
Fast Decision Procedures Based on Congruence Closure

GREG NELSON AND DEREK C. OPPEN

Stanford Umversity, Stanford, Caly'ornia

ABSTRACT, The notion of the congruence closure of a relation on a graph ~s defined and several algorithms for
computing it are surveyed A simple proof is given that the congruence closure algorithm provides a decision
procedure for the quantifier-free theory of equality A decision procedure ts then given for the quanufier-free
theory of LISP hst structure based on the congruence closure algorithm Both decision procedures determine the
satisfiability of a conjunction of hterals of length n In average time O(n log n) using the fastest known congruence
closure algorithm It is also shown that ff the axtomattzatton of the theory of list structure ts changed slightly, the
problem of determmmg the satisfiabihty of a conjunction of hterals becomes NP-complete The decision
procedures have been unplemented m the authors' simphfier for the Stanford Pascal Verifier

KEY WORDS AND PHRASES' program verification, mechanical theorem proving, decision procedure, congruence
closure, graph algorithms, theory of equahty, theory of recurstve data types

CR CATEGORIES 5 21, 5.24, 5 25, 5.7

1. lntroductwn

Consider the p rob lem of verifying that one equal i ty is a consequence o f several o ther
equalities, for example, t h a t f (f (a , b), b) = a is a consequence o f f (a , b) = a, or, less

obviously, t h a t f (a) = a is a consequence of f (f (f (a))) ~ a and f (f (f (f (f (a))))) = a. A
practical a lgor i thm for this p rob lem is essential to mechanica l p rogram verif icat ion (or to
any other kind o f mechanica l reasoning), since almost all proofs require reasoning about
equalities.

In 1954 A c k e r m a n n [1] showed that the p rob lem was decidable but d id not give a
practical algori thm. The p rob lem appears to have been ignored for the next twenty-four
years. In 1976 and 1977 several people at tacked the p rob lem f rom qui te different points o f
view. Downey, Sethi, and Tar jan [3] viewed the p rob lem as a var ia t ion o f the c o m m o n
subexpression problem, Kozen [4] as the word p rob lem in f imtely presented algebras, and
Shostak [81 and Nelson and Oppen [51 as the decision p rob lem for the quantif ier-free
theory o f equal i ty with uninterpreted funct ion symbols.

All these problems reduce to the p rob lem o f construct ing the "congruence closure" o f a
relat ion on a graph. In Sect ion 2 we define th,s no t ion and describe a congruence closure
a lgor i thm which we implemented in 1976 for use in the theorem prover o f the Stanford
Pascal Verifier. Its worst-case t ime is O(m 2) for graphs with m edges. Downey, Seth1, and
Tar jan [3] describe an a lgor i thm with worst-case t ime O(m logZm), which, by using a hash
table, can be made to run in average-case t ime O(m log m). We implemented this a lgor i thm
but d id not f ind it faster than the s impler a lgor i thm in our application.

Permission to copy without fee all or part of this material Is granted provided that the copies are not made or
distributed for &rect commercial advantage, the ACM copyright notice and the title of the publication and ItS
date appear, and notice is given that copying is by permission of the Association for Computing Machinery To
copy otherwise, or to republish, requires a fee and/or specific permission
An earlier version of this paper appeared m the Proceedings of the 18th Annual Symposmm on FoundaUons of
Computer Science, Providence, R 1, October 1977
This research was supported by the National Science Foundation under contract MCS 76-000327 and by the
Fannle and John Hertz Foundation
Authors' address Artificial Intelhgence Laboratory, Computer Science Department, Stanford University, Stan-
ford, CA 94305
© 1980 ACM 0004-5411/80/0400-0356 $00 75

Journal of the AssoclaUon for Computm S Machinery, Vo| 27, No 2, Apn| 1980, pp 356-364

Fast Decision Procedures Based on Congruence Closure 357

In Section 3 we prove that the congruence closure algorithm provides a decision
procedure for the quantifier-free theory of equahty with uninterpreted function symbols.
Other proofs have been given by Shostak [8] and Kozen [4], but ours is simpler.

In Section 4 we give a decision procedure based on congruence closure for another
theory of interest in program manipulation: the quantifier-free theory of LISP list structure
with uninterpreted function symbols. The axioms of this theory are

CAR(CONS(x, y)) = x,
CDR(CONS(x, y)) = y,
-TATOM(x) 3 CONS(CAR(x), CDR(x)) = x,
~ATOM(CONS(x, y)).

(Terms may contain uninterpreted function symbols, as well as the function symbols CAR,
CDR, and CONS.) Using the fastest version of the congruence closure algorithm, the
decision procedure requires average time O(n log n) to determine the satisfiability of a
conjunction of length n.

We conclude Section 4 with a curiosity: If the axlomatlzation of the theory of hst
structure is altered by specifying the result of CAR and CDR on atoms, the problem of
determining the satlsfiability of a conjunction becomes NP-complete.

The two deosion procedures given in Sectmns 3 and 4 have been implemented m the
simplifier for the Stanford Pascal Verifier. Details of how these and other deosion
procedures are combined to form a simplifier are given m [6].

2. Computing the Congruence Closure

Let G = (V, E) be a directed graph with labeled vertices, possibly with multiple edges. For
a vertex v, let ?,(v) denote its label and 8(v) its outdegree, that is, the number of edges
leaving v. The edges leaving a vertex are ordered. For 1 ~_ t _< 8(v), let v[i] denote the ith
successor of v, that is, the vertex to which the ith edge of v points. A vertex u is apredecessor
of v if v = u[i] for some i. Since multiple edges are allowed, possibly v[t] = vii i for i ~ l-
Let n be the number of vertices of G and m the number of edges of G. We assume there are
no isolated vertices and therefore that n = O(m).

Let R be a relation on V. Two vertices u and v are congruent under R if ~(u) = ~(v), 8(u)
= 8(v), and, for all i such that 1 _< 1 _< 8(u), (u[t], v[i]) E R. R is closed under congruences
if, for all vertices u and v such that u and v are congruent under R, (u, v) E R. There is a
unique minimal extension R ' of R such that R' is an equivalence relation and R ' is closed
under congruences; R ' is the congruence closure of R.

For example, let G be the graph shown in Figure 1 and R the relation ((V2, V3)}. The
vertices V 1 and V2 are congruent under R, so the congruence closure of R must include
the pairs (V2, V3) and (VI, V2). In fact, the minimal equivalence relation containing
these pairs, namely the equivalence relation with associated partition {(VI, V2, V3},
{V4}), is closed under congruences and is therefore the congruence closure of R.
Notice that the vertices V1, V2, V3, and V4 of G represent in a natural way the terms
f (f (a , b), b),f(a, b), a, and b, respectively. Deducing that V1 must be equivalent to V3 in
the congruence closure is analogous to deducingf (f (a , b), b) = a f romf(a , b) = a by the
substitutivity of equality.

As a second example, let G be the graph shown in Figure 2, R the relation {(VI, V6),
(V3, V6)}, and R ' the congruence closure of R. Vertices V2 and V5 are congruent under
R, so (V2, V5) E R'. Since R ' is closed under congruences, (VI, V4) ~ R'. The pairs
(VI, V4) and (VI, V6) are both m R', so (V4, V6) E R'. Hence (V3, V5) E R'. Thus all six
vertices are equivalent in the congruence closure. Essentmlly, we have proved the fact that

f (f (f (a))) = a and f (f (f (f (f (a))))) = a together implyf(a) = a.
We now consider the problem of computing the congruence closure. We represent an

eqmvalence relation by its corresponding partition, that is, by the set of its eqmvalence
classes. We use two procedures for operating on the partmon: U N I O N and FIND.

358

(~)v2

/ \
®v3 ®v,

G. NELSON AND D. C. OPPEN

(~)vl

(~)v2

(~) v3

(~) v4

(~) v5

® ve

FIGURE 2

U N I O N (u , v) combines the equivalence classes o f vertices u and v. F I N D (u) returns the
un ique n a m e of the equivalence class o f vertex u.

Suppose that R is a relat ion on the vertices o f a graph G, that R is d o s e d under
congruences, and that u and v are vertices o f G. The fol lowing procedure M E R G E (u , v)
constructs the congruence closure o f the relat ion R t.J {(u, v)).

MERGE(u, v)

I If FIND(u) = FIND(v), then return

2 Let P, be the set of all predecessors of all verttces equivalent to u, and Po the set of all predecessors of all
vertices eqmvalent to v.

3 Call UNION(u, v)

4 For each pair (x, y) such that x ~ P, and y ~ Po, If FIND(x) ~ FIND(y) but CONGRUENT(x, y) = TRUE,
then MERGE(x, y).

CONGRUENT(u, v).
1 If 8(u) ~ d(v), then return FALSE

2 For 1 _< l _< ~(u), if FIND(u[0) ~ FIND(v[t]), then return FALSE

3. Return TRUE

Since the a lgor i thm calls U N I O N only on the initial pair o f vertices and on congruent
pairs, the final equivalence relat ion Is not too coarse. Suppose that it is too fine. T h e n there
are two vertices x and y which are congruent but not equivalent . Since R was closed under
congruences initially, there was some call U N I O N (a , b) such that x and y were not
congruent before the call but were congruent after tt. Obviously some successor o f x was
equivalent to ei ther a or b before this call to U N I O N , and the same holds for y.
Fur thermore , this call U N I O N (a , b) was made f rom step 3 o f some call M E R G E (a , b), so
step 4 o f that call to M E R G E must merge x and y, contrary to assumption. Thus the
a lgor i thm is correct.

CLAIM 1. The number of calls to C O N G R U E N T is bounded by O(mn),for any sequence
of calls to M E R G E .

Fast Decision Procedures Based on Congruence Closure 359

PROOF. Two vertices u and v are checked for congruence only when two of their
successors are merged; this can happen at most 8(u) + 6(v) - 1 times. Thus the number of
calls to C O N G R U E N T is bounded by

Y, (8(u) + d(v) -- 1) = Z 8(u) + Z 8(v) -- E 1
u , v u , v u , v u , o

= 2mn - n(n - 1)/2
= O(mn). []

CLAIM 2. The number of calls to FIND from C O N G R U E N T is bounded by O(m2), for
any sequence of calls to MERGE.

PROOF. Let nk be the number o f vertices with outdegree k. Each pair of vertices with
outdegree k can be checked for congruence at most 2k - 1 times; each check requires at
most 2k calls to FIND. Thus the total number of calls to F I N D is bounded by

~ 4k2n~ _< 2knk = 4m 2. []

We associate with each equivalence class a "predecessor list" of all vertices with
successors in the class. No vertex appears more than once m the predecessor list. When
UNION combines two equivalence classes, it merges their predecessor lists into one,
eliminating any duplicates, and associates the new predecessor list with the new equivalence
class. With each vertex is associated a unique number from 1 to n; the predecessor lists are
kept sorted by vertex number. Thus the cost of merging two predecessor lists and
eliminating duplicates is proportional to the sum of their lengths.

We are now ready to compute the cost of O(n) top-level calls to MERGE. Since there
are only n vertices, these top-level calls can result in only n - 1 additional calls in step 4,
or O(n) calls in all. There are O(n) calls to F IND from step 1, O(mn) from step 4, and
O(m 2) from CONGRUENT, or O(m 2) calls in all. There are no more than n - 1 calls to
UNION. In the fast implementation of U N I O N and F I N D analyzed in [9], U N I O N takes
constant time and O(m 2) calls to F IND take O(m 2) time. The total cost of splicing
predecessor lists is O(n2). Thus, the asymptotic worst-case time for O(n) merges is O(m2).

The double loop used in step 4 to find new congruent pairs is not very sophisticated. I f
the set of predecessors of the two vertices is lexicographically sorted on the sequences of
their successors' equivalence classes, then congruent vertices will be adjacent in the sorted
list. The cost of finding all new congruent pairs is proportional to the sum of the lengths
of the predecessor lists mstead of to the product. I f step 4 is changed in this way, the time
bound for the algorithm becomes O(mn).

In the sophisticated algorithm of Downey, Sethi, and Tarjan [3], the vertices are kept in
a hash table keyed by the list of equivalence classes of their successors. Step 4 can be
implemented so that only the vertices in the shorter predecessor list need be rehashed. The
average Ume for O(n) merges using their algorithm is O(m log m).

We have implemented both the O(m 2) and the O(m log m) algorithms. The more
sophisticated algorithm is not faster for our applications. The reason is that the predecessor
lists are short, so that the double loop runs at about the same speed as in the more
sophisticated method.

3. The Quantifier-Free Theory of Equality

In this section, we show how the decision problem for the quantifier-free theory of equality
with uninterpreted function symbols reduces to the congruence closure problem.

The language of the quantifier-free theory of equality consists of variables, unmterpreted
function symbols, the usual Boolean connectives, and the predicate =. An example of a
formula m the theory is x = y D fix) = f ly) . To determine the validity of a formula, it
suffices to determme the unsatisfiability of the disjunctive normal form of its negation.

360 G. NELSON AND D. C. OPPEN

The disjunction is unsatisfiable if and only if each of its disjuncts is unsatisfiable, so it
suffices to describe an algorithm for determining the satisfiability of conjunctions of
literals.

DECISION PROCEDLrRE. This algorithm determines the satisfiability of the conjunction
of equalities and disequalities

tx = ul A . . . A tp -- Up A rl # s l A . . . A rq # Sq.

1 Construct a graph G which corresponds to the set of all terms appearing m the conjunction For each term t
appearing m the conJunction, let ¢(0 be the vertex m G representing t Let R be the ldenUty relation on the
verttces of G

2 For 1 _< i _< p, merge r(t,) with ¢(u,) using the MERGE procedure given above.

3. For I _< i ~ q, if r(r,) is eqmvalent to ¢(s,), the conjunction is unsamfiable
4. Otherwise, the conjunction ts satisfiable

Using the sophisticated version of MERGE, the above procedure determines the
satisfiability of a conjunction of length n in average time O(n log n).

It is straightforward to verify that the algorithm is correct if it returns UNSATISFIABLE.
To show that it is correct if it returns SATISFIABLE, we construct an interpretation
satisfying F.

Let S be the partition of the vertices of G corresponding to the final equivalence relation.
maps individual variables into elements of S (that is, equivalence classes of vertices) and

k-ary function symbols into functions from S k to S.
If x is an individual variable, let ~ x) be the equivalence class of any vertex labeled x

with outdegree 0. (Since all such vertices are equivalent, this definition is unambiguous.)
I f f is a function variable, let ~ f) (Q 1 Qk) be the equivalence class of any vertex v
in V such that ~(v) = f, 6(0 = k, and for all i between 1 and k , v[i] ~ Qi. (~ f) is
well-defined because, if two vertices u and v both satisfy these conditions, they are con-
gruent and therefore m the same equivalence class.) I f no such vertex v exists, then
~ f) (Q a Qk) is arbitrary.

It is straightforward to verify that for all terms t in F, ~ t) is the eqmvalence class of
z(0. Thus ~ satisfies F, since r(t,) is in the same equivalence class as r(u,) for each i, and
~'(r,) is in a different equivalence class than ~(s,) for each i.

4. E x t e n s i o n to Theor ies o f L i s t S t r u c t u r e

The congruence closure algorithm forms the basis for a fast deciston procedure for
determining satisfiability in the quantifier-free theory of list structure with unmterpreted
function symbols. The language of this theory is the language of the quantifier-free theory
of equahty plus distinguished function symbols CAR, CDR, and CONS and predicate
symbol ATOM, satisfying the following axioms:

CAR(CONS(x, y)) ffi x,
CDR(CONS(x, y)) = y, (1)
--ATOM(x) D CONS(CAR(x), CDR(x)) = x,
--ATOM(CONS(x, y)).

CAR, CDR, CONS, and ATOM are the well-known functions and predicates of LISP.
An example of a theorem m this theory is

CAR(x) = CAR(y) A CDR(x) -- CDR(y) A --ATOM(x) A ~ A T O M (y) Dr(x) = f l y) .

Notice that we do not restrict the domain of the LISP functions to noncircular lists, so that
a formula like CAR(x) = x is satisfiable. If we include axioms enforcing acyclicity of hst
structure (as in Pure LISP) and exclude uninterpreted function symbols, a faster algorithm
is possible than the one described here. Oppen [7] describes a decision procedure which

Fast Decision Procedures Based on Congruence Closure 361

determines the saUsfiabihty of conjunctions over the quantifier-free theory of (pure) LISP
in linear time.

The algorithm represents terms by vertices in a directed graph as in Section 3. The basic
idea of the decision procedure is to add all relevant instances of axiom schema (1) to this
graph. For each term CONS(x, y) represented in the graph, we will add the equalities
x = CAR(CONS(x, y)) and y = CDR(CONS(x, y)) to the graph.

We assume that each literal ATOM(t) appearing negatively has been eliminated from
the conjunction and replaced by an equality t = CONS(u, v), where u and v are variables
appeanng nowhere else in the formula. Therefore, the only literals involving ATOM are
positive.

DECISION PROCEDURE. This algorithm determines the satisfiability of a conjunction F
of the form

ATOM(u1) A ATOM(u2) A . . . A ATOM(uq) A
111 " ~ W l A ° • • A V r "~" W r A
xl#ylA...Ax~#y~,

where the terms in the literals may contain uninterpreted function symbols as well as the
functions CAR, CDR, and CONS.

1 Construct a graph G which corresponds to the set of all terms appeanng in the conjunction For each term t
appeanng m the conjunctton, let ~-(t) be the vertex m G representing t For ! <_ z ~ r, call MERGE(¢(v,), ¢(w,))

2 For each vertex u in G labeled CONS, add vertices v, labeled CAR, and w, labeled CDR, both with ontdegree
i, such that v[l] = will = u Call MERGE(v, u[i]) and MERGE(w, u[2]) (That is, given a term CONS(x, y),
add verttces representing CAR(CONS(x, y)) and CDR(CONS(x, y)) and merge them with the vertices repre-
senting x and y)

3 For z from 1 to s, tf ~-(x,) is equivalent to ~-(y,), return UNSATISFIABLE For t from 1 to q, If the eqmvalence
class of t-(u,) contains a vertex labeled CONS, return UNSATISFIABLE Otherwise, return SATISFIABLE

If the length of the formula F is n, the size of G after step 2 is O(n). The average time
required by this decision procedure to determine the satisfiability of a conjunction of
literals is therefore O(n log n) using the fast congruence closure algorithm.

PROOF OF CORRECTNESS. It is straightforward to verify that the algorithm is correct if
it returns UNSATISFIABLE. Suppose that it returns SATISFIABLE; we construct an
interpretation satisfying F.

Let So be the partition of the vertices of G corresponding to the final equivalence
relation. We define two functions CAR0 and CDR0 from So to So, and a function CONS0
from a subset of So × So to So. If the equivalence class Q contains a vertex v with a
predecessor u labeled CAR, then CARo(Q) is the equivalence class of u; otherwise CARo(Q)
is arbitrary. If Q contains a vertex v with a predecessor u labeled CDR, then CDRo(Q) is
the equivalence class of u; otherwise CDRo(Q) is arbitrary. The pair (Q1, Q2) is in the
domain of CONSo only if there exists a vertex v labeled CONS such that v[l] E Q1 and
v[2] E Q2; in this case CONSo(Q1, Q2) is the equivalence class of v. Note that CARo,
CDRo, and CONS0 are well defmed because the graph is closed under congruences.

Unfortunately, CONSo is not a total function. To construct an interpretation, we must
extend CONS0 to be defined on all of So x So. We first extend it to a function CONS1
which agrees with CONSo where CONS0 is defined, and otherwise just returns the ordered
pair of its arguments. Since CONS1 returns elements of So x So, the range So of the
interpretation must be extended to a set $1 that includes both So and part of So x So. But
then CONS~ is not total and must be extended so that it is defined on all of S~ x S~. To
construct an interpretation we repeat this extension step infinitely many times.

More precisely, suppose that we have defined the first i + 1 quadruples in the infinite
sequence (So, CONSo, CAR0, CDRo), (Sx, CONS1, CAR1, CDR1), . . . , (S,, CONS,, CAR,,
CDR3 We define the next quadruple (S,+l, CONS,+1, CAR,+~, CDR,+0 by the
following rules.

362 G. NELSON AND D. C. OPPEN

Let D, be the domain o f CONS,.

(1) S,+l = S, U St X St - Dr.
(2) The domain of CONS,+i is St x S,. CONS,+i(x, y) = CONS,(x, y) if (x, y) is in the

domain of CONS,; CONSt+i(x, y) = (x, y) otherwise.
(3) CAR,+i(x) -- CAR,(x) if x E St. Otherwise x ~ S, x S, - D, and is thus an ordered

pair (y, z); in this case define CAR,+~(x) = y.
(4) CDRt+~(x) = CDR,(x) i fx E S,. Otherwise x ~ S, x S, - Dt and is thus an ordered

pair (y, z); in this case define C D R , + i (x) = 2.

We now show that, for each i, CARt, CDRt, and CONS, have the following two
properties.

(1) If (x, y) is in the domain of CONS,, then CAR,(CONS,(x, y)) = x and
CDR,(CONS, (x , y)) = y.

(2) I f x is m the range of CONS,, then (CAR,(x), CDR,(x)) is in the domain of CONS,,
and CONSt(CARt(x), CDR,(x)) = x.

Consider first the base case, when i = 0 and x and y are eqmvalence classes. If (x, y) is
in the domain of CONS0, then there is a vertex u with h(u) = CONS, u[l] E x, and
u[2] E y. Since u is a CONS, two vertices v and w labeled CAR and CDR, respectively,
were added as predecessors of u. The vertices v and w satisfy the requirements of the
definitions of CAR0 and CDR0, so CAR0(CONS0(x, y)) is the equivalence class of v and
CDRo(CONS0(x, y)) is the equivalence class of w. Furthermore the pairs (v, u[1]) and
(w, u[2]) were added to R in step 2, so v and w are in the equivalence classes x and y,
respectively. The proof that CARo, CDRo, and CONSo have the second property is similar.

Suppose now that CONS,, CAR,, and CDR, satisfy properties 1 and 2. If (x, y)
is in the domain of CONS,, then CONSt+~(x, y) = CONS,(x, y); at follows that
CARt+i(CONS,+i(x, y)) = CARt(CONS,(x, y)) = x and CDR,+~(CONSt+i(x, y)) =
CDR, (CONS, (x , y)) = y by the induction hypothesis. Otherwase, CONS,+~(x, y) as the
ordered pair (x, y), and CARt+i(CONSt+i(x, y)) = x and CDR,+~(CONS,+~(x, y)) = y by
definition. A similar argument shows that CONS,+1, CARt+l, and CDR,+i satisfy prop-
erty 2.

It follows by reduction that, for all i, the functions CARt , CDR,, and CONS, have the
two properties.

Let S ' be the union of all the St. Let CAR'(x) be CAR,(x) for the first i such that x E
S,. Let CDR' and CONS' be defined similarly. It follows that CAR', CDR' , and CONS'
have properUes 1 and 2 and that CONS' is defined on all of S ' x S'.

We are finally ready to define an interpretation xk satisfying F. The range of tk is S'.
interprets CAR, CDR, and CONS as CAR', CDR', and CONS'. An element of S ' is
anterpreted to be nonatomic if and only if it is in the range of CONS'. I f f is an
uninterpreted function symbol, Q~ Qk are m S, and there exists a vertex v such that
~(v) = f, 8(0 = k, and v[i] E Q, for each i from 1 to k, then 6(f)(Q~ Qk) is the
eqmvalence class of v. I f this definition does not determine the value of ~/(f), then the
value is arbitrary.

It follows from properties 1 and 2 and the fact that the set of nonatoms is exactly the
range of CONS' that this interpretauon satisfies axiom schema (2). It remains to show that
~k satisfies F.

It is straightforward to show that for each term t in the original formula, ~ 0 is the
equivalence class of z(t). But "r(vt) and ,(w,) have been merged for each i from 1 to r, so tk
satisfies the equalities in F. "r(xt) and ~'(Y3 are in different eqmvalence classes (since step
3 returned SATISFIABLE), so tk satisfies the dasequalities in F. Finally, no equivalence
class of any ,(u,) contains a node labeled CONS; hence these classes are not m the range
of CONSo. They are certainly not in the range of any of the other functions CONS,, so
they are interpreted as atoms by ~k. Hence tk satisfies F.

This completes the proof of correctness of the decision procedure.

Fast Decision Procedures Based on Congruence Closure 363

Somewhat surprisingly, when the result o f a selector function on an atom is specified by
the axioms, the problem of determining the satisfiability of a conjunction o f literals
becomes NP-complete. Consider the following axioms for the theory of CAR, CDR, and
CONS with the single atom NIL:

CAR(CONS(X, Y)) = X,
CDR(CONS(X, Y)) = Y,
X # NIL D CONS(CAR(X), CDR(X)) = X,
CONS(X, Y) # NIL,
CAR(NIL) = CDR(NIL) = NIL.

We show that the problem of determining the satisfiability in this theory o f a conjunction
of equalities and disequahties between terms containing CAR, CDR, CONS, NIL, and
uninterpreted function signs is NP-complete.

It is straightforward to show that the problem is in NP, since a nondeterministic program
can guess the equivalence relaUon on the set of terms in the conjunction and then check
that the equivalence relation does not violate any of the above axioms or the substitutivity
of equality.

To show that the problem is NP-hard, we will reduce the 3-CNF satisfiability problem
for propositional calculus to it. (See [2].)

Let P1 Pn be propositional variables and F a conjunction of three-element clauses
over the P,. We construct a conjunction G of equalities and disequalities between list-
structure terms involving CAR, CDR, CONS, NIL, and the 2n variables X1, Y~ Xn,
Yn such that G is satisfiable if and only if F is.

The first part of G is

CAR(X1) = CAR(Y1)/~ CDR(X~) = CDR(Y1)/k X~ # Y1 A
CAR(X2) = CAR(Y2) A CDR(X2) = CDR(Y2) A X2 # Y2 A

: (2)

CAR(Xn) = CAR(Yn) A CDR(X~) = CDR(Yn) A Xn # Yn.

For no t can X, and Y, both be non-NIL, smce then X, and Y, would be equal by the
third axiom and the substitutwity of equality. One of them must be NIL and the other
CONS(NIL, NIL).

Given an interpretation ~p for G, we construct an interpretation ¢p for F by defining dr(P,)
to be TRUE if and only if ~p(X,) = NIL. The remaining conjuncts in G guarantee that ~p
satisfies G if and only if th satisfies F.

We demonstrate the construction with an example. If one of the clauses of F is Pt ~/
-~P2 W Pa, we want to add a conjunct to G which is eqmvalent to (Xl = NIL V X2 # NIL
V X3 = NIL). In light of (2), this is eqmvalent to

-1(Y2 = NIL A X2 = NIL/~ Y3 = NIL),

or to the single hteral

CONS(Yz, CONS(X2, Y3)) # CONS(NIL, CONS(NIL, NIL)).

Note that we have shown the problem is NP-hard even without uninterpreted function
symbols. A simdar construcUon can be used whenever the result of a selector function on
an atom Is specified. The problem ts also NP-complete with the axiomatizatlon (1) if
predicates are interpreted as Boolean-valued funcuons and literals such as F(ATOM(x))
F(ATOM(y)) are allowed.

ACKNOWLEDGMENT. We are indebted to Bob Tarjan for many helpful discussions.

REFERENCES

l, ACKERMANN, W Solvable Cases of the Dectston Problem North-Holland, Amsterdam, 1954
2 AHO, A V, HOPCROFT, J E, AND ULLMANN, J D The Destgn and Analysts of Computer Algortthms

Addison-Wesley, Reading, Mass 1974

364 G. NELSON AND D. C. OPPEN

3. DOWNEY, P. J , SETHI, R , AND TARTAN, R E. Var,ations on the common subexpresslon problem To appear
m £ ACM.

4. KOZEN, D. Complexity of finitely represented algebras. Proc. 9th Annual ACM Symp. on Theory of
Comptg., Boulder, Colo., May 1977, pp. 164-177.

5. NE~ON, C G., AND OPPEN, D. C Fast decision procedures based on UNION and'FIND. Proc Eighteenth
Annual Syrup on Foundations of Comptr. Scl, Providence, R 1., 1977 (This is an earher version of the
present paper.)

6 NELSON, C G., AND OPPEN, D. C Stmphfication by cooperating decision procedures To be pubhshed
70PPEN, D C. Reasoning about recurstvely defined data structures Proc 5th ACM Symp on Prmctples of

Programming Languages, Tucson, ADz, January 1978, pp 151-157
8. SHOSTAK, R An algorithm for reasoning about equality Comm ACM 21, 7 (July 1978), 583-585
9 TARIAN, R. E Efficiency of a good but not linear set umon algorithm J ACM 22, 2 (April 1975), 215-225

RECEIVED JUNE 1978, REVISED APRIL 1979, ACCEPTED APRIL 1979

Journal of the Assoclat*on for Computing Machinery Vol 27, No 2, Aprd 1980

