sort thislist.

Use a computational program or programs you have written to do these exercises.

1.

We know that n? is O(d") when b and d are positive
numbers with d > 2. Give values of the constants C and
k such that n” < Cd" whenever x > k for each of these
setsof values: b = 10,d = 2; b = 20,d = 3; b = 1000,
d=T1.

. Compute the change for different values of n with coins

of different denominations using the greedy algorithm

Writing Projects

and determine whether the smallest number of coinswas
used. Canyou find conditions so that the greedy algorithm
is guaranteed to use the fewest coins possible?

. Using a generator of random orderings of the integers

1,2,...,n, find the number of comparisons used by
the bubble sort, insertion sort, binary insertion sort, and
selection sort to sort these integers.

Respond to these with essays using outside sources.

1.

2.

Examine the history of the word algorithm and describe
the use of thisword in early writings.

Look up Bachmann’s original introduction of big-O no-
tation. Explain how he and others have used this notation.

. Explain how sorting algorithms can be classified into a

taxonomy based on the underlying principle on which
they are based.

. Describe the radix sort algorithm.
. Describethehistorictrendsin how quickly processorscan

perform operations and use these trends to estimate how
quickly processors will be able to perform operations in
the next twenty years.

. Develop adetailed list of agorithmic paradigmsand pro-

vide examples using each of these paradigms.

7.

10.
11.

Explainwhat the Turing Award isand describethecriteria
used to select winners. List six past winners of the award
and why they received the award.

. Describe what is meant by a parallel algorithm. Explain

how the pseudocode used in this book can be extended to
handle parallel agorithms.

. Explain how the complexity of parallel algorithms can be

measured. Give some examplesto illustrate this concept,
showing how aparallel agorithm can work more quickly
than one that does not operate in parallel.

Describe six different NP-compl ete problems.

Demonstrate how one of the many different NP-complete
problems can be reduced to the satisfiability problem.
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Number Theory and Cryptography

T he part of mathematics devoted to the study of the set of integers and their properties is
known as number theory. In this chapter we will develop some of the important concepts
of number theory including many of those used in computer science. As we develop number
theory, we will use the proof methods developed in Chapter 1 to prove many theorems.

We will first introduce the notion of divisibility of integers, which we use to introduce
modular, or clock, arithmetic. Modular arithmetic operates with the remainders of integers
when they are divided by a fixed positive integer, called the modulus. We will prove many
important results about modular arithmetic which we will use extensively in this chapter.

Integers can be represented with any positive integer b greater than 1 as a base. In this
chapter we discuss base b representations of integers and give an algorithm for finding them.
In particular, we will discuss binary, octal, and hexadecimal (base 2, 8, and 16) representations.
We will describe algorithms for carrying out arithmetic using these representations and study
their complexity. These algorithms were the first procedures called algorithms.

We will discuss prime numbers, the positive integers that have only 1 and themselves
as positive divisors. We will prove that there are infinitely many primes; the proof we give is
considered to be one of the most beautiful proofs in mathematics. We will discuss the distribution
of primes and many famous open questions concerning primes. We will introduce the concept of
greatest common divisors and study the Euclidean algorithm for computing them. This algorithm
was first described thousands of years ago. We will introduce the fundamental theorem of
arithmetic, a key result which tells us that every positive integer has a unique factorization into
primes.

We will explain how to solve linear congruences, as well as systems of linear congruences,
which we solve using the famous Chinese remainder theorem. We will introduce the notion of
pseudoprimes, which are composite integers masquerading as primes, and show how this notion
can help us rapidly generate prime numbers.

This chapter introduces several important applications of number theory. In particular, we
will use number theory to generate pseudorandom numbers, to assign memory locations to
computer files, and to find check digits used to detect errors in various kinds of identification
numbers. We also introduce the subject of cryptography. Number theory plays an essentially
role both in classical cryptography, first used thousands of years ago, and modern cryptography,
which plays an essential role in electronic communication. We will show how the ideas we
develop can be used in cryptographical protocols, introducing protocols for sharing keys and for
sending signed messages. Number theory, once considered the purest of subjects, has become
an essential tool in providing computer and Internet security.

Divisibility and Modular Arithmetic

Introduction

The ideas that we will develop in this section are based on the notion of divisibility. Division of an
integer by a positive integer produces a quotient and a remainder. Working with these remainders
leads to modular arithmetic, which plays an important role in mathematics and which is used
throughout computer science. We will discuss some important applications of modular arithmetic

237
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DEFINITION 1

EXAMPLE 1

EXAMPLE 2

Extra g>
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THEOREM 1

later in this chapter, including generating pseudorandom numbers, assigning computer memory
locations to files, constructing check digits, and encrypting messages.

Division

When one integer is divided by a second nonzero integer, the quotient may or may not be
an integer. For example, 12/3 = 4 is an integer, whereas 11/4 = 2.75 is not. This leads to
Definition 1.

If a and b are integers with a # 0, we say that a divides b if there is an integer ¢ such that
b = ac, or equivalently, if g is an integer. When a divides b we say that a is a factor or divisor
of b, and that b is a multiple of . The notation a | b denotes that a divides b. We write a f b
when a does not divide b.

Remark: We can express a | b using quantifiers as Ic(ac = b), where the universe of discourse
is the set of integers.

In Figure 1 a number line indicates which integers are divisible by the positive integer d.
Determine whether 3 | 7 and whether 3 | 12.

Solution: We see that 3 } 7, because 7/3 is not an integer. On the other hand, 3 | 12 because
12/3 = 4. |

Letn and d be positive integers. How many positive integers not exceeding n are divisible by d?

Solution: The positive integers divisible by d are all the integers of the form dk, where k is
a positive integer. Hence, the number of positive integers divisible by 4 that do not exceed n
equals the number of integers k with 0 < dk < n, or with 0 < k < n/d. Therefore, there are
Ln/d] positive integers not exceeding » that are divisible by d. |

Some of the basic properties of divisibility of integers are given in Theorem 1.

Let a, b, and ¢ be integers, where a # 0. Then

(i) ifa|banda | c, thena | (b+c);
(ii) ifa | b, then a | bce for all integers c;
(iii) ifa |band b | ¢, thena | c.

Proof: We will give a direct proof of (i). Suppose thata | b and a | ¢. Then, from the definition
of divisibility, it follows that there are integers s and ¢ with b = as and ¢ = ar. Hence,

b+c=as+at=a(s+1).

FIGURE 1 Integers Divisible by the Positive Integer d.
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Therefore, a divides b + c. This establishes part (i) of the theorem. The proofs of parts (ii) and
(iii) are left as Exercises 3 and 4. <

Theorem 1 has this useful consequence.

If a, b, and c are integers, where a # 0, suchthata | band a | ¢, thena | mb + nc whenever
m and n are integers.

Proof: We will give a direct proof. By part (ii) of Theorem 1 we see that a | mb and a | nc
whenever m and n are integers. By part (i) of Theorem 1 it follows that a | mb + nc. <

The Division Algorithm

When an integer is divided by a positive integer, there is a quotient and a remainder, as the
division algorithm shows.

THE DIVISION ALGORITHM  Let a be an integer and d a positive integer. Then there
are unique integers g and r, with 0 < r < d, such thata = dq + r.

We defer the proof of the division algorithm to Section 5.2. (See Example 5 and
Exercise 37.)

Remark: Theorem 2 is not really an algorithm. (Why not?) Nevertheless, we use its traditional
name.

In the equality given in the division algorithm, d is called the divisor, a is called the dividend,
q is called the quotient, and r is called the remainder. This notation is used to express the
quotient and remainder:
g=adivd, r=amodd.
Remark: Note that both a div d and @ mod d for a fixed d are functions on the set of inte-
gers. Furthermore, when a is an integer and d is a positive integer, we have a div d = |a/d |
and a mod d =a — d. (See exercise 18.)
Examples 3 and 4 illustrate the division algorithm.

What are the quotient and remainder when 101 is divided by 11?

Solution: We have
101 =11-9+ 2.

Hence, the quotient when 101 is divided by 11 is 9 = 101 div 11, and the remainder is
2 =101 mod 11. <
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What are the quotient and remainder when —11 is divided by 3?

Solution: We have
—-11=3(—-4) + 1.

Hence, the quotient when —11 is divided by 3 is —4 = —11 div 3, and the remainder is
1=-11mod 3.

Note that the remainder cannot be negative. Consequently, the remainder is not —2, even
though

—11 =3(-3) — 2,
because r = —2 does not satisfy 0 < r < 3. <

Note that the integer a is divisible by the integer d if and only if the remainder is zero
when a is divided by d.

Remark: A programming language may have one, or possibly two, operators for modular arith-
metic, denoted by mod (in BASIC, Maple, Mathematica, EXCEL, and SQL), % (in C, C++, Java,
and Python), rem (in Ada and Lisp), or something else. Be careful when using them, because
for a < 0, some of these operators return a — m[a/m] instead of a modm = a — m|a/m] (as
shown in Exercise 18). Also, unlike @ mod m, some of these operators are defined when m < 0,
and even when m = 0.

Modular Arithmetic

In some situations we care only about the remainder of an integer when it is divided by some
specified positive integer. For instance, when we ask what time it will be (on a 24-hour clock) 50
hours from now, we care only about the remainder when 50 plus the current hour is divided by 24.
Because we are often interested only in remainders, we have special notations for them. We have
already introduced the notation a mod m to represent the remainder when an integer « is divided
by the positive integer m. We now introduce a different, but related, notation that indicates that
two integers have the same remainder when they are divided by the positive integer m.

If a and b are integers and m is a positive integer, then a is congruent to b modulo m if
m divides a — b. We use the notation « = b (mod m) to indicate that a is congruent to
b modulo m. We say that « = b (mod m) is a congruence and that m is its modulus (plural
moduli). If a and b are not congruent modulo m, we write a # b (mod m).

Although both notations a = » (mod m) and a mod m = b include “mod,” they represent
fundamentally different concepts. The first represents a relation on the set of integers, whereas
the second represents a function. However, the relation a = » (mod m) and the mod m function
are closely related, as described in Theorem 3.



THEOREM 3

EXAMPLE 5

THEOREM 4

Links

4.1 Divisibility and Modular Arithmetic 241

Let a and b be integers, and let m be a positive integer. Then a = b (mod m) if and only
if a mod m = b mod m.

The proof of Theorem 3 is left as Exercises 15 and 16. Recall that « mod m and b mod m are
the remainders when a and b are divided by m, respectively. Consequently, Theorem 3 also says
that a = b (mod m) if and only if a and b have the same remainder when divided by m.

Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are congruent modulo 6.

Solution: Because 6 divides 17 —5 = 12, we see that 17 =5 (mod 6). However, because
24 — 14 = 10 is not divisible by 6, we see that 24 £ 14 (mod 6). <

The great German mathematician Karl Friedrich Gauss developed the concept of congru-
ences at the end of the eighteenth century. The notion of congruences has played an important
role in the development of number theory.

Theorem 4 provides a useful way to work with congruences.

Let m be a positive integer. The integers a and b are congruent modulo m if and only if there
is an integer k such that a = b + km.

Proof: If a =b (mod m), by the definition of congruence (Definition 3), we know that
m | (a — b). This means that there is an integer k such that « — b = km, so that a = b + km.
Conversely, if there is an integer k such that a = b + km, then km = a — b. Hence, m divides
a — b, sothata = b (mod m). <

The set of all integers congruent to an integer a modulo m is called the congruence class
of @ modulo m. In Chapter 9 we will show that there are m pairwise disjoint equivalence classes
modulo m and that the union of these equivalence classes is the set of integers.

Theorem 5 shows that additions and multiplications preserve congruences.

KARL FRIEDRICH GAUSS (1777-1855) Karl Friedrich Gauss, the son of a bricklayer, was a child prodigy.
He demonstrated his potential at the age of 10, when he quickly solved a problem assigned by a teacher to keep
the class busy. The teacher asked the students to find the sum of the first 100 positive integers. Gauss realized
that this sum could be found by forming 50 pairs, each with the sum 101: 1 4 100,24+ 99, ..., 50 + 51.
This brilliance attracted the sponsorship of patrons, including Duke Ferdinand of Brunswick, who made it
possible for Gauss to attend Caroline College and the University of Gottingen. While a student, he invented
the method of least squares, which is used to estimate the most likely value of a variable from experimental
results. In 1796 Gauss made a fundamental discovery in geometry, advancing a subject that had not advanced
since ancient times. He showed that a 17-sided regular polygon could be drawn using just a ruler and compass.

In 1799 Gauss presented the first rigorous proof of the fundamental theorem of algebra, which states that a polynomial of
degree n has exactly n roots (counting multiplicities). Gauss achieved worldwide fame when he successfully calculated the orbit of
the first asteroid discovered, Ceres, using scanty data.

Gauss was called the Prince of Mathematics by his contemporary mathematicians. Although Gauss is noted for his many
discoveries in geometry, algebra, analysis, astronomy, and physics, he had a special interest in number theory, which can be seen
from his statement “Mathematics is the queen of the sciences, and the theory of numbers is the queen of mathematics.” Gauss laid
the foundations for modern number theory with the publication of his book Disquisitiones Arithmeticae in 1801.
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Let m be a positive integer. If a = b (mod m) and ¢ = d (mod m), then

a+c=b+d (modm) and ac = bd (mod m).

Proof: We use a direct proof. Because a = b (mod m) and ¢ = d (mod m), by Theorem 4 there
are integers s and r with b = a + sm and d = ¢ + tm. Hence,

b+d=(@+sm)+ (c+tm)=(@+c)+m(s+1t)
and

bd = (a + sm)(c +tm) = ac + m(at + cs + stm).
Hence,

a+c=b+d (modm) and ac = bd (mod m). 4

Because 7 = 2 (mod 5) and 11 = 1 (mod 5), it follows from Theorem 5 that
18=7+11=2+1=3(modb)

and that
77=7-11=2-1=2 (mod 5). <

We must be careful working with congruences. Some properties we may expect to be true
are not valid. For example, if ac = bc (mod m), the congruence a = b (mod m) may be false.
Similarly, if a = b (mod m) and ¢ = d (mod m), the congruence a¢ = b? (mod m) may be
false. (See Exercise 37.)

Corollary 2 shows how to find the values of the mod m function at the sum and product of
two integers using the values of this function at each of these integers. We will use this result in
Section 5.4.

Let m be a positive integer and let a and b be integers. Then
(a + b) mod m = ((a mod m) + (b mod m)) mod m
and

abmodm = ((a mod m)(b modm)) mod m.

Proof: By the definitions of modm and of congruence modulo m, we know that a =
(a modm) (modm) and b = (b modm) (modm). Hence, Theorem 5 tells us that

a+ b= (amodm)+ (bmodm) (modm)
and
ab = (amod m)(bmodm) (modm).

The equalities in this corollary follow from these last two congruences by Theorem 3. <
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Arithmetic Modulo m

We can define arithmetic operations on Z,,, the set of nonnegative integers less than m, that is,
the set {0, 1, ..., m — 1}. In particular, we define addition of these integers, denoted by +,, by

a-+m, b= (a+b)modm,

where the addition on the right-hand side of this equation is the ordinary addition of integers,
and we define multiplication of these integers, denoted by -, by

a-mb=(a-b)ymodm,

where the multiplication on the right-hand side of this equation is the ordinary multiplication of
integers. The operations +,, and -, are called addition and multiplication modulo m and when
we use these operations, we are said to be doing arithmetic modulo m.

Use the definition of addition and multiplication in Z,,, to find 7 +1; 9and 7 -11 9.
Solution: Using the definition of addition modulo 11, we find that
74+119=(7+9 mod1l =16 mod 11 =5,
and
7119=(7-9mod 11 =63 mod 11 = 8.
Hence 7 +119=5and 7 .11 9 = 8. |
The operations +,, and -, satisfy many of the same properties of ordinary addition and
multiplication of integers. In particular, they satisfy these properties:

Closure If a and b belong to Z,,, then a +,, b and a -,,, b belong to Z,,,.

Associativity If a, b, and ¢ belong to Z,, then (a +,, b) +mc=a+, (b+, c) and
@ mb)y me=a-p (b-yo).

Commutativity If « and b belong to Z,,,, thena +,, b =b +,,aanda -, b = b -, a.

Identity elements The elements 0 and 1 are identity elements for addition and multiplication
modulo m, respectively. That is, if a belongs to Z,,, thena +,,0=04+,,a =aanda -, 1 =
l.,,a=a.

Additive inverses If a # 0 belongs to Z,,,, then m — a is an additive inverse of « modulo m and
0 is its own additive inverse. Thatisa +,, (im —a) =0and0+,, 0 = 0.

Distributivity If a, b, and ¢ belong to Z,,, then a -,, (b 4+, ¢) = (a -1y b) +, (a -1 ¢) and
(a+nm b) m €= (a ) +m (b “m C).

These properties follow from the properties we have developed for congruences and remainders
modulo m, together with the properties of integers; we leave their proofs as Exercises 42—44.
Note that we have listed the property that every element of Z,, has an additive inverse, but no
analogous property for multiplicative inverses has been included. This is because multiplicative
inverses do not always exists modulo m. For instance, there is no multiplicative inverse of 2
modulo 6, as the reader can verify. We will return to the question of when an integer has a
multiplicative inverse modulo m later in this chapter.
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Remark: Because Z,, with the operations of addition and multiplication modulo m satisfies
the properties listed, Z,, with modular addition is said to be a commutative group and Z,,
with both of these operations is said to be a commutative ring. Note that the set of integers
with ordinary addition and multiplication also forms a commutative ring. Groups and rings are
studied in courses that cover abstract algebra.

Remark: In Exercise 30, and in later sections, we will use the notations + and - for +,, and -,
without the subscript m on the symbol for the operator whenever we work with Z,,.

Exercises
1. Does 17 divide each of these numbers? 13. Suppose that a and b are integers, a = 4 (mod 13), and
a) 68 b) 84 c) 357 d) 1001 b = 9 (mod 13). Find the integer c with0 < ¢ < 12 such
2. Prove that if a is an integer other than 0, then that
a) 1dividesa.  b) a divides 0. a) ¢ = 9a (mod13).
3. Prove that part (ii) of Theorem 1 is true. E)) E i ilf g)rr;%dO%jSI)é)
4. Prove that part (iii ) of Theorem 1 is true. d) ¢ = 2a + 3b (Mod 13).
5. Show that if « | b and b | a, where a and b are integers, e) ¢ = a? + b? (mod 13).
thena =bora = —b. f) ¢ = a® — b® (mod 13).
6. Showthatifa, b, c, and d are integers, where a # 0, such 14. Suppose that a and b are integers, « = 11 (mod 19), and
thata | cand b | d, thenab | cd. b = 3 (mod 19). Find the integer c with0 < ¢ < 18 such
7. Show that if a, b, and ¢ are integers, where a # 0 and that
¢ # 0, suchthat ac | bc, thena | b. a) ¢ = 13a (mod19).
8. Prove or disprove that if a | bc, where a, b, and ¢ are pos- b) ¢ = 8b (mod 19).
itive integersand a # 0, thena |bora]c. 3) c f ? - bsflrjnod 1(&19)1.9
9. What are the quotient and remainder when e)) E _ 232++ 3b(2m(cr)nod 39)
a) 19 is divided by 7? £) ¢ = a3+ 4b° (mod 19).'
b) —111is divided by 117 15. Let m be a positive integer. Show that a = b (mod m) if
c) 789 is divided by 237 amod m = b mod m.
d) 1901 ,'S,d'V'ded by 13? 16. Let m be a positive integer. Show that ¢« mod m =
e) Oisdivided by 197 bmod m if a = b (mod m).
o 5
f) 3 |s.d|v!dfed by 5 17. Show that if n and k are positive integers, then [n/k] =
g) —1isdivided by 3? L —1)/k] +1
h) 4 is divided by 1? L . . .
. . 18. Show that if a is an integer and 4 is an inte-
10. What are t_hef quotient and remainder when ger greater than 1, then the quotient and remain-
a) 44 is divided by 8? der obtained when « is divided by d are |a/d]| and
b) 777 is divided by 21? a —dla/d], respectively.
¢) —123isdivided by 197 19. Find a formula for the integer with smallest absolute value
d) —1isdivided by 23? that is congruent to an integer ¢ modulo m, where m is a
e) —2002 is divided by 87? positive integer.
f) Oisdivided by 17? 20. Evaluate these quantities.
g) 1,234,567 is divided by 1001? a) —17 mod 2 b) 144 mod 7
h) —100 is divided by 101? ¢) —101 mod 13 d) 199 mod 19
11. What time does a 12-hour clock read 21. Evaluate these quantities.
a) 80 hours after it reads 11:00? a) 13 mod 3 b) —97 mod 11
b) 40 hours before it reads 12:00? ¢) 155 mod 19 d) —221 mod 23
c) 100 hours after it reads 6:00? 22 Find a div m and @ mod m when

12.

What time does a 24-hour clock read
a) 100 hours after it reads 2:00?

b) 45 hours before it reads 12:00?
¢) 168 hours after it reads 19:00?

a) a=-111,m = 99.

b) a = —9999, m = 101.
€) a = 10299, m = 999.
d) a = 123456, m = 1001.



23.

24.
25.

26.
27.

28.
29.

30.
3L

32.

33.
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Find a divm and @ mod m when

a) a =228, m=119.

b) a = 9009, m = 223.

€) a =-10101, m = 333.

d) a = —765432, m = 38271.

Find the integer a such that

a) a =43 (mod23)and —22 <a < 0.
b) a =17(mod29) and —14 < a < 14.
€) a =—-11(mod21)and 90 < a < 110.
Find the integer a such that

a) a =—-15(mod27) and —26 <a < 0.
b) a =24 (mod31)and —15 < a < 15.
€) a =99 (mod41) and 100 < a < 140.
List five integers that are congruent to 4 modulo 12.

Listall integers between —100 and 100 that are congruent
to —1 modulo 25.

Decide whether each of these integers is congruent to
3 modulo 7.

a) 37 b) 66

c) —17 d) —67

Decide whether each of these integers is congruent to
5 modulo 17.

a) 80

c) —29

Find each of these values.
a) (177mod 31 + 270 mod 31) mod 31
b) (177 mod 31 - 270 mod 31) mod 31
Find each of these values.

a) (—133mod 23 + 261 mod 23) mod 23
b) (457 mod 23 - 182 mod 23) mod 23
Find each of these values.

a) (192mod41) mod 9

b) (328 mod 13)2 mod 11

¢) (7% mod23)2 mod 31

d) (212 mod 15)% mod 22

Find each of these values.

a) (992 mod 32)2 mod 15

b) (3* mod 17)2 mod 11

¢) (19% mod 23)2 mod 31

d) (892 mod 79)* mod 26

b) 103
d) —122

34.

35.

5 36.

37.

38.
39.

40.

41.

42.

43.

44,

45,

46.

47.
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Show that if @ = b (mod m) and ¢ = d (mod m), where
a, b, ¢, d, and m are integers with m > 2,thena — ¢ =
b — d (mod m).

Show that if n | m, where n and m are integers greater

than 1, and if « = b (mod m), where a and b are integers,

then a = b (mod n).

Show that if a, b, ¢, and m are integers such that m > 2,

¢ > 0,and a = b (mod m), then ac = bc (mod mc).

Find counterexamples to each of these statements about

congruences.

a) Ifac = bc (mod m), where a, b, ¢, and m are integers
withm > 2, thena = b (mod m).

b) If a=b (mod m) and ¢ =d (mod m), where
a, b, ¢, d, and m are integers with ¢ and d positive
and m > 2, then a¢ = b4 (mod m).

Show that if n is an integer then n2 = 0 or 1 (mod 4).

Use Exercise 38 to show that if m is a positive integer of

the form 4k + 3 for some nonnegative integer k, then m

is not the sum of the squares of two integers.

Prove that if n is an odd positive integer, then n? =

1 (mod 8).

Show that if a, b, k, and m are integers such that k > 1,

m > 2, and a = b (mod m), then a* = b¥(mod m).

Show that Z,, with addition modulo m:, where m > 2 is

an integer, satisfies the closure, associative, and commu-

tative properties, O is an additive identity, and for every

nonzero a € Z,,, m — a is an inverse of « modulo m.

Show that Z,, with multiplication modulo m, where

m > 2 is an integer, satisfies the closure, associative, and

commutativity properties, and 1 is a multiplicative iden-

tity.

Show that the distributive property of multiplication over

addition holds for Z,,,, where m > 2 is an integer.

Write out the addition and multiplication tables for Zg

(where by addition and multiplication we mean +s5

and -s).

Write out the addition and multiplication tables for Zg

(where by addition and multiplication we mean +¢

and -g).

Determine whether each of the functions f(a) = a divd

and g(a) = a mod d, where d is a fixed positive integer,

from the set of integers to the set of integers, is one-to-one,
and determine whether each of these functions is onto.

Integer Representations and Algorithms

Introduction

Integers can be expressed using any integer greater than one as a base, as we will show in
this section. Although we commonly use decimal (base 10), representations, binary (base 2),
octal (base 8), and hexadecimal (base 16) representations are often used, especially in computer
science. Given a base b and an integer n, we will show how to construct the base & representation
of this integer. We will also explain how to quickly covert between binary and octal and between

binary and hexadecimal notations.
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THEOREM 1

EXAMPLE 1

As mentioned in Section 3.1, the term algorithm originally referred to procedures for per-
forming arithmetic operations using the decimal representations of integers. These algorithms,
adapted for use with binary representations, are the basis for computer arithmetic. They provide
good illustrations of the concept of an algorithm and the complexity of algorithms. For these
reasons, they will be discussed in this section.

We will also introduce an algorithm for finding « div d and ¢ mod d where a and d are
integers with d > 1. Finally, we will describe an efficient algorithm for modular exponentiation,
which is a particularly important algorithm for cryptography, as we will see in Section 4.6.

Representations of Integers

In everyday life we use decimal notation to express integers. For example, 965 is used to denote
9.10% + 6 - 10 + 5. However, it is often convenient to use bases other than 10. In particular,
computers usually use binary notation (with 2 as the base) when carrying out arithmetic, and
octal (base 8) or hexadecimal (base 16) notation when expressing characters, such as letters or
digits. In fact, we can use any integer greater than 1 as the base when expressing integers. This
is stated in Theorem 1.

Let b be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely
in the form

n=apb* + ar_1b* 1+ -+ a1b + ao,

where k is a nonnegative integer, ag, a1, ..., a; are nonnegative integers less than b, and
ap % 0.

A proof of this theorem can be constructed using mathematical induction, a proof method that
is discussed in Section 5.1. It can also be found in [R010]. The representation of n given in
Theorem 1 is called the base b expansion of n. The base b expansion of n is denoted by
(akax—1 . . . a1ag)p. For instance, (245)g represents 2 - 82 + 4 - 8 + 5 = 165. Typically, the sub-
script 10 is omitted for base 10 expansions of integers because base 10, or decimal expansions,
are commonly used to represent integers.

BINARY EXPANSIONS Choosing 2 as the base gives binary expansions of integers. In
binary notation each digit is either a 0 or a 1. In other words, the binary expansion of an
integer is just a bit string. Binary expansions (and related expansions that are variants of binary
expansions) are used by computers to represent and do arithmetic with integers.

What is the decimal expansion of the integer that has (1 0101 1111), as its binary expansion?

Solution: We have

(10101 1111)p =1-28 + 0.2"+1.28+ 0.25+1.24
+1-2241.2241.2141.20=351. <

OCTAL AND HEXADECIMAL EXPANSIONS Among the most important bases in com-
puter science are base 2, base 8, and base 16. Base 8 expansions are called octal expansions and
base 16 expansions are hexadecimal expansions.
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EXAMPLE 2 What is the decimal expansion of the number with octal expansion (7016)g?
Solution: Using the definition of a base » expansion with b = 8 tells us that
(7016)g =7-8%+0-82+1-8+4 6 = 3598. |
Sixteen different digits are required for hexadecimal expansions. Usually, the hexadecimal
digitsused are 0, 1, 2, 3,4, 5,6, 7, 8,9, A, B, C, D, E, and F, where the letters A through F
represent the digits corresponding to the numbers 10 through 15 (in decimal notation).

EXAMPLE 3 What is the decimal expansion of the number with hexadecimal expansion (2AEOB)4?
Solution: Using the definition of a base b expansion with b = 16 tells us that
(2AEOB)jg = 2-16% + 10-16% + 14 -16% + 0-16 + 11 = 175627. <

Each hexadecimal digit can be represented using four bits. For instance, we see that
(1110 0101)2 = (ED)16 because (1110)2 = (E)16 and (0101)> = (5)16. Bytes, which are bit
strings of length eight, can be represented by two hexadecimal digits.

BASE CONVERSION We will now describe an algorithm for constructing the base b expan-
sion of an integer n. First, divide n by b to obtain a quotient and remainder, that is,

n = bqo + ao, 0<ag<b.

The remainder, ag, is the rightmost digit in the base » expansion of n. Next, divide gg by b to
obtain

qo0 = bq1 + az, 0<aj <b.

We see that a4 is the second digit from the right in the base » expansion of n. Continue this
process, successively dividing the quotients by b, obtaining additional base b digits as the
remainders. This process terminates when we obtain a quotient equal to zero. It produces the
base b digits of n from the right to the left.

EXAMPLE 4 Find the octal expansion of (12345) .

Solution: First, divide 12345 by 8 to obtain

Extra
Examples s

12345 = 8- 1543 + 1.
Successively dividing quotients by 8 gives

1543 =8-192+7,

192 =8.24+0,
24=8-3+0,
3=8-0+3.

The successive remainders that we have found, 1, 7, 0, 0, and 3, are the digits from the right to
the left of 12345 in base 8. Hence,

(12345)19 = (30071)g. <
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EXAMPLE 5 Find the hexadecimal expansion of (177130)1o.

Solution: First divide 177130 by 16 to obtain
177130 = 16 - 11070 + 10.
Successively dividing quotients by 16 gives
11070 = 16 - 691 + 14,
691 =16-43+3,
43 =16 -2+ 11,

2=16-0+2.

The successive remainders that we have found, 10, 14, 3, 11, 2, give us the digits from the right
to the left of 177130 in the hexadecimal (base 16) expansion of (177130)19. It follows that

(177130)10 = (2B3EA) 6.
(Recall that the integers 10, 11, and 14 correspond to the hexadecimal digits A, B, and E,

respectively.) <

EXAMPLE 6 Find the binary expansion of (241)1p.

Solution: First divide 241 by 2 to obtain
241 =2-120+ 1.

Successively dividing quotients by 2 gives

120 =2-6040,
60=2-30+0,
30=2-1540,
15=2.-7+1,
7=2-3+4+1,
3=2-1+1,
1=2.04+1

The successive remainders that we have found, 1, 0,0, 0, 1, 1, 1, 1, are the digits from the right
to the left in the binary (base 2) expansion of (241)10. Hence,

(241)10 = (1111 0001),. <

The pseudocode given in Algorithm 1 finds the base b expansion (ax—1 .. .a1ap)p Of the
integer n.
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TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.

Decimal 01| 2| 3| 4 5 6 7 8 9 10 11 12 13 14 15
Hexadecimal | 0 | 1 | 2 3 4 5 6 7 8 9 A B C D E F
Octal 01| 2| 3| 4 5 6 7 10 11 12 13 14 15 16 17
Binary 0f21f20 11| 100 | 201 | 110 | 111 | 12000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
ALGORITHM 1 Constructing Base b Expansions.
procedure base b expansion(n, b: positive integers with b > 1)
qg:=n
k=0
while g # 0
ax :=q mod b
q:=qdivb
k=k+1
return (agx_1, ..., a1, ag) {(ar—1...a1ap)p is the base b expansion of n}
In Algorithm 1, g represents the quotient obtained by successive divisions by b, starting with
g = n. The digits in the base b expansion are the remainders of these divisions and are given by
g mod b. The algorithm terminates when a quotient ¢ = 0 is reached.
Remark: Note that Algorithm 1 can be thought of as a greedy algorithm, as the base b digits
are taken as large as possible in each step.
CONVERSION BETWEEN BINARY, OCTAL, AND HEXADECIMAL EXPANSIONS
Conversion between binary and octal and between binary and hexadecimal expansions is ex-
tremely easy because each octal digit corresponds to a block of three binary digits and each
hexadecimal digit corresponds to a block of four binary digits, with these correspondences
shown in Table 1 without initial Os shown. (We leave it as Exercises 13-16 to show that this is
the case.) This conversion is illustrated in Example 7.
EXAMPLE 7 Find the octal and hexadecimal expansions of (11 1110 1011 1100), and the binary expansions

of (765)g and (A8D)1s.

Solution: To convert (11 1110 1011 1100), into octal notation we group the binary dig-
its into blocks of three, adding initial zeros at the start of the leftmost block if necessary.
These blocks, from left to right, are 011, 111, 010, 111, and 100, corresponding to 3, 7, 2, 7,
and 4, respectively. Consequently, (111110 1011 1100), = (37274)g. To convert (11 1110 1011
1100), into hexadecimal notation we group the binary digits into blocks of four, adding initial
zeros at the start of the leftmost block if necessary. These blocks, from left to right, are 0011,
1110, 1011, and 1100, corresponding to the hexadecimal digits 3, E, B, and C, respectively.
Consequently, (11 1110 1011 1100)2 = (3EBC)1s.

To convert (765)g into binary notation, we replace each octal digit by a block of three binary
digits. These blocks are 111, 110, and 101. Hence, (765)g = (1 1111 0101),. To convert (A8D)15
into binary notation, we replace each hexadecimal digit by a block of four binary digits. These
blocks are 1010, 1000, and 1101. Hence, (A8D)1s = (1010 1000 1101),.
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EXAMPLE 8

Algorithms for Integer Operations

The algorithms for performing operations with integers using their binary expansions are ex-
tremely important in computer arithmetic. We will describe algorithms for the addition and the
multiplication of two integers expressed in binary notation. We will also analyze the compu-
tational complexity of these algorithms, in terms of the actual number of bit operations used.
Throughout this discussion, suppose that the binary expansions of a and b are

a = (ap—1ap—2 ...a1a0)2, b = (by_1by_2 ...b1bo)2,

so that a and b each have n bits (putting bits equal to 0 at the beginning of one of these expansions
if necessary).

We will measure the complexity of algorithms for integer arithmetic in terms of the number
of bits in these numbers.

ADDITION ALGORITHM  Consider the problem of adding two integers in binary notation.
A procedure to perform addition can be based on the usual method for adding numbers with
pencil and paper. This method proceeds by adding pairs of binary digits together with carries,
when they occur, to compute the sum of two integers. This procedure will now be specified
in detail.

To add @ and b, first add their rightmost bits. This gives

ag + bg = co - 2 + s0,

where s is the rightmost bit in the binary expansion of a 4+ b and cq is the carry, which is either
0 or 1. Then add the next pair of bits and the carry,

a1 +b1+co=c1-2+ 51,

where s1 is the next bit (from the right) in the binary expansion of a + b, and ¢; is the carry.
Continue this process, adding the corresponding bits in the two binary expansions and the carry,
to determine the next bit from the right in the binary expansion of a + b. At the last stage, add
an—1,b,—1, and c¢,_» to obtain ¢,,_1 - 2 + s,_1. The leading bit of the sum is s,, = ¢,,—1. This
procedure produces the binary expansion of the sum, namely, a + b = (s;5,—-15,-2 . ..5150)2.

Add @ = (1110), and b = (1011),.

Solution: Following the procedure specified in the algorithm, first note that
ay+bp=0+1=0-2+1,

so that cp = 0 and sg = 1. Then, because
ai+b1+co=1+14+0=1-2+0,

it follows that ¢; = 1 and s; = 0. Continuing,

a+by+c1=1+0+1=1-240,



111
1110
+1011

11001
FIGURE 1

Adding (1110);
and (1011),.
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so that ¢ = 1 and s = 0. Finally, because
az+b3+cp=1+14+1=1.241,

followsthatc3 = 1and sz = 1. Thismeansthats4 = c3 = 1. Therefore,s = a + b = (11001),.
This addition is displayed in Figure 1, where carries are shown in blue. <

The algorithm for addition can be described using pseudocode as follows.

ALGORITHM 2 Addition of Integers.

procedure add(a, b: positive integers)
{the binary expansions of a and b are (a,—1a,—2 . ..a1ap)?2
and (by—1b,—2 .. .b1bo)2, respectively}
c:=0
forj:=0ton—1
d:=|(aj+bj+c)/2]
sjii=aj+bj+c—2d
c:=d
Spi=¢C
return (so, s1, ..., s,) {the binary expansion of the sum is (s, s,—1...50)2}

Next, the number of additions of bits used by Algorithm 2 will be analyzed.

EXAMPLE 9 How many additions of bits are required to use Algorithm 2 to add two integers with » bits (or

less) in their binary representations?

Solution: Two integers are added by successively adding pairs of bits and, when it occurs, a carry.
Adding each pair of bits and the carry requires two additions of bits. Thus, the total number of
additions of bits used is less than twice the number of bits in the expansion. Hence, the number
of additions of bits used by Algorithm 2 to add two n-bit integers is O (n). <

MULTIPLICATION ALGORITHM  Next, consider the multiplication of two r-bit integers a
and b. The conventional algorithm (used when multiplying with pencil and paper) works as
follows. Using the distributive law, we see that

ab = a(bg2® + b2t + -+ b,_12" 1)
= a(bo2%) + a(®12) + -+ a(b,_12"1).

We can compute ab using this equation. We first note that ab; = a if b; = 1 and ab; = 0 if

b; = 0. Each time we multiply a term by 2, we shift its binary expansion one place to the left

and add a zero at the tail end of the expansion. Consequently, we can obtain (ab,)2/ by shifting

the binary expansion of ab; j places to the left, adding j zero bits at the tail end of this binary

expansion. Finally, we obtain ab by adding the n integers ab;2/, j = 0,1,2,...,n — 1.
Algorithm 3 displays this procedure for multiplication.
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EXAMPLE 10

110
x101
110
000
110

11110
FIGURE 2

Multiplying
(110)2 and (101),.

EXAMPLE 11

ALGORITHM 3 Multiplication of Integers.

procedure multiply(a, b: positive integers)
{the binary expansions of a and b are (a,—1a,—2 . ..a1ao)2
and (b, _1b,_2 ...b1bg)2, respectively}
for j:=0ton—1
if b; = 1then c; := a shifted j places

elsec; :=0
{co, c1, ..., cy—1 are the partial products}
p:=0
for j:=0ton—1

pi=p+tcj

return p {p is the value of ab}

Example 10 illustrates the use of this algorithm.
Find the product of ¢ = (110)2 and b = (101),.
Solution: First note that

abg - 2° = (110); - 1- 2° = (110),,

aby - 2' = (110); - 0 - 21 = (0000)2,
and

aby - 2% = (110); - 1 - 22 = (11000),.

To find the product, add (110),, (0000),, and (11000),. Carrying out these additions (us-
ing Algorithm 2, including initial zero bits when necessary) shows that ab = (1 1110),. This
multiplication is displayed in Figure 2.

Next, we determine the number of additions of bits and shifts of bits used by Algorithm 3
to multiply two integers.

How many additions of bits and shifts of bits are used to multiply a and 4 using Algorithm 3?

Solution: Algorithm 3 computes the products of a and » by adding the partial products

co, €1, €2, ..., and ¢,—1. When b; = 1, we compute the partial product c; by shifting the binary
expansion of a by j bits. When b; = 0, no shifts are required because c¢; = 0. Hence, to find
all n of the integers ab;2/, j = 0,1,...,n — 1, requires at most

0+1+2+---+n—1

shifts. Hence, by Example 5 in Section 3.2 the number of shifts required is O (n?).

To add the integers ab; from j = 0to j = n — 1 requires the addition of an n-bit integer,
an (n + 1)-bit integer, ..., and a (2n)-bit integer. We know from Example 9 that each of these
additions requires O (n) additions of bits. Consequently, a total of O (rn?) additions of bits are
required for all » additions. <

Surprisingly, there are more efficient algorithms than the conventional algorithm for mul-
tiplying integers. One such algorithm, which uses O (n1-°8%) bit operations to multiply #-bit
numbers, will be described in Section 8.3.



4.2 Integer Representations and Algorithms 253

ALGORITHM FOR div AND mod Given integers ¢ and d, d > 0, we can find g =
a div d and r = a mod d using Algorithm 4. In this brute-force algorithm, when a is pos-
itive we subtract d from a as many times as necessary until what is left is less than d. The
number of times we perform this subtraction is the quotient and what is left over after all these
subtractions is the remainder. Algorithm 4 also covers the case where a is negative. This algo-
rithm finds the quotient ¢ and remainder » when |a| is divided by d. Then, when a < 0 and
r > 0, it uses these to find the quotient —(¢ + 1) and remainder d — r when « is divided by d.
We leave it to the reader (Exercise 59) to show that, assuming that a > d, this algorithm uses
O (q log a) bit operations.

ALGORITHM 4 Computing div and mod.

procedure division algorithm(a: integer, d: positive integer)

qg:=0

r=lal

while r > d
r=r—d
qg:=q+1

if a <0andr > 0then
ri=d-—r
qg:=-(@+1

return (¢, r) {g = a div d is the quotient, » = a mod d is the remainder}

There are more efficient algorithms than Algorithm 4 for determining the quotient ¢ =
a div d and the remainder » = a mod d when a positive integer a is divided by a positive
integer d (see [Kn98] for details). These algorithms require O (loga - logd) bit operations. If
both of the binary expansions of a and d contain » or fewer bits, then we can replace log a - log d
by n?. This means that we need O (1n?) bit operations to find the quotient and remainder when
a is divided by d.

Modular Exponentiation

In cryptography it is important to be able to find 5" mod m efficiently, where b, n, and m are
large integers. It is impractical to first compute 5" and then find its remainder when divided
by m because »" will be a huge number. Instead, we can use an algorithm that employs the
binary expansion of the exponent n.

Before we present this algorithm, we illustrate its basic idea. We will explain how to use
the binary expansion of n, say n = (ax—1 . ..a1ao)2, to compute »". First, note that

bt = bak71.2k4+‘..+a1-2+a0 — bak,1~2k’l . ba1~2 . po.

This shows that to compute 4", we need only compute the values of b, b2, (b)? = b*, (b*)? =

b8, ..., b?.Once we have these values, we multiply the terms 52 in this list, where a; = 1. (For
efficiency, after multiplying by each term, we reduce the result modulo m.) This gives us b". For
example, to compute 311 we first note that 11 = (1011),, so that 311 = 383231, By successively
squaring, we find that 32 =9, 3* = 92 = 81, and 3% = (81)2 = 6561. Consequently, 311 =
383231 = 6561 -9 -3 = 177,147.
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Be sure to reduce
modulo m after each

The algorithm successively finds » mod m, 52 mod m, b* mod m, ..., b% ‘mod m

and multiplies together those terms % mod m where a; =1, finding the remainder

@ of the product when divided by m after each multiplication. Pseudocode for this algorithm
is shown in Algorithm 5. Note that in Algorithm 5 we can use the most efficient algorithm
available to compute values of the mod function, not necessarily Algorithm 4.

multiplication!

ALGORITHM 5 Modular Exponentiation.

procedure modular exponentiation(b: integer, n = (ax—1ax—2 . . .a1ao)2,
m: positive integers)
x:=1
power := b mod m
fori :=0tok—1
if a; = 1then x := (x - power) mod m
power := (power - power) mod m
return x{x equals »" mod m}

We illustrate how Algorithm 5 works in Example 12.

EXAMPLE 12  Use Algorithm 5 to find 3544 mod 645.

Solution: Algorithm 5 initially sets x = 1 and power = 3 mod 645 = 3. In the computation
of 3544 mod 645, this algorithm determines 3% mod 645 for j = 1,2, ..., 9 by successively
squaring and reducing modulo 645. If a; = 1 (where a; is the bit in the jth position in the

binary expansion of 644, which is (1010000100)>), it multiplies the current value of x by 3%
mod 645 and reduces the result modulo 645. Here are the steps used:

= 0: Because ag = 0, we have x = 1 and power = 32 mod 645 = 9 mod 645 = 9;

— 1: Because a; = 0, we have x = 1 and power = 92 mod 645 = 81 mod 645 = 81;

= 2: Because ap = 1, we have x = 1 - 81 mod 645 = 81 and power = 812 mod 645 = 6561 mod 645 = 111;
= 3: Because a3 = 0, we have x = 81 and power = 1112 mod 645 = 12,321 mod 645 = 66;

- Because as = 0, we have x = 81 and power = 662 mod 645 = 4356 mod 645 = 486;

= 5: Because as = 0, we have x = 81 and power = 4862 mod 645 = 236,196 mod 645 = 126;

= 6: Because ag = 0, we have x = 81 and power = 1262 mod 645 = 15,876 mod 645 = 396;

. Because a7 = 1, we find that x = (81 - 396) mod 645 = 471 and power = 3962 mod 645 = 156,816

= 8: Because ag = 0, we have x = 471 and power = 812 mod 645 = 6561 mod 645 = 111;
. Because ag = 1, we find that x = (471 - 111) mod 645 = 36.

mod 645 = 81;

This shows that following the steps of Algorithm 5 produces the result 3544 mod 645 = 36.
<

Algorithm 5 is quite efficient; it uses O ((logm)? logn) bit operations to find 4" mod m (see
Exercise 58).
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10.

11.

12.

13.

14.

15.

. Convert the decimal expansion of each of these integers

to a binary expansion.

a) 231  b) 4532 c) 97644

. Convert the decimal expansion of each of these integers

to a binary expansion.

a) 321  b) 1023  c) 100632

. Convert the binary expansion of each of these integers to

a decimal expansion.
a) (11111),
c) (101010101),

b) (10 0000 0001),
d) (110 1001 0001 0000);

. Convert the binary expansion of each of these integers to

a decimal expansion.
a) (11011),
c) (111011 1110);

b) (10 1011 0101);
d) (11111000001 1111),

. Convert the octal expansion of each of these integers to a

binary expansion.
a) (572)g
c) (423)s

b) (1604)g
d) (2417)s

. Convert the binary expansion of each of these integers to

an octal expansion.

a) (1111 0111),

b) (1010 1010 1010);

c) (11101110111 0111),
d) (101 0101 0101 0101);

. Convert the hexadecimal expansion of each of these in-

tegers to a binary expansion.
a) (80E)s
c) (ABBA)1s

b) (135AB)1s
d) (DEFACED)1s

. Convert (BADFACED)1 from its hexadecimal expan-

sion to its binary expansion.

. Convert (ABCDEF)16 from its hexadecimal expansion to

its binary expansion.

Convert each of the integers in Exercise 6 from a binary
expansion to a hexadecimal expansion.

Convert (1011 0111 1011), from its binary expansion to
its hexadecimal expansion.

Convert (1 1000 0110 0011), from its binary expansion
to its hexadecimal expansion.

Show that the hexadecimal expansion of a positive integer
can be obtained from its binary expansion by grouping to-
gether blocks of four binary digits, adding initial zeros if
necessary, and translating each block of four binary digits
into a single hexadecimal digit.

Show that the binary expansion of a positive integer can
be obtained from its hexadecimal expansion by translat-
ing each hexadecimal digit into a block of four binary
digits.

Show that the octal expansion of a positive integer can be
obtained from its binary expansion by grouping together
blocks of three binary digits, adding initial zeros if nec-

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.
27.
28.
29.

essary, and translating each block of three binary digits
into a single octal digit.

Show that the binary expansion of a positive integer can
be obtained from its octal expansion by translating each
octal digit into a block of three binary digits.

Convert (7345321)g to its binary expansion and
(10 1011 1011); to its octal expansion.

Give a procedure for converting from the hexadecimal ex-
pansion of an integer to its octal expansion using binary
notation as an intermediate step.

Give a procedure for converting from the octal expansion
of an integer to its hexadecimal expansion using binary
notation as an intermediate step.

Explain how to convert from binary to base 64 expan-
sions and from base 64 expansions to binary expansions
and from octal to base 64 expansions and from base 64
expansions to octal expansions.

Find the sum and the product of each of these pairs of
numbers. Express your answers as a binary expansion.

a) (100 0111),, (111 0111),

b) (1110 1111),, (1011 1101),

) (101010 1010)2, (1 1111 0000),

d) (10 0000 0001)7, (11 1111 1111),

Find the sum and product of each of these pairs of num-
bers. Express your answers as a base 3 expansion.

a) (112)3, (2103

b) (2112)3, (12021)3
¢) (20001)s, (1111)3
d) (120021)3, (2002)3

Find the sum and product of each of these pairs of num-
bers. Express your answers as an octal expansion.

a) (763)g, (147)g
b) (6001)s, (272)g
¢) (1111)g, (777)8
d) (54321)g, (3456)g

Find the sum and product of each of these pairs of num-
bers. Express your answers as a hexadecimal expan-
sion.

a) (1AE)1s, (BBC)16

b) (20CBA)16, (A01)16

c) (ABCDE)1s, (1111)16

d) (EOOOOE)16, (BAAA)16

Use Algorithm 5 to find 764 mod 645.
Use Algorithm 5 to find 11644 mod 645.
Use Algorithm 5 to find 32993 mod 99.
Use Algorithm 5 to find 123101 mod 101.

Show that every positive integer can be represented
uniquely as the sum of distinct powers of 2. [Hint: Con-
sider binary expansions of integers.]
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30. It can be shown that every integer can be uniquely repre-
sented in the form

ex3 +e_13 14+ e13 4 ¢,

where e; = —1,0, 0r 1 for j =0,1,2,..., k. Expan-
sions of this type are called balanced ternary expan-
sions. Find the balanced ternary expansions of

a)5. b)13. ¢)37. d)79.

31. Show that a positive integer is divisible by 3 if and only
if the sum of its decimal digits is divisible by 3.

32. Show that a positive integer is divisible by 11 if and only
if the difference of the sum of its decimal digits in even-
numbered positions and the sum of its decimal digits in
odd-numbered positions is divisible by 11.

33. Show that a positive integer is divisible by 3 if and only
if the difference of the sum of its binary digits in even-
numbered positions and the sum of its binary digits in
odd-numbered positions is divisible by 3.

One’s complement representations of integers are used to
simplify computer arithmetic. To represent positive and nega-
tive integers with absolute value less than 2”1, a total of » bits
is used. The leftmost bit is used to represent the sign. A 0 bit
in this position is used for positive integers, and a 1 bit in this
position is used for negative integers. For positive integers,
the remaining bits are identical to the binary expansion of the
integer. For negative integers, the remaining bits are obtained
by first finding the binary expansion of the absolute value of
the integer, and then taking the complement of each of these
bits, where the complement of a 1 is a 0 and the complement
ofaOisal.

34. Find the one’s complement representations, using bit
strings of length six, of the following integers.

Q)2 b3l ¢ -7 d -19

35. What integer does each of the following one’s comple-
ment representations of length five represent?

a) 11001  b) 01101

c) 10001  d) 11111

36. If m is a positive integer less than 2”1, how is the
one’s complement representation of —m obtained from
the one’s complement of m, when bit strings of length n
are used?

37. How is the one’s complement representation of the sum
of two integers obtained from the one’s complement rep-
resentations of these integers?

38. How isthe one’s complement representation of the differ-
ence of two integers obtained from the one’s complement
representations of these integers?

39. Show that the integer m with one’s complement
representation (a,_1a,—2...aiag) can be found us-
ing the equation m = —a,_1(2""1 — 1) + a,_»2" 2 +
-+ ay -2+ ap.

Two’s complement representations of integers are also used

to simplify computer arithmetic and are used more commonly

than one’s complement representations. To represent an inte-
ger x with —2"~1 < x <2"=1 _ 1 for a specified positive
integer n, a total of » bits is used. The leftmost bit is used to
represent the sign. A 0 bit in this position is used for positive
integers, and a 1 bit in this position is used for negative inte-
gers, just as in one’s complement expansions. For a positive
integer, the remaining bits are identical to the binary expan-
sion of the integer. For a negative integer, the remaining bits
are the bits of the binary expansion of 2”1 — |x|. Two’s com-
plement expansions of integers are often used by computers
because addition and subtraction of integers can be performed
easily using these expansions, where these integers can be ei-
ther positive or negative.

40. Answer Exercise 34, but this time find the two’s comple-
ment expansion using bit strings of length six.

41. Answer Exercise 35 if each expansion is a two’s comple-
ment expansion of length five.

42. Answer Exercise 36 for two’s complement expansions.

43. Answer Exercise 37 for two’s complement expansions.

44, Answer Exercise 38 for two’s complement expansions.

45. Show that the integer m with two’s complement
representation (a,—1a,—2...a1ap) can be found us-
ingtheequationm = —a,_1 - 2" 1 + a,_22" 2 4+ ... +
ai -2+ aop.

46. Give a simple algorithm for forming the two’s comple-
ment representation of an integer from its one’s comple-
ment representation.

47. Sometimes integers are encoded by using four-digit bi-
nary expansions to represent each decimal digit. This pro-
duces the binary coded decimal form of the integer. For
instance, 791 is encoded in this way by 011110010001.
How many bits are required to represent a number with
n decimal digits using this type of encoding?

A Cantor expansion is a sum of the form

apn! +a,_1(n — D!+ -+ 4+ a2! + arl!,

where a; is an integer with0 <g; <ifori =1,2,...,n.
48. Find the Cantor expansions of
a) 2. b) 7.
c) 19. d) 87.
e) 1000. f) 1,000,000.
#49. Describe an algorithm that finds the Cantor expansion of
an integer.

#50. Describe analgorithm to add two integers from their Can-
tor expansions.

51. Add (10111), and (11010), by working through each
step of the algorithm for addition given in the text.

52. Multiply (1110), and (1010), by working through each
step of the algorithm for multiplication given in the text.

53. Describe an algorithm for finding the difference of two
binary expansions.

54. Estimate the number of bit operations used to subtract
two binary expansions.



4.3 Primes and Greatest Common Divisors 257

55. Devise an algorithm that, given the binary expansions of 57. Estimate the complexity of Algorithm 1 for finding the
the integers a and b, determines whether a > b, a = b, base b expansion of an integer n in terms of the number
ora <b. of divisions used.

#58. Show that Algorithm 5 uses O ((log m)?2 log n) bit opera-

56. How many bit operations does the comparison algo- tions to find 5" mod m.
rithm from Exercise 55 use when the larger of a and b 59. Show that Algorithm 4 uses O(g loga) bit operations,
has n bits in its binary expansion? assuming that a > d.

Primes and Greatest Common Divisors

DEFINITION 1

EXAMPLE 1

Introduction

In Section 4.1 we studied the concept of divisibility of integers. One important concept based
on divisibility is that of a prime number. A prime is an integer greater than 1 that is divisible by
no positive integers other than 1 and itself. The study of prime numbers goes back to ancient
times. Thousands of years ago it was known that there are infinitely many primes; the proof of
this fact, found in the works of Euclid, is famous for its elegance and beauty.

We will discuss the distribution of primes among the integers. We will describe some
of the results about primes found by mathematicians in the last 400 years. In particular, we
will introduce an important theorem, the fundamental theorem of arithmetic. This theorem,
which asserts that every positive integer can be written uniquely as the product of primes in
nondecreasing order, has many interesting consequences. We will also discuss some of the many
old conjectures about primes that remain unsettled today.

Primes have become essential in modern cryptographic systems, and we will develop some
of their properties important in cryptography. For example, finding large primes is essential in
modern cryptography. The length of time required to factor large integers into their prime factors
is the basis for the strength of some important modern cryptographic systems.

In this section we will also study the greatest common divisor of two integers, as well as the
least common multiple of two integers. We will develop an important algorithm for computing
greatest common divisors, called the Euclidean algorithm.

Primes
Every integer greater than 1 is divisible by at least two integers, because a positive integer is

divisible by 1 and by itself. Positive integers that have exactly two different positive integer
factors are called primes.

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.
A positive integer that is greater than 1 and is not prime is called composite.

Remark: The integer n is composite if and only if there exists an integer a such that a | n and
l<a<n.

The integer 7 is prime because its only positive factors are 1 and 7, whereas the integer 9 is
composite because it is divisible by 3. <

The primes are the building blocks of positive integers, as the fundamental theorem of
arithmetic shows. The proof will be given in Section 5.2.
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THEOREM 1

EXAMPLE 2

THEOREM 2

EXAMPLE 3

THE FUNDAMENTAL THEOREM OF ARITHMETIC Every integer greater than 1
can be written uniquely as a prime or as the product of two or more primes where the prime
factors are written in order of nondecreasing size.

Example 2 gives some prime factorizations of integers.

The prime factorizations of 100, 641, 999, and 1024 are given by

100=2-2.5.5 = 2252,

641 = 641,

999 =3.3.3.37=3%.37,

1024 =2.2.2.2.2.2.2.2.2.2 =210

Trial Division

It is often important to show that a given integer is prime. For instance, in cryptology, large
primes are used in some methods for making messages secret. One procedure for showing that
an integer is prime is based on the following observation.

If n is a composite integer, then n has a prime divisor less than or equal to /n.

Proof: If n is composite, by the definition of a composite integer, we know that it has a factor
a with 1 < a < n. Hence, by the definition of a factor of a positive integer, we have n = ab,
where b is a positive integer greater than 1. We will show thata < /norb <  /n.Ifa > \/nand
b > /n,thenab > /n - \/n = n, which is a contradiction. Consequently, a < \/norb < /n.
Because both a and b are divisors of n, we see that n has a positive divisor not exceeding /n.
This divisor is either prime or, by the fundamental theorem of arithmetic, has a prime divisor
less than itself. In either case, n has a prime divisor less than or equal to /n. <

From Theorem 2, it follows that an integer is prime if it is not divisible by any prime less
than or equal to its square root. This leads to the brute-force algorithm known as trial division.
To use trial division we divide n by all primes not exceeding /z and conclude that » is prime
if it is not divisible by any of these primes. In Example 3 we use trial division to show that 101
is prime.

Show that 101 is prime.

Solution: The only primes not exceeding +/101 are 2, 3, 5, and 7. Because 101 is not divisible
by 2, 3, 5, or 7 (the quotient of 101 and each of these integers is not an integer), it follows that
101 is prime. <

Because every integer has a prime factorization, it would be useful to have a procedure for
finding this prime factorization. Consider the problem of finding the prime factorization of n.
Begin by dividing n by successive primes, starting with the smallest prime, 2. If n has a prime
factor, then by Theorem 3 a prime factor p not exceeding /n will be found. So, if no prime
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factor not exceeding +/n is found, then n is prime. Otherwise, if a prime factor p is found,
continue by factoring n/p. Note that n/p has no prime factors less than p. Again, if n/p has
no prime factor greater than or equal to p and not exceeding its square root, then it is prime.
Otherwise, if it has a prime factor ¢, continue by factoring n/(pq). This procedure is continued
until the factorization has been reduced to a prime. This procedure is illustrated in Example 4.

Find the prime factorization of 7007.

Solution: To find the prime factorization of 7007, first perform divisions of 7007 by succes-
sive primes, beginning with 2. None of the primes 2, 3, and 5 divides 7007. However, 7 di-
vides 7007, with 7007/7 = 1001. Next, divide 1001 by successive primes, beginning with 7.
It is immediately seen that 7 also divides 1001, because 1001/7 = 143. Continue by divid-
ing 143 by successive primes, beginning with 7. Although 7 does not divide 143, 11 does
divide 143, and 143/11 = 13. Because 13 is prime, the procedure is completed. It follows that
7007 =7-1001=7.-7-143 =7 -7-11-13. Consequently, the prime factorization of 7007
i57-7-11-13=7%.11-13. <

Prime numbers were studied in ancient times for philosophical reasons. Today, there are

highly practical reasons for their study. In particular, large primes play a crucial role in cryp-
tography, as we will see in Section 4.6.

The Sieve of Eratosthenes

Note that composite integers not exceeding 100 must have a prime factor not exceeding 10.
Because the only primes less than 10 are 2, 3, 5, and 7, the primes not exceeding 100 are these
four primes and those positive integers greater than 1 and not exceeding 100 that are divisible
by none of 2, 3,5, 0r7.

The sieve of Eratosthenes is used to find all primes not exceeding a specified positive
integer. For instance, the following procedure is used to find the primes not exceeding 100. We
begin with the list of all integers between 1 and 100. To begin the sieving process, the integers
that are divisible by 2, other than 2, are deleted. Because 3 is the first integer greater than 2 that
is left, all those integers divisible by 3, other than 3, are deleted. Because 5 is the next integer
left after 3, those integers divisible by 5, other than 5, are deleted. The next integer left is 7,
so those integers divisible by 7, other than 7, are deleted. Because all composite integers not
exceeding 100 are divisible by 2, 3, 5, or 7, all remaining integers except 1 are prime. In Table 1,
the panels display those integers deleted at each stage, where each integer divisible by 2, other
than 2, is underlined in the first panel, each integer divisible by 3, other than 3, is underlined
in the second panel, each integer divisible by 5, other than 5, is underlined in the third panel,
and each integer divisible by 7, other than 7, is underlined in the fourth panel. The integers not
underlined are the primes not exceeding 100. We conclude that the primes less than 100 are 2,
3,5,7,11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, and 97.

THE INFINITUDE OF PRIMES It has long been known that there are infinitely many primes.
This means that whenever p1, p2, ..., p, are the n smallest primes, we know there is a larger

ERATOSTHENES (276 B.c.~194 B.Cc.E.) It is known that Eratosthenes was born in Cyrene, a Greek colony
west of Egypt, and spent time studying at Plato’s Academy in Athens. We also know that King Ptolemy Il
invited Eratosthenes to Alexandria to tutor his son and that later Eratosthenes became chief librarian at the
famous library at Alexandria, a central repository of ancient wisdom. Eratosthenes was an extremely versatile
scholar, writing on mathematics, geography, astronomy, history, philosophy, and literary criticism. Besides his
work in mathematics, he is most noted for his chronology of ancient history and for his famous measurement
of the size of the earth.
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TABLE 1 The Sieve of Eratosthenes.
Integers divisible by 2 other than 2 Integers divisible by 3 other than 3
receive an underline. receive an underline.
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 21 22 23 24 25 26 27 28 29 30
31 32 33 34 3 36 37 38 39 40 312@@35@37@@@
41 42 43 44 45 46 47 48 49 50 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 gisegss%g@sgg
61 62 63 64 65 66 67 68 69 70 61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80 71 72 73 74 75 76 77 78 79 80
81 8 83 84 85 8 87 8 8 90 81 82 83 84 85 8 87 8 89 9
91 92 93 94 95 96 97 98 99 100 91 92 93 94 95 96 97 98 99 100
Integers divisible by 5 other than 5 Integers divisible by 7 other than 7 receive
receive an underline. an underline; integers in color are prime.
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 2 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 8 87 88 89 90 8L 82 83 84 85 8 87 8 89 90
91 92 93 94 95 96 97 98 99 100 91 92 93 94 95 9% 97 98 99 100
prime not listed. We will prove this fact using a proof given by Euclid in his famous mathematics
text, The Elements. This simple, yet elegant, proof is considered by many mathematicians to be
among the most beautiful proofs in mathematics. It is the first proof presented in the book Proofs
from THE BOOK[AIiZi10], where THE BOOK refers to the imagined collection of perfect proofs
that the famous mathematician Paul Erd6s claimed is maintained by God. By the way, there
are a vast number of different proofs than there are an infinitude of primes, and new ones are
published surprisingly frequently.
THEOREM 3  There are infinitely many primes.

$

Proof:\We will prove this theorem using a proof by contradiction. We assume that there are only
finitely many primes, p1, p2, ..., p,. Let

Q=pip2---pn+ 1

By the fundamental theorem of arithmetic, Q is prime or else it can be written as the product of
two or more primes. However, none of the primes p; divides Q, forif p; | Q, then p; divides
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O — p1p2--- pn = 1. Hence, there is a prime not in the list p1, p2, ..., p,. This prime is
either Q, if it is prime, or a prime factor of Q. This is a contradiction because we assumed that
we have listed all the primes. Consequently, there are infinitely many primes. <

Remark: Note that in this proof we do not state that Q is prime! Furthermore, in this proof, we
have given a nonconstructive existence proof that given any n primes, there is a prime not in
this list. For this proof to be constructive, we would have had to explicitly give a prime not in
our original list of n primes.

Because there are infinitely many primes, given any positive integer there are primes greater
than this integer. There is an ongoing quest to discover larger and larger prime numbers; for
almost all the last 300 years, the largest prime known has been an integer of the special form
2P — 1, where p is also prime. (Note that 2" — 1 cannot be prime when » is not prime; see
Exercise 9.) Such primes are called Mersenne primes, after the French monk Marin Mersenne,
who studied them in the seventeenth century. The reason that the largest known prime has usually
been a Mersenne prime is that there is an extremely efficient test, known as the Lucas—Lehmer
test, for determining whether 27 — 1 is prime. Furthermore, it is not currently possible to test
numbers not of this or certain other special forms anywhere near as quickly to determine whether
they are prime.

The numbers 22 —1=3,23 —1=7,25—1=31and 2’ — 1 = 127 are Mersenne primes,
while 211 — 1 = 2047 is not a Mersenne prime because 2047 = 23 - 89. <

Progress in finding Mersenne primes has been steady since computers were invented. As of
early 2011, 47 Mersenne primes were known, with 16 found since 1990. The largest Mersenne
prime known (again as of early 2011) is 243-112.609 _ 1 a number with nearly 13 million decimal
digits, which was shown to be prime in 2008. A communal effort, the Great Internet Mersenne
Prime Search (GIMPS), is devoted to the search for new Mersenne primes. You can join this
search, and if you are lucky, find a new Mersenne prime and possibly even win a cash prize. By
the way, even the search for Mersenne primes has practical implications. One quality control test
for supercomputers has been to replicate the Lucas—Lehmer test that establishes the primality of
a large Mersenne prime. (See [Ro10] for more information about the quest for finding Mersenne
primes.)

THE DISTRIBUTION OF PRIMES Theorem 3 tells us that there are infinitely many primes.
However, how many primes are less than a positive number x? This question interested mathe-
maticians for many years; in the late eighteenth century, mathematicians produced large tables

MARIN MERSENNE (1588-1648) Mersenne was born in Maine, France, into a family of laborers and
attended the College of Mans and the Jesuit College at La Fléche. He continued his education at the Sor-
bonne, studying theology from 1609 to 1611. He joined the religious order of the Minims in 1611, a group
whose name comes from the word minimi (the members of this group were extremely humble; they consid-
ered themselves the least of all religious orders). Besides prayer, the members of this group devoted their
energy to scholarship and study. In 1612 he became a priest at the Place Royale in Paris; between 1614 and
1618 he taught philosophy at the Minim Convent at Nevers. He returned to Paris in 1619, where his cell
in the Minims de I’Annociade became a place for meetings of French scientists, philosophers, and mathe-
maticians, including Fermat and Pascal. Mersenne corresponded extensively with scholars throughout Europe,

serving as a clearinghouse for mathematical and scientific knowledge, a function later served by mathematical journals (and today
also by the Internet). Mersenne wrote books covering mechanics, mathematical physics, mathematics, music, and acoustics. He
studied prime numbers and tried unsuccessfully to construct a formula representing all primes. In 1644 Mersenne claimed that
2P — 1is prime for p =2, 3,5,7, 13, 17, 19, 31, 67, 127, 257 but is composite for all other primes less than 257. It took over 300
years to determine that Mersenne’s claim was wrong five times. Specifically, 27 — 1 is not prime for p = 67 and p = 257 but is
prime for p =61, p = 87, and p = 107. It is also noteworthy that Mersenne defended two of the most famous men of his time,
Descartes and Galileo, from religious critics. He also helped expose alchemists and astrologers as frauds.
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THEOREM 4
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of prime numbers to gather evidence concerning the distribution of primes. Using this evidence,
the great mathematicians of the day, including Gauss and Legendre, conjectured, but did not
prove, Theorem 4.

THE PRIME NUMBER THEOREM  The ratio of the number of primes not exceeding
x and x/ In x approaches 1 as x grows without bound. (Here In x is the natural logarithm
of x.)

The prime number theorem was first proved in 1896 by the French mathematician Jacques
Hadamard and the Belgian mathematician Charles-Jean-Gustave-Nicholas de la Vallée-Poussin
using the theory of complex variables. Although proofs not using complex variables have been
found, all known proofs of the prime number theorem are quite complicated.

We can use the prime number theorem to estimate the odds that a randomly chosen number
is prime. The prime number theorem tells us that the number of primes not exceeding x can be
approximated by x/ In x. Consequently, the odds that a randomly selected positive integer less
than n is prime are approximately (n/Inn)/n = 1/Inn. Sometimes we need to find a prime
with a particular number of digits. We would like an estimate of how many integers with a
particular number of digits we need to select before we encounter a prime. Using the prime
number theorem and calculus, it can be shown that the probability that an integer » is prime
is also approximately 1/ In n. For example, the odds that an integer near 101°% is prime are
approximately 1/1In 1009 which is approximately 1,/2300. (Of course, by choosing only odd
numbers, we double our chances of finding a prime.)

Using trial division with Theorem 2 gives procedures for factoring and for primality testing.
However, these procedures are not efficient algorithms; many much more practical and efficient
algorithms for these tasks have been developed. Factoring and primality testing have become
important in the applications of number theory to cryptography. This has led to a great interest
in developing efficient algorithms for both tasks. Clever procedures have been devised in the
last 30 years for efficiently generating large primes. Moreover, in 2002, an important theoretical
discovery was made by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. They showed there
is a polynomial-time algorithm in the number of bits in the binary expansion of an integer for
determining whether a positive integer is prime. Algorithms based on their work use O ((logn)®)
bit operations to determine whether a positive integer » is prime.

However, even though powerful new factorization methods have been developed in the
same time frame, factoring large numbers remains extraordinarily more time-consuming than
primality testing. No polynomial-time algorithm for factoring integers is known. Nevertheless,
the challenge of factoring large numbers interests many people. There is a communal effort on
the Internet to factor large numbers, especially those of the special form k” + 1, where k is a
small positive integer and n is a large positive integer (such numbers are called Cunningham
numbers). At any given time, there is a list of the “Ten Most Wanted” large numbers of this type
awaiting factorization.

PRIMES AND ARITHMETIC PROGRESSIONS Every odd integer is in one of the two
arithmetic progressions 4k + 1or4k + 3,k = 1, 2, . ... Because we know that there are infinitely
many primes, we can ask whether there are infinitely many primes in both of these arithmetic
progressions. The primes 5, 13, 17, 29, 37, 41, ... are in the arithmetic progression 4k + 1,
the primes 3, 7, 11, 19, 23, 31, 43, ... are in the arithmetic progression 4k + 3. Looking at
the evidence hints that there may be infinitely many primes in both progressions. What about
other arithmetic progressions ak + b, k =1, 2, ..., where no integer greater than one divides
both @ and b? Do they contain infinitely many primes? The answer was provided by the German
mathematician G. Lejeune Dirichlet, who proved that every such arithmetic progression contains
infinitely many primes. His proof, and all proofs found later, are beyond the scope of this book.
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However, it is possible to prove special cases of Dirichlet’s theorem using the ideas developed
in this book. For example, Exercises 54 and 55 ask for proofs that there are infinitely many
primes in the arithmetic progressions 3k + 2 and 4k + 3, where k is a positive integer. (The hint
for each of these exercises supplies the basic idea needed for the proof.)

We have explained that every arithmetic progression ak + b, k = 1,2, ..., where a and b
have no common factor greater than one, contains infinitely many primes. But are there long
arithmetic progressions made up of just primes? For example, some exploration shows that 5,
11, 17, 23, 29 is an arithmetic progression of five primes and 199, 409, 619, 829, 1039, 1249,
1459, 1669, 1879, 2089 is an arithmetic progression of ten primes. In the 1930s, the famous
mathematician Paul Erd6s conjectured that for every positive integer n greater than two, there
is an arithmetic progression of length » made up entirely of primes. In 2006, Ben Green and
Terence Tao were able to prove this conjecture. Their proof, considered to be a mathematical
tour de force, is a nonconstructive proof that combines powerful ideas from several advanced
areas of mathematics.

Conjectures and Open Problems About Primes

Number theory is noted as a subject for which it is easy to formulate conjectures, some of which
are difficult to prove and others that remained open problems for many years. We will describe
some conjectures in number theory and discuss their status in Examples 6-9.

EXAMPLE 6 Itwould be useful to have a function f (n) such that f (n) is prime for all positive integers n. If we
Extra £ had such a function, we could find large primes for use in cryptography and other applications.
Examples 8@ Looking for such a function, we might check out different polynomial functions, as some
mathematicians did several hundred years ago. After a lot of computation we may encounter
the polynomial f(n) = n® — n 4 41. This polynomial has the interesting property that f (n) is
prime for all positive integers n not exceeding 40. [We have f (1) = 41, f(2) =43, f(3) = 47,
f(4) =53, and so on.] This can lead us to the conjecture that f(n) is prime for all positive

integers n. Can we settle this conjecture?

Solution: Perhaps not surprisingly, this conjecture turns out to be false; we do not have to look far
to find a positive integer n for which f (n) is composite, because f(41) = 412 — 41 + 41 = 412,
Because f(n) = n? —n + 41 is prime for all positive integers n with 1 < n < 40, we might

TERENCE TAO (BORN 1975) Tao was born in Australia. His father is a pediatrician and his mother taught
mathematics at a Hong Kong secondary school. Tao was a child prodigy, teaching himself arithmetic at the age
of two. At 10, he became the youngest contestant at the International Mathematical Olympiad (IMO); he won
an IMO gold medal at 13. Tao received his bachelors and masters degrees when he was 17, and began graduate
studies at Princeton, receiving his Ph.D. in three years. In 1996 he became a faculty member at UCLA, where
he continues to work.

Tao is extremely versatile; he enjoys working on problems in diverse areas, including harmonic analy-
sis, partial differential equations, number theory, and combinatorics. You can follow his work by reading his
blog where he discusses progress on various problems. His most famous result is the Green-Tao theorem,

which says that there are arbitrarily long arithmetic progressions of primes. Tao has made important contributions to the applications
of mathematics, such as developing a method for reconstructing digital images using the least possible amount of information.
Tao has an amazing reputation among mathematicians; he has become a Mr. Fix-It for researchers in mathematics. The well-known
mathematician Charles Fefferman, himself a child prodigy, has said that “if you’re stuck on a problem, then one way out is to interest
Terence Tao.” In 2006 Tao was awarded a Fields Medal, the most prestigious award for mathematicians under the age of 40. He
was also awarded a MacArthur Fellowship in 2006, and in 2008, he received the Allan T. Waterman award, which came with a
$500,000 cash prize to support research work of scientists early in their career. Tao’s wife Laura is an engineer at the Jet Propulsion
Laboratory.
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be tempted to find a different polynomial with the property that f(r) is prime for all positive
integers n. However, there is no such polynomial. It can be shown that for every polynomial
f(n) with integer coefficients, there is a positive integer y such that f(y) is composite. (See
Exercise 23 in the Supplementary Exercises.)

Many famous problems about primes still await ultimate resolution by clever people. We
describe a few of the most accessible and better known of these open problems in Examples 7-9.
Number theory is noted for its wealth of easy-to-understand conjectures that resist attack by all
but the most sophisticated techniques, or simply resist all attacks. We present these conjectures
to show that many questions that seem relatively simple remain unsettled even in the twenty-first
century.

Goldbach’s Conjecture In 1742, Christian Goldbach, in a letter to Leonhard Euler, conjec-
tured that every odd integer n, n > 5, is the sum of three primes. Euler replied that this conjecture
is equivalent to the conjecture that every even integer n, n > 2, is the sum of two primes (see
Exercise 21 in the Supplementary Exercises). The conjecture that every even integer n, n > 2, is
the sum of two primes is now called Goldbach’s conjecture. We can check this conjecture for
small even numbers. For example, 4 =2+2,6=3+3,8=5+43,10=7+3,12=7+5,
and so on. Goldbach’s conjecture was verified by hand calculations for numbers up to the mil-
lions prior to the advent of computers. With computers it can be checked for extremely large
numberi.3 As of mid 2011, the conjecture has been checked for all positive even integers up to
1.6 -10°.

Although no proof of Goldbach’s conjecture has been found, most mathematicians believe
it is true. Several theorems have been proved, using complicated methods from analytic number
theory far beyond the scope of this book, establishing results weaker than Goldbach’s conjecture.
Among these are the result that every even integer greater than 2 is the sum of at most six primes
(proved in 1995 by O. Ramaré) and that every sufficiently large positive integer is the sum of a
prime and a number that is either prime or the product of two primes (proved in 1966 by J. R.
Chen). Perhaps Goldbach’s conjecture will be settled in the not too distant future. <

There are many conjectures asserting that there are infinitely many primes of certain special
forms. A conjecture of this sort is the conjecture that there are infinitely many primes of the form
n? + 1, where n is a positive integer. For example, 5 =22 + 1,17 =42 + 1,37 =62 + 1, and
so on. The best result currently known is that there are infinitely many positive integers n such
that n? + 1 is prime or the product of at most two primes (proved by Henryk Iwaniec in 1973
using advanced techniques from analytic number theory, far beyond the scope of this book). <

The Twin Prime Conjecture Twin primes are pairs of primes that differ by 2, such as 3 and
5,5and 7, 11 and 13, 17 and 19, and 4967 and 4969. The twin prime conjecture asserts that
there are infinitely many twin primes. The strongest result proved concerning twin primes is
that there are infinitely many pairs p and p + 2, where p is prime and p + 2 is prime or the
product of two primes (proved by J. R. Chen in 1966). The world’s record for twin primes, as of
mid 2011, consists of the numbers 65,516,468,355 - 2333:333 4 1 which have 100,355 decimal
digits. <

CHRISTIAN GOLDBACH (1690-1764) Christian Goldbach was born in Kénigsberg, Prussia, the city noted for its famous bridge
problem (which will be studied in Section 10.5). He became professor of mathematics at the Academy in St. Petersburg in 1725. In
1728 Goldbach went to Moscow to tutor the son of the Tsar. He entered the world of politics when, in 1742, he became a staff member
in the Russian Ministry of Foreign Affairs. Goldbach is best known for his correspondence with eminent mathematicians, including
Euler and Bernoulli, for his famous conjectures in number theory, and for several contributions to analysis.



DEFINITION 2

EXAMPLE 10

EXAMPLE 11

DEFINITION 3

EXAMPLE 12

DEFINITION 4

EXAMPLE 13

4.3 Primes and Greatest Common Divisors 265

Greatest Common Divisors and Least Common Multiples

The largest integer that divides both of two integers is called the greatest common divisor of
these integers.

Let a and b be integers, not both zero. The largest integer d such thatd | a and d | b is called
the greatest common divisor of a and b. The greatest common divisor of a and 4 is denoted
by gcd(a, b).

The greatest common divisor of two integers, not both zero, exists because the set of common
divisors of these integers is nonempty and finite. One way to find the greatest common divisor
of two integers is to find all the positive common divisors of both integers and then take the
largest divisor. This is done in Examples 10 and 11. Later, a more efficient method of finding
greatest common divisors will be given.

What is the greatest common divisor of 24 and 36?
Solution: The positive common divisors of 24 and 36 are 1, 2, 3, 4, 6, and 12. Hence,
gcd(24, 36) = 12. <
What is the greatest common divisor of 17 and 22?

Solution: The integers 17 and 22 have no positive common divisors other than 1, so that
ged(17,22) = 1. <

Because it is often important to specify that two integers have no common positive divisor
other than 1, we have Definition 3.

The integers a and b are relatively prime if their greatest common divisor is 1.

By Example 11 it follows that the integers 17 and 22 are relatively prime, because
gcd(17,22) = 1. <

Because we often need to specify that no two integers in a set of integers have a common
positive divisor greater than 1, we make Definition 4.

The integers ay, az, ..., a, are pairwise relatively prime if gcd(a;, a;) = 1 whenever 1 <
i <j<n.

Determine whether the integers 10, 17, and 21 are pairwise relatively prime and whether the
integers 10, 19, and 24 are pairwise relatively prime.

Solution: Because gcd(10, 17) = 1, gcd(10, 21) = 1, and gcd(17, 21) = 1, we conclude that
10, 17, and 21 are pairwise relatively prime.

Because gcd(10,24) =2 > 1, we see that 10, 19, and 24 are not pairwise relatively
prime. <
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Another way to find the greatest common divisor of two positive integers is to use the prime
factorizations of these integers. Suppose that the prime factorizations of the positive integers a
and b are

b1 b
..pfl"’ b:pllp22”'p£n’

ai az

a=pipp

where each exponent is a nonnegative integer, and where all primes occurring in the prime
factorization of either a or b are included in both factorizations, with zero exponents if necessary.
Then gcd(a, b) is given by

in(ax, b1) _min(az, b2) min(ay, b,)
12) :

ged(a, b) = py' o p" ,
where min(x, y) represents the minimum of the two numbers x and y. To show that this formula
for gcd(a, b) is valid, we must show that the integer on the right-hand side divides both a and b,
and that no larger integer also does. This integer does divide both @ and b, because the power of
each prime in the factorization does not exceed the power of this prime in either the factorization
of a or that of b. Further, no larger integer can divide both a and b, because the exponents of
the primes in this factorization cannot be increased, and no other primes can be included.

Because the prime factorizations of 120 and 500 are 120 = 23 . 3.5 and 500 = 22 - 52, the
greatest common divisor is

ng(lZO, 500) — 2min(3, 2)3min(1, 0)5min(1, 3 _ 223051 —20. <

Prime factorizations can also be used to find the least common multiple of two integers.

The least common multiple of the positive integers a and b is the smallest positive integer that
is divisible by both a and b. The least common multiple of a and & is denoted by lcm(a, b).

The least common multiple exists because the set of integers divisible by both a and b is
nonempty (as ab belongs to this set, for instance), and every nonempty set of positive integers
has a least element (by the well-ordering property, which will be discussed in Section 5.2).
Suppose that the prime factorizations of « and b are as before. Then the least common multiple
of a and b is given by

max(ag, b1) jmax(az,bz) ~  max(a,by)
1 P2 n )

lcm(a, b) = p P

where max(x, y) denotes the maximum of the two numbers x and y. This formulais valid because
a common multiple of ¢ and b has at least max(a;, b;) factors of p; in its prime factorization,
and the least common multiple has no other prime factors besides those in a and b.

What is the least common multiple of 233°72 and 24332

Solution: We have

Icm(233572, 2433) — 2max(3, 4)3max(5, 3)7max(2, 0) — 243572. <

Theorem 5 gives the relationship between the greatest common divisor and least common
multiple of two integers. It can be proved using the formulae we have derived for these quantities.
The proof of this theorem is left as Exercise 31.
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Let a and b be positive integers. Then

ab = gcd(a, b) - lem(a, b).

The Euclidean Algorithm

Computing the greatest common divisor of two integers directly from the prime factorizations
of these integers is inefficient. The reason is that it is time-consuming to find prime factoriza-
tions. We will give a more efficient method of finding the greatest common divisor, called the
Euclidean algorithm. This algorithm has been known since ancient times. It is named after the
ancient Greek mathematician Euclid, who included a description of this algorithm in his book
The Elements.

Before describing the Euclidean algorithm, we will show how it is used to find gcd (91, 287).
First, divide 287, the larger of the two integers, by 91, the smaller, to obtain

287 =913+ 14.

Any divisor of 91 and 287 must also be a divisor of 287 — 91 - 3 = 14. Also, any divisor of 91
and 14 must also be a divisor of 287 = 91 - 3 + 14. Hence, the greatest common divisor of 91
and 287 is the same as the greatest common divisor of 91 and 14. This means that the problem
of finding gcd(91, 287) has been reduced to the problem of finding gcd(91, 14).

Next, divide 91 by 14 to obtain

91=14-6+17.

Because any common divisor of 91 and 14 also divides 91 — 14 - 6 = 7 and any common divisor
of 14 and 7 divides 91, it follows that gcd(91, 14) = gcd(14, 7).
Continue by dividing 14 by 7, to obtain

14=7.2.

Because 7 divides 14, it follows that gcd(14, 7) = 7. Furthermore, because gcd(287, 91) =
gcd(91, 14) = ged(14, 7) = 7, the original problem has been solved.

We now describe how the Euclidean algorithm works in generality. We will use successive
divisions to reduce the problem of finding the greatest common divisor of two positive integers
to the same problem with smaller integers, until one of the integers is zero.

The Euclidean algorithm is based on the following result about greatest common divisors
and the division algorithm.

EUCLID (325 B.c.E.— 265 B.Cc.E.) Euclid was the author of the most successful mathematics book ever written,
The Elements, which appeared in over 1000 different editions from ancient to modern times. Little is known
about Euclid’s life, other than that he taught at the famous academy at Alexandria in Egypt. Apparently, Euclid
did not stress applications. When a student asked what he would get by learning geometry, Euclid explained
that knowledge was worth acquiring for its own sake and told his servant to give the student a coin “because he
must make a profit from what he learns.”
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Leta = bg + r, where a, b, g, and r are integers. Then gcd(a, b) = gcd(b, r).

Proof: If we can show that the common divisors of a and b are the same as the common divisors
of b and r, we will have shown that gcd(a, b) = gcd(b, r), because both pairs must have the
same greatest common divisor.

So suppose that d divides both a and b. Then it follows that d also divides a — bg = r (from
Theorem 1 of Section 4.1). Hence, any common divisor of a and b is also a common divisor
of band r.

Likewise, suppose that d divides both b and r. Then d also divides bg + r = a. Hence, any
common divisor of » and r is also a common divisor of a and b.

Consequently, gcd(a, b) = ged(b, r). <

Suppose that @ and b are positive integers with a > b. Let ro = a and r1 = b. When we
successively apply the division algorithm, we obtain

ro =rig1+r 0<ry<ry,
rn =rq2+rs3 0<r3<ry,

Tn—2 =Tn_1qn-1+r 0=<r, <r,_1,

Fn—1 = rnqn.

Eventually a remainder of zero occurs in this sequence of successive divisions, because the
sequence of remainders a = ro > r1 > rp > --- > 0 cannot contain more than a terms. Fur-
thermore, it follows from Lemma 1 that

ng(av b) = ng(rO’ rl) = ng(rl’ r2) == ng(rn*Zv rnfl)
= ng(rn—la ) = ng("n, 0) =ry.

Hence, the greatest common divisor is the last nonzero remainder in the sequence of divisions.

Find the greatest common divisor of 414 and 662 using the Euclidean algorithm.

Solution: Successive uses of the division algorithm give:

662 = 414 -1 + 248
414 = 248 - 1 4 166
248 =166 -1+ 82

166 =82.2+2
82 =12.41.
Hence, gcd(414, 662) = 2, because 2 is the last nonzero remainder. |

The Euclidean algorithm is expressed in pseudocode in Algorithm 1.
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ALGORITHM 1 The Euclidean Algorithm.

procedure gcd(a, b: positive integers)

x:=a

y:=>b

while y £ 0
r:=xmody
x:=y
yi=r

return x{gcd(a, b) is x}

In Algorithm 1, the initial values of x and y are a and b, respectively. At each stage of the
procedure, x is replaced by y, and y is replaced by x mod y, which is the remainder when x is
divided by y. This process is repeated as long as y # 0. The algorithm terminates when y = 0,
and the value of x at that point, the last nonzero remainder in the procedure, is the greatest
common divisor of a and b.

We will study the time complexity of the Euclidean algorithm in Section 5.3, where we
will show that the number of divisions required to find the greatest common divisor of a and b,
where a > b, is O(log b).

gcds as Linear Combinations

An important result we will use throughout the remainder of this section is that the greatest
common divisor of two integers a and b can be expressed in the form

sa +tb,

where s and ¢ are integers. In other words, gcd(a, b) can be expressed as a linear combination
with integer coefficients of a and b. For example, gcd(6,14) =2,and 2 = (—2) -6 + 1 - 14.
We state this fact as Theorem 6.

BEZOUT’S THEOREM If a and b are positive integers, then there exist integers s and ¢
such that gcd(a, b) = sa + tb.

ETIENNE BEZOUT (1730-1783) Bézout was born in Nemours, France, where his father was a magistrate.
Reading the writings of the great mathematician Leonhard Euler enticed him to become a mathematician. In
1758 he was appointed to a position at the Académie des Sciences in Paris; in 1763 he was appointed examiner
of the Gardes de la Marine, where he was assigned the task of writing mathematics textbooks. This assignment
led to a four-volume textbook completed in 1767. Bézout is well known for his six-volume comprehensive
textbook on mathematics. His textbooks were extremely popular and were studied by many generations of
students hoping to enter the Ecole Polytechnique, the famous engineering and science school. His books were
translated into English and used in North America, including at Harvard.

His most important original work was published in 1779 in the book Théorie générale des équations

algébriques, where he introduced important methods for solving simultaneous polynomial equations in many unknowns. The most
well-known result in this book is now called Bézout’s theorem, which in its general form tells us that the number of common points on
two plane algebraic curves equals the product of the degrees of these curves. Bézout is also credited with inventing the determinant
(which was called the Bézoutian by the great English mathematician James Joseph Sylvester). He was considered to be a kind person
with a warm heart, although he had a reserved and somber personality. He was happily married and a father.
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If @ and b are positive integers, then integers s and ¢ such that gcd(a, b) = sa + tb are called
Bézout coefficients of a and b (after Etienne Bézout, a French mathematician of the eighteenth
century). Also, the equation gcd(a, b) = sa + tb is called Bézout’s identity.

We will not give a formal proof of Theorem 6 here (see Exercise 36 in Section 5.2 and [R010]
for proofs). We will provide an example of a general method that can be used to find a linear
combination of two integers equal to their greatest common divisor. (In this section, we will
assume that a linear combination has integer coefficients.) The method proceeds by working
backward through the divisions of the Euclidean algorithm, so this method requires a forward
pass and a backward pass through the steps of the Euclidean algorithm. (In the exercises we
will describe an algorithm called the extended Euclidean algorithm, which can be used to
express gcd(a, b) as a linear combination of a and b using a single pass through the steps of the
Euclidean algorithm; see the preamble to Exercise 41.)

Express gcd(252, 198) = 18 as a linear combination of 252 and 198.
Solution: To show that gcd(252, 198) = 18, the Euclidean algorithm uses these divisions:

252 =1-198 + 54
198 =3-54 + 36
54=1-36+18
36 =2-18.

Using the next-to-last division (the third division), we can express gcd(252, 198) = 18 as a
linear combination of 54 and 36. We find that

18 =54 — 1. 36.
The second division tells us that
36 =198 — 3 .54,

Substituting this expression for 36 into the previous equation, we can express 18 as a linear
combination of 54 and 198. We have

18=54—-1-36=54—-1-(198 —-3-54)=4.54—1.198.
The first division tells us that
54 =252 —1.198.

Substituting this expression for 54 into the previous equation, we can express 18 as a linear
combination of 252 and 198. We conclude that

18=4.(252—-1-198) —1.198=4.252 —5.198,
completing the solution. <
We will use Theorem 6 to develop several useful results. One of our goals will be to prove
the part of the fundamental theorem of arithmetic asserting that a positive integer has at most

one prime factorization. We will show that if a positive integer has a factorization into primes,
where the primes are written in nondecreasing order, then this factorization is unique.
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First, we need to develop some results about divisibility.

If a, b, and ¢ are positive integers such that gcd(a, b) = 1 and a | be, thena | c.

Proof: Because gcd(a, b) = 1, by Bézout’s theorem there are integers s and ¢ such that
sa+tbh=1.

Multiplying both sides of this equation by ¢, we obtain
sac +tbc = c.

We can now use Theorem 1 of Section 4.1 to show thata | c. By part (ii ) of that theorem, a | tbc.
Because a | sac and a | tbc, by part (i) of that theorem, we conclude that a divides sac + tbc.
Because sac + tbc = ¢, we conclude that a | ¢, completing the proof. <

We will use the following generalization of Lemma 2 in the proof of uniqueness of prime
factorizations. (The proof of Lemma 3 is left as Exercise 64 in Section 5.1, because it can be
most easily carried out using the method of mathematical induction, covered in that section.)

If pisaprimeand p | aiaz - - - a,, where each qg; is an integer, then p | a; for some .

We can now show that a factorization of an integer into primes is unique. That is, we will
show that every integer can be written as the product of primes in nondecreasing order in at
most one way. This is part of the fundamental theorem of arithmetic. We will prove the other
part, that every integer has a factorization into primes, in Section 5.2.

Proof (of the uniqueness of the prime factorization of a positive integer): We will use a
proof by contradiction. Suppose that the positive integer n can be written as the product of primes
in two different ways, say, n = p1pz --- ps andn = q192 - - - g, each p; and ¢ ; are primes such
that p1 < p> <---<psandq1 <q2 < --- < q;.

When we remove all common primes from the two factorizations, we have

PirPip =+ Piy, = 4j19j2 " " 4jy>

where no prime occurs on both sides of this equation and « and v are positive integers. By
Lemma 3 it follows that p;; divides ¢;, for some k. Because no prime divides another prime,
this is impossible. Consequently, there can be at most one factorization of »n into primes in
nondecreasing order. <

Lemma 2 can also be used to prove a result about dividing both sides of a congruence by
the same integer. We have shown (Theorem 5 in Section 4.1) that we can multiply both sides of
a congruence by the same integer. However, dividing both sides of a congruence by an integer
does not always produce a valid congruence, as Example 18 shows.

The congruence 14 = 8 (mod 6) holds, but both sides of this congruence cannot be divided by 2
to produce a valid congruence because 14/2 = 7 and 8/2 = 4, but 7 # 4 (mod 6). <
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Although we cannot divide both sides of a congruence by any integer to produce a valid
congruence, we can if this integer is relatively prime to the modulus. Theorem 7 establishes this
important fact. We use Lemma 2 in the proof.

THEOREM 7

Proof: Because ac =bc (modm), m|ac—bc=c(a—D).

Let m be a positive integer and let a, b, and ¢ be integers. If ac = bc (mod m) and
gcd(c,m) = 1,thena = b (mod m).

By Lemma 2, because

gcd(c, m) =1, it follows that m | a — b. We conclude that a = b (mod m). <

Exercises

1

10.

*11.

12.

*13.

Determine whether each of these integers is prime.
a) 21 b) 29

c) 71 d) 97

e) 111 f) 143

. Determine whether each of these integers is prime.

a) 19
c) 93
e) 107

b) 27
d) 101
f) 113

. Find the prime factorization of each of these integers.

a) 88
d) 1001

b) 126
e) 1111

c) 729
f) 909,090

. Find the prime factorization of each of these integers.

a) 39
d) 143

b) 81
e) 289

c) 101
f) 899

. Find the prime factorization of 10!.
. How many zeros are there at the end of 100!?
. Express in pseudocode the trial division algorithm for

determining whether an integer is prime.

. Express in pseudocode the algorithm described in the text

for finding the prime factorization of an integer.

. Show that if ™ + 1 is composite if a and m are integers

greater than 1 and m is odd. [Hint: Show that x + 1 is a
factor of the polynomial x™ + 1 if m is odd.]

Show that if 2 4+ 1 is an odd prime, then m = 2"
for some nonnegative integer n. [Hint: First show that
the polynomial identity x™ +1 = (x* + 1)(x*(—D —
xk6=2 4 ... _xk 1 1) holds, where m =kt and ¢
is odd.]

Show that log, 3 is an irrational number. Recall that an ir-
rational number is a real number x that cannot be written
as the ratio of two integers.

Prove that for every positive integer n, there are n con-
secutive composite integers. [Hint: Consider the n con-
secutive integers starting with (n + 1)! 4 2.]

Prove or disprove that there are three consecutive odd
positive integers that are primes, that is, odd primes of
the form p, p+ 2, and p + 4.

14.

15.

16.

17.

18.

19.

20.

Which positive integers less than 12 are relatively prime

to 12?

Which positive integers less than 30 are relatively prime

to 30?

Determine whether the integers in each of these sets are

pairwise relatively prime.

a) 21,34,55 b) 14,17, 85

c) 25,41, 49,64 d) 17,18, 19, 23

Determine whether the integers in each of these sets are

pairwise relatively prime.

a) 11,15,19 b) 14,15, 21

c) 12,17,31,37 d) 7,8,911

We call a positive integer perfect if it equals the sum of

its positive divisors other than itself.

a) Show that 6 and 28 are perfect.

b) Show that 27~1(27 — 1) is a perfect number when
2P — 1is prime.

Show that if 2" — 1 is prime, then n is prime. [Hint: Use

the identity 290 —1 = (29 — 1) . (2¢(=D 4 2ab=2)

4294 1)]

Determine whether each of these integers is prime, veri-

fying some of Mersenne’s claims.

a) 2/ —1 b) 2° -1

c) 211 -1 d) 218 -1

The value of the Euler ¢-function at the positive integer n
is defined to be the number of positive integers less than or
equal to n that are relatively prime to n. [Note: ¢ is the Greek
letter phi.]

21.

22.
23.

24.

Find these values of the Euler ¢-function.

a) (4. b) ¢(10). c) ¢(13).

Show that n is prime if and only if ¢ (n) = n — 1.

What is the value of ¢ (p*) when p is prime and & is a
positive integer?

What are the greatest common divisors of these pairs of
integers?

a) 22.33.5° 25.3%.52

b) 2.3.5.7.11.13,211.3%.11. 171



25.

26.

217.

28.

29.

30.

31

32.

33.

34.
35.
*36.

L5 %37,

38.

39.

c) 17,17V d) 22.7,5%.13

e) 0,5 f) 2.3.5.7,2-3-5.7
What are the greatest common divisors of these pairs of
integers?

a) 37_53‘73’211_35.59

b) 11.13.17,29.37.55.78

c) 2331 2317

d) 41-43.53,41-43-53

e) 313 . 517’ 212 . 721

f) 1111,0

What is the least common multiple of each pair in Exer-
cise 24?

What is the least common multiple of each pair in Exer-
cise 25?

Find gcd(1000, 625) and Icm(1000, 625) and verify that
gcd (1000, 625) - lem(1000, 625) = 1000 - 625.

Find gcd(92928, 123552) and Icm(92928, 123552), and
verify that gcd(92928, 123552) - Icm(92928, 123552) =
92928 - 123552. [Hint: First find the prime factorizations
of 92928 and 123552.]

If the product of two integers is 273852711 and their great-
est common divisor is 23345, what is their least common
multiple?

Show that if a and b are positive integers, then ab =
gcd(a, b) - lem(a, b). [Hint: Use the prime factorizations
of @ and b and the formulae for gcd(a, b) and lcm(a, b)
in terms of these factorizations.]

Use the Euclidean algorithm to find

a) gcd(l,5). b) gcd(100, 101).

c) gcd(123, 277). d) gcd(1529, 14039).
e) gcd(1529, 14038). f) ged(11111,111111).
Use the Euclidean algorithm to find

a) gcd(12, 18). b) gcd(111, 201).

€) gcd(1001, 1331). d) gcd(12345, 54321).
e) gcd(1000, 5040). f) gcd(9888, 6060).

How many divisions are required to find gcd(21, 34) us-
ing the Euclidean algorithm?

How many divisions are required to find gcd(34, 55) us-
ing the Euclidean algorithm?

Show that if a and b are both positive integers, then
(2¢ —1)mod (20 — 1) =2amodb _ 1,

Use Exercise 36 to show that if « and b are posi-
tive integers, then ged(2¢ — 1,20 — 1) = 29¢d(@.b) _ 1,
[Hint: Show that the remainders obtained when the Eu-
clidean algorithm is used to compute gcd (24 — 1, 20 — 1)
are of the form 2" — 1, where r is a remainder arising
when the Euclidean algorithm is used to find gcd(a, b).]
Use Exercise 37 to show that the integers 235 — 1, 234 —
1,28 -1, 231 _1, 22 _1 and 22 — 1 are pairwise
relatively prime.

Using the method followed in Example 17, express the
greatest common divisor of each of these pairs of integers
as a linear combination of these integers.

a) 10,11 b) 21,44 c) 36,48

d) 34,55 e) 117,213 f) 0,223

g) 123, 2347 h) 3454,4666 i) 9999, 11111
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40. Using the method followed in Example 17, express the
greatest common divisor of each of these pairs of integers
as a linear combination of these integers.

a) 9,11 b) 33,44 c) 35,78
d) 21,55 e) 101, 203 f) 124,323
g) 2002,2339 h) 3457,4669 i) 10001, 13422

The extended Euclidean algorithm can be used to express

gcd(a, b) as a linear combination with integer coefficients of

the integersa andb.Wesetsg = 1,51 = 0,10 = 0,andry = 1

and lets; =s; 2 —qj_1s;_1and t; =t;_p —q;_1t;_1 for

Jj=2,3,...,n, where the ¢; are the quotients in the di-

visions used when the Euclidean algorithm finds gcd(a, b),

as shown in the text. It can be shown (see [R010]) that

gcd(a, b) = sya + t,b. The main advantage of the extended

Euclidean algorithm is that it uses one pass through the steps

of the Euclidean algorithm to find Bézout coefficients of a

and b, unlike the method in the text which uses two passes.

41. Use the extended Euclidean algorithm to express
gcd(26, 91) as a linear combination of 26 and 91.

42. Use the extended Euclidean algorithm to express
gcd(252, 356) as a linear combination of 252 and 356.

43. Use the extended Euclidean algorithm to express
gcd(144, 89) as a linear combination of 144 and 89.

44, Use the extended Euclidean algorithm to express
gcd(1001, 100001) as a linear combination of 1001 and
100001.

45. Describe the extended Euclidean algorithm using pseu-
docode.

46. Find the smallest positive integer with exactly » different
positive factors when n is
a) 3. b) 4. c) 5.

d) 6. e) 10.

47. Can you find a formula or rule for the nth term of a se-
quence related to the prime numbers or prime factoriza-
tions so that the initial terms of the sequence have these

values?

a) 0,1,1,0,1,0,1,0,0,0, 1, 0,1

b) 1,2,3,2,5,2,7,2,3,2,11,2,13,2, ..

c) 1,2,2,3,2,4,2,4,3,4,2,6,2,4, ..

d111011100,1,101,1,.

e 1,2,3,3,5,5,7,7,7,7,11,11, 13, 13

f) 1,2,6,30, 210, 2310, 30030, 510510, 9699690,
223092870, .

48. Can you find a formula or rule for the nth term of a se-
quence related to the prime numbers or prime factoriza-
tions so that the initial terms of the sequence have these

values?

a) 2,2,3,5,5,7,7,11,11,11, 11, 13, 13,

b) 0,1,2,2,3,3,4,4,4,4,5,5,6,6,.

¢ 1,0,0,1,0,1,0,1,1,1,0,1,0,1,..
di1-1,-10-1,1-100,1, 10 1,1,...
e) 1,1,1,1,1,0,1,1,1,0,1,0,1,0,0,

f) 4,9,25,49,121, 169, 289, 361, 529, 841, 961, 1369, . ..

49. Prove that the product of any three consecutive integers
is divisible by 6.
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50.

*51.

52.

53.

54.

55.

Show that if a, b, and m are integers such that m > 2 and
a = b (mod m), then gcd(a, m) = gcd(b, m).

Prove or disprove that n? — 79n + 1601 is prime when-
ever n is a positive integer.

Prove or disprove that p1p2 - - - p, + 1is prime for every
positive integer n, where p1, p2, ..., p, are the n small-
est prime numbers.

Show that there is a composite integer in every arithmetic
progression ak + b,k = 1,2, ... where a and b are pos-
itive integers.

Adapt the proof in the text that there are infinitely many
primes to prove that there are infinitely many primes
of the form 3k + 2, where k is a nonnegative inte-
ger. [Hint: Suppose that there are only finitely many
such primes ¢1, g2, ..., gn, and consider the number
39192+ qn — 1]

Adapt the proof in the text that there are infinitely many
primes to prove that there are infinitely many primes

Solving Congruences

*56.

*57.

of the form 4k + 3, where k is a nonnegative inte-
ger. [Hint: Suppose that there are only finitely many
such primes g1, g2, ..., qn, and consider the number
49192 qn — 1]

Prove that the set of positive rational numbers is countable
by setting up a function that assigns to a rational num-
ber p/q with gcd(p, ¢) = 1 the base 11 number formed
by the decimal representation of p followed by the base
11 digit A, which corresponds to the decimal number 10,
followed by the decimal representation of g.

Prove that the set of positive rational numbers is countable
by showing that the function K is a one-to-one correspon-

dence between the set of positive rational numbers and
the set of positive integers if K (m/n) = pf“lpgaz ceee
p2 P rgd g2, where gcd(m,n) =1
and the prime-power factorizations of m and n are m =

a, _a ag b1 b b
pllpzz ..... ps andn:qllqzz...qtt_

Introduction

Solving linear congruences, which have the form ax = b (mod m), is an essential task in the
study of number theory and its applications, just as solving linear equations plays an important
role in calculus and linear algebra. To solve linear congruences, we employ inverses modulo m.
We explain how to work backwards through the steps of the Euclidean algorithm to find inverses
modulo m. Once we have found an inverse of @ modulo m, we solve the congruence ax = b
(mod m) by multiplying both sides of the congruence by this inverse.

Simultaneous systems of linear congruence have been studied since ancient times. For
example, the Chinese mathematician Sun-Tsu studied them in the first century. We will show
how to solve systems of linear congruences modulo pairwise relatively prime moduli. The result
we will prove is called the Chinese remainder theorem, and our proof will give a method to
find all solutions of such systems of congruences. We will also show how to use the Chinese
remainder theorem as a basis for performing arithmetic with large integers.

We will introduce a useful result of Fermat, known as Fermat’s little theorem, which states
that if p is prime and p does not divide a, thena?~1 = 1 (mod p). We will examine the converse
of this statement, which will lead us to the concept of a pseudoprime. A pseudoprime m to the base
a is a composite integer m that masquerades as a prime by satisfying the congruence a1 =
(mod m). We will also give an example of a Carmichael number, which is a composite integer
that is a pseudoprime to all bases « relatively prime to it.

We also introduce the notion of discrete logarithms, which are analogous to ordinary loga-
rithms. To define discrete logarithms we must first define primitive roots. A primitive root of a
prime p is an integer r such that every integer not divisible by p is congruent to a power of r
modulo p. If r is a primitive root of p and r¢ = a (mod p), then e is the discrete logarithm of a
modulo p to the base r. Finding discrete logarithms turns out to be an extremely difficult prob-
lem in general. The difficulty of this problem is the basis for the security of many cryptographic

systems.
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Linear Congruences

A congruence of the form
ax = b (mod m),

where m is a positive integer, a and b are integers, and x is a variable, is called a linear
congruence. Such congruences arise throughout number theory and its applications.

How can we solve the linear congruence ax = b (mod m), that is, how can we find all
integers x that satisfy this congruence? One method that we will describe uses an integer a
such that za = 1 (mod m), if such an integer exists. Such an integer @ is said to be an inverse
of a modulo m. Theorem 1 guarantees that an inverse of a modulo m exists whenever a and m
are relatively prime.

If a and m are relatively prime integers and m > 1, then an inverse of ¢ modulo m exists.
Furthermore, this inverse is unique modulo m. (That is, there is a unique positive integer a
less than m that is an inverse of ¢ modulo m and every other inverse of a modulo m is
congruent to @ modulo m.)

Proof: By Theorem 6 of Section 4.3, because gcd(a, m) = 1, there are integers s and ¢ such
that

sa+tm =1

This implies that
sa +tm = 1(mod m).

Because rm = 0 (mod m), it follows that
sa =1 (mod m).

Consequently, s is an inverse of « modulo m. That this inverse is unique modulo m is left as
Exercise 7. <

Using inspection to find an inverse of @ modulo m is easy when m is small. To find this
inverse, we look for a multiple of a that exceeds a multiple of m by 1. For example, to find an
inverse of 3 modulo 7, we can find j - 3for j =1, 2, ..., 6, stopping when we find a multiple
of 3 that is one more than a multiple of 7. We can speed this approach up if we note that
2-3=—1(mod7). This means that (—2) - 3= 1(mod 7). Hence,5-3 =1 (mod 7),s0 5 isan
inverse of 3 modulo 7.

We can design a more efficient algorithm than brute force to find an inverse of « modulo m
when gcd(a, m) = 1 using the steps of the Euclidean algorithm. By reversing these steps as
in Example 17 of Section 4.3, we can find a linear combination sa + tm = 1 where s and ¢
are integers. Reducing both sides of this equation modulo m tells us that s is an inverse of
a modulo m. We illustrate this procedure in Example 1.
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EXAMPLE 1

EXAMPLE 2

Find an inverse of 3 modulo 7 by first finding Bézout coefficients of 3 and 7. (Note that we have
already shown that 5 is an inverse of 3 modulo 7 by inspection.)

Solution: Because gcd(3, 7) = 1, Theorem 1 tells us that an inverse of 3 modulo 7 exists. The
Euclidean algorithm ends quickly when used to find the greatest common divisor of 3 and 7:

7=2-3+1
From this equation we see that
—2-34+1.7=1

This shows that —2 and 1 are Bézout coefficients of 3 and 7. We see that —2 is an inverse of 3
modulo 7. Note that every integer congruent to —2 modulo 7 is also an inverse of 3, such as 5,
—9, 12, and so on. |

Find an inverse of 101 modulo 4620.

Solution: For completeness, we present all steps used to compute an inverse of 101 modulo 4620.
(Only the last step goes beyond methods developed in Section 4.3 and illustrated in Example 17
in that section.) First, we use the Euclidean algorithm to show that gcd(101, 4620) = 1. Then
we will reverse the steps to find Bézout coefficients a and b such that 101a + 462056 = 1. It will
then follow that « is an inverse of 101 modulo 4620. The steps used by the Euclidean algorithm
to find gcd(101, 4620) are

4620 =45-101 475
101=1-75+426

75=2-26+23

26=1-23+3

23=7-3+2
3=1-2+1
2=2-1

Because the last nonzero remainder is 1, we know that gcd(101, 4620) = 1. We can now find
the Bézout coefficients for 101 and 4620 by working backwards through these steps, expressing
gcd(101, 4620) = 1 in terms of each successive pair of remainders. In each step we eliminate
the remainder by expressing it as a linear combination of the divisor and the dividend. We obtain
1=3-1.2

=3-1-(23-7-3)=-1-23+8-3

=-1-23+8-(26—1-23)=8-26—-9-23

=8.26—-9-(715—-2-26)=—-9-75+26-26

=-9.75+26-(101 —1-75)=26-101—-35-75

=26-101 — 35 (4620 — 45-101) = —35 - 4620 + 1601 - 101.

That —35 - 4620 + 1601 - 101 = 1 tells us that —35 and 1601 are Bézout coefficients of 4620
and 101, and 1601 is an inverse of 101 modulo 4620. <
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Once we have an inverse @ of @ modulo m, we can solve the congruence ax = b (mod m)
by multiplying both sides of the linear congruence by a, as Example 3 illustrates.

What are the solutions of the linear congruence 3x = 4 (mod 7)?

Solution: By Example 1 we know that —2 is an inverse of 3 modulo 7. Multiplying both sides
of the congruence by —2 shows that

—2-3x=-2-4(mod 7).

Because —6 = 1 (mod 7) and —8 = 6 (mod 7), it follows that if x is a solution, then x = —8 =
6 (mod 7).

We need to determine whether every x with x =6 (mod 7) is a solution. Assume that
x = 6 (mod 7). Then, by Theorem 5 of Section 4.1, it follows that

3x=3-6=18=4(mod 7),

which shows that all such x satisfy the congruence. We conclude that the solutions to the
congruence are the integers x such that x = 6 (mod 7), namely, 6, 13, 20, ... and —1, —8,
—15,.... |

The Chinese Remainder Theorem

Systems of linear congruences arise in many contexts. For example, as we will see later, they are
the basis for a method that can be used to perform arithmetic with large integers. Such systems
can even be found as word puzzles in the writings of ancient Chinese and Hindu mathematicians,
such as that given in Example 4.

In the first century, the Chinese mathematician Sun-Tsu asked:

There are certain things whose number is unknown. When divided by 3, the remainder
is 2; when divided by 5, the remainder is 3; and when divided by 7, the remainder is 2. What
will be the number of things?

This puzzle can be translated into the following question: What are the solutions of the
systems of congruences

x =2 (mod 3),
x =3 (mod 5),
x =2 (mod 7)?
We will solve this system, and with it Sun-Tsu’s puzzle, later in this section. <

The Chinese remainder theorem, named after the Chinese heritage of problems involving
systems of linear congruences, states that when the moduli of a system of linear congruences
are pairwise relatively prime, there is a unique solution of the system modulo the product of the
moduli.
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THEOREM 2

EXAMPLE 5

THE CHINESE REMAINDER THEOREM Letm1, mo, ..., m, be pairwise relatively
prime positive integers greater thanone and a1, a, . . ., a, arbitrary integers. Then the system

x = ap (mod my),
x = ap (mod my),

x = a, (modm,)

has a unique solution modulo m = mimy ---m,. (That is, there is a solution x with
0 < x < m, and all other solutions are congruent modulo m to this solution.)

Proof: To establish this theorem, we need to show that a solution exists and that it is unique
modulo m. We will show that a solution exists by describing a way to construct this solution;
showing that the solution is unique modulo m is Exercise 30.

To construct a simultaneous solution, first let

My = m/my

fork=1,2,...,n. Thatis, My is the product of the moduli except for m;. Because m; and m;
have no common factors greater than 1 when i # k, it follows that gcd(my, M) = 1. Conse-
quently, by Theorem 1, we know that there is an integer y, an inverse of M; modulo my, such
that

Mkyk =1 (mod mg).
To construct a simultaneous solution, form the sum
X =ai1Miy1r +axMay2 + -+ - + an My yy.

We will now show that x is a simultaneous solution. F