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Foreword to the first edition

Edmund M. Clarke

FORE Systems Professor of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Formal methods have finally come of age! Specification languages, theorem
provers, and model checkers are beginning to be used routinely in industry.
Mathematical logic is basic to all of these techniques. Until now textbooks
on logic for computer scientists have not kept pace with the development
of tools for hardware and software specification and verification. For exam-
ple, in spite of the success of model checking in verifying sequential circuit
designs and communication protocols, until now I did not know of a sin-
gle text, suitable for undergraduate and beginning graduate students, that
attempts to explain how this technique works. As a result, this material is
rarely taught to computer scientists and electrical engineers who will need to
use it as part of their jobs in the near future. Instead, engineers avoid using
formal methods in situations where the methods would be of genuine benefit
or complain that the concepts and notation used by the tools are compli-
cated and unnatural. This is unfortunate since the underlying mathematics
is generally quite simple, certainly no more difficult than the concepts from
mathematical analysis that every calculus student is expected to learn.
Logic in Computer Science by Huth and Ryan is an exceptional book.
I was amazed when I looked through it for the first time. In addition to
propositional and predicate logic, it has a particularly thorough treatment
of temporal logic and model checking. In fact, the book is quite remarkable
in how much of this material it is able to cover: linear and branching time
temporal logic, explicit state model checking, fairness, the basic fixpoint

ix



X Foreword to the first edition

theorems for computation tree logic (CTL), even binary decision diagrams
and symbolic model checking. Moreover, this material is presented at a level
that is accessible to undergraduate and beginning graduate students. Nu-
merous problems and examples are provided to help students master the
material in the book. Since both Huth and Ryan are active researchers in
logics of programs and program verification, they write with considerable
authority.

In summary, the material in this book is up-to-date, practical, and ele-
gantly presented. The book is a wonderful example of what a modern text
on logic for computer science should be like. I recommend it to the reader
with greatest enthusiasm and predict that the book will be an enormous
success.

(This foreword is re-printed in the second edition with its author’s permis-
sion.)



Preface to the second edition

Our motivation for (re)writing this book

One of the leitmotifs of writing the first edition of our book was the obser-
vation that most logics used in the design, specification and verification of
computer systems fundamentally deal with a satisfaction relation

ME

where M is some sort of situation or model of a system, and ¢ is a specifi-
cation, a formula of that logic, expressing what should be true in situation
M. At the heart of this set-up is that one can often specify and implement
algorithms for computing F. We developed this theme for propositional,
first-order, temporal, modal, and program logics. Based on the encourag-
ing feedback received from five continents we are pleased to hereby present
the second edition of this text which means to preserve and improve on the
original intent of the first edition.

What's new and what’'s gone

Chapter 1 now discusses the design, correctness, and complexity of a SAT
solver (a marking algorithm similar to Stalmarck’s method [SS90]) for full
propositional logic.

Chapter 2 now contains basic results from model theory (Compactness
Theorem and Léwenheim—Skolem Theorem); a section on the transitive clo-
sure and the expressiveness of existential and universal second-order logic;
and a section on the use of the object modelling language Alloy and its anal-
yser for specifying and exploring under-specified first-order logic models with
respect to properties written in first-order logic with transitive closure. The
Alloy language is executable which makes such exploration interactive and
formal.

xi



xii Preface to the second edition

Chapter 3 has been completely restructured. It now begins with a discus-
sion of linear-time temporal logic; features the open-source NuSMV model-
checking tool throughout; and includes a discussion on planning problems,
more material on the expressiveness of temporal logics, and new modelling
examples.

Chapter 4 contains more material on total correctness proofs and a new
section on the programming-by-contract paradigm of verifying program cor-
rectness.

Chapters 5 and 6 have also been revised, with many small alterations and
corrections.

The interdependence of chapters and prerequisites

The book requires that students know the basics of elementary arithmetic
and naive set theoretic concepts and notation. The core material of Chap-
ter 1 (everything except Sections 1.4.3 to 1.6.2) is essential for all of the
chapters that follow. Other than that, only Chapter 6 depends on Chapter 3
and a basic understanding of the static scoping rules covered in Chapter 2 —
although one may easily cover Sections 6.1 and 6.2 without having done
Chapter 3 at all. Roughly, the interdependence diagram of chapters is

WWW page

This book is supported by a Web page, which contains a list of errata;
text files for all the program code; ancillary technical material and links;
all the figures; an interactive tutor based on multiple-choice questions;
and details of how instructors can obtain the solutions to exercises in
this book which are marked with a *. The URL for the book’s page
is www.cs.bham.ac.uk/research/lics/. See also www.cambridge.org/
052154310x
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1

Propositional logic

The aim of logic in computer science is to develop languages to model the
situations we encounter as computer science professionals, in such a way
that we can reason about them formally. Reasoning about situations means
constructing arguments about them; we want to do this formally, so that
the arguments are valid and can be defended rigorously, or executed on a

machine.
Consider the following argument:

Example 1.1 If the train arrives late and there are no taxis at the station,
then John is late for his meeting. John is not late for his meeting. The train
did arrive late. Therefore, there were taxis at the station.

Intuitively, the argument is valid, since if we put the first sentence and
the third sentence together, they tell us that if there are no taxis, then John
will be late. The second sentence tells us that he was not late, so it must be
the case that there were taxis.

Much of this book will be concerned with arguments that have this struc-
ture, namely, that consist of a number of sentences followed by the word
‘therefore’ and then another sentence. The argument is valid if the sentence
after the ‘therefore’ logically follows from the sentences before it. Exactly
what we mean by ‘follows from’ is the subject of this chapter and the next

one.
Consider another example:

Example 1.2 If it is raining and Jane does not have her umbrella with her,
then she will get wet. Jane is not wet. It is raining. Therefore, Jane has her
umbrella with her.

This is also a valid argument. Closer examination reveals that it actually
has the same structure as the argument of the previous example! All we have
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done is substituted some sentence fragments for others:

Example 1.1 Example 1.2

the train is late it is raining

there are taxis at the station Jane has her umbrella with her
John is late for his meeting Jane gets wet.

The argument in each example could be stated without talking about trains
and rain, as follows:
If p and not ¢, then r. Not r. p. Therefore, q.

In developing logics, we are not concerned with what the sentences really
mean, but only in their logical structure. Of course, when we apply such
reasoning, as done above, such meaning will be of great interest.

1.1 Declarative sentences

In order to make arguments rigorous, we need to develop a language in which
we can express sentences in such a way that brings out their logical structure.
The language we begin with is the language of propositional logic. It is based
on propositions, or declarative sentences which one can, in principle, argue
as being true or false. Examples of declarative sentences are:

(1) The sum of the numbers 3 and 5 equals 8.

(2) Jane reacted violently to Jack’s accusations.

(3) Every even natural number >2 is the sum of two prime numbers.
(4) All Martians like pepperoni on their pizza.

(5) Albert Camus était un écrivain frangais.

(

6) Die Wiirde des Menschen ist unantastbar.

These sentences are all declarative, because they are in principle capable of
being declared ‘true’, or ‘false’. Sentence (1) can be tested by appealing to
basic facts about arithmetic (and by tacitly assuming an Arabic, decimal
representation of natural numbers). Sentence (2) is a bit more problematic.
In order to give it a truth value, we need to know who Jane and Jack are
and perhaps to have a reliable account from someone who witnessed the
situation described. In principle, e.g., if we had been at the scene, we feel
that we would have been able to detect Jane’s wviolent reaction, provided
that it indeed occurred in that way. Sentence (3), known as Goldbach’s
conjecture, seems straightforward on the face of it. Clearly, a fact about
all even numbers >2 is either true or false. But to this day nobody knows
whether sentence (3) expresses a truth or not. It is even not clear whether
this could be shown by some finite means, even if it were true. However, in
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this text we will be content with sentences as soon as they can, in principle,
attain some truth value regardless of whether this truth value reflects the
actual state of affairs suggested by the sentence in question. Sentence (4)
seems a bit silly, although we could say that if Martians exist and eat pizza,
then all of them will either like pepperoni on it or not. (We have to introduce
predicate logic in Chapter 2 to see that this sentence is also declarative if no
Martians exist; it is then true.) Again, for the purposes of this text sentence
(4) will do. Et alors, qu’est-ce qu’on pense des phrases (5) et (6)? Sentences
(5) and (6) are fine if you happen to read French and German a bit. Thus,
declarative statements can be made in any natural, or artificial, language.

The kind of sentences we won’t consider here are non-declarative ones,
like

¢ Could you please pass me the salt?
* Ready, steady, go!
e May fortune come your way.

Primarily, we are interested in precise declarative sentences, or statements
about the behaviour of computer systems, or programs. Not only do we
want to specify such statements but we also want to check whether a given
program, or system, fulfils a specification at hand. Thus, we need to develop
a calculus of reasoning which allows us to draw conclusions from given as-
sumptions, like initialised variables, which are reliable in the sense that they
preserve truth: if all our assumptions are true, then our conclusion ought to
be true as well. A much more difficult question is whether, given any true
property of a computer program, we can find an argument in our calculus
that has this property as its conclusion. The declarative sentence (3) above
might illuminate the problematic aspect of such questions in the context of
number theory.

The logics we intend to design are symbolic in nature. We translate a cer-
tain sufficiently large subset of all English declarative sentences into strings
of symbols. This gives us a compressed but still complete encoding of declar-
ative sentences and allows us to concentrate on the mere mechanics of our
argumentation. This is important since specifications of systems or software
are sequences of such declarative sentences. It further opens up the possibil-
ity of automatic manipulation of such specifications, a job that computers
just love to do!'. Our strategy is to consider certain declarative sentences as

1 There is a certain, slightly bitter, circularity in such endeavours: in proving that a certain
computer program P satisfies a given property, we might let some other computer program Q try
to find a proof that P satisfies the property; but who guarantees us that Q satisfies the property
of producing only correct proofs? We seem to run into an infinite regress.
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being atomic, or indecomposable, like the sentence
‘The number 5 is even.’

We assign certain distinct symbols p,q, 7, ..., or sometimes p1, p2,p3,... to
each of these atomic sentences and we can then code up more complex
sentences in a compositional way. For example, given the atomic sentences

p: ‘I won the lottery last week.’
q: ‘I purchased a lottery ticket.’
r: ‘I won last week’s sweepstakes.’

we can form more complex sentences according to the rules below:

—: The negation of p is denoted by —p and expresses ‘I did not win the lottery
last week,” or equivalently ‘It is not true that I won the lottery last week.’

V: Given p and r we may wish to state that at least one of them is true: ‘I won the
lottery last week, or I won last week’s sweepstakes;” we denote this declarative
sentence by p V r and call it the disjunction of p and 2.

A: Dually, the formula p A r denotes the rather fortunate conjunction of p and r:
‘Last week I won the lottery and the sweepstakes.’

—: Last, but definitely not least, the sentence ‘If I won the lottery last week,
then I purchased a lottery ticket.” expresses an implication between p and g,
suggesting that ¢ is a logical consequence of p. We write p — ¢ for that3. We
call p the assumption of p — q and q its conclusion.

Of course, we are entitled to use these rules of constructing propositions
repeatedly. For example, we are now in a position to form the proposition

pPAqg—TVg

which means that ‘if p and ¢ then not r or ¢’. You might have noticed a
potential ambiguity in this reading. One could have argued that this sentence
has the structure ‘p is the case and if q then ...’ A computer would require
the insertion of brackets, as in

(pAq)— ((=r)Vq)

2 Its meaning should not be confused with the often implicit meaning of or in natural language
discourse as either ...or. In this text or always means at least one of them and should not be
confounded with ezclusive or which states that exactly one of the two statements holds.

3 The natural language meaning of ‘if ...then ...’ often implicitly assumes a causal role of
the assumption somehow enabling its conclusion. The logical meaning of implication is a bit
different, though, in the sense that it states the preservation of truth which might happen
without any causal relationship. For example, ‘If all birds can fly, then Bob Dole was never
president of the United States of America.’ is a true statement, but there is no known causal
connection between the flying skills of penguins and effective campaigning.
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to disambiguate this assertion. However, we humans get annoyed by a pro-
liferation of such brackets which is why we adopt certain conventions about
the binding priorities of these symbols.

Convention 1.3 — binds more tightly than V and A, and the latter two
bind more tightly than —. Implication — is right-associative: expressions of
the form p — ¢ — r denote p — (¢ — 7).

1.2 Natural deduction

How do we go about constructing a calculus for reasoning about proposi-
tions, so that we can establish the validity of Examples 1.1 and 1.27 Clearly,
we would like to have a set of rules each of which allows us to draw a con-
clusion given a certain arrangement of premises.

In natural deduction, we have such a collection of proof rules. They al-
low us to infer formulas from other formulas. By applying these rules in
succession, we may infer a conclusion from a set of premises.

Let’s see how this works. Suppose we have a set of formulas® ¢1, ¢o,
@3, ..., ¢n, which we will call premises, and another formula, 1, which we
will call a conclusion. By applying proof rules to the premises, we hope
to get some more formulas, and by applying more proof rules to those, to
eventually obtain the conclusion. This intention we denote by

¢1a¢25"'5¢n|_1/}'

This expression is called a sequent; it is valid if a proof for it can be found.
The sequent for Examples 1.1 and 1.2 is p A =g — r,—r,p F ¢q. Construct-
ing such a proof is a creative exercise, a bit like programming. It is not
necessarily obvious which rules to apply, and in what order, to obtain the
desired conclusion. Additionally, our proof rules should be carefully chosen;
otherwise, we might be able to ‘prove’ invalid patterns of argumentation. For

4 Tt is traditional in logic to use Greek letters. Lower-case letters are used to stand for formulas
and upper-case letters are used for sets of formulas. Here are some of the more commonly used
Greek letters, together with their pronunciation:

Lower-case Upper-case

10} phi P Phi

P psi )4 Psi

X chi T Gamma
n eta A Delta

«@ alpha

Jé] beta

o' gamma
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example, we expect that we won’t be able to show the sequent p,q F p A —q.
For example, if p stands for ‘Gold is a metal.” and ¢ for ‘Silver is a metal,’
then knowing these two facts should not allow us to infer that ‘Gold is a
metal whereas silver isn’t.’

Let’s now look at our proof rules. We present about fifteen of them in
total; we will go through them in turn and then summarise at the end of
this section.

1.2.1 Rules for natural deduction
The rules for conjunction Our first rule is called the rule for conjunc-
tion (A): and-introduction. It allows us to conclude ¢ A1, given that we
have already concluded ¢ and 1 separately. We write this rule as

¢

oA
Above the line are the two premises of the rule. Below the line goes the
conclusion. (It might not yet be the final conclusion of our argument;
we might have to apply more rules to get there.) To the right of the line,
we write the name of the rule; Ai is read ‘and-introduction’. Notice that we

Al.

have introduced a A (in the conclusion) where there was none before (in the
premises).

For each of the connectives, there is one or more rules to introduce it and
one or more rules to eliminate it. The rules for and-elimination are these
two:

AN QN

Neq

¢ (4

The rule Aep says: if you have a proof of ¢ A1, then by applying this rule
you can get a proof of ¢. The rule Aey says the same thing, but allows
you to conclude 9 instead. Observe the dependences of these rules: in the
first rule of (1.1), the conclusion ¢ has to match the first conjunct of the

Neg. (11)

premise, whereas the exact nature of the second conjunct 1 is irrelevant.
In the second rule it is just the other way around: the conclusion ¢ has to
match the second conjunct ¢ and ¢ can be any formula. It is important
to engage in this kind of pattern matching before the application of proof
rules.

Example 1.4 Let’s use these rules to prove that p A g, r | ¢ Ar is valid.
We start by writing down the premises; then we leave a gap and write the
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conclusion:

PAgq
r

AN A

The task of constructing the proof is to fill the gap between the premises
and the conclusion by applying a suitable sequence of proof rules. In this
case, we apply Aes to the first premise, giving us g. Then we apply Ai to this
g and to the second premise, r, giving us g A r. That’s it! We also usually
number all the lines, and write in the justification for each line, producing
this:

1 p/Aq premise
2 T premise
3 q Neg 1

4 gNhr N3,2

Demonstrate to yourself that you’ve understood this by trying to show on
your own that (p A q) Ar, s At |- qA sis valid. Notice that the ¢ and 1 can
be instantiated not just to atomic sentences, like p and ¢ in the example we
just gave, but also to compound sentences. Thus, from (p A ¢) Ar we can
deduce p A ¢ by applying Aej, instantiating ¢ to p A ¢ and ¥ to r.

If we applied these proof rules literally, then the proof above would actu-
ally be a tree with root ¢ A r and leaves p A ¢ and r, like this:

PAg
— Neg
q o,
— Al
gANT

However, we flattened this tree into a linear presentation which necessitates
the use of pointers as seen in lines 3 and 4 above. These pointers allow
us to recreate the actual proof tree. Throughout this text, we will use the
flattened version of presenting proofs. That way you have to concentrate only
on finding a proof, not on how to fit a growing tree onto a sheet of paper.

If a sequent is valid, there may be many different ways of proving it. So if
you compare your solution to these exercises with those of others, they need
not coincide. The important thing to realise, though, is that any putative
proof can be checked for correctness by checking each individual line, starting
at the top, for the valid application of its proof rule.
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The rules of double negation Intuitively, there is no difference be-
tween a formula ¢ and its double negation ——¢, which expresses no more
and nothing less than ¢ itself. The sentence

‘It is not true that it does not rain.’
is just a more contrived way of saying
‘It rains.’

Conversely, knowing ‘It rains,” we are free to state this fact in this more
complicated manner if we wish. Thus, we obtain rules of elimination and
introduction for double negation:

l0) 10}

-e

¢ ¢

(There are rules for single negation on its own, too, which we will see later.)

—i.

Example 1.5 The proof of the sequent p, == (¢ A r) F =—p A r below uses
most of the proof rules discussed so far:

1 P premise
2 ——(¢ A1) premise
3 - ——il

4 gnT ——e 2

5 r Neg 4

6

—“—p AT N 3,5

Example 1.6 We now prove the sequent (pAgq) A7, s\t gAs which
you were invited to prove by yourself in the last section. Please compare
the proof below with your solution:

1 (p A q) ANr premise
2 sAt premise
3 pAq Nep 1
4 q Neg 3
5) s Nep 2
6 qNs ANid4,5
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The rule for eliminating implication There is one rule to introduce
— and one to eliminate it. The latter is one of the best known rules of
propositional logic and is often referred to by its Latin name modus ponens.
We will usually call it by its modern name, implies-elimination (sometimes
also referred to as arrow-elimination). This rule states that, given ¢ and
knowing that ¢ implies 1, we may rightfully conclude ¢. In our calculus, we
write this as

¢ 9=

¢ .
(G

Let us justify this rule by spelling out instances of some declarative sen-
tences p and g. Suppose that

p: It rained.
p — q: If it rained, then the street is wet.

so q is just ‘The street is wet.” Now, if we know that it rained and if we
know that the street is wet in the case that it rained, then we may combine
these two pieces of information to conclude that the street is indeed wet.
Thus, the justification of the —e rule is a mere application of common sense.
Another example from programming is:

p: The value of the program’s input is an integer.
p — q: If the program’s input is an integer, then the program outputs
a boolean.

Again, we may put all this together to conclude that our program outputs
a boolean value if supplied with an integer input. However, it is important
to realise that the presence of p is absolutely essential for the inference
to happen. For example, our program might well satisfy p — ¢, but if it
doesn’t satisfy p — e.g. if its input is a surname — then we will not be able to
derive q.

As we saw before, the formal parameters ¢ and the ¢ for —e can be
instantiated to any sentence, including compound ones:

1 “pAgq premise
2 pAq— 7V -p premise
3 rV p —e 2,1
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Of course, we may use any of these rules as often as we wish. For example,
given p, p — q and p — (¢ — r), we may infer r:

1 p— (¢ —r) premise
2 p—q premise
3 P premise
4 q—r —el,3
9 q —e 2,3
6 T —e 4,5

Before turning to implies-introduction, let’s look at a hybrid rule which
has the Latin name modus tollens. It is like the —e rule in that it eliminates
an implication. Suppose that p — ¢ and —q are the case. Then, if p holds
we can use —e to conclude that ¢ holds. Thus, we then have that q and —q
hold, which is impossible. Therefore, we may infer that p must be false. But
this can only mean that —p is true. We summarise this reasoning into the
rule modus tollens, or MT for short:®

p—p
¢
Again, let us see an example of this rule in the natural language setting:

‘If Abraham Lincoln was Ethiopian, then he was African. Abraham
Lincoln was not African; therefore he was not Ethiopian.’

MT.

Example 1.7 In the following proof of

p—(qg—r),p kg

we use several of the rules introduced so far:

1 p— (¢ — r) premise
2 P premise
3 -r premise
4 q—r —el,2
5 —q MT 4,3

5 We will be able to derive this rule from other ones later on, but we introduce it here because it
allows us already to do some pretty slick proofs. You may think of this rule as one on a higher
level insofar as it does not mention the lower-level rules upon which it depends.
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Examples 1.8 Here are two example proofs which combine the rule MT
with either ——e or ——i:

1 -p — ¢ premise
2 —q premise
3 ——p MT 1,2
4 P -—e 3

proves that the sequent —p — ¢, —q - p is valid; and

1 p — —q premise
2 q premise
3 —q i 2

4 —p MT 1,3

shows the validity of the sequent p — —q, g - —p.

Note that the order of applying double negation rules and MT is different
in these examples; this order is driven by the structure of the particular
sequent whose validity one is trying to show.

The rule implies introduction The rule MT made it possible for us to
show that p — ¢, =¢ = —p is valid. But the validity of the sequent p — ¢
—q — —p seems just as plausible. That sequent is, in a certain sense, saying
the same thing. Yet, so far we have no rule which builds implications that
do not already occur as premises in our proofs. The mechanics of such a rule
are more involved than what we have seen so far. So let us proceed with
care. Let us suppose that p — ¢ is the case. If we temporarily assume that
—q holds, we can use MT to infer —p. Thus, assuming p — ¢ we can show
that —g implies —p; but the latter we express symbolically as -q¢ — —p. To
summarise, we have found an argumentation for p — ¢ - —~q — —p:

1 p—q premise
2 —q assumption
3 -p MT 1,2
4 -q— p —i2-3

The box in this proof serves to demarcate the scope of the temporary as-
sumption —gq. What we are saying is: let’s make the assumption of —g. To
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do this, we open a box and put —¢g at the top. Then we continue applying
other rules as normal, for example to obtain —p. But this still depends on
the assumption of —¢g, so it goes inside the box. Finally, we are ready to
apply —i. It allows us to conclude —¢ — —p, but that conclusion no longer
depends on the assumption —g. Compare this with saying that ‘If you are
French, then you are European.” The truth of this sentence does not depend
on whether anybody is French or not. Therefore, we write the conclusion
—q — —p outside the box.

This works also as one would expect if we think of p — ¢ as a type of a
procedure. For example, p could say that the procedure expects an integer
value z as input and ¢ might say that the procedure returns a boolean value
y as output. The validity of p — ¢ amounts now to an assume-guarantee
assertion: if the input is an integer, then the output is a boolean. This
assertion can be true about a procedure while that same procedure could
compute strange things or crash in the case that the input is not an in-
teger. Showing p — ¢ using the rule —i is now called type checking, an
important topic in the construction of compilers for typed programming
languages.

We thus formulate the rule —i as follows:

It says: in order to prove ¢ — 1, make a temporary assumption of ¢ and then
prove . In your proof of i, you can use ¢ and any of the other formulas
such as premises and provisional conclusions that you have made so far.
Proofs may nest boxes or open new boxes after old ones have been closed.
There are rules about which formulas can be used at which points in the
proof. Generally, we can only use a formula ¢ in a proof at a given point if
that formula occurs prior to that point and if no box which encloses that
occurrence of ¢ has been closed already.

The line immediately following a closed box has to match the pattern
of the conclusion of the rule that uses the box. For implies-introduction,
this means that we have to continue after the box with ¢ — 1, where ¢
was the first and ¢ the last formula of that box. We will encounter two
more proof rules involving proof boxes and they will require similar pattern
matching.
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Example 1.9 Here is another example of a proof using —i:

1 g — —p premise

2 P assumption
3 ——p i 2

4 g MT 1,3

5 p— g —i2—4

which verifies the validity of the sequent -¢ — —p - p — ——q. Notice that
we could apply the rule MT to formulas occurring in or above the box: at
line 4, no box has been closed that would enclose line 1 or 3.

At this point it is instructive to consider the one-line argument

1 p premise

which demonstrates p - p. The rule —i (with conclusion ¢ — 1) does not
prohibit the possibility that ¢ and ¥ coincide. They could both be instanti-
ated to p. Therefore we may extend the proof above to

1 ] p assumption |

2 p—p —il-—1
We write F p — p to express that the argumentation for p — p does not
depend on any premises at all.

Definition 1.10 Logical formulas ¢ with valid sequent + ¢ are theorems.

Example 1.11 Here is an example of a theorem whose proof utilises most
of the rules introduced so far:

1 q—r assumption
2 -q — —p assumption
3 P assumption
4 ——p i 3
5 g MT 2,4
6 q ——e b
7 r —e 1,6
8 p—T —i3—7
9 (g ——wp) = (—r) —i2-8

10 (q—=r)=((~¢g—-p —@p—r) —il1-9
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Figure 1.1. Part of the structure of the formula (¢ — r) — ((—¢ — —p) —
(p — r)) to show how it determines the proof structure.

Therefore the sequent F (¢ —r)— ((-g — —p) — (p —r)) is valid,
showing that (¢ — r) — ((-g — —p) — (p — r)) is another theorem.

Remark 1.12 Indeed, this example indicates that we may transform any
proof of ¢1, @2, ..., ¢, F 1 in such a way into a proof of the theorem

Fgr— (d2— (d3— (= (P —)...)))

by ‘augmenting’ the previous proof with n lines of the rule —i applied to
Ony Gn—1,---, ¢1 in that order.

The nested boxes in the proof of Example 1.11 reveal a pattern of using
elimination rules first, to deconstruct assumptions we have made, and then
introduction rules to construct our final conclusion. More difficult proofs
may involve several such phases.

Let us dwell on this important topic for a while. How did we come up
with the proof above? Parts of it are determined by the structure of the for-
mulas we have, while other parts require us to be creative. Consider the log-
ical structure of (¢ — r) — ((—g — —p) — (p — r)) schematically depicted
in Figure 1.1. The formula is overall an implication since — is the root of
the tree in Figure 1.1. But the only way to build an implication is by means
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of the rule —i. Thus, we need to state the assumption of that implication
as such (line 1) and have to show its conclusion (line 9). If we managed
to do that, then we know how to end the proof in line 10. In fact, as we
already remarked, this is the only way we could have ended it. So essentially
lines 1, 9 and 10 are completely determined by the structure of the formula;
further, we have reduced the problem to filling the gaps in between lines 1
and 9. But again, the formula in line 9 is an implication, so we have only
one way of showing it: assuming its premise in line 2 and trying to show
its conclusion in line 8; as before, line 9 is obtained by —i. The formula
p — 1 in line 8 is yet another implication. Therefore, we have to assume p in
line 3 and hope to show 7 in line 7, then —i produces the desired result in
line 8.

The remaining question now is this: how can we show r, using the three
assumptions in lines 1-37 This, and only this, is the creative part of this
proof. We see the implication ¢ — r in line 1 and know how to get r (using
—e) if only we had ¢. So how could we get ¢q7 Well, lines 2 and 3 almost look
like a pattern for the MT rule, which would give us ——¢q in line 5; the latter
is quickly changed to ¢ in line 6 via =—e. However, the pattern for MT does
not match right away, since it requires ——p instead of p. But this is easily
accomplished via ——i in line 4.

The moral of this discussion is that the logical structure of the formula
to be shown tells you a lot about the structure of a possible proof and
it is definitely worth your while to exploit that information in trying to
prove sequents. Before ending this section on the rules for implication,
let’s look at some more examples (this time also involving the rules for
conjunction).

Example 1.13 Using the rule Ai, we can prove the validity of the sequent

pAg—1rEp—(g—r):

1 pAqg—T premise

2 P assumption
3 q assumption
4 pAq A2, 3

) r —el,4

6 q—r —13-5

7 p—(qg—r) —i2-6
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Example 1.14 Using the two elimination rules Ae; and Aes, we can show
that the ‘converse’ of the sequent above is valid, too:

1 p— (¢ — r) premise

2 pAq assumption
3 P Nep 2

4 q Neg 2

) q—r —e 1,3

6 r —e 5,4

7 pANg—T —12—-6

The validity of p— (¢—7r)FpAg—r and pAgq—1rFp—(qg—7)
means that these two formulas are equivalent in the sense that we can prove
one from the other. We denote this by

pAqg—rad-p—(¢g—r).

Since there can be only one formula to the right of I, we observe that each
instance of 4 can only relate two formulas to each other.

Example 1.15 Here is an example of a proof that uses introduction and
elimination rules for conjunction; it shows the validity of the sequent p —
gbEpAr —qgANr:

1 p—q premise

2 pPAT assumption
3 P Aeq 2

4 r Aeg 2

) q —e 1,3

6 qnT Ai b, 4

7 pAT —=qgATr —i2—06

The rules for disjunction The rules for disjunction are different in spirit
from those for conjunction. The case for conjunction was concise and clear:
proofs of ¢ A 1 are essentially nothing but a concatenation of a proof of ¢ and
a proof of 1, plus an additional line invoking Ai. In the case of disjunctions,
however, it turns out that the introduction of disjunctions is by far easier
to grasp than their elimination. So we begin with the rules Vi; and Vis.
From the premise ¢ we can infer that ‘¢ or ¢’ holds, for we already know
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that ¢ holds. Note that this inference is valid for any choice of 9. By the
same token, we may conclude ‘¢ or v’ if we already have 1. Similarly, that
inference works for any choice of ¢. Thus, we arrive at the proof rules

o . U

1
oV Y oV Y

So if p stands for ‘Agassi won a gold medal in 1996.” and ¢ denotes the

sentence ‘Agassi won Wimbledon in 1996."” then p V ¢ is the case because p

is true, regardless of the fact that q is false. Naturally, the constructed dis-

junction depends upon the assumptions needed in establishing its respective

Via.

disjunct p or gq.

Now let’s consider or-elimination. How can we use a formula of the form
¢ V 9 in a proof? Again, our guiding principle is to disassemble assumptions
into their basic constituents so that the latter may be used in our argumen-
tation such that they render our desired conclusion. Let us imagine that we
want to show some proposition y by assuming ¢ V 1. Since we don’t know
which of ¢ and 1 is true, we have to give two separate proofs which we need
to combine into one argument:

1. First, we assume ¢ is true and have to come up with a proof of x.

2. Next, we assume 1 is true and need to give a proof of x as well.

3. Given these two proofs, we can infer x from the truth of ¢ V 1, since our case
analysis above is exhaustive.

Therefore, we write the rule Ve as follows:

i i
VAT, X |IX
Ve.
X

It is saying that: if ¢ V ¢ is true and — no matter whether we assume ¢ or
we assume Y — we can get a proof of y, then we are entitled to deduce y

anyway. Let’s look at a proof that pV g F ¢ V p is valid:

1 pV q premise

2 D assumption

3 qVp Vig?2

4 q assumption

) qVp Vi 4

6 qVp Vel 2—3,4-5
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Here are some points you need to remember about applying the Ve rule.

e For it to be a sound argument we have to make sure that the conclusions in each
of the two cases (the x in the rule) are actually the same formula.

e The work done by the rule Ve is the combining of the arguments of the two cases
into one.

e In each case you may not use the temporary assumption of the other case, unless
it is something that has already been shown before those case boxes began.

* The invocation of rule Ve in line 6 lists three things: the line in which the
disjunction appears (1), and the location of the two boxes for the two cases (2-3
and 4-5).

If we use ¢ V 1 in an argument where it occurs only as an assumption or
a premise, then we are missing a certain amount of information: we know
¢, or ¥, but we don’t know which one of the two it is. Thus, we have
to make a solid case for each of the two possibilities ¢ or ; this resem-
bles the behaviour of a CASE or IF statement found in most programming
languages.

Example 1.16 Here is a more complex example illustrating these points.
We prove that the sequent ¢ — 7+ pV g — pVris valid:

1 q—r premise

2 pVq assumption

3 P assumption

4 pVr Vip 3

) q assumption

6 T —e 1,5

7 pVr Vig 6

8 pVr Ve 2,3—-4,5-7
9 pVg—pVr —i2-8

Note that the propositions in lines 4, 7 and 8 coincide, so the application of
Ve is legitimate.

We give some more example proofs which use the rules Ve, Vi; and Vis.

Example 1.17 Proving the validity of the sequent (pV q)VrtpV(gVr)
is surprisingly long and seemingly complex. But this is to be expected, since
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the elimination rules break (pV ¢) V r up into its atomic constituents p, ¢
and r, whereas the introduction rules then built up the formula p Vv (¢ V r).

1 (pVq)Vr premise
2 (pVaq) assumption
3 D assumption
4 pVi(gVr) Vi3
) q assumption
6 qVr Vii 5
7 pV(gVr) Vig6
8 pV(gVr) Ve2,3-4,5-7
9 r assumption
10 qVr Vig 9
11 pV(gVr) Vig 10
12 pV(gVvr) Vel 2-8,9-11

Example 1.18 From boolean algebra, or circuit theory, you may know that
disjunctions distribute over conjunctions. We are now able to prove this in

natural deduction. The following proof:

1 pA(gVr) premise
2 P Nep 1
3 qVr Neg 1
4 q assumption
) pPAQq A 2,4
6 (pAq)V(pAT) Vii 5
7 r assumption
8 pPAT N 2,7
9 (pANgV(pAT) Vig 8
10 (pAq)V(pAT) Ve3d,4—6,7-9

verifies the validity of the sequent pA(¢V7)F (pAgqg)V (pAT) and you
are encouraged to show the validity of the ‘converse’ (p Aq)V (pAr)EpA

(g V r) yourself.
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A final rule is required in order to allow us to conclude a box with a for-
mula which has already appeared earlier in the proof. Consider the sequent
Fp — (¢ — p), whose validity may be proved as follows:

1 P assumption
2 q assumption
3 D copy 1

4 q—p —12-3

5 p—(g—p) —il-4

The rule ‘copy’ allows us to repeat something that we know already. We need
to do this in this example, because the rule —i requires that we end the inner
box with p. The copy rule entitles us to copy formulas that appeared before,
unless they depend on temporary assumptions whose box has already been
closed. Though a little inelegant, this additional rule is a small price to pay
for the freedom of being able to use premises, or any other ‘visible’ formulas,
more than once.

The rules for negation We have seen the rules =—i and ——e, but we
haven’t seen any rules that introduce or eliminate single negations. These
rules involve the notion of contradiction. This detour is to be expected since
our reasoning is concerned about the inference, and therefore the preserva-
tion, of truth. Hence, there cannot be a direct way of inferring —¢, given

?.

Definition 1.19 Contradictions are expressions of the form ¢ A =¢ or —¢ A
¢, where ¢ is any formula.

Examples of such contradictions are r A =r, (p — ¢) A =(p — ¢q) and —(r V
s —q) AN (rVs— q). Contradictions are a very important notion in logic.
As far as truth is concerned, they are all equivalent; that means we should
be able to prove the validity of

(rvs—qg)A(rvs—q)d-(p—q) A=(p—q) (1.2)

since both sides are contradictions. We’ll be able to prove this later, when
we have introduced the rules for negation.

Indeed, it’s not just that contradictions can be derived from contradic-
tions; actually, any formula can be derived from a contradiction. This can be
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confusing when you first encounter it; why should we endorse the argument
p A —pt q, where

p: The moon is made of green cheese.

q: 1 like pepperoni on my pizza.

considering that our taste in pizza doesn’t have anything to do with the
constitution of the moon? On the face of it, such an endorsement may seem
absurd. Nevertheless, natural deduction does have this feature that any for-
mula can be derived from a contradiction and therefore it makes this argu-
ment valid. The reason it takes this stance is that F tells us all the things
we may infer, provided that we can assume the formulas to the left of it.
This process does not care whether such premises make any sense. This has
at least the advantage that we can match F to checks based on semantic
intuitions which we formalise later by using truth tables: if all the premises
compute to ‘true’, then the conclusion must compute ‘true’ as well. In partic-
ular, this is not a constraint in the case that one of the premises is (always)
false.

The fact that | can prove anything is encoded in our calculus by the
proof rule bottom-elimination:

1
— le.

¢

The fact that L itself represents a contradiction is encoded by the proof rule
not-elimination:

Example 1.20 We apply these rules to show that -pVgl p— ¢ is
valid:

1 -pVq

2 —p premise q premise

3 P assumption ||||p assumption
4 1 —e 3,2 q copy 2

5 q le4 p—q —id3—4

6 p—q —i3-5

7 p—q Ve 1l,2—6
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Notice how, in this example, the proof boxes for Ve are drawn side by side
instead of on top of each other. It doesn’t matter which way you do it.

What about introducing negations? Well, suppose we make an assumption
which gets us into a contradictory state of affairs, i.e. gets us L. Then our
assumption cannot be true; so it must be false. This intuition is the basis
for the proof rule —i:

—i.

Example 1.21 We put these rules in action, demonstrating that the se-
quent p — q, p — g+ —p is valid:

1 p—q  premise

2 p — —q premise

3 P assumption
4 q —e 1,3

) —q —e 2,3

6 1 —-e 4,5

7 -p —i 3—6

Lines 3-6 contain all the work of the —i rule. Here is a second example,
showing the validity of a sequent, p — —p F —p, with a contradictory formula
as sole premise:

1 p — —p premise

2 P assumption
3 -p —e 1,2

4 1 -e 2,3

5 -p -i2—4

Example 1.22 We prove that the sequent p — (¢ — r), p, =r |- ¢ is valid,
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without using the MT rule:

1 p— (¢ —r) premise

2 P premise

3 -r premise

4 q assumption
) q—r —e 1,2

6 T —e b, 4

7 1 —e 6,3

8 —q -i4-7

Example 1.23 Finally, we return to the argument of Examples 1.1 and 1.2,
which can be coded up by the sequent p A =q¢ — r, =r, p | ¢ whose validity
We NOw prove:

1 pA—-qg— 1 premise

2 -r premise

3 P premise

4 —q assumption
) pA—q Al 3,4

6 r —el,5

7 1 —e 6,2

8 g -i4-7

9 q ——e 8

1.2.2 Derived rules
When describing the proof rule modus tollens (MT), we mentioned that it
is not a primitive rule of natural deduction, but can be derived from some
of the other rules. Here is the derivation of

p—
¢

MT
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from —e, —e and —i:

1 ¢ — 1 premise

2 - premise

3 10) assumption
4 () —e 1,3

5 L —e 4,2

6 - —-i3-5

We could now go back through the proofs in this chapter and replace applica-
tions of MT by this combination of —e, —e and —i. However, it is convenient
to think of MT as a shorthand (or a macro).

The same holds for the rule

¢ -l
¢
It can be derived from the rules —i and —e, as follows:
1 ¢ premise
2 -¢  assumption
3 L —-e 1,2
4 ——¢ i 2-3

There are (unboundedly) many such derived rules which we could write
down. However, there is no point in making our calculus fat and unwieldy;
and some purists would say that we should stick to a minimum set of rules,
all of which are independent of each other. We don’t take such a purist view.
Indeed, the two derived rules we now introduce are extremely useful. You will
find that they crop up frequently when doing exercises in natural deduction,
so it is worth giving them names as derived rules. In the case of the second
one, its derivation from the primitive proof rules is not very obvious.

The first one has the Latin name reductio ad absurdum. It means ‘reduc-
tion to absurdity’ and we will simply call it proof by contradiction (PBC
for short). The rule says: if from —¢ we obtain a contradiction, then we are
entitled to deduce ¢:




1.2 Natural deduction 25

This rule looks rather similar to —i, except that the negation is in a different
place. This is the clue to how to derive PBC from our basic proof rules.
Suppose we have a proof of 1 from —¢. By —i, we can transform this into
a proof of =¢ — 1 and proceed as follows:

1 -¢ — 1 given

2 ¢ assumption
3 1 —e 1,2

4 e -i2-3

5 10} ——e 4

This shows that PBC can be derived from —i, —i, —e and ——e.

The final derived rule we consider in this section is arguably the most
useful to use in proofs, because its derivation is rather long and complicated,
so its usage often saves time and effort. It also has a Latin name, tertium
non datur; the English name is the law of the excluded middle, or LEM for
short. It simply says that ¢ V —¢ is true: whatever ¢ is, it must be either true
or false; in the latter case, —¢ is true. There is no third possibility (hence
excluded middle): the sequent F ¢V —¢ is valid. Its validity is implicit, for
example, whenever you write an if-statement in a programming language:
‘if B {C} else {C2} relies on the fact that B V =B is always true (and
that B and —B can never be true at the same time). Here is a proof in
natural deduction that derives the law of the excluded middle from basic
proof rules:

1 —(¢ VvV ¢)  assumption
2 ¢ assumption
3 AVART0) Vip 2

4 L —e 3,1

5 - —i2—4

6 oV Vig 5

7 L —-e 6,1

8 —=(pV-p) —il-T7

9 ¢V - ——e 8
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Example 1.24 Using LEM, we show that p — ¢+ —p V ¢ is valid:

1 p — q premise

2 -pVp LEM

3 -p assumption

4 -pVqg Vi; 3

) P assumption

6 q —e 1,5

7 -pVgq Vigb

8 -pVgq Ve2,3—4,5-7

It can be difficult to decide which instance of LEM would benefit the progress

of

a proof. Can you re-do the example above with ¢ V =q as LEM?

1.2.3 Natural deduction in summary

The proof rules for natural deduction are summarised in Figure 1.2. The

explanation of the rules we have given so far in this chapter is declarative;

we have presented each rule and justified it in terms of our intuition about

the logical connectives. However, when you try to use the rules yourself,

you’ll find yourself looking for a more procedural interpretation; what does
a rule do and how do you use it? For example,

Al says: to prove ¢ A1, you must first prove ¢ and 1 separately and then use
the rule Ai.

Aej says: to prove ¢, try proving ¢ A and then use the rule Ae;. Actually,
this doesn’t sound like very good advice because probably proving ¢ A ¢ will
be harder than proving ¢ alone. However, you might find that you already have
¢ A lying around, so that’s when this rule is useful. Compare this with the
example sequent in Example 1.15.

Vip says: to prove ¢ V 9, try proving ¢. Again, in general it is harder to prove
¢ than it is to prove ¢ V v, so this will usually be useful only if you've already
managed to prove ¢. For example, if you want to prove ¢ |- p V ¢, you certainly
won’t be able simply to use the rule Vij, but Vis will work.

Ve has an excellent procedural interpretation. It says: if you have ¢ V 1, and you
want to prove some Yy, then try to prove x from ¢ and from v in turn. (In those
subproofs, of course you can use the other prevailing premises as well.)
Similarly, —i says, if you want to prove ¢ — 1, try proving ¢ from ¢ (and the
other prevailing premises).

—i says: to prove —¢, prove L from ¢ (and the other prevailing premises).
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The basic rules of natural deduction:

introduction elimination
AN ¢ ¢/\i ¢/\w/\el ¢/\¢/\e2
GNP o (0
ol ¥
X| X
y vy W W
X
e ¢ ¢ - w —e
(
i 0~
1
. . 1
1 (no introduction rule for L) ry Le
¢
Some useful derived rules:
bov o
¢
1
— PBC LEM
¢ ¢V g

Figure 1.2. Natural deduction rules for propositional logic.
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At any stage of a proof, it is permitted to introduce any formula as as-
sumption, by choosing a proof rule that opens a box. As we saw, natural
deduction employs boxes to control the scope of assumptions. When an as-
sumption is introduced, a box is opened. Discharging assumptions is achieved
by closing a box according to the pattern of its particular proof rule. It’s
useful to make assumptions by opening boxes. But don’t forget you have to
close them in the manner prescribed by their proof rule.

OK, but how do we actually go about constructing a proof?
Given a sequent, you write its premises at the top of your page and
its conclusion at the bottom. Now, you're trying to fill in the gap,
which involves working simultaneously on the premises (to bring them to-
wards the conclusion) and on the conclusion (to massage it towards the
premises).

Look first at the conclusion. If it is of the form ¢ — 1, then apply® the
rule —i. This means drawing a box with ¢ at the top and ¥ at the bottom.
So your proof, which started out like this:

premises

¢—

now looks like this:

premises

10) assumption

(G

p—v —i
You still have to find a way of filling in the gap between the ¢ and the .
But you now have an extra formula to work with and you have simplified

the conclusion you are trying to reach.

6 Except in situations such as p — (¢ — —r),p F ¢ — —r where —e produces a simpler proof.
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The proof rule —i is very similar to —i and has the same beneficial effect
on your proof attempt. It gives you an extra premise to work with and
simplifies your conclusion.

At any stage of a proof, several rules are likely to be applicable. Before
applying any of them, list the applicable ones and think about which one
is likely to improve the situation for your proof. You’ll find that —i and —i
most often improve it, so always use them whenever you can. There is no
easy recipe for when to use the other rules; often you have to make judicious
choices.

1.2.4 Provable equivalence
Definition 1.25 Let ¢ and @ be formulas of propositional logic. We say
that ¢ and ¢ are provably equivalent iff (we write ‘iff” for ‘if, and only
if’ in the sequel) the sequents ¢ ¢ and ¥ F ¢ are valid; that is, there
is a proof of ¢ from ¢ and another one going the other way around.
As seen earlier, we denote that ¢ and @ are provably equivalent by

¢ .

Note that, by Remark 1.12, we could just as well have defined ¢ 4 ¥ to
mean that the sequent F (¢ — ¥) A (p — ¢) is valid; it defines the same
concept. Examples of provably equivalent formulas are

“(pAq) =qgVv-p —(pVqg) A-—-gA-p
p—q =g — —p p—q-=—-pVyg
pANqg—pd-rv-r pAqg—rd-p—(¢g—r).

The reader should prove all of these six equivalences in natural
deduction.

1.2.5 An aside: proof by contradiction
Sometimes we can’t prove something directly in the sense of taking apart
given assumptions and reasoning with their constituents in a constructive
way. Indeed, the proof system of natural deduction, summarised in Fig-
ure 1.2, specifically allows for indirect proofs that lack a constructive quality:
for example, the rule
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allows us to prove ¢ by showing that —¢ leads to a contradiction. Although
‘classical logicians’ argue that this is valid, logicians of another kind, called
‘intuitionistic logicians,” argue that to prove ¢ you should do it directly,
rather than by arguing merely that —¢ is impossible. The two other rules
on which classical and intuitionistic logicians disagree are

——
Py LEM 3

Intuitionistic logicians argue that, to show ¢ V =¢, you have to show ¢,
or —¢. If neither of these can be shown, then the putative truth of the
disjunction has no justification. Intuitionists reject =—e since we have already
used this rule to prove LEM and PBC from rules which the intuitionists do
accept. In the exercises, you are asked to show why the intuitionists also
reject PBC.

Let us look at a proof that shows up this difference, involv-
ing real numbers. Real numbers are floating point numbers like
23.54721, only some of them might actually be infinitely long such as
23.138592748500123950734 . .., with no periodic behaviour after the deci-

mal point.

—e.

Given a positive real number a and a natural (whole) number b, we can
calculate a: it is just a times itself, b times, s022 =2-2=4,23=2.2.2 =
8 and so on. When b is a real number, we can also define a®, as follows.
We say that a e and, for a non-zero rational number k/n, where n # 0,
we let a*/" < {/aF where {/x is the real number y such that y™ = x. From
real analysis one knows that any real number b can be approximated by a
sequence of rational numbers kg/ng, k1/n1, ... Then we define a® to be the
real number approximated by the sequence ako/no - gki/n1 ... (In calculus,
one can show that this ‘limit’ a® is unique and independent of the choice of
approximating sequence.) Also, one calls a real number irrational if it can’t
be written in the form k/n for some integers k and n # 0. In the exercises
you will be asked to find a semi-formal proof showing that /2 is irrational.

We now present a proof of a fact about real numbers in the informal style
used by mathematicians (this proof can be formalised as a natural deduction
proof in the logic presented in Chapter 2). The fact we prove is:

Theorem 1.26 There exist irrational numbers a and b such that a® is ra-
tional.

PROOF: We choose b to be /2 and proceed by a case analysis. Either b’ is
irrational, or it is not. (Thus, our proof uses Ve on an instance of LEM.)
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(i) Assume that b’ is rational. Then this proof is easy since we can choose irra-
tional numbers a and b to be v/2 and see that a® is just b® which was assumed
to be rational.

(i) Assume that b® is irrational. Then we change our strategy slightly and choose
a to be \/5\/5 Clearly, a is irrational by the assumption of case (ii). But we
know that b is irrational (this was known by the ancient Greeks; see the proof
outline in the exercises). So a and b are both irrational numbers and

7
ab:(\/ﬁ\/i) 2:\5(@@:(\@)2:2

is rational, where we used the law (z¥)* = z(¥'2),

Since the two cases above are exhaustive (either b is irrational, or it isn’t)
we have proven the theorem. O

This proof is perfectly legitimate and mathematicians use arguments like
that all the time. The exhaustive nature of the case analysis above rests on
the use of the rule LEM, which we use to prove that either b is rational or it
is not. Yet, there is something puzzling about it. Surely, we have secured the
fact that there are irrational numbers a and b such that a® is rational, but
are we in a position to specify an actual pair of such numbers satisfying this
theorem? More precisely, which of the pairs (a, b) above fulfils the assertion
of the theorem, the pair (v/2,v/2), or the pair (\/5‘/5, v/2)? Our proof tells
us nothing about which of them is the right choice; it just says that at least
one of them works.

Thus, the intuitionists favour a calculus containing the introduction and
elimination rules shown in Figure 1.2 and excluding the rule ——e and the
derived rules. Intuitionistic logic turns out to have some specialised applica-
tions in computer science, such as modelling type-inference systems used in
compilers or the staged execution of program code; but in this text we stick
to the full so-called classical logic which includes all the rules.

1.3 Propositional logic as a formal language

In the previous section we learned about propositional atoms and how they
can be used to build more complex logical formulas. We were deliberately
informal about that, for our main focus was on trying to understand the
precise mechanics of the natural deduction rules. However, it should have
been clear that the rules we stated are valid for any formulas we can form, as
long as they match the pattern required by the respective rule. For example,
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the application of the proof rule —e in

1 p — q premise
2 D premise
3 q —e 1,2

is equally valid if we substitute p with p V —r and ¢ with » — p:

1 pV -r — (r —p) premise
2 pV T premise
3 r—p —el,2

This is why we expressed such rules as schemes with Greek symbols stand-
ing for generic formulas. Yet, it is time that we make precise the notion of
‘any formula we may form.” Because this text concerns various logics, we will
introduce in (1.3) an easy formalism for specifying well-formed formulas. In
general, we need an unbounded supply of propositional atoms p,q,r, ..., or
P1,P2,P3, ... You should not be too worried about the need for infinitely
many such symbols. Although we may only need finitely many of these
propositions to describe a property of a computer program successfully, we
cannot specify how many such atomic propositions we will need in any con-
crete situation, so having infinitely many symbols at our disposal is a cheap
way out. This can be compared with the potentially infinite nature of En-
glish: the number of grammatically correct English sentences is infinite, but
finitely many such sentences will do in whatever situation you might be in
(writing a book, attending a lecture, listening to the radio, having a dinner
date, ...).

Formulas in our propositional logic should certainly be strings over the
alphabet {p,q,r,...} U{p1,p2,p3,... } U{=,A,V,—,(,)}. This is a trivial
observation and as such is not good enough for what we are trying to capture.
For example, the string (—)() V pg — is a word over that alphabet, yet, it
does not seem to make a lot of sense as far as propositional logic is concerned.
So what we have to define are those strings which we want to call formulas.
We call such formulas well-formed.

Definition 1.27 The well-formed formulas of propositional logic are those
which we obtain by using the construction rules below, and only those,
finitely many times:
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atom: Every propositional atom p,q,r,... and pi,p2,p3,... is a well-
formed formula.

—: If ¢ is a well-formed formula, then so is (—¢).

A: If ¢ and 1) are well-formed formulas, then so is (¢ A ).

V: If ¢ and 1 are well-formed formulas, then so is (¢ V ).

—: If ¢ and 9 are well-formed formulas, then so is (¢ — ).

It is most crucial to realize that this definition is the one a computer would
expect and that we did not make use of the binding priorities agreed upon
in the previous section.

Convention. In this section we act as if we are a rigorous computer and
we call formulas well-formed iff they can be deduced to be so using the
definition above.

Further, note that the condition ‘and only those’ in the definition above
rules out the possibility of any other means of establishing that formulas are
well-formed. Inductive definitions, like the one of well-formed propositional
logic formulas above, are so frequent that they are often given by a defining
grammar in Backus Naur form (BNF). In that form, the above definition
reads more compactly as

¢pu=p|(=0) [ (@AQ) ]| (¢VP)|(d—¢) (1.3)

where p stands for any atomic proposition and each occurrence of ¢ to the
right of ::= stands for any already constructed formula.

So how can we show that a string is a well-formed formula? For example,
how do we answer this for ¢ being

(=p) A g) = (pA(gV (=) ? (1.4)

Such reasoning is greatly facilitated by the fact that the grammar in (1.3)
satisfies the inversion principle, which means that we can invert the process
of building formulas: although the grammar rules allow for five different ways
of constructing more complex formulas — the five clauses in (1.3) — there is
always a unique clause which was used last. For the formula above, this
last operation was an application of the fifth clause, for ¢ is an implication
with the assumption ((—p) A ¢) and conclusion (p A (¢ V (—r))). By applying
the inversion principle to the assumption, we see that it is a conjunction of
(—p) and g. The former has been constructed using the second clause and
is well-formed since p is well-formed by the first clause in (1.3). The latter
is well-formed for the same reason. Similarly, we can apply the inversion
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Figure 1.3. A parse tree representing a well-formed formula.

principle to the conclusion (p A (¢ V (—r))), inferring that it is indeed well-
formed. In summary, the formula in (1.4) is well-formed.

For us humans, dealing with brackets is a tedious task. The reason
we need them is that formulas really have a tree-like structure, although
we prefer to represent them in a linear way. In Figure 1.3 you can see the
parse tree” of the well-formed formula ¢ in (1.4). Note how brackets become
unnecessary in this parse tree since the paths and the branching structure
of this tree remove any possible ambiguity in interpreting ¢. In representing
¢ as a linear string, the branching structure of the tree is retained by the
insertion of brackets as done in the definition of well-formed formulas.

So how would you go about showing that a string of symbols v is not well-
formed? At first sight, this is a bit trickier since we somehow have to make
sure that ¥ could not have been obtained by any sequence of construction
rules. Let us look at the formula (—)() V pg — from above. We can decide
this matter by being very observant. The string (—)() V pg — contains —)
and — cannot be the rightmost symbol of a well-formed formula (check all
the rules to verify this claim!); but the only time we can put a ‘)’ to the right
of something is if that something is a well-formed formula (again, check all
the rules to see that this is so). Thus, (=)() V pg — is not well-formed.

Probably the easiest way to verify whether some formula ¢ is well-formed
is by trying to draw its parse tree. In this way, you can verify that the

7 'We will use this name without explaining it any further and are confident that you will under-
stand its meaning through the examples.
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formula in (1.4) is well-formed. In Figure 1.3 we see that its parse tree has
— as its root, expressing that the formula is, at its top level, an implication.
Using the grammar clause for implication, it suffices to show that the left
and right subtrees of this root node are well-formed. That is, we proceed in
a top-down fashion and, in this case, successfully. Note that the parse trees
of well-formed formulas have either an atom as root (and then this is all
there is in the tree), or the root contains —, V, A or —. In the case of =
there is only one subtree coming out of the root. In the cases A, V or — we
must have fwo subtrees, each of which must behave as just described; this
is another example of an inductive definition.

Thinking in terms of trees will help you understand standard notions
in logic, for example, the concept of a subformula. Given the well-formed
formula ¢ above, its subformulas are just the ones that correspond to the
subtrees of its parse tree in Figure 1.3. So we can list all its leaves p, ¢
(occurring twice), and r, then (—p) and ((—p) A ¢) on the left subtree of —
and (=), (¢ V (-r)) and ((p A (¢V (—p)))) on the right subtree of —. The
whole tree is a subtree of itself as well. So we can list all nine subformulas
of ¢ as

qV(=r))
(pA(qV(=r))))
(((p)Ag) — (A (gV (=7)))).

Let us consider the tree in Figure 1.4. Why does it represent a well-formed

(
(
(ﬂ“)
(
(
(

formula? All its leaves are propositional atoms (p twice, ¢ and r), all branch-
ing nodes are logical connectives (- twice, A, V and —) and the numbers
of subtrees are correct in all those cases (one subtree for a = node and two
subtrees for all other non-leaf nodes). How do we obtain the linear represen-
tation of this formula? If we ignore brackets, then we are seeking nothing but
the in-order representation of this tree as a list®. The resulting well-formed

formula is ((=(pV (¢ — (=p)))) A 7).

8 The other common ways of flattening trees to lists are preordering and postordering. See any
text on binary trees as data structures for further details.
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Figure 1.4. Given: a tree; wanted: its linear representation as a logical
formula.

The tree in Figure 1.21 on page 82, however, does not represent a well-
formed formula for two reasons. First, the leaf A (and a similar argument
applies to the leaf =), the left subtree of the node —, is not a propositional
atom. This could be fixed by saying that we decided to leave the left and
right subtree of that node unspecified and that we are willing to provide
those now. However, the second reason is fatal. The p node is not a leaf
since it has a subtree, the node —. This cannot make sense if we think of
the entire tree as some logical formula. So this tree does not represent a
well-formed logical formula.

1.4 Semantics of propositional logic

1.4.1 The meaning of logical connectives
In the second section of this chapter, we developed a calculus of reasoning
which could verify that sequents of the form ¢1, ¢o,..., ¢, F ¥ are valid,
which means: from the premises ¢1, ¢9, ..., ¢, we may conclude 1.
In this section we give another account of this relationship between the
premises ¢1, ¢2, ..., ¢, and the conclusion 1. To contrast with the sequent
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above, we define a new relationship, written

¢11¢21"'7¢n':w'

This account is based on looking at the ‘truth values’ of the atomic formu-
las in the premises and the conclusion; and at how the logical connectives
manipulate these truth values. What is the truth value of a declarative sen-
tence, like sentence (3) ‘Every even natural number > 2 is the sum of two
prime numbers’? Well, declarative sentences express a fact about the real
world, the physical world we live in, or more abstract ones such as computer
models, or our thoughts and feelings. Such factual statements either match
reality (they are true), or they don’t (they are false).

If we combine declarative sentences p and ¢ with a logical connective, say
A, then the truth value of p A ¢ is determined by three things: the truth value
of p, the truth value of ¢ and the meaning of A. The meaning of A is captured
by the observation that p A q is true iff p and q are both true; otherwise p A ¢
is false. Thus, as far as A is concerned, it needs only to know whether p and
q are true, it does not need to know what p and g are actually saying about
the world out there. This is also the case for all the other logical connectives
and is the reason why we can compute the truth value of a formula just by
knowing the truth values of the atomic propositions occurring in it.

Definition 1.28 1. The set of truth values contains two elements T and F, where
T represents ‘true’ and F represents ‘false’.

2. A waluation or model of a formula ¢ is an assignment of each propositional atom
in ¢ to a truth value.

Example 1.29 The map which assigns T to ¢ and F to p is a valuation for
pV —q. Please list the remaining three valuations for this formula.

We can think of the meaning of A as a function of two arguments; each
argument is a truth value and the result is again such a truth value. We
specify this function in a table, called the truth table for conjunction, which
you can see in Figure 1.5. In the first column, labelled ¢, we list all possible

Figure 1.5. The truth table for conjunction, the logical connective A.



38 1 Propositional logic

¢y |ony ¢l |ovey
T|T| T T|T| T
T|F| F T|F| T
FIT| F FIT| T
FI|F| F FI|F| F
¢ly|o—1 ¢ | ¢ T L
T|T| T T| F T F
T|F| F F| T
FlT| T
FIF| T

Figure 1.6. The truth tables for all the logical connectives discussed so far.

truth values of ¢. Actually we list them twice since we also have to deal
with another formula v, so the possible number of combinations of truth
values for ¢ and v equals 2 -2 = 4. Notice that the four pairs of ¢ and
values in the first two columns really exhaust all those possibilities (TT, TF,
FT and FF). In the third column, we list the result of ¢ A 1) according to the
truth values of ¢ and 1. So in the first line, where ¢ and ¢ have value T,
the result is T again. In all other lines, the result is F since at least one of
the propositions ¢ or v has value F.

In Figure 1.6 you find the truth tables for all logical connectives of propo-
sitional logic. Note that — turns T into F and vice versa. Disjunction is the
mirror image of conjunction if we swap T and F, namely, a disjunction re-
turns F iff both arguments are equal to F, otherwise (= at least one of the
arguments equals T) it returns T. The behaviour of implication is not quite
as intuitive. Think of the meaning of — as checking whether truth is being
preserved. Clearly, this is not the case when we have T — F, since we infer
something that is false from something that is true. So the second entry
in the column ¢ — v equals F. On the other hand, T — T obviously pre-
serves truth, but so do the cases F — T and F — F, because there is no truth
to be preserved in the first place as the assumption of the implication is
false.

If you feel slightly uncomfortable with the semantics (= the meaning)
of —, then it might be good to think of ¢ — ) as an abbreviation of the
formula —¢ V ¢ as far as meaning is concerned; these two formulas are very
different syntactically and natural deduction treats them differently as well.
But using the truth tables for — and V you can check that ¢ — i evaluates
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to T iff =¢ V ¢ does so. This means that ¢ — 1 and —¢ V 1 are semantically
equivalent; more on that in Section 1.5.

Given a formula ¢ which contains the propositional atoms p1,po, . . ., Pn,
we can construct a truth table for ¢, at least in principle. The caveat is that
this truth table has 2" many lines, each line listing a possible combination
of truth values for py,po,...,pn; and for large n this task is impossible to
complete. Our aim is thus to compute the value of ¢ for each of these 2"
cases for moderately small values of n. Let us consider the example ¢ in
Figure 1.3. It involves three propositional atoms (n = 3) so we have 23 = 8
cases to consider.

We illustrate how things go for one particular case, namely for the val-
uation in which ¢ evaluates to F; and p and r evaluate to T. What does
—pAq— pA(qV-r)evaluate to? Well, the beauty of our semantics is that
it is compositional. If we know the meaning of the subformulas —p A ¢ and
p A (qV —r), then we just have to look up the appropriate line of the —
truth table to find the value of ¢, for ¢ is an implication of these two sub-
formulas. Therefore, we can do the calculation by traversing the parse tree
of ¢ in a bottom-up fashion. We know what its leaves evaluate to since we
stated what the atoms p, ¢ and r evaluated to. Because the meaning of p is
T, we see that —p computes to F. Now ¢ is assumed to represent F and the
conjunction of F and F is F. Thus, the left subtree of the node — evaluates
to F. As for the right subtree of —, r stands for T so = computes to F and ¢
means F, so the disjunction of F and F is still F. We have to take that result,
F, and compute its conjunction with the meaning of p which is T. Since the
conjunction of T and F is F, we get F as the meaning of the right subtree
of —. Finally, to evaluate the meaning of ¢, we compute F — F which is T.
Figure 1.7 shows how the truth values propagate upwards to reach the root
whose associated truth value is the truth value of ¢ given the meanings of
p, g and r above.

It should now be quite clear how to build a truth table for more com-
plex formulas. Figure 1.8 contains a truth table for the formula (p — —¢) —
(¢ V —p). To be more precise, the first two columns list all possible combina-
tions of values for p and q. The next two columns compute the corresponding
values for —p and —q. Using these four columns, we may compute the column
for p — —q and ¢ V —p. To do so we think of the first and fourth columns
as the data for the — truth table and compute the column of p — —¢q ac-
cordingly. For example, in the first line p is T and —q is F so the entry for
p — —qis T — F =F by definition of the meaning of —. In this fashion, we
can fill out the rest of the fifth column. Column 6 works similarly, only we
now need to look up the truth table for V with columns 2 and 3 as input.
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Figure 1.7. The evaluation of a logical formula under a given valuation.

plal-p|-q|p—-q|av-p|p—> -9 —(¢V-p)
T|T| F | F| F T T
T|F|F|T| T F F
FIT| T F T T T
FlF|T|T| T T T

Figure 1.8. An example of a truth table for a more complex logical formula.

Finally, column 7 results from applying the truth table of — to columns 5
and 6.

1.4.2 Mathematical induction
Here is a little anecdote about the German mathematician Gauss who, as a
pupil at age 8, did not pay attention in class (can you imagine?), with the
result that his teacher made him sum up all natural numbers from 1 to 100.
The story has it that Gauss came up with the correct answer 5050 within
seconds, which infuriated his teacher. How did Gauss do it? Well, possibly
he knew that
n-(n+1)

L4243 +44 fn=—0 — (1.5)
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for all natural numbers n.? Thus, taking n = 100, Gauss could easily calcu-
late:

100 - 101
1+2—|—3+4+--~+100:T:5050.

Mathematical induction allows us to prove equations, such as the one
n (1.5), for arbitrary n. More generally, it allows us to show that every
natural number satisfies a certain property. Suppose we have a property M
which we think is true of all natural numbers. We write M (5) to say that
the property is true of 5, etc. Suppose that we know the following two things
about the property M:

1. Base case: The natural number 1 has property M, i.e. we have a proof of
M(1).

2. Inductive step: If n is a natural number which we assume to have property
M (n), then we can show that n + 1 has property M (n + 1); i.e. we have a proof
of M(n) - M(n+1).

Definition 1.30 The principle of mathematical induction says that, on the
grounds of these two pieces of information above, every natural number n
has property M (n). The assumption of M (n) in the inductive step is called
the induction hypothesis.

Why does this principle make sense? Well, take any natural number k.
If k equals 1, then k has property M (1) using the base case and so we are
done. Otherwise, we can use the inductive step, applied to n =1, to infer
that 2 =1+ 1 has property M(2). We can do that using —e, for we know
that 1 has the property in question. Now we use that same inductive step on
n = 2 to infer that 3 has property M (3) and we repeat this until we reach
n = k (see Figure 1.9). Therefore, we should have no objections about using
the principle of mathematical induction for natural numbers.

Returning to Gauss’ example we claim that thesum 1 +2+3+4+--- +
n equals n - (n + 1)/2 for all natural numbers n.

Theorem 1.31 The sum1+2+3+4+---+n equalsn - (n+1)/2 for all
natural numbers n.

9 There is another way of finding the sum 1+ 2+ --- 4+ 100, which works like this: write the
sum backwards, as 100 + 99 + - - - 4+ 1. Now add the forwards and backwards versions, obtaining
101 + 101 + --- + 101 (100 times), which is 10100. Since we added the sum to itself, we now
divide by two to get the answer 5050. Gauss probably used this method; but the method of
mathematical induction that we explore in this section is much more powerful and can be
applied in a wide variety of situations.



42 1 Propositional logic

N O
= @Xx
N
P S 4 o
NG N Vs
A\ W / D
S S
S QO
g\\ g\\ & &
S & N Q
D N g NS
N <V
< <% <o S
0% &’ 06 X\/
D M >
W RO
&04 &04 &04 &04 &04
é@Q é@Q $®Q &Q)Q &Q)Q
O
1 2 3 n n+1

Figure 1.9. How the principle of mathematical induction works. By
proving just two facts, M (1) and M(n) — M(n+ 1) for a formal (and
unconstrained) parameter n, we are able to deduce M (k) for each natural
number k.

PROOF: We use mathematical induction. In order to reveal the fine structure
of our proof we write LHS,, for the expression 14+2+3+4+---+n and
RHS,, for n- (n+ 1)/2. Thus, we need to show LHS,, = RHS,, for all n > 1.

Base case: If n equals 1, then LHS; is just 1 (there is only one summand),
which happens to equal RHS; =1-(1+1)/2.

Inductive step: Let us assume that LHS,, = RHS,,. Recall that this as-
sumption is called the induction hypothesis; it is the driving force of
our argument. We need to show LHS, ;1 = RHS,,;1, i.e. that the longer
sum 1+2+3+4+ -+ (n+1) equals (n+1)-((n+1)+1)/2. The key
observation is that the sum 14+2+3+4+---+ (n+1) is nothing but
the sum (1+2+3+4+---4+n)+ (n+1) of two summands, where the
first one is the sum of our induction hypothesis. The latter says that
1+24+3+4+---+n equals n-(n+1)/2, and we are certainly entitled
to substitute equals for equals in our reasoning. Thus, we compute

LHSn+1
=1+2+3+4+-+(n+1)

= LHS,, 4+ (n + 1) regrouping the sum
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= RHS,, + (n + 1) by our induction hypothesis
n-(n+1)
2

= +(n+1)
2'(";1) arithmetic

n~(r;+1) +

_ (n42)-(n41)

- 2

— ((n+D)+1)-(n+1)
2

arithmetic
arithmetic

= RHS,41.

Since we successfully showed the base case and the inductive step, we can
use mathematical induction to infer that all natural numbers n have the
property stated in the theorem above. O

Actually, there are numerous variations of this principle. For example, we
can think of a version in which the base case is n = 0, which would then
cover all natural numbers including 0. Some statements hold only for all
natural numbers, say, greater than 3. So you would have to deal with a
base case 4, but keep the version of the inductive step (see the exercises for
such an example). The use of mathematical induction typically suceeds on
properties M(n) that involve inductive definitions (e.g. the definition of k!
with [ > 0). Sentence (3) on page 2 suggests there may be true properties
M (n) for which mathematical induction won’t work.

Course-of-values induction. There is a variant of mathematical induction
in which the induction hypothesis for proving M (n + 1) is not just M (n), but
the conjunction M (1) A M(2) A--- A M(n). In that variant, called course-
of-values induction, there doesn’t have to be an explicit base case at all —
everything can be done in the inductive step.

How can this work without a base case? The answer is that the base
case is implicitly included in the inductive step. Consider the case n = 3:
the inductive-step instance is M (1) A M(2) A M(3) — M (4). Now consider
n = 1: the inductive-step instance is M (1) — M (2). What about the case
when n equals 07 In this case, there are zero formulas on the left of the —,
so we have to prove M(1) from nothing at all. The inductive-step instance
is simply the obligation to show M (1). You might find it useful to modify
Figure 1.9 for course-of-values induction.

Having said that the base case is implicit in course-of-values induction,
it frequently turns out that it still demands special attention when you get
inside trying to prove the inductive case. We will see precisely this in the
two applications of course-of-values induction in the following pages.
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Figure 1.10. A parse tree with height 5.

In computer science, we often deal with finite structures of some kind, data
structures, programs, files etc. Often we need to show that every instance of
such a structure has a certain property. For example, the well-formed for-
mulas of Definition 1.27 have the property that the number of ‘(” brackets
in a particular formula equals its number of ‘)’ brackets. We can use mathe-
matical induction on the domain of natural numbers to prove this. In order
to succeed, we somehow need to connect well-formed formulas to natural
numbers.

Definition 1.32 Given a well-formed formula ¢, we define its height to be
1 plus the length of the longest path of its parse tree.

For example, consider the well-formed formulas in Figures 1.3, 1.4
and 1.10. Their heights are 5, 6 and 5, respectively. In Figure 1.3, the
longest path goes from — to A to V to — to r, a path of length 4, so
the height is 4 + 1 = 5. Note that the height of atoms is 14+ 0 = 1. Since
every well-formed formula has finite height, we can show statements about
all well-formed formulas by mathematical induction on their height. This
trick is most often called structural induction, an important reasoning tech-
nique in computer science. Using the notion of the height of a parse tree,
we realise that structural induction is just a special case of course-of-values
induction.
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Theorem 1.33 For every well-formed propositional logic formula, the num-
ber of left brackets is equal to the number of right brackets.

PrOOF: We proceed by course-of-values induction on the height of well-
formed formulas ¢. Let M (n) mean ‘All formulas of height n have the same
number of left and right brackets.” We assume M (k) for each k < n and try
to prove M (n). Take a formula ¢ of height n.

* Base case: Then n = 1. This means that ¢ is just a propositional atom. So there
are no left or right brackets, 0 equals 0.

* Course-of-values inductive step: Then n > 1 and so the root of the parse tree
of ¢ must be =, —, V or A, for ¢ is well-formed. We assume that it is —, the other
three cases are argued in a similar way. Then ¢ equals (¢1 — ¢2) for some well-
formed formulas ¢; and ¢y (of course, they are just the left, respectively right,
linear representations of the root’s two subtrees). It is clear that the heights
of ¢1 and ¢9 are strictly smaller than n. Using the induction hypothesis, we
therefore conclude that ¢; has the same number of left and right brackets and
that the same is true for ¢o. But in (¢1 — ¢2) we added just two more brackets,
one ‘(” and one ‘)’. Thus, the number of occurrences of ‘(" and ‘)’ in ¢ is the
same. 0O

The formula (p — (g A —r)) illustrates why we could not prove the above
directly with mathematical induction on the height of formulas. While this
formula has height 4, its two subtrees have heights 1 and 3, respectively.
Thus, an induction hypothesis for height 3 would have worked for the right
subtree but failed for the left subtree.

1.4.3 Soundness of propositional logic
The natural deduction rules make it possible for us to develop rigorous
threads of argumentation, in the course of which we arrive at a conclusion
1 assuming certain other propositions ¢1, ¢o, ..., ¢,. In that case, we said
that the sequent ¢1, ¢o, ..., ¢, F 9 is valid. Do we have any evidence that
these rules are all correct in the sense that valid sequents all ‘preserve truth’
computed by our truth-table semantics?

Given a proof of ¢1, ¢, ..., P, F 1, is it conceivable that there is a valu-
ation in which ¢ above is false although all propositions ¢1, ¢s,..., ¢, are
true? Fortunately, this is not the case and in this subsection we demonstrate
why this is so. Let us suppose that some proof in our natural deduction cal-
culus has established that the sequent ¢1, ¢a,..., ¢, F 9 is valid. We need
to show: for all valuations in which all propositions ¢1, ¢a, ..., ¢, evaluate
to T, ¢ evaluates to T as well.
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Definition 1.34 If, for all valuations in which all ¢1, ¢9, ..., ¢, evaluate to
T, ¢ evaluates to T as well, we say that

¢17¢27"'7¢n':¢

holds and call F the semantic entailment relation.

Let us look at some examples of this notion.

1. Does p A g E p hold? Well, we have to inspect all assignments of truth values to
p and ¢; there are four of these. Whenever such an assignment computes T for
p A g we need to make sure that p is true as well. But p A ¢ computes T only if
p and g are true, so p A q F p is indeed the case.

2. What about the relationship p V g F p? There are three assignments for which
pV q computes T, so p would have to be true for all of these. However, if we
assign T to ¢ and F to p, then pV ¢ computes T, but p is false. Thus, pV qF p
does not hold.

3. What if we modify the above to —¢q,p V g F p? Notice that we have to be con-
cerned only about valuations in which —q and p V g evaluate to T. This forces ¢
to be false, which in turn forces p to be true. Hence —¢q,p V q F p is the case.

4. Note that p F g V —¢q holds, despite the fact that no atomic proposition on the
right of F occurs on the left of F.

From the discussion above we realize that a soundness argument has to show:
if @1, ¢2,..., ¢, F 1 is valid, then ¢1, ¢a, ..., ¢, E 1 holds.

Theorem 1.35 (Soundness) Let ¢1,¢2,...,¢, and 1p be propositional
logic formulas. If ¢1, ¢, ..., 0n F Y is valid, then ¢1, o, ..., ¢n E ¥ holds.

PROOF: Since ¢1, ¢o,..., ¢, -1 is valid we know there is a proof of 1
from the premises ¢1, @2, ..., ¢,. We now do a pretty slick thing, namely,
we reason by mathematical induction on the length of this proof! The length
of a proof is just the number of lines it involves. So let us be perfectly
clear about what it is we mean to show. We intend to show the assertion
M (k):

‘For all sequents ¢1,¢2,...,0n 1 (n>0) which have a proof of

length k, it is the case that ¢1,d2, ..., ¢, F Y holds.’

by course-of-values induction on the natural number k. This idea requires
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some work, though. The sequent p A ¢ — r+p — (¢ — r) has a proof

1 pAqg—T premise

2 P assumption
3 q assumption
4 pAq AL 2,3

5 r —e 1,4

6 q—r —13-5

7 p—(qg—r) —i2-6

but if we remove the last line or several of the last lines, we no longer
have a proof as the outermost box does not get closed. We get a complete
proof, though, by removing the last line and re-writing the assumption of
the outermost box as a premise:

1 pAq— r premise

2 P premise

3 q assumption
4 pAq AN 2,3

5 r —e 1,4

6 q—r —13—-5

This is a proof of the sequent p A ¢ — r, p - p — r. The induction hypothesis
then ensures that p A q — 7, pF p — r holds. But then we can also reason
that pAq — r Ep— (¢ — r) holds as well — why?

Let’s proceed with our proof by induction. We assume M (k') for each
k' < k and we try to prove M (k).

Base case: a one-line proof. If the proof has length 1 (k = 1), then it must
be of the form

1 ¢ premise
since all other rules involve more than one line. This is the case when n =1

and ¢ and 9 equal ¢, i.e. we are dealing with the sequent ¢ - ¢. Of course,
since ¢ evaluates to T so does ¢. Thus, ¢ F ¢ holds as claimed.



48

1 Propositional logic

Course-of-values inductive step: Let us assume that the proof of the se-
quent ¢1,@2,...,0, F 1 has length k£ and that the statement we want to
prove is true for all numbers less than k. Our proof has the following struc-

ture:

1 ¢1 premise
2 ¢2 premise
n ¢, premise
k 1 justification

There are two things we don’t know at this point. First, what is happening
in between those dots? Second, what was the last rule applied, i.e. what is
the justification of the last line? The first uncertainty is of no concern; this
is where mathematical induction demonstrates its power. The second lack
of knowledge is where all the work sits. In this generality, there is simply no

way of knowing which rule was applied last, so we need to consider all such

rules in turn.

1.

Let us suppose that this last rule is Ai. Then we know that ¢ is of the form
11 A b9 and the justification in line k refers to two lines further up which have
11, respectively s, as their conclusions. Suppose that these lines are k; and k.
Since ky and ko are smaller than k, we see that there exist proofs of the sequents
b1, P2, ..., 0n F 1 and @1, Pa, ..., ¢n F Yo with length less than k — just take
the first ki, respectively ko, lines of our original proof. Using the induction
hypothesis, we conclude that ¢1, ¢o,..., ¢, F 1 and @1, Pa, ..., ¢n F P2 holds.
But these two relations imply that ¢1, ¢s, ..., ¢, E 1 A1 holds as well — why?
If v has been shown using the rule Ve, then we must have proved, as-
sumed or given as a premise some formula 7; V179 in some line k' with
k' < k, which was referred to via Ve in the justification of line k. Thus,
we have a shorter proof of the sequent ¢1,¢s,...,0, F1m1 V1o within that
proof, obtained by turning all assumptions of boxes that are open at
line k' into premises. In a similar way we obtain proofs of the sequents
D1, P2, On, 1 Y and @1, @2, ..., Pn, M2 F ¥ from the case analysis of Ve.
By our induction hypothesis, we conclude that the relations ¢1,¢s,..., o, F
m vV 2, (bl, ¢2, ey (bn,T]l E w and ¢1, ¢2, ey ¢n,’l]2 = w hold. But together
these three relations then force that ¢1,¢2,...,0, F19 holds as well —
why?

You can guess by now that the rest of the argument checks each possible proof
rule in turn and ultimately boils down to verifying that our natural deduction
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rules behave semantically in the same way as their corresponding truth tables
evaluate. We leave the details as an exercise. O

The soundness of propositional logic is useful in ensuring the non-existence of
a proof for a given sequent. Let’s say you try to prove that ¢1, ¢o,...,¢o - Y
is valid, but that your best efforts won’t succeed. How could you be sure that
no such proof can be found? After all, it might just be that you can’t find
a proof even though there is one. It suffices to find a valuation in which ¢;
evaluate to T whereas 1 evaluates to F. Then, by definition of F, we don’t
have ¢1, ¢a, ..., ¢2 F 1. Using soundness, this means that ¢1, ¢a,...,¢2 - Y
cannot be valid. Therefore, this sequent does not have a proof. You will
practice this method in the exercises.

1.4.4 Completeness of propositional logic
In this subsection, we hope to convince you that the natural deduction rules
of propositional logic are complete: whenever ¢1, ¢a, ..., ¢, E ¥ holds, then
there exists a natural deduction proof for the sequent ¢1, ¢a,...,¢n F .
Combined with the soundness result of the previous subsection, we then
obtain

Bl by b b is valid iff @1, o, ..., dn E 1 holds.

This gives you a certain freedom regarding which method you prefer to
use. Often it is much easier to show one of these two relationships (al-
though neither of the two is universally better, or easier, to establish).
The first method involves a proof search, upon which the logic program-
ming paradigm is based. The second method typically forces you to com-
pute a truth table which is exponential in the size of occurring proposi-
tional atoms. Both methods are intractable in general but particular in-
stances of formulas often respond differently to treatment under these two
methods.

The remainder of this section is concerned with an argument saying that
if ¢1,¢9,...,0, F 1 holds, then ¢1,do, ..., ¢, F 1 is valid. Assuming that
o1, ¢2, - - ., On E Y holds, the argument proceeds in three steps:

Step 1: We show that F ¢1 — (g2 — (¢3 — (... (¢, — ¢)...))) holds.
Step 2: We show that F ¢1 — (d2 — (¢3 — (... (¢ — ¥)...))) is valid.
Step 3: Finally, we show that ¢1, ¢o, ..., dn F ¢ is valid.

The first and third steps are quite easy; all the real work is done in the
second one.
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Figure 1.11. The only way this parse tree can evaluate to F. We repre-
sent parse trees for ¢1, ¢o, ..., ¢, as triangles as their internal structure
does not concern us here.

Step 1:

Definition 1.36 A formula of propositional logic ¢ is called a tautology iff
it evaluates to T under all its valuations, i.e. iff F ¢.

Supposing that ¢, ¢, ..., ¢, F ¢ holds, let us verify that ¢; — (¢ —
(¢p3 = (... (¢ — ) ...))) is indeed a tautology. Since the latter formula is
a nested implication, it can evaluate to F only if all ¢1, ¢2, . . ¢, evaluate to T
and 1 evaluates to F; see its parse tree in Figure 1.11. But this contradicts the
fact that @1,@152, ey gbn F w holds. Thus, = gbl — (QSQ — ((;53 — ( .. (gbn —

¥)...))) holds.
Step 2:

Theorem 1.37 If En holds, then F1n is valid. In other words, if n is a
tautology, then 1 is a theorem.

This step is the hard one. Assume that E n holds. Given that 7 contains
n distinct propositional atoms p1, ps, ..., p, we know that n evaluates to T
for all 2™ lines in its truth table. (Each line lists a valuation of 7.) How can
we use this information to construct a proof for n7 In some cases this can
be done quite easily by taking a very good look at the concrete structure of
1. But here we somehow have to come up with a uniform way of building
such a proof. The key insight is to ‘encode’ each line in the truth table of n
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as a sequent. Then we construct proofs for these 2" sequents and assemble
them into a proof of 7.

Proposition 1.38 Let ¢ be a formula such that p1,ps,...,pn are its only
propositional atoms. Let [ be any line number in ¢’s truth table. For all
1<i<n let p; be p; if the entry in line | of p; is T, otherwise p; is —p;.
Then we have

1. p1,p2,...,0n E @ is provable if the entry for ¢ in linel is T
2. P1,D2,--.,Pn = 2@ is provable if the entry for ¢ in line l is F

PRrROOF: This proof is done by structural induction on the formula ¢, that
is, mathematical induction on the height of the parse tree of ¢.

1. If ¢ is a propositional atom p, we need to show that p - p and —p - —p. These
have one-line proofs.

2. If ¢ is of the form —¢; we again have two cases to consider. First, assume that ¢
evaluates to T. In this case ¢, evaluates to F. Note that ¢; has the same atomic
propositions as ¢. We may use the induction hypothesis on ¢; to conclude that
P1,D2, - - -, Pn - T1; but —¢q is just ¢, so we are done.

Second, if ¢ evaluates to F, then ¢; evaluates to T and we get p1,pa,...,0n F @1
by induction. Using the rule ——i, we may extend the proof of p1,pa,...,0n F &1
to one for p1,Po, ..., Pn F 7@1; but ¢y is just —¢, so again we are done.

The remaining cases all deal with two subformulas: ¢ equals ¢1 o ¢9, where
o is —, A or V. In all these cases let qi,...,q be the propositional
atoms of ¢y and ry,...,7, be the propositional atoms of ¢5. Then we cer-
tainly have {qi,...,q}U{ri,...,rx} ={p1,...,pn}. Therefore, whenever
q1,---,q F 1 and 7q,...,7 F o are valid so is p1,...,Ppn F W1 A 9 using
the rule Ai. In this way, we can use our induction hypothesis and only owe
proofs that the conjunctions we conclude allow us to prove the desired con-
clusion for ¢ or —¢ as the case may be.

3. To wit, let ¢ be ¢p1 — ¢o. If ¢ evaluates to F, then we know that ¢; evaluates
to T and ¢2 to F. Using our induction hypothesis, we have §i,...,q F &1
and 71,...,7% F 22, SO D1,...,Pn F o1 Ao follows. We need to show
PlyeovyPn b (1 — ¢2); but using p1,...,Pn F é1 A 22, this amounts to
proving the sequent ¢ A =2 F (g1 — ¢2), which we leave as an exercise.

If ¢ evaluates to T, then we have three cases. First, if ¢; evaluates to F and
¢2 to F, then we get, by our induction hypothesis, that ¢i,...,q F —¢1 and
P1yeeo, P 202, SO P1,...,Pn b 1 A o follows. Again, we need only to
show the sequent —¢1 A —¢s F ¢1 — @2, which we leave as an exercise. Second,
if ¢1 evaluates to F and ¢5 to T, we use our induction hypothesis to arrive at
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D1y Pn F 21 A p2 and have to prove —¢p1 A ¢ = p1 — ¢, which we leave as
an exercise. Third, if ¢; and ¢- evaluate to T, we arrive at p1,...,P, F @1 A ¢2,
using our induction hypothesis, and need to prove ¢1 A g2 - ¢1 — ¢, which
we leave as an exercise as well.

4. 1If ¢ is of the form ¢ A ¢2, we are again dealing with four cases in total. First, if
¢1 and ¢9 evaluate to T, we get ¢1,...,q; = ¢1 and 71,...,7; F ¢2 by our induc-
tion hypothesis, so p1, ..., P, F ¢1 A ¢ follows. Second, if ¢1 evaluates to F and
¢2 to T, then we get p1,...,P, F 2¢1 A ¢2 using our induction hypothesis and
the rule Ai as above and we need to prove =¢1 A ¢2 F (g1 A ¢2), which we leave
as an exercise. Third, if ¢; and ¢4 evaluate to F, then our induction hypothesis
and the rule Ai let us infer that pq,...,p, b —¢1 A =¢s; so we are left with prov-
ing —¢1 A ~a F —(d1 A ¢2), which we leave as an exercise. Fourth, if ¢; evalu-
ates to T and ¢ to F, we obtain p1,...,p, F ¢1 A 2¢2 by our induction hypoth-
esis and we have to show ¢1 A =g = (1 A ¢2), which we leave as an exercise.

5. Finally, if ¢ is a disjunction ¢ V ¢2, we again have four cases. First, if ¢; and ¢4
evaluate to F, then our induction hypothesis and the rule Ai give us p1,...,pn F
=1 A —¢o and we have to show ¢ A =g - (1 V ¢2), which we leave as an
exercise. Second, if ¢ and ¢9 evaluate to T, then we obtain py,...,p, - @1 A ¢2,
by our induction hypothesis, and we need a proof for ¢; A ¢ F @1 V 2, which
we leave as an exercise. Third, if ¢; evaluates to F and ¢ to T, then we arrive
at P1,...,0n F 201 A ¢2, using our induction hypothesis, and need to establish
=1 A ¢ F @1 V @2, which we leave as an exercise. Fourth, if ¢; evaluates to T
and ¢, to F, then p1,...,P, F ¢1 A —¢2 results from our induction hypothesis
and all we need is a proof for ¢; A =g F ¢1V ¢o, which we leave as an
exercise. O

We apply this technique to the formula F ¢ — (¢2 — (¢35 — (... (¢n —
¥)...))). Since it is a tautology it evaluates to T in all 2" lines of its truth
table; thus, the proposition above gives us 2" many proofs of p1,po,...,Pn
7, one for each of the cases that p; is p; or —p;. Our job now is to assemble
all these proofs into a single proof for  which does not use any premises.
We illustrate how to do this for an example, the tautology p A ¢ — p.

The formula p A ¢ — p has two propositional atoms p and ¢g. By the propo-
sition above, we are guaranteed to have a proof for each of the four sequents

P,gEpANg—p
P, q-pAg—p
p,qbEpAg—p

—p,qgEpAqg—p.

Ultimately, we want to prove p A ¢ — p by appealing to the four proofs of
the sequents above. Thus, we somehow need to get rid of the premises on
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the left-hand sides of these four sequents. This is the place where we rely on
the law of the excluded middle which states r V —r, for any r. We use LEM
for all propositional atoms (here p and ¢) and then we separately assume all
the four cases, by using Ve. That way we can invoke all four proofs of the
sequents above and use the rule Ve repeatedly until we have got rid of all our
premises. We spell out the combination of these four phases schematically:

1 pV -p LEM
2 p ass —p ass
3 qV —q LEM|| qV —¢q LEM
4 q ass||—q ass q ass|[—q ass
5

6

7 pPAGg—p PAGg—p PAGg—p PAGg—p

8 pAg—DpD Ve pAg—D Ve

9 pPAqg— D Ve

As soon as you understand how this particular example works, you will
also realise that it will work for an arbitrary tautology with n distinct atoms.
Of course, it seems ridiculous to prove p A ¢ — p using a proof that is this
long. But remember that this illustrates a uniform method that constructs
a proof for every tautology 7, no matter how complicated it is.

Step 3: Finally, we need to find a proof for ¢1, ¢, ..., ¢, F 1p. Take the

proof for = ¢1 — (d2 — (¢p3 — (... (¢dn — ¥)...))) given by step 2 and aug-
ment its proof by introducing ¢1, ¢s,..., ¢, as premises. Then apply —e n
times on each of these premises (starting with ¢, continuing with ¢9 etc.).
Thus, we arrive at the conclusion ¥ which gives us a proof for the sequent

¢1a¢25"'5¢n|_w'

Corollary 1.39 (Soundness and Completeness) Let ¢1, ¢, ..., 0,0
be formulas of propositional logic. Then ¢1,Pa, ..., ¢n E Y is holds iff the
sequent ¢1, ¢, ..., ¢0n F Y is valid.

1.5 Normal forms

In the last section, we showed that our proof system for propositional logic is
sound and complete for the truth-table semantics of formulas in Figure 1.6.
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Soundness means that whatever we prove is going to be a true fact, based on
the truth-table semantics. In the exercises, we apply this to show that a se-
quent does not have a proof: simply show that ¢1, ¢2, ..., ¢2 does not seman-
tically entail 1); then soundness implies that the sequent ¢1, ¢o,..., P2 - Y
does not have a proof. Completeness comprised a much more powerful state-
ment: no matter what (semantically) valid sequents there are, they all have
syntactic proofs in the proof system of natural deduction. This tight cor-
respondence allows us to freely switch between working with the notion of
proofs (F) and that of semantic entailment (F).

Using natural deduction to decide the validity of instances of F is only
one of many possibilities. In Exercise 1.2.6 we sketch a non-linear, tree-like,
notion of proofs for sequents. Likewise, checking an instance of F by apply-
ing Definition 1.34 literally is only one of many ways of deciding whether
b1, P2, . .., On E 1 holds. We now investigate various alternatives for deciding
¢1, %2, ..., 0n F 1 which are based on transforming these formulas syntac-
tically into ‘equivalent’ ones upon which we can then settle the matter by
purely syntactic or algorithmic means. This requires that we first clarify
what exactly we mean by equivalent formulas.

1.5.1 Semantic equivalence, satisfiability and validity

Two formulas ¢ and ¢ are said to be equivalent if they have the same
‘meaning.” This suggestion is vague and needs to be refined. For example,
p — q and —p V q have the same truth table; all four combinations of T and F
for p and ¢ return the same result. ’Coincidence of truth tables’ is not good
enough for what we have in mind, for what about the formulas pAq — p
and 7V —r? At first glance, they have little in common, having different
atomic formulas and different connectives. Moreover, the truth table for
p A q — p is four lines long, whereas the one for r V —r consists of only two
lines. However, both formulas are always true. This suggests that we define
the equivalence of formulas ¢ and 1 via F: if ¢ semantically entails ¥ and
vice versa, then these formulas should be the same as far as our truth-table
semantics is concerned.

Definition 1.40 Let ¢ and 1 be formulas of propositional logic. We say
that ¢ and ¥ are semantically equivalent iff ¢ E 1 and ¥ F ¢ hold. In that
case we write ¢ = 1. Further, we call ¢ valid if F ¢ holds.

Note that we could also have defined ¢ =1 to mean that F (¢ — ¥) A
(1» — ¢) holds; it amounts to the same concept. Indeed, because of soundness
and completeness, semantic equivalence is identical to provable equivalence
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(Definition 1.25). Examples of equivalent formulas are

b—qg=mq—"p

p—q="pVyq
pANq—p=rV-r
pAqg—=T=p— (¢ —T),

Recall that a formula 7 is called a tautology if F 7 holds, so the tautologies
are exactly the valid formulas. The following lemma says that any decision
procedure for tautologies is in fact a decision procedure for the validity of
sequents as well.

Lemma 1.41 Given formulas ¢1,¢2,...,0n and ¥ of propositional logic,
D1, G2, .., n F b holds iff & d1 — (d2 — (¢3 — -+ = (I — ¥))) holds.

PRrROOF: First, suppose that F ¢1 — (¢p2 — (¢p3 — -+ — (¢, — ))) holds.
If ¢1,¢9,...,¢, are all true under some valuation, then v has to be true
as well for that same valuation. Otherwise, F ¢1 — (¢ — (¢3 — -+ —
(¢n, — 7))) would not hold (compare this with Figure 1.11). Second, if
®1,02, ..., dn E 1 holds, we have already shown that F ¢ — (¢2 — (¢35 —

<+ — (¢p, — 1))) follows in step 1 of our completeness proof. |

For our current purposes, we want to transform formulas into ones which
don’t contain — at all and the occurrences of A and V are confined to
separate layers such that validity checks are easy. This is being done by

1. using the equivalence ¢ — ¥ = —¢ V 9 to remove all occurrences of — from a
formula and

2. by specifying an algorithm that takes a formula without any — into a normal
form (still without —) for which checking validity is easy.

Naturally, we have to specify which forms of formulas we think of as being
‘normal.” Again, there are many such notions, but in this text we study only
two important ones.

Definition 1.42 A literal L is either an atom p or the negation of an atom
=p. A formula C' is in conjunctive normal form (CNF) if it is a conjunction
of clauses, where each clause D is a disjunction of literals:

L:=p | —p
D:=L | LVvD (1.6)
C:=D | DAC.
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Examples of formulas in conjunctive normal form are

(i) (mqVpVr)A(=pVr)Aqg (i) (pVr)A(=pVr)A(pV-r).

In the first case, there are three clauses of type D: =qV pV r, -pV r, and q —
which is a literal promoted to a clause by the first rule of clauses in (1.6).
Notice how we made implicit use of the associativity laws for A and V,
saying that ¢V (V7)) =(pVY)Vn and oA (Y An)=(p A1) An, since
we omitted some parentheses. The formula (=(q V p) V r) A (¢ V r) is not in
CNF since ¢ V p is not a literal.

Why do we care at all about formulas ¢ in CNF? One of the reasons
for their usefulness is that they allow easy checks of validity which other-
wise take times exponential in the number of atoms. For example, consider
the formula in CNF from above: (mgVpV 1) A (=pV r)Aq. The semantic
entailment F (-gVpV7r)A(—pVr)Aqholds iff all three relations

FE-qVvpVr E-pVvr Fq

hold, by the semantics of A. But since all of these formulas are disjunctions
of literals, or literals, we can settle the matter as follows.

Lemma 1.43 A disjunction of literals Ly V Lo V -+ -V Ly, is valid iff there
are 1 <i,5 <m such that L; is ~L;.

Proor: If L; equals =Lj, then L;V LoV ---V Ly, evaluates to T for all
valuations. For example, the disjunct p V ¢ V r V =g can never be made false.

To see that the converse holds as well, assume that no literal L; has a
matching negation in L1V Ly V ---V L,,. Then, for each k with 1 <k < n,
we assign F to Ly, if L is an atom; or T, if L; is the negation of an atom.
For example, the disjunct —¢ V p V r can be made false by assigning F to p
and r and T to gq. O

Hence, we have an easy and fast check for the validity of F ¢, provided
that ¢ is in CNF; inspect all conjuncts v of ¢ and search for atoms in
such that vy also contains their negation. If such a match is found for all
conjuncts, we have E ¢. Otherwise (= some conjunct contains no pair L; and
—L;), ¢ is not valid by the lemma above. Thus, the formula (-g VpVr) A
(=p V1) A g above is not valid. Note that the matching literal has to be found
in the same conjunct 1. Since there is no free lunch in this universe, we can
expect that the computation of a formula ¢’ in CNF, which is equivalent to
a given formula ¢, is a costly worst-case operation.

Before we study how to compute equivalent conjunctive normal forms, we
introduce another semantic concept closely related to that of validity.
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Definition 1.44 Given a formula ¢ in propositional logic, we say that ¢ is
satisfiable if it has a valuation in which is evaluates to T.

For example, the formula p V ¢ — p is satisfiable since it computes T if we
assign T to p. Clearly, p V ¢ — p is not valid. Thus, satisfiability is a weaker
concept since every valid formula is by definition also satisfiable but not vice
versa. However, these two notions are just mirror images of each other, the
mirror being negation.

Proposition 1.45 Let ¢ be a formula of propositional logic. Then ¢ is sat-
isfiable iff =¢ is not valid.

PRrROOF: First, assume that ¢ is satisfiable. By definition, there exists a
valuation of ¢ in which ¢ evaluates to T; but that means that —¢ evaluates
to F for that same valuation. Thus, =¢ cannot be valid.

Second, assume that —¢ is not valid. Then there must be a valuation
of =¢ in which —¢ evaluates to F. Thus, ¢ evaluates to T and is there-
fore satisfiable. (Note that the valuations of ¢ are exactly the valuations of

—¢.) O

This result is extremely useful since it essentially says that we need provide
a decision procedure for only one of these concepts. For example, let’s say
that we have a procedure P for deciding whether any ¢ is valid. We obtain a
decision procedure for satisfiability simply by asking P whether —¢ is valid.
If it is, ¢ is not satisfiable; otherwise ¢ is satisfiable. Similarly, we may
transform any decision procedure for satisfiability into one for validity. We
will encounter both kinds of procedures in this text.

There is one scenario in which computing an equivalent formula in CNF
is really easy; namely, when someone else has already done the work of
writing down a full truth table for ¢. For example, take the truth table
of (p — —q) — (¢ V —p) in Figure 1.8 (page 40). For each line where (p —
—q) — (g V —p) computes F we now construct a disjunction of literals. Since
there is only one such line, we have only one conjunct ;. That conjunct
is now obtained by a disjunction of literals, where we include literals —p
and q. Note that the literals are just the syntactic opposites of the truth
values in that line: here p is T and ¢ is F. The resulting formula in CNF
is thus —p V ¢ which is readily seen to be in CNF and to be equivalent to
(p— —q) = (qV ).

Why does this always work for any formula ¢? Well, the constructed
formula will be false iff at least one of its conjuncts 1; will be false. This
means that all the disjuncts in such a i; must be F. Using the de Morgan
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rule =g Vga V-V 2p, = (1 Apa A+ - A ¢dy,), we infer that the con-
junction of the syntactic opposites of those literals must be true. Thus, ¢
and the constructed formula have the same truth table.

Consider another example, in which ¢ is given by the truth table:

momom o A
T T I R T R R U
MM m oo™
-—1&1*:1*:1»—1»—1'11»—1‘&

Note that this table is really just a specification of ¢; it does not tell us what
¢ looks like syntactically, but it does tells us how it ought to ‘behave.” Since
this truth table has four entries which compute F, we construct four con-
juncts ¥; (1 < i < 4). We read the v; off that table by listing the disjunction
of all atoms, where we negate those atoms which are true in those lines:

1 E—pV gV (line 2) Yo EpV gV -r (line 5)
1/13d:efp\/—\q\/r etc w4d§p\/qv—|r.

The resulting ¢ in CNF is therefore
(=pV—=gVr)A(pV =gV -r)A(pV-gVr)A(pVgV-r).

If we don’t have a full truth table at our disposal, but do know the structure
of ¢, then we would like to compute a version of ¢ in CNF. It should be
clear by now that a full truth table of ¢ and an equivalent formula in
CNF are pretty much the same thing as far as questions about validity are
concerned — although the formula in CNF may be much more compact.

1.5.2 Conjunctive normal forms and validity

We have already seen the benefits of conjunctive normal forms in that they
allow for a fast and easy syntactic test of validity. Therefore, one wonders
whether any formula can be transformed into an equivalent formula in CNF'.
We now develop an algorithm achieving just that. Note that, by Defini-
tion 1.40, a formula is valid iff any of its equivalent formulas is valid. We
reduce the problem of determining whether any ¢ is valid to the problem
of computing an equivalent 1 = ¢ such that v is in CNF and checking, via
Lemma 1.43, whether v is valid.
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Before we sketch such a procedure, we make some general remarks about
its possibilities and its realisability constraints. First of all, there could be
more or less efficient ways of computing such normal forms. But even more
so, there could be many possible correct outputs, for ¥ = ¢ and ¥y = ¢
do not generally imply that 1 is the same as 12, even if 11 and o are in
CNF. For example, take ¢ =% U1 ' p and o = (pV q); then convince
yourself that ¢ = 19 holds. Having this ambiguity of equivalent conjunctive
normal forms, the computation of a CNF for ¢ with minimal ‘cost’ (where
‘cost’ could for example be the number of conjuncts, or the height of ¢’s
parse tree) becomes a very important practical problem, an issue persued in
Chapter 6. Right now, we are content with stating a deterministic algorithm
which always computes the same output CNF for a given input ¢.

This algorithm, called CNF, should satisfy the following requirements:

(1) CNF terminates for all formulas of propositional logic as input;
(2) for each such input, CNF outputs an equivalent formula; and
(3) all output computed by CNF is in CNF.

If a call of CNF with a formula ¢ of propositional logic as input terminates,
which is enforced by (1), then (2) ensures that ¢ = ¢ holds for the output
¥. Thus, (3) guarantees that v is an equivalent CNF of ¢. So ¢ is valid iff
1 is valid; and checking the latter is easy relative to the length of 1.

What kind of strategy should CNF employ? It will have to function
correctly for all, i.e. infinitely many, formulas of propositional logic. This
strongly suggests to write a procedure that computes a CNF by structural
induction on the formula ¢. For example, if ¢ is of the form ¢1 A ¢o, we
may simply compute conjunctive normal forms 7; for ¢; (i = 1,2), where-
upon 71 A 72 is a conjunctive normal form which is equivalent to ¢ provided
that n; = ¢; (i = 1,2). This strategy also suggests to use proof by structural
induction on ¢ to prove that CNF meets the requirements (1-3) stated above.

Given a formula ¢ as input, we first do some preprocessing. Initially, we
translate away all implications in ¢ by replacing all subformulas of the form
¥ — n by =t V7. This is done by a procedure called IMPL _FREE. Note that
this procedure has to be recursive, for there might be implications in ¥ or
n as well.

The application of IMPL_FREE might introduce double negations into the
output formula. More importantly, negations whose scopes are non-atomic
formulas might still be present. For example, the formula p A =(p A q) has
such a negation with p A ¢ as its scope. Essentially, the question is whether
one can efficiently compute a CNF for —¢ from a CNF for ¢. Since nobody
seems to know the answer, we circumvent the question by translating —¢
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into an equivalent formula that contains only negations of atoms. Formulas
which only negate atoms are said to be in negation normal form (NNF). We
spell out such a procedure, NNF, in detail later on. The key to its specification
for implication-free formulas lies in the de Morgan rules. The second phase
of the preprocessing, therefore, calls NNF with the implication-free output of
IMPL_FREE to obtain an equivalent formula in NNF.

After all this preprocessing, we obtain a formula ¢’ which is the result of
the call NNF (IMPL_FREE (¢)). Note that ¢’ = ¢ since both algorithms only
transform formulas into equivalent ones. Since ¢’ contains no occurrences
of — and since only atoms in ¢’ are negated, we may program CNF by an
analysis of only three cases: literals, conjunctions and disjunctions.

e If ¢ is a literal, it is by definition in CNF and so CNF outputs ¢.

e If ¢ equals ¢1 A ¢2, we call CNF recursively on each ¢; to get the respective output
n; and return the CNF 7, A 1y as output for input ¢.

e If ¢ equals ¢1 V ¢2, we again call CNF recursively on each ¢; to get the respective
output 7;; but this time we must not simply return 7; V 72 since that formula is
certainly not in CNF, unless 77; and 72 happen to be literals.

So how can we complete the program in the last case? Well, we may resort
to the distributivity laws, which entitle us to translate any disjunction of
conjunctions into a conjunction of disjunctions. However, for this to result in
a CNF, we need to make certain that those disjunctions generated contain
only literals. We apply a strategy for using distributivity based on matching
patterns in ¢1 V ¢o. This results in an independent algorithm called DISTR
which will do all that work for us. Thus, we simply call DISTR with the pair
(m,m2) as input and pass along its result.

Assuming that we already have written code for IMPL_FREE, NNF and
DISTR, we may now write pseudo code for CNF:

function CNF (¢):
/* precondition: ¢ implication free and in NNF */
/* postcondition: CNF (¢) computes an equivalent CNF for ¢ */
begin function
case
¢ is a literal: return ¢
¢ is ¢1 A ¢2: return CNF (¢1) A CNF (¢2)
¢ is ¢1 V ¢2: return DISTR (CNF (¢1), CNF (¢2))
end case

end function
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Notice how the calling of DISTR is done with the computed conjunctive nor-
mal forms of ¢ and ¢o. The routine DISTR has n; and 75 as input parameters
and does a case analysis on whether these inputs are conjunctions. What
should DISTR do if none of its input formulas is such a conjunction? Well,
since we are calling DISTR for inputs 7; and 7y which are in CNF, this can
only mean that n; and 7y are literals, or disjunctions of literals. Thus, 11 V 12
is in CNF.

Otherwise, at least one of the formulas 1, and 7y is a conjunction. Since
one conjunction suffices for simplifying the problem, we have to decide which
conjunct we want to transform if both formulas are conjunctions. That way
we maintain that our algorithm CNF is deterministic. So let us suppose that
m is of the form 711 A 2. Then the distributive law says that ny Ve =
(m1 V n2) A (ma2 V n2). Since all participating formulas 711, 712 and 7, are
in CNF, we may call DISTR again for the pairs (n11,72) and (112,72), and
then simply form their conjunction. This is the key insight for writing the
function DISTR.

The case when 72 is a conjunction is symmetric and the structure of
the recursive call of DISTR is then dictated by the equivalence 1y V 1o =
(M V m21) A (1 V m22), where 12 = 121 A 122:

function DISTR (71, 72):
/* precondition: 7; and 72 are in CNF */
/* postcondition: DISTR (11, 72) computes a CNF for n; vV ny */
begin function
case
7 is m1 A me: return DISTR (711, 72) A DISTR (112, 72)
M2 is 21 A ma2: return DISTR (71, 721) A DISTR (11, m22)
otherwise (= no conjunctions): return n; V na
end case

end function

Notice how the three clauses are exhausting all possibilities. Furthermore,
the first and second cases overlap if 7; and 72 are both conjunctions. It
is then our understanding that this code will inspect the clauses of a case
statement from the top to the bottom clause. Thus, the first clause would
apply.

Having specified the routines CNF and DISTR, this leaves us with the
task of writing the functions IMPL_FREE and NNF. We delegate the design
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of IMPL_FREE to the exercises. The function NNF has to transform any
implication-free formula into an equivalent one in negation normal form.
Four examples of formulas in NNF are

p —p
—pA(PAq) “pA(p— q),

although we won’t have to deal with a formula of the last kind since —
won’t occur. Examples of formulas which are not in NNF are ——p and

~(p A\ q).

Again, we program NNF recursively by a case analysis over the structure of
the input formula ¢. The last two examples already suggest a solution for two
of these clauses. In order to compute a NNF of ——¢, we simply compute
a NNF of ¢. This is a sound strategy since ¢ and ——¢ are semantically
equivalent. If ¢ equals —=(¢1 A ¢2), we use the de Morgan rule —(¢1 A o) =
—¢1 V —go as a recipe for how NNF should call itself recursively in that case.
Dually, the case of ¢ being —(¢1 V ¢2) appeals to the other de Morgan rule
—(¢1 V ¢2) = 2¢1 A 2 and, if ¢ is a conjunction or disjunction, we simply
let NNF pass control to those subformulas. Clearly, all literals are in NNF.
The resulting code for NNF is thus

function NNF (¢):
/* precondition: ¢ is implication free */
/* postcondition: NNF (¢) computes a NNF for ¢ */
begin function
case
¢ is a literal: return ¢
¢ is 7—¢1: return NNF (¢q)
¢ is ¢1 A ¢o: return NNF (¢1) A NNF (¢2)
¢ is ¢1 V ¢o: return NNF (¢;) V NNF (¢2)
¢ is =(¢1 A ¢2): return NNF (—¢q) V NNF (—¢g)
¢ is =(¢1 V ¢2): return NNF (—¢1) A NNF (—¢a)
end case

end function

Notice that these cases are exhaustive due to the algorithm’s precondition.
Given any formula ¢ of propositional logic, we may now convert it into an
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equivalent CNF by calling CNF (NNF (IMPL_FREE (¢))). In the exercises, you
are asked to show that

¢ all four algorithms terminate on input meeting their preconditions,
* the result of CNF (NNF (IMPL_FREE (¢))) is in CNF and
e that result is semantically equivalent to ¢.

We will return to the important issue of formally proving the correctness of
programs in Chapter 4.

Let us now illustrate the programs coded above on some concrete exam-
ples. We begin by computing CNF (NNF (IMPL_FREE (—p A q — p A (1 — q)))).
We show almost all details of this computation and you should compare this
with how you would expect the code above to behave. First, we compute
IMPL_FREE (¢):

IMPL_FREE (¢)) = —IMPL_FREE (—p A ¢) VV IMPL_FREE (p A (r — q))
— —((IMPL_FREE —p) A (IMPL_FREEq)) V IMPL FREE (p A (r — q))

(
( )
~(=p A q) V ((IMPL_FREE p) A IMPL_FREE (1 — q))
= —(-pAq) V (p A IMPL_FREE (1 — ¢))
= —(-pAq)V (p A (~(IMPL_FREEr) \V (IMPL_FREE¢)))
— ~(-pAq)V (pA(—rV (IMPL_FREE g)))
=-(pAq) V(A (V).

Second, we compute NNF (IMPL_FREE ¢):

NNF (IMPL_FREE ¢) = NNF (=(=p A q)) VNNF (p A (=1 V q))
= NNF (—(=p) V —q) VNNF (p A (-7 V q))
= (NNF (—=p)) V (NNF (—q)) V NNF (p A (-7 V q))
pV (NNF (—q))) VNNF (p A (=1 V q))
pV —gq) VNNF (p A (=rVq))
pV —q) V ((NNF p) A (NNF (-1 V q)))

= (
= (
= (
=(pVq)
=(pV
=V
= (

V (p A (NNF (=1 V q)))
—q) V (p A ((NNF (=r)) V (NNF g)))
=q) V (p A (=r V (NNF q)))
pV=q)V (pA(=rVag)).
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Third, we finish it off with

CNF (NNF (IMPL_FREE ¢)) = CNF ((pV —q) V (p A (=1 V q)))
= DISTR (CNF (p V =q),CNF (p A (=1 V q)))
= DISTR (p V —q,CNF (p A (-7 V q)))
=DISTR (pV —¢,p A (-7 V q))
=DISTR (p V —q,p) ADISTR (p V —q, 7 V q)
= (pV qVp) ADISTR (pV —¢q, 1V q)
=(@V-qVp)A(PV-qV-rVg) .

The formula (pV =gV p)A(pV gV -rVgq) is thus the result of the call
CNF (NNF (IMPL_FREE ¢)) and is in conjunctive normal form and equivalent to
¢. Note that it is satisfiable (choose p to be true) but not valid (choose p to be
false and ¢ to be true); it is also equivalent to the simpler conjunctive normal
form p V —q. Observe that our algorithm does not do such optimisations so
one would need a separate optimiser running on the output. Alternatively,
one might change the code of our functions to allow for such optimisations
‘on the fly,” a computational overhead which could prove to be counter-
productive.

You should realise that we omitted several computation steps in the sub-
calls CNF (p V —¢) and CNF (p A (=7 V ¢)). They return their input as a result
since the input is already in conjunctive normal form.

As a second example, consider ¢ = r — (s — (£ A s — 7). We compute

IMPL_FREE (¢) = —(IMPL_FREE r) V IMPL_FREE (s — (t A s — 1))
= —r V IMPL_FREE (s — (t A s — 1))
= —r V (~(IMPL_FREE s) VV IMPL_FREE (£ A s — 1))

= -7V (s VIMPLFREE (t As — 7))

= —r V (=s V (~(IMPL_FREE (¢ A s)) V IMPL_FREE))

=V (=s V (~((IMPL_FREE ¢) A (IMPL_FREE s)) VV IMPL_FREE 1))
= =V (=8 V (—(t A (IMPL_FREE s)) V (IMPL_FREET)))

= =V (=8 V (=(t A s)) V (IMPL_FREET))
=-rV(=sV(=(tAs)Vr)
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NNF (IMPL_FREE ¢) = NNF (-7 V (=s V —(t A s) V 7))

(NNF =) V NNF (=s V =(t A )V 7)
= -r VNNF (s V (tAs)Vr)

= - V (NNF (=) VNNF (=(tA's) V1))
=-rV (-sVNNF (=(tAs)Vr))

(
= -1V (—s V (NNF (—(t As)) V NNF 7))
= —rV (-s V (NNF (=t V —s)) V NNF r)
= =1V (=8 V ((NNF (—t) V NNF (—s)) V NNF 7))
=V (=s V (=t V NNF (=) V NNF 1))
=-rV (-sV ((-tV —s) VINNF 7))
=-rV(=sV((-tV-as)Vr))

where the latter is already in CNF and valid as r has a matching —r.

1.5.3 Horn clauses and satisfiability

We have already commented on the computational price we pay for trans-
forming a propositional logic formula into an equivalent CNF. The latter
class of formulas has an easy syntactic check for validity, but its test for
satisfiability is very hard in general. Fortunately, there are practically im-
portant subclasses of formulas which have much more efficient ways of de-
ciding their satisfiability. One such example is the class of Horn formu-
las; the name ‘Horn’ is derived from the logician A. Horn’s last name.
We shortly define them and give an algorithm for checking their satisfi-
ability.

Recall that the logical constants L (‘bottom’) and T (‘top’) denote an
unsatisfiable formula, respectively, a tautology.

Definition 1.46 A Horn formula is a formula ¢ of propositional logic if it
can be generated as an instance of H in this grammar:

P:=11]T/|p
Az=P | PNA
Cu:=A—-P

H:=C | CANH.

We call each instance of C' a Horn clause.
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Horn formulas are conjunctions of Horn clauses. A Horn clause is an impli-
cation whose assumption A is a conjunction of propositions of type P and
whose conclusion is also of type P. Examples of Horn formulas are

(PAgNs—=p)AN(gAT —=D)AN(PAs—s)
(pAgAs— LYN(gAT —=Dp)A(T —s)
(P2 Ap3 Aps — p13) A(T — ps) A(ps Apin — L).

Examples of formulas which are not Horn formulas are

PAGASs— p)A(GAT = Dp)A(pAs—s)
pAGAs— L)AN(—gAr —=p)A(T — s)
p2 Ap3 Aps — p13 Apar) A (T — ps) A (ps Apir — L)

(
(
(
(p2 Aps Aps — p13 Apar) A(T = ps) A (ps Api V L).

The first formula is not a Horn formula since —p, the conclusion of the
implication of the first conjunct, is not of type P. The second formula does
not qualify since the premise of the implication of the second conjunct,
—g A r, is not a conjunction of atoms, L, or T. The third formula is not a
Horn formula since the conclusion of the implication of the first conjunct,
P13 A pa7, is not of type P. The fourth formula clearly is not a Horn formula
since it is not a conjunction of implications.

The algorithm we propose for deciding the satisfiability of a Horn for-
mula ¢ maintains a list of all occurrences of type P in ¢ and proceeds like
this:

1. It marks T if it occurs in that list.
If there is a conjunct Py A Py A -+ A Py, — P’ of ¢ such that all P; with 1 < j <
k; are marked, mark P’ as well and go to 2. Otherwise (= there is no conjunct
Py APy A--- APy, — P’ such that all P; are marked) go to 3.

3. If L is marked, print out ‘The Horn formula ¢ is unsatisfiable.” and stop. Oth-
erwise, go to 4.

4. Print out ‘The Horn formula ¢ is satisfiable.” and stop.

In these instructions, the markings of formulas are shared by all other oc-
currences of these formulas in the Horn formula. For example, once we
mark po because of one of the criteria above, then all other occurrences
of po are marked as well. We use pseudo code to specify this algorithm
formally:
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function HORN (¢):
/* precondition: ¢ is a Horn formula */
/* postcondition: HORN (¢) decides the satisfiability for ¢ */
begin function
mark all occurrences of T in ¢;
while there is a conjunct Py A Py A --- A Py, — P of ¢
such that all P; are marked but P’ isn’t do
mark P’
end while
if | is marked then return ‘unsatisfiable’ else return ‘satisfiable’
end function

We need to make sure that this algorithm terminates on all Horn formulas
¢ as input and that its output (= its decision) is always correct.

Theorem 1.47 The algorithm HORN is correct for the satisfiability decision
problem of Horn formulas and has no more than n+ 1 cycles in its while-
statement if n is the number of atoms in ¢. In particular, HORN always
terminates on correct input.

PROOF: Let us first consider the question of program termination. Notice
that entering the body of the while-statement has the effect of marking an
unmarked P which is not T. Since this marking applies to all occurrences
of P in ¢, the while-statement can have at most one more cycle than there
are atoms in ¢.

Since we guaranteed termination, it suffices to show that the answers
given by the algorithm HORN are always correct. To that end, it helps to
reveal the functional role of those markings. Essentially, marking a P means
that that P has got to be true if the formula ¢ is ever going to be satisfiable.
We use mathematical induction to show that

‘All marked P are true for all valuations in which ¢ evaluates to T.” (1.8)

holds after any number of executions of the body of the while-statement
above. The base case, zero executions, is when the while-statement has not
yet been entered but we already and only marked all occurrences of T. Since
T must be true in all valuations, (1.8) follows.

In the inductive step, we assume that (1.8) holds after k cycles of the
while-statement. Then we need to show that same assertion for all marked
P after k+1 cycles. If we enter the (k+ 1)th cycle, the condition of the
while-statement is certainly true. Thus, there exists a conjunct Py A Py A
-+ A\ Py, — P’ of ¢ such that all P; are marked. Let v be any valuation
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in which ¢ is true. By our induction hypothesis, we know that all P; and
therefore Py A Py A --- A\ Py, have to be true in v as well. The conjunct P; A
Py A -+ NPy, — P’ of ¢ has be to true in v, too, from which we infer that
P’ has to be true in v.

By mathematical induction, we therefore secured that (1.8) holds no mat-
ter how many cycles that while-statement went through.

Finally, we need to make sure that the if-statement above always renders
correct replies. First, if | is marked, then there has to be some conjunct
Py NPy A--- NPy, — L of ¢ such that all P; are marked as well. By (1.8)
that conjunct of ¢ evaluates to T — F = F whenever ¢ is true. As this is
impossible the reply ‘unsatisfiable’ is correct. Second, if | is not marked, we
simply assign T to all marked atoms and F to all unmarked atoms and use
proof by contradiction to show that ¢ has to be true with respect to that
valuation.

If ¢ is not true under that valuation, it must make one of its principal
conjuncts Py A Py A--- A Py, — P’ false. By the semantics of implication
this can only mean that all P; are true and P’ is false. By the definition of our
valuation, we then infer that all P; are marked, so Py A Py A --- A Py, — P’
is a conjunct of ¢ that would have been dealt with in one of the cycles of
the while-statement and so P’ is marked, too. Since L is not marked, P’ has
to be T or some atom ¢. In any event, the conjunct is then true by (1.8), a
contradiction O

Note that the proof by contradiction employed in the last proof was not
really needed. It just made the argument seem more natural to us. The
literature is full of such examples where one uses proof by contradiction
more out of psychological than proof-theoretical necessity.

1.6 SAT solvers

The marking algorithm for Horn formulas computes marks as constraints
on all valuations that can make a formule true. By (1.8), all marked atoms
have to be true for any such valuation. We can extend this idea to general
formulas ¢ by computing constraints saying which subformulas of ¢ require
a certain truth value for all valuations that make ¢ true:

‘All marked subformulas evaluate to their mark value

for all valuations in which ¢ evaluates to T.’ (1.9)

In that way, marking atomic formulas generalizes to marking subformu-
las; and ‘true’ marks generalize into ‘true’ and ‘false’ marks. At the same



1.6 SAT solvers 69

time, (1.9) serves as a guide for designing an algorithm and as an invariant
for proving its correctness.

1.6.1 A linear solver
We will execute this marking algorithm on the parse tree of formulas, except
that we will translate formulas into the adequate fragment

¢pu=p | (=) | (A0 (1.10)

and then share common subformulas of the resulting parse tree, making the
tree into a directed, acyclic graph (DAG). The inductively defined transla-
tion

T(p)=p T(~¢) = -T(9)
T(¢1 A p2) =T(¢1) NT(d2) T(p1V ¢2) = ~(=T(¢1) AT (¢2))
T(¢1 — ¢2) = ~(T(¢1) A =T(¢2))

transforms formulas generated by (1.3) into formulas generated by (1.10)
such that ¢ and T'(¢) are semantically equivalent and have the same propo-
sitional atoms. Therefore, ¢ is satisfiable iff T'(¢) is satisfiable; and the set
of valuations for which ¢ is true equals the set of valuations for which T'(¢)
is true. The latter ensures that the diagnostics of a SAT solver, applied to
T(¢), is meaningful for the original formula ¢. In the exercises, you are asked
to prove these claims.

Example 1.48 For the formula ¢ being p A =(q V —p) we compute T(¢) =
p A ==(—=g A =—p). The parse tree and DAG of T'(¢) are depicted in Fig-
ure 1.12.

Any valuation that makes p A =—(—g A =—p) true has to assign T to the
topmost A-node in its DAG of Figure 1.12. But that forces the mark T on
the p-node and the topmost —-node. In the same manner, we arrive at a
complete set of constraints in Figure 1.13, where the time stamps ‘1:” etc
indicate the order in which we applied our intuitive reasoning about these
constraints; this order is generally not unique.

The formal set of rules for forcing new constraints from old ones is depicted
in Figure 1.14. A small circle indicates any node (=, A or atom). The force
laws for negation, -y and —¢, indicate that a truth constraint on a —-node
forces its dual value at its sub-node and vice versa. The law A, propagates
a T constraint on a A-node to its two sub-nodes; dually, Ay forces a T mark
on a A-node if both its children have that mark. The laws Ag and Ag force a
F constraint on a A-node if any of its sub-nodes has a F value. The laws Ag,
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N
>4J4J/

Figure 1.12. Parse tree (left) and directed acyclic graph (right) of the
formula from Example 1.48. The p-node is shared on the right.

1:T A

2:Tp 6: F

Figure 1.13. A witness to the satisfiability of the formula represented
by this DAG.

and Ag, are more complex: if an A-node has a F constraint and one of its
sub-nodes has a T constraint, then the other sub-node obtains a F-constraint.
Please check that all constraints depicted in Figure 1.13 are derivable from
these rules. The fact that each node in a DAG obtained a forced marking
does not yet show that this is a witness to the satisfiability of the formula



1.6 SAT solvers 71

&

=

-t

o4

\J/ forcing laws for negation
T

Ate: T//AQ\qT Auit //A&\

o © ToO o T
true conjunction forces true conjuncts true conjunctions force true conjunction

false conjuncts
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Figure 1.14. Rules for flow of constraints in a formula’s DAG. Small
circles indicate arbitrary nodes (—, A or atom). Note that the rules Ag,
Anr and Ayg; require that the source constraints of both —> are present.

represented by this DAG. A post-processing phase takes the marks for all
atoms and re-computes marks of all other nodes in a bottom-up manner, as
done in Section 1.4 on parse trees. Only if the resulting marks match the
ones we computed have we found a witness. Please verify that this is the
case in Figure 1.13.

We can apply SAT solvers to checking whether sequents are valid. For
example, the sequent pAgq—rtp—qg—risvalidiff (pAg—7r)—p—
q — r is a theorem (why?) iff ¢ = =((pAq— 1) — p — q — ) is not satis-
fiable. The DAG of T'(¢) is depicted in Figure 1.15. The annotations “1” etc
indicate which nodes represent which sub-formulas. Notice that such DAGs
may be constructed by applying the translation clauses for T to sub-formulas
in a bottom-up manner — sharing equal subgraphs were applicable.

The findings of our SAT solver can be seen in Figure 1.16. The solver
concludes that the indicated node requires the marks T and F for (1.9) to be
met. Such contradictory constraints therefore imply that all formulas T'(¢)
whose DAG equals that of this figure are not satisfiable. In particular, all
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“5” = entire formula 57 =
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Figure 1.15. The DAG for the translation of =((pAg¢g—71) —>p—q¢—
r). Labels “1" etc indicate which nodes represent what subformulas.

such ¢ are unsatisfiable. This SAT solver has a linear running time in the
size of the DAG for T'(¢). Since that size is a linear function of the length
of ¢ — the translation T causes only a linear blow-up — our SAT solver has
a linear running time in the length of the formula. This linearity came with
a price: our linear solver fails for all formulas of the form —(¢1 A ¢2).

1.6.2 A cubic solver

When we applied our linear SAT solver, we saw two possible outcomes:
we either detected contradictory constraints, meaning that no formula rep-
resented by the DAG is satisfiable (e.g. Fig. 1.16); or we managed to force
consistent constraints on all nodes, in which case all formulas represented by
this DAG are satisfiable with those constraints as a witness (e.g. Fig. 1.13).
Unfortunately, there is a third possibility: all forced constraints are consis-
tent with each other, but not all nodes are constrained! We already remarked
that this occurs for formulas of the form —(¢1 A ¢2).
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‘ﬁ 1:' T
‘ﬁ 2:F
//\ 3:T
4: T ‘ﬂ
5 F ﬂ‘
6: T A
its conjunction parent 7 T=
and Ay, force F ‘ o 4: T
its children and 8 F - ‘
At force T A 5 F
— a contradiction
9: TA
/ DT
T p 10:\T q r 1L:F

Figure 1.16. The forcing rules, applied to the DAG of Figure 1.15,
detect contradictory constraints at the indicated node — implying that
the initial constraint ‘1:T" cannot be realized. Thus, formulas represented
by this DAG are not satisfiable.

Recall that checking validity of formulas in CNF is very easy. We already
hinted at the fact that checking satisfiability of formulas in CNF is hard. To
illustrate, consider the formula

(Vv (@Vvr)A(lpV—-g)A((gV-r)A((rV=p)A(=pV(=gV-r))))))
(1.11)

in CNF — based on Example 4.2, page 77, in [Pap94]. Intuitively, this formula
should not be satisfiable. The first and last clause in (1.11) ‘say’ that at least
one of p, ¢, and r are false and true (respectively). The remaining three
clauses, in their conjunction, ‘say’ that p, ¢, and r all have the same truth
value. This cannot be satisfiable, and a good SAT solver should discover
this without any user intervention. Unfortunately, our linear SAT solver can

neither detect inconsistent constraints nor compute constraints for all nodes.
Figure 1.17 depicts the DAG for T'(¢), where ¢ is as in (1.11); and reveals
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1T A

Figure 1.17. The DAG for the translation of the formula in (1.11). It
has a A-spine of length 4 as it is a conjunction of five clauses. Its linear
analysis gets stuck: all forced constraints are consistent with each other
but several nodes, including all atoms, are unconstrained.

that our SAT solver got stuck: no inconsistent constraints were found and
not all nodes obtained constraints; in particular, no atom received a mark!
So how can we improve this analysis? Well, we can mimic the role of LEM
to improve the precision of our SAT solver. For the DAG with marks as in
Figure 1.17, pick any node n that is not yet marked. Then test node n by
making two independent computations:

1. determine which temporary marks are forced by adding to the marks in Fig-
ure 1.17 the T mark only to n; and

2. determine which temporary marks are forced by adding, again to the marks in
Figure 1.17, the F mark only to n.
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1:T A

temporary T mark
at test node;
explore consequences

5. T

6: F
a:T

b:F
‘ contradictory

gF q cT constraints
at conjunction

N
p

c:T

Figure 1.18. Marking an unmarked node with T and exploring what
new constraints would follow from this. The analysis shows that this
test marking causes contradictory constraints. We use lowercase letters
‘a:’” etc to denote temporary marks.

If both runs find contradictory constraints, the algorithm stops and re-
ports that T'(¢) is unsatisfiable. Otherwise, all nodes that received the same
mark in both of these runs receive that very mark as a permanent one; that
is, we update the mark state of Figure 1.17 with all such shared marks.

We test any further unmarked nodes in the same manner until we either
find contradictory permanent marks, a complete witness to satisfiability (all
nodes have consistent marks), or we have tested all currently unmarked
nodes in this manner without detecting any shared marks. Only in the lat-
ter case does the analysis terminate without knowing whether the formulas
represented by that DAG are satisfiable.
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Example 1.49 We revisit our stuck analysis of Figure 1.17. We test a —-
node and explore the consequences of setting that —-node’s mark to T; Fig-
ure 1.18 shows the result of that analysis. Dually, Figure 1.19 tests the
consequences of setting that —-node’s mark to F. Since both runs reveal a
contradiction, the algorithm terminates, ruling that the formula in (1.11) is
not satisfiable.

In the exercises, you are asked to show that the specification of our cubic
SAT solver is sound. Its running time is indeed cubic in the size of the
DAG (and the length of original formula). One factor stems from the linear
SAT solver used in each test run. A second factor is introduced since each
unmarked node has to be tested. The third factor is needed since each new
permanent mark causes all unmarked nodes to be tested again.

contradictory
constraints
at conjunction

temporary F mark
at test node; 5: T
explore consequences

Figure 1.19. Marking the same unmarked node with F and exploring
what new constraints would follow from this. The analysis shows that
this test marking also causes contradictory constraints.
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analysis gets stuck right away ‘

testing this node » N A
with T renders \ /
a contradiction

justifying to mark -

it with F permanently A ‘

A -
. N~
A
p/ q
Figure 1.20. Testing the indicated node with T causes contradictory
constraints, so we may mark that node with F permanently. However,

our algorithm does not seem to be able to decide satisfiability of this
DAG even with that optimization.

T

We deliberately under-specified our cubic SAT solver, but any implemen-
tation or optimization decisions need to secure soundness of the analysis.
All replies of the form

1. ‘The input formula is not satisfiable’ and
2. ‘The input formula is satisfiable under the following valuation ...’

have to be correct. The third form of reply ‘Sorry, I could not figure this one
out.” is correct by definition. :-) We briefly discuss two sound modifications
to the algorithm that introduce some overhead, but may cause the algorithm
to decide many more instances. Consider the state of a DAG right after we
have explored consequences of a temporary mark on a test node.

1. If that state — permanent plus temporary markings — contains contradictory
constraints, we can erase all temporary marks and mark the test node perma-
nently with the dual mark of its test. That is, if marking node n with v resulted
in a contradiction, it will get a permanent mark 7, where T=F and F = T;
otherwise

2. if that state managed to mark all nodes with consistent constraints, we report
these markings as a witness of satisfiability and terminate the algorithm.

If none of these cases apply, we proceed as specified: promote shared marks

of the two test runs to permanent ones, if applicable.

Example 1.50 To see how one of these optimizations may make a differ-
ence, consider the DAG in Figure 1.20. If we test the indicated node with
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T, contradictory constraints arise. Since any witness of satisfiability has to
assign some value to that node, we infer that it cannot be T. Thus, we may
permanently assign mark F to that node. For this DAG, such an optimiza-
tion does not seem to help. No test of an unmarked node detects a shared
mark or a shared contradiction. Our cubic SAT solver fails for this DAG.

1.7 Exercises

Exercises 1.1

1. Use =, —, A and V to express the following declarative sentences in propositional
logic; in each case state what your respective propositional atoms p, ¢, etc. mean:

* (a) If the sun shines today, then it won’t shine tomorrow.
(b) Robert was jealous of Yvonne, or he was not in a good mood.
(c) If the barometer falls, then either it will rain or it will snow.
*(d) If a request occurs, then either it will eventually be acknowledged, or the
requesting process won’t ever be able to make progress.
(e) Cancer will not be cured unless its cause is determined and a new drug for
cancer is found.
(f) If interest rates go up, share prices go down.
(g) If Smith has installed central heating, then he has sold his car or he has not
paid his mortgage.
* (h) Today it will rain or shine, but not both.
* (i) If Dick met Jane yesterday, they had a cup of coffee together, or they took
a walk in the park.
(j) No shoes, no shirt, no service.
(k) My sister wants a black and white cat.

2. The formulas of propositional logic below implicitly assume the binding priorities
of the logical connectives put forward in Convention 1.3. Make sure that you fully
understand those conventions by reinserting as many brackets as possible. For
example, given p A ¢ — r, change it to (p A ¢) — r since A binds more tightly
than —.

*(a) pAg T
b)) p—=a)A~(rVp—q)
¢)(p—aq)—(r—sVi)
) pV (=g —=pAT)

*(e)pVg—-pAr

(f)

* (g) Why is the expression p V g A r problematic?

Exercises 1.2
1. Prove the validity of the following sequents:
(a) (pAg) AT, sANtEgAs
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p—{@—q,pFq
q

*(e _>(p_)7‘)7jr7ql_ﬁp

() FlpAg) —p

(&) pFqg—(pNq)

*(h) pE(p—q) —q

) (p—=r)A(@—r)FpAg—T

*Gag—rFp—q —@—r)
p—(q—=r7),p—qbp—r

*W)p—gqr—oskpVr—qVvs

(m pVagbr—(pVq Ar

—q,r—=SFEpATr —qAs
—qF((prAg) = p)A(p— (PAQ))
Fg—(—(p—(@—p)

p
p

Fp—q) — ((r—s)— (pAr— qAs)); here you might be able to ‘recycle’
and augment a proof from a previous exercise.

f) “-pA—qgF-(pVq)

)
)
)
)
e) p— (qVr),—q,—rt —p without using the MT rule
)
) pA—pE(r—q) A(r—q)

)

)
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(v) (pAgq) =1, r—8, gAst—p.

4. Explain why intuitionistic logicians also reject the proof rule PBC.

5. Prove the following theorems of propositional logic:

(@) (p—q) —a) = ((¢g—p) —p)

(b) Given a proof for the sequent of the previous item, do you now have a quick

argument for ((¢ — p) —p) — ((p — ¢) — q)?

(c) (p—=a)N(g—p)— ((pVae — (PAq)

(d) (p—a) = ((=p—q) — q).

6. Natural deduction is not the only possible formal framework for proofs in propo-
sitional logic. As an abbreviation, we write I' to denote any finite sequence of
formulas ¢1, @2, ..., ¢, (n > 0). Thus, any sequent may be written as I' - ¢ for
an appropriate, possibly empty, I'. In this exercise we propose a different notion
of proof, which states rules for transforming valid sequents into valid sequents.
For example, if we have already a proof for the sequent I', ¢ I 1), then we ob-
tain a proof of the sequent I' - ¢ — 1 by augmenting this very proof with one
application of the rule —i. The new approach expresses this as an inference rule
between sequents:

Lok
TFo—v

i.

The rule ‘assumption’ is written as

pyu. assumption

i.e. the premise is empty. Such rules are called axioms.

(a) Express all remaining proof rules of Figure 1.2 in such a form. (Hint: some
of your rules may have more than one premise.)

(b) Explain why proofs of I' F ¢ in this new system have a tree-like structure
with T' - 1) as root.

(c) Prove pV (p A ¢q) F p in your new proof system.
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7. Show that v/2 cannot be a rational number. Proceed by proof by contradiction:
assume that v/2 is a fraction k/I with integers k and I # 0. On squaring both sides
we get 2 = k? /12, or equivalently 2% = k?. We may assume that any common 2
factors of k and [ have been cancelled. Can you now argue that 2/2 has a different
number of 2 factors from k2? Why would that be a contradiction and to what?

8. There is an alternative approach to treating negation. One could simply ban the
operator — from propositional logic and think of  — L as ‘being’ —¢. Naturally,
such a logic cannot rely on the natural deduction rules for negation. Which of
the rules —i, —e, =—e and ——i can you simulate with the remaining proof rules
by letting —¢ be ¢ — L7

9. Let us introduce a new connective ¢ < 1 which should abbreviate (¢ — 1) A
(¢ — ¢). Design introduction and elimination rules for < and show that they
are derived rules if ¢ < 1 is interpreted as (¢ — ) A (¥ — ¢).

Exercises 1.3
In order to facilitate reading these exercises we assume below the usual
conventions about binding priorities agreed upon in Convention 1.3.

1. Given the following formulas, draw their corresponding parse tree:

2. For each formula below, list all its subformulas:
*(a) p— (mpV (=g — (P A q)))
(b) (s = r VIV (mg AT) = (=(p— ) = 1)
() = @) A(=r—=(qV(=pAT))).
3. Draw the parse tree of a formula ¢ of propositional logic which is
(a) a negation of an implication
(b) a disjunction whose disjuncts are both conjunctions
* (c) a conjunction of conjunctions.
4. For each formula below, draw its parse tree and list all subformulas:
8 (s = (~(p = (qV )

(p——q)V(pAT)—8)V-r.
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Figure 1.21. A tree that represents an ill-formed formula.
5. For the parse tree in Figure 1.22 find the logical formula it represents.
6. For the trees below, find their linear representations and check whether they
correspond to well-formed formulas:
(a) the tree in Figure 1.10 on page 44
(b) the tree in Figure 1.23.
7. Draw a parse tree that represents an ill-formed formula such that
(a) one can extend it by adding one or several subtrees to obtain a tree that
represents a well-formed formula;
(b) it is inherently ill-formed; i.e. any extension of it could not correspond to a
well-formed formula.
8. Determine, by trying to draw parse trees, which of the following formulas are
well-formed:
(a) pA=(pV —q) = (r—s)
() pA=(VaAs) = (r—s)
(¢) pA=(pV As) — (r— s).
Among the ill-formed formulas above which ones, and in how many ways, could
you ‘fix” by the insertion of brackets only?

Exercises 1.4

1. Construct the truth table for —p V ¢ and verify that it coincides with the one for
p — q. (By ‘coincide’ we mean that the respective columns of T and F values are
the same.)

2. Compute the complete truth table of the formula

(@) (p—q)—p)—p
(b) represented by the parse tree in Figure 1.3 on page 34
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Figure 1.22. A parse tree of a negated implication.

83
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Figure 1.23. Another parse tree of a negated implication.

*(e) pV(=(gA(r—q)))
(d) (pAg)— (pVa)
(e) ((p— —q) = —p) —q
) =g V-9
(g) (p—q) —p)—p
(h) ((pVag) —r)—=((p—r)V(g—T))

(i) (p = q) = (=p — —q).

3. Given a valuation and a parsetree of a formula, compute the truth value of the
formula for that valuation (as done in a bottom-up fashion in Figure 1.7 on
page 40) with the parse tree in

* (a) Figure 1.10 on page 44 and the valuation in which ¢ and r evaluate to T and
p to F;
(b) Figure 1.4 on page 36 and the valuation in which ¢ evaluates to T and p and
r evaluate to F;
(c) Figure 1.23 where we let p be T, ¢ be F and r be T; and
(d) Figure 1.23 where we let p be F, ¢ be T and r be F.
4. Compute the truth value on the formula’s parse tree, or specify the corresponding
line of a truth table where
* (a) p evaluates to F, ¢ to T and the formula is p — (=¢ V (¢ — p))
*(b) the formula is =((=g A (p — 7)) A (r — ¢q)), p evaluates to F, ¢ to T and r
evaluates to T.
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* 5. A formula is valid iff it computes T for all its valuations; it is satisfiable iff it
computes T for at least one of its valuations. Is the formula of the parse tree in
Figure 1.10 on page 44 valid? Is it satisfiable?

6. Let * be a new logical connective such that p * ¢ does not hold iff p and ¢ are
either both false or both true.

(a) Write down the truth table for p * q.

(b) Write down the truth table for (p * p) * (g * q).

(c) Does the table in (b) coincide with a table in Figure 1.6 (page 38)7 If so,
which one?

(d) Do you know = already as a logic gate in circuit design? If so, what is it
called?

7. These exercises let you practice proofs using mathematical induction. Make sure
that you state your base case and inductive step clearly. You should also indicate
where you apply the induction hypothesis.

(a) Prove that

2-1-D+2-2-D)+2-3-1)+---+2-n—-1)=n?

by mathematical induction on n > 1.
(b) Let k& and ! be natural numbers. We say that k is divisible by [ if there
exists a natural number p such that & = p - [. For example, 15 is divisible by
3 because 15 =5 - 3. Use mathematical induction to show that 11™ — 4™ is
divisible by 7 for all natural numbers n > 1.
* (¢) Use mathematical induction to show that

n-(n+1)-2n+1)

1249224324 ... 402 = -

for all natural numbers n > 1.
* (d) Prove that 2™ > n 4+ 12 for all natural numbers n > 4. Here the base case is
n = 4. Is the statement true for any n < 47
(e) Suppose a post office sells only 2¢ and 3¢ stamps. Show that any postage of
2¢, or over, can be paid for using only these stamps. Hint: use mathematical
induction on n, where n¢ is the postage. In the inductive step consider two
possibilities: first, n¢ can be paid for using only 2¢ stamps. Second, paying
n¢ requires the use of at least one 3¢ stamp.
(f) Prove that for every prefix of a well-formed propositional logic formula the
number of left brackets is greater or equal to the number of right brackets.
* 8. The Fibonacci numbers are most useful in modelling the growth of populations.
We define them by Fj = 1, Fy <1 and Fria < F,+ F,_, for all n>2. So
F3 & F + F,=1+1=2 etc. Show the assertion ‘Fj, is even.’ by mathemat-
ical induction on n > 1. Note that this assertion is saying that the sequence
F3, Fg, Fy, . .. consists of even numbers only.
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9. Consider the function rank, defined by

rank(p) = 1
rank(—¢) = 1 4 rank(¢)
rank(¢ o 1) = 1 + max(rank(¢), rank(1)))

where p is any atom, o € {—,V, A} and max(n,m) is n if n > m and m other-
wise. Recall the concept of the height of a formula (Definition 1.32 on page 44).
Use mathematical induction on the height of ¢ to show that rank(¢) is nothing
but the height of ¢ for all formulas ¢ of propositional logic.

*10. Here is an example of why we need to secure the base case for mathematical
induction. Consider the assertion

‘The number n? + 5n + 1 is even for all n > 1.]

(a) Prove the inductive step of that assertion.

(b) Show that the base case fails to hold.

(¢) Conclude that the assertion is false.

(d) Use mathematical induction to show that n? + 5n + 1 is odd for all n > 1.

11. For the soundness proof of Theorem 1.35 on page 46,

(a) explain why we could not use mathematical induction but had to resort to
course-of-values induction;

(b) give justifications for all inferences that were annotated with ‘why?’ and

(c) complete the case analysis ranging over the final proof rule applied; inspect
the summary of natural deduction rules in Figure 1.2 on page 27 to see which
cases are still missing. Do you need to include derived rules?

12. Show that the following sequents are not valid by finding a valuation in which
the truth values of the formulas to the left of F are T and the truth value of
the formula to the right of + is F.

() pV(g—p)F-pAg

(b) -r = (pVaq),rA=qbr—gq
*()p—=(@—=r)Fp—(r—q

(d) =p,p Vgt —q

(€) p— (~qVr),~rt—-q—-p.

13. For each of the following invalid sequents, give examples of natural language
declarative sentences for the atoms p, ¢ and 7 such that the premises are true,
but the conclusion false.

(a) pVagkpAg

(b) =p — =g ~g — —p

(c)p—qkpVyg

(d)p—(gvr)F®—aA—r).

14. Find a formula of propositional logic ¢ which contains only the atoms p, ¢

*
*

and r and which is true only when p and ¢ are false, or when —g A (pV r) is
true.
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15. Use mathematical induction on n to prove the theorem ((¢1 A (2 A (--- A
Pn)...) =) = (91— (P2 = (. (P = 9)...))))-
16. Prove the validity of the following sequents needed to secure the completeness
result for propositional logic:
(a) @1 A =g = =(d1 — ¢2)
(b) =¢1 A =2 1 — ¢
(c) ~o1 Ao =1 — p2
(d) ¢1 Ao b= 1 — 2
(e) =1 A g2 == (1 A ¢2)
(f) =1 A =pa = =1 A o)
(8) ¢1 A= = —(1 A o)
(h) =1 A =2 F = (o1 V ¢2)
(i) drAd2 @1V oo
(j) 71 A2t ¢1V d2
(k) ¢1 A =2t 1V ¢a.
17. Does F ¢ hold for the ¢ below? Please justify your answer.
(&) p—q)Vig—r)
*®) ((g—=(pV(g—p)V=(p—aq)—p

Exercises 1.5

1. Show that a formula ¢ is valid iff T = ¢, where T is an abbreviation for an
instance p V —p of LEM.

2. Which of these formulas are semantically equivalent to p — (¢ V r)?

(@) ¢V (-pVr)

*(b) gA-r —p
(c) pA—r—gq
*(d) =g A=r — —p.

3. An adequate set of connectives for propositional logic is a set such that for every
formula of propositional logic there is an equivalent formula with only connectives
from that set. For example, the set {—,V} is adequate for propositional logic,
because any occurrence of A and — can be removed by using the equivalences
¢—p=-0Veand gAY = (=6 V).

(a) Show that {—,A}, {=,—} and {—, L} are adequate sets of connectives for
propositional logic. (In the latter case, we are treating L as a nullary con-
nective.)

(b) Show that, if C C {—,A,V,—, L} is adequate for propositional logic, then
— € C or L € C. (Hint: suppose C contains neither = nor L and consider
the truth value of a formula ¢, formed by using only the connectives in C,
for a valuation in which every atom is assigned T.)

(c) Is {«», ~} adequate? Prove your answer.

4. Use soundness or completeness to show that a sequent ¢1,¢s,..., ¢, F 1 has a
proof iff ¢1 — o — ... ¢, — ¥ is a tautology.
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5. Show that the relation = is

(a) reflexive: ¢ = ¢ holds for all ¢

(b) symmetric: ¢ =1 implies ¢ = ¢ and

(¢) transitive: ¢ = and 1) = n imply ¢ = 7.
6. Show that, with respect to =,

(a) A and V are idempotent:

LoNdp=0¢
i oVo=o
(b) A and V are commutative:
LOAY=YAD
i oV =y Ve

(¢) A and V are associative:
Lon(@WAn) =(oAY)An
6V (V)= (6 V)V
(d) A and V are absorptive:
LGNSV =
i oV (6AD) =0
(e) A and V are distributive:
Lon(@Vn)=(dAY)VI(dAD)
gV (AN =(eVY)A(eVn)
(f) = allows for double negation: ¢ = =—¢ and
(g) A and V satisfies the de Morgan rules:
i (¢ A ) =gV
* i (o V) =g A .
7. Construct a formula in CNF based on each of the following truth tables:

* (a)

T I B R S Qe Rt LS
Mmoo Mmoo A A
T T BT QU QR R R

Mmoo oM om oo T A



11.

12.
13.

14

15
*
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<
o3

T T B R (S QU R |
Mmoo Aa Ao
mHa T M oA 3 om Al

o I I B e e I B |

. Write a recursive function IMPL_FREE which requires a (parse tree of a) proposi-

tional formula as input and produces an equivalent implication-free formula as
output. How many clauses does your case statement need? Recall Definition 1.27
on page 32.

. Compute CNF (NNF (IMPL_FREE —(p — (—~(q A (—=p — ¢)))))).
10.

Use structural induction on the grammar of formulas in CNF to show that the
‘otherwise’ case in calls to DISTR applies iff both n; and 7y are of type D in (1.6)
on page 595.
Use mathematical induction on the height of ¢ to show that the call
CNF (NNF (IMPL_FREE ¢)) returns, up to associativity, ¢ if the latter is already
in CNF.
Why do the functions CNF and DISTR preserve NNF and why is this important?
For the call CNF (NNF (IMPL_FREE (¢))) on a formula ¢ of propositional logic,
explain why

(a) its output is always a formula in CNF

(b) its output is semantically equivalent to ¢

(c) that call always terminates.

. Show that all the algorithms presented in Section 1.5.2 terminate on any input

meeting their precondition. Can you formalise some of your arguments? Note
that algorithms might not call themselves again on formulas with smaller height.
E.g. the call of CNF (¢; V ¢2) results in a call DISTR (CNF(¢1), CNF(¢2)), where
CNF(¢;) may have greater height than ¢;. Why is this not a problem?

. Apply algorithm HORN from page 66 to each of these Horn formulas:

(a) (pAgAhw — YAt —= LA —=p A(T =>r)A(T = ¢) A (u—
S)N(T = u)

) pAgAhw— L)A{E—= DA[Tr =D A(T=>r)A(T =g A(rAu—
w) A (u— ) A (T = u)

(c) (pAgAs—=p)A(gAT —=DpP)A(pAs—s)

(d) (pAgAs— L)A(gAT—=p) A (T —s)

(e) (ps — p11) A (P2 Aps Aps — p13) A(T — ps) A (ps Apin — L)

O (TN (T=s)A(w— L)ApAgAs— L)A(v—= )N (T —
) A(r — p)
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“(g) (T— Q) A(T—=s)A(w— L)A(pAGAs =) A(v— 5) A(T —
r) A (r — p).

16. Explain why the algorithm HORN fails to work correctly if we change the concept
of Horn formulas by extending the clause for P on page 65 to P =1 | T |
p | -p?

17. What can you say about the CNF of Horn formulas. More precisely, can you
specify syntactic criteria for a CNF that ensure that there is an equivalent Horn
formula? Can you describe informally programs which would translate from one
form of representation into another?

Exercises 1.6
1. Use mathematical induction to show that, for all ¢ of (1.3) on page 33,
(a) T(¢) can be generated by (1.10) on page 69,
(b) T(¢) has the same set of valuations as ¢, and
(c) the set of valuations in which ¢ is true equals the set of valuations in which
T(¢) is true.

2. Show that all rules of Figure 1.14 (page 71) are sound: if all current marks
satisfy the invariant (1.9) from page 68, then this invariant still holds if the
derived constraint of that rule becomes an additional mark.

3. In Figure 1.16 on page 73 we detected a contradiction which secured the validity
of the sequent p A ¢ — r + p — g — r. Use the same method with the linear SAT
solver to show that the sequent - (p — ¢) V (r — p) is valid. (This is interest-
ing since we proved this validity in natural deduction with a judicious choice
of the proof rule LEM; and the linear SAT solver does not employ any case
analysis.)

4. Consider the sequent p V q,p — r = 7. Determine a DAG which is not satisfiable
iff this sequent is valid. Tag the DAG’s root node with ‘1: T,” apply the forcing
laws to it, and extract a witness to the DAG’s satisfiability. Explain in what
sense this witness serves as an explanation for the fact that pV¢,p — rFr is
not valid.

5. Explain in what sense the SAT solving technique, as presented in this chapter,
can be used to check whether formulas are tautologies.

6. For ¢ from (1.10), can one reverse engineer ¢ from the DAG of T'(¢)?

7. Consider a modification of our method which initially tags a DAG’s root node
with ‘1: F.” In that case,

(a) are the forcing laws still sound? If so, state the invariant.
(b) what can we say about the formula(s) a DAG represents if
i. we detect contradictory constraints?
ii. we compute consistent forced constraints for each node?

8. Given an arbitrary Horn formula ¢, compare our linear SAT solver — applied
to T(¢) — to the marking algorithm — applied to ¢. Discuss similarities and
differences of these approaches.
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9. Consider Figure 1.20 on page 77. Verify that
(a) its test produces contradictory constraints
(b) its cubic analysis does not decide satisfiability, regardless of whether the

two optimizations we described are present.

10. Verify that the DAG of Figure 1.17 (page 74) is indeed the one obtained for
T(¢), where ¢ is the formula in (1.11) on page 73.

* 11. An implementor may be concerned with the possibility that the answers to the
cubic SAT solver may depend on a particular order in which we test unmarked
nodes or use the rules in Figure 1.14. Give a semi-formal argument for why the
analysis results don’t depend on such an order.

12. Find a formula ¢ such that our cubic SAT solver cannot decide the satisfiability
of T(¢).

13. Advanced Project: Write a complete implementation of the cubic SAT solver
described in Section 1.6.2. It should read formulas from the keyboard or a file;
should assume right-associativity of V, A, and — (respectively); compute the
DAG of T(¢); perform the cubic SAT solver next. Think also about including
appropriate user output, diagnostics, and optimizations.

14. Show that our cubic SAT solver specified in this section
(a) terminates on all syntactically correct input;

(b) satisfies the invariant (1.9) after the first permanent marking;
(c) preserves (1.9) for all permanent markings it makes;
(d) computes only correct satisfiability witnesses;

(e) computes only correct ‘not satisfiable’ replies; and

(f) remains to be correct under the two modifications described on page 77 for

handling results of a node’s two test runs.

1.8 Bibliographic notes

Logic has a long history stretching back at least 2000 years, but the truth-
value semantics of propositional logic presented in this and every logic text-
book today was invented only about 160 years ago, by G. Boole [Boob4].
Boole used the symbols + and - for disjunction and conjunction.

Natural deduction was invented by G. Gentzen [Gen69], and further de-
veloped by D. Prawitz [Pra65]. Other proof systems existed before then, no-
tably axiomatic systems which present a small number of axioms together
with the rule modus ponens (which we call —e). Proof systems often present
as small a number of axioms as possible; and only for an adequate set of con-
nectives such as — and —. This makes them hard to use in practice. Gentzen
improved the situation by inventing the idea of working with assumptions
(used by the rules —i, =i and Ve) and by treating all the connectives sepa-
rately.
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Our linear and cubic SAT solvers are variants of Stalmarck’s method
[SS90], a SAT solver which is patented in Sweden and in the United States
of America.

Further historical remarks, and also pointers to other contemporary books
about propositional and predicate logic, can be found in the bibliographic
remarks at the end of Chapter 2. For an introduction to algorithms and data
structures see e.g. [Wei98].



2
Predicate logic

2.1 The need for a richer language

In the first chapter, we developed propositional logic by examining it from
three different angles: its proof theory (the natural deduction calculus), its
syntax (the tree-like nature of formulas) and its semantics (what these for-
mulas actually mean). From the outset, this enterprise was guided by the
study of declarative sentences, statements about the world which can, for
every valuation or model, be given a truth value.

We begin this second chapter by pointing out the limitations of propo-
sitional logic with respect to encoding declarative sentences. Propositional
logic dealt quite satisfactorily with sentence components like not, and, or
and if ...then, but the logical aspects of natural and artificial languages
are much richer than that. What can we do with modifiers like there exists

..,all ..., among ... and only ...7 Here, propositional logic shows clear
limitations and the desire to express more subtle declarative sentences led
to the design of predicate logic, which is also called first-order logic.

Let us consider the declarative sentence

Every student is younger than some instructor. (2.1)

In propositional logic, we could identify this assertion with a propositional
atom p. However, that fails to reflect the finer logical structure of this sen-
tence. What is this statement about? Well, it is about being a student, being
an instructor and being younger than somebody else. These are all proper-
ties of some sort, so we would like to have a mechanism for expressing them
together with their logical relationships and dependences.

We now use predicates for that purpose. For example, we could write
S(andy) to denote that Andy is a student and I(paul) to say that Paul is an
instructor. Likewise, Y (andy, paul) could mean that Andy is younger than

93



94 2 Predicate logic

Paul. The symbols S, I and Y are called predicates. Of course, we have to
be clear about their meaning. The predicate Y could have meant that the
second person is younger than the first one, so we need to specify exactly
what these symbols refer to.

Having such predicates at our disposal, we still need to formalise those
parts of the sentence above which speak of every and some. Obviously, this
sentence refers to the individuals that make up some academic community
(left implicit by the sentence), like Kansas State University or the University
of Birmingham, and it says that for each student among them there is an
instructor among them such that the student is younger than the instructor.

These predicates are not yet enough to allow us to express the sentence
n (2.1). We don’t really want to write down all instances of S(-) where - is
replaced by every student’s name in turn. Similarly, when trying to codify
a sentence having to do with the execution of a program, it would be rather
laborious to have to write down every state of the computer. Therefore,
we employ the concept of a variable. Variables are written u, v, w,,y, z, . ..
or ri,¥s,us,... and can be thought of as place holders for concrete values
(like a student, or a program state). Using variables, we can now specify the
meanings of S, I and Y more formally:

S(x): xis a student
I(xz):  is an instructor
Y(z,y): x is younger than y.

Note that the names of the variables are not important, provided that we
use them consistently. We can state the intended meaning of I by writing

I(y) : yis an instructor
or, equivalently, by writing
I(z): =z is an instructor.

Variables are mere place holders for objects. The availability of variables is
still not sufficient for capturing the essence of the example sentence above.
We need to convey the meaning of Every student x is younger than some
instructor y.” This is where we need to introduce quantifiers V (read: ‘for
all’) and 3 (read: ‘there exists’ or ‘for some’) which always come attached
to a variable, as in Vx (‘for all 2’) or in 3z (‘there exists z’, or ‘there is some
z’). Now we can write the example sentence in an entirely symbolic way as

v (S(x) — By ((y) AY(2,9))))-
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Actually, this encoding is rather a paraphrase of the original sentence. In
our example, the re-translation results in

For every x, if x is a student, then there is some y which is an
instructor such that x is younger than y.

Different predicates can have a different number of arguments. The predi-
cates S and I have just one (they are called unary predicates), but predicate
Y requires two arguments (it is called a binary predicate). Predicates with
any finite number of arguments are possible in predicate logic.

Another example is the sentence

Not all birds can fly.

For that we choose the predicates B and F' which have one argument ex-
pressing

B(z): xisabird
F(xz): x canfly.

The sentence ‘Not all birds can fly’ can now be coded as
~(Va (B(x) — F(z)))

saying: ‘It is not the case that all things which are birds can fly.” Alterna-
tively, we could code this as

dz (B(z) A —F(x))

meaning: ‘There is some x which is a bird and cannot fly.” Note that the
first version is closer to the linguistic structure of the sentence above. These
two formulas should evaluate to T in the world we currently live in since, for
example, penguins are birds which cannot fly. Shortly, we address how such
formulas can be given their meaning in general. We will also explain why
formulas like the two above are indeed equivalent semantically.

Coding up complex facts expressed in English sentences as logical formulas
in predicate logic is important — e.g. in software design with UML or in
formal specification of safety-critical systems — and much more care must be
taken than in the case of propositional logic. However, once this translation
has been accomplished our main objective is to reason symbolically () or
semantically (F) about the information expressed in those formulas.

In Section 2.3, we extend our natural deduction calculus of propositional
logic so that it covers logical formulas of predicate logic as well. In this way
we are able to prove the validity of sequents ¢1, ¢, ..., ¢, F 9 in a similar
way to that in the first chapter.
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In Section 2.4, we generalize the valuations of Chapter 1 to a proper
notion of models, real or artificial worlds in which formulas of predicate
logic can be true or false, which allows us to define semantic entailment
b1 bon . b E 1.

The latter expresses that, given any such model in which all ¢y, @2, ..., dp
hold, it is the case that v holds in that model as well. In that case, one
also says that v is semantically entailed by ¢1, o, ..., ¢,. Although this
definition of semantic entailment closely matches the one for propositional
logic in Definition 1.34, the process of evaluating a predicate formula differs
from the computation of truth values for propositional logic in the treatment
of predicates (and functions). We discuss it in detail in Section 2.4.

It is outside the scope of this book to show that the natural deduction
calculus for predicate logic is sound and complete with respect to semantic
entailment; but it is indeed the case that

¢17¢27"'7¢n|_1/} iff ¢17¢27~~7¢n*:¢

for formulas of the predicate calculus. The first proof of this was done by
the mathematician K. Godel.

What kind of reasoning must predicate logic be able to support? To get
a feel for that, let us consider the following argument:

No books are gaseous. Dictionaries are books. Therefore, no dictio-
nary is gaseous.

The predicates we choose are
B(z): xis a book
G(x): x is gaseous
D(z): xis a dictionary.

Evidently, we need to build a proof theory and semantics that allow us to
derive the validity and semantic entailment, respectively, of

-3z (B(z) A G(x)), Vo (D(z) — B(x)) F =3z (D(z) A G(z))
-3z (B(z) A G(x)), Vz (D(z) — B(x)) E =3z (D(x) A G(x)).

Verify that these sequents express the argument above in a symbolic form.
Predicate logic extends propositional logic not only with quantifiers but
with one more concept, that of function symbols. Consider the declarative
sentence

Every child is younger than its mother.
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Using predicates, we could express this sentence as
Va vy (C(z) A M(y, ) — Y (z,y))

where C'(x) means that x is a child, M(x,y) means that x is y’s mother
and Y (x,y) means that x is younger than y. (Note that we actually used
M (y,z) (y is ’s mother), not M(z,y).) As we have coded it, the sentence
says that, for all children x and any mother y of theirs, x is younger than y.
It is not very elegant to say ‘any of x’s mothers’, since we know that every
individual has one and only one mother!. The inelegance of coding ‘mother’
as a predicate is even more apparent if we consider the sentence
Andy and Paul have the same maternal grandmother.

which, using ‘variables’ a and p for Andy and Paul and a binary predicate
M for mother as before, becomes

VaYyVuVo (M (z,y) AN M(y,a) AN M(u,v) AN M(v,p) — x = u).

This formula says that, if y and v are Andy’s and Paul’s mothers, respec-
tively, and « and u are their mothers (i.e. Andy’s and Paul’s maternal grand-
mothers, respectively), then = and u are the same person. Notice that we
used a special predicate in predicate logic, equality; it is a binary predicate,
i.e. it takes two arguments, and is written =. Unlike other predicates, it is
usually written in between its arguments rather than before them; that is,
we write © = y instead of = (x,y) to say that x and y are equal.

The function symbols of predicate logic give us a way of avoiding this
ugly encoding, for they allow us to represent y’s mother in a more direct
way. Instead of writing M (x,y) to mean that x is y’s mother, we simply
write m(y) to mean y’s mother. The symbol m is a function symbol: it takes
one argument and returns the mother of that argument. Using m, the two
sentences above have simpler encodings than they had using M:

Va (C(x) — Y (z,m(x)))

now expresses that every child is younger than its mother. Note that we
need only one variable rather than two. Representing that Andy and Paul
have the same maternal grandmother is even simpler; it is written

m(m(a)) = m(m(p))

quite directly saying that Andy’s maternal grandmother is the same person
as Paul’s maternal grandmother.

1 We assume that we are talking about genetic mothers, not adopted mothers, step mothers etc.
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One can always do without function symbols, by using a predicate symbol
instead. However, it is usually neater to use function symbols whenever pos-
sible, because we get more compact encodings. However, function symbols
can be used only in situations in which we want to denote a single object.
Above, we rely on the fact that every individual has a uniquely defined
mother, so that we can talk about x’s mother without risking any ambigu-
ity (for example, if x had no mother, or two mothers). For this reason, we
cannot have a function symbol b(-) for ‘brother’. It might not make sense to
talk about z’s brother, for £ might not have any brothers, or he might have
several. ‘Brother’ must be coded as a binary predicate.

To exemplify this point further, if Mary has several brothers, then the
claim that ‘Ann likes Mary’s brother’ is ambiguous. It might be that Ann
likes one of Mary’s brothers, which we would write as

Jz (B(xz,m) A L(a, x))

where B and L mean ‘is brother of” and ‘likes,” and a and m mean Ann and
Mary. This sentence says that there exists an x which is a brother of Mary
and is liked by Ann. Alternatively, if Ann likes all of Mary’s brothers, we
write it as

Va (B(x,m) — L(a,x))

saying that any x which is a brother of Mary is liked by Ann. Predicates
should be used if a ‘function’ such as ‘your youngest brother’ does not always
have a value.

Different function symbols may take different numbers of arguments.
Functions may take zero arguments and are then called constants: a and
p above are constants for Andy and Paul, respectively. In a domain involv-
ing students and the grades they get in different courses, one might have
the binary function symbol g(+,-) taking two arguments: g(x,y) refers to the
grade obtained by student x in course y.

2.2 Predicate logic as a formal language

The discussion of the preceding section was intended to give an impression
of how we code up sentences as formulas of predicate logic. In this section,
we will be more precise about it, giving syntactic rules for the formation
of predicate logic formulas. Because of the power of predicate logic, the
language is much more complex than that of propositional logic.

The first thing to note is that there are two sorts of things involved in
a predicate logic formula. The first sort denotes the objects that we are
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talking about: individuals such as a and p (referring to Andy and Paul) are
examples, as are variables such as x and v. Function symbols also allow us
to refer to objects: thus, m(a) and g(x,y) are also objects. Expressions in
predicate logic which denote objects are called terms.

The other sort of things in predicate logic denotes truth values; expres-
sions of this kind are formulas: Y (z, m(x)) is a formula, though = and m(z)
are terms.

A predicate vocabulary consists of three sets: a set of predicate symbols
P, a set of function symbols F and a set of constant symbols C. Each pred-
icate symbol and each function symbol comes with an arity, the number of
arguments it expects. In fact, constants can be thought of as functions which
don’t take any arguments (and we even drop the argument brackets) — there-
fore, constants live in the set F together with the ‘true’ functions which do
take arguments. From now on, we will drop the set C, since it is convenient to
do so, and stipulate that constants are 0-arity, so-called nullary, functions.

2.21 Terms
The terms of our language are made up of variables, constant symbols
and functions applied to those. Functions may be nested, as in m(m(z))
or g(m(a),c): the grade obtained by Andy’s mother in the course c.

Definition 2.1 Terms are defined as follows.

* Any variable is a term.

e If ¢ € F is a nullary function, then c is a term.

e If ty,ts,...,t, are terms and f € F has arity n > 0, then f(t1,t2,...,t,) is a
term.

¢ Nothing else is a term.

In Backus Naur form we may write
te=a | ¢ | ft,...,t)

where x ranges over a set of variables var, ¢ over nullary function symbols
in F, and f over those elements of F with arity n > 0.

It is important to note that

* the first building blocks of terms are constants (nullary functions) and variables;

¢ more complex terms are built from function symbols using as many previously
built terms as required by such function symbols; and

¢ the notion of terms is dependent on the set F. If you change it, you change the
set of terms.
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Example 2.2 Suppose n, f and g are function symbols, respectively
nullary, unary and binary. Then g(f(n),n) and f(g(n, f(n))) are terms, but
g(n) and f(f(n),n) are not (they violate the arities). Suppose 0,1,... are
nullary, s is unary, and +, —, and * are binary. Then *(—(2, +(s(z),y)), )
is a term, whose parse tree is illustrated in Figure 2.14 (page 159). Usually,
the binary symbols are written infix rather than prefix; thus, the term is
usually written (2 — (s(z) +y)) * z.

2.2.2 Formulas

The choice of sets P and F for predicate and function symbols, respectively,
is driven by what we intend to describe. For example, if we work on a
database representing relations between our kin we might want to consider
P ={M,F,S, D}, referring to being male, being female, being a son of ...
and being a daughter of .. .. Naturally, F' and M are unary predicates (they
take one argument) whereas D and S are binary (taking two). Similarly, we
may define F = {mother-of, father-of}.

We already know what the terms over F are. Given that knowledge, we
can now proceed to define the formulas of predicate logic.

Definition 2.3 We define the set of formulas over (F, P) inductively, using
the already defined set of terms over F:

e If P € P is a predicate symbol of arity n > 1, and if ¢1,to, ..., t, are terms over
F, then P(t1,ta,...,t,) is a formula.

o If ¢ is a formula, then so is (—¢).

e If ¢ and v are formulas, then so are (¢ A ), (¢ V) and (¢ — ).

e If ¢ is a formula and x is a variable, then (Vz ¢) and (3x ¢) are formulas.

* Nothing else is a formula.

Note how the arguments given to predicates are always terms. This can also
be seen in the Backus Naur form (BNF) for predicate logic:

¢ = P(t1,l2,...,tn) | (70) [ (A D) [ (6V @) | (¢ — @) | (Vz ) | (Fx )
(2.2)

where P € P is a predicate symbol of arity n > 1, ¢; are terms over F and x
is a variable. Recall that each occurrence of ¢ on the right-hand side of the
::= stands for any formula already constructed by these rules. (What role
could predicate symbols of arity 0 play?)
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Figure 2.1. A parse tree of a predicate logic formula.

Convention 2.4 For convenience, we retain the usual binding priorities
agreed upon in Convention 1.3 and add that Vy and Jy bind like —. Thus,
the order is:

e — Vy and Jy bind most tightly;
e then V and A;
¢ then —, which is right-associative.

We also often omit brackets around quantifiers, provided that doing so in-
troduces no ambiguities.

Predicate logic formulas can be represented by parse trees. For example,
the parse tree in Figure 2.1 represents the formula Va ((P(x) — Q(z)) A

S(x,y))-

Example 2.5 Consider translating the sentence
Every son of my father is my brother.

into predicate logic. As before, the design choice is whether we represent
‘father’ as a predicate or as a function symbol.

1. As a predicate. We choose a constant m for ‘me’ or ‘I,” so m is a term, and we
choose further {S, F, B} as the set of predicates with meanings
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S(x,y): axisasonofy
F(z,y): « is the father of y
B(z,y): x is a brother of y.

Then the symbolic encoding of the sentence above is
Va vy (F(z,m) A S(y,z) — B(y,m)) (2.3)

saying: ‘For all z and all y, if z is a father of m and if y is a son of x, then y is
a brother of m.’

2. As a function. We keep m, S and B as above and write f for the function which,
given an argument, returns the corresponding father. Note that this works only
because fathers are unique and always defined, so f really is a function as
opposed to a mere relation.

The symbolic encoding of the sentence above is now

Va (S(z, f(m)) — B(xz,m)) (2.4)

meaning: ‘For all z, if x is a son of the father of m, then x is a brother of m;’
it is less complex because it involves only one quantifier.

Formal specifications require domain-specific knowledge. Domain-experts
often don’t make some of this knowledge explicit, so a specifier may miss
important constraints for a model or implementation. For example, the spec-
ification in (2.3) and (2.4) may seem right, but what about the case when
the values of x and m are equal? If the domain of kinship is not common
knowledge, then a specifier may not realize that a man cannot be his own
brother. Thus, (2.3) and (2.4) are not completely correct!

2.2.3 Free and bound variables

The introduction of variables and quantifiers allows us to express the notions
of all ... and some ... Intuitively, to verify that Vz Q(z) is true amounts
to replacing x by any of its possible values and checking that ) holds for
each one of them. There are two important and different senses in which such
formulas can be ‘true.’ First, if we give concrete meanings to all predicate and
function symbols involved we have a model and can check whether a formula
is true for this particular model. For example, if a formula encodes a required
behaviour of a hardware circuit, then we would want to know whether it is
true for the model of the circuit. Second, one sometimes would like to ensure
that certain formulas are true for all models. Consider P(c) AVy(P(y) —
Q(y)) — Q(c) for a constant ¢; clearly, this formula should be true no matter
what model we are looking at. It is this second kind of truth which is the
primary focus of Section 2.3.
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Unfortunately, things are more complicated if we want to define formally
what it means for a formula to be true in a given model. Ideally, we seek a
definition that we could use to write a computer program verifying that a
formula holds in a given model. To begin with, we need to understand that
variables occur in different ways. Consider the formula

vz ((P(z) — Q(z)) AS(x,y)).

We draw its parse tree in the same way as for propositional formulas, but
with two additional sorts of nodes:

¢ The quantifiers Vx and Jy form nodes and have, like negation, just one subtree.

* Predicate expressions, which are generally of the form P(t1,ts,...,t,), have the
symbol P as a node, but now P has n many subtrees, namely the parse trees of
the terms tq,ta,...,t,.

So in our particular case above we arrive at the parse tree in Figure 2.1.
You can see that variables occur at two different sorts of places. First, they
appear next to quantifiers V and 3 in nodes like Vx and 3z; such nodes always
have one subtree, subsuming their scope to which the respective quantifier
applies.

The other sort of occurrence of variables is leaf nodes containing variables.
If variables are leaf nodes, then they stand for values that still have to be
made concrete. There are two principal such occurrences:

1. In our example in Figure 2.1, we have three leaf nodes x. If we walk up the
tree beginning at any one of these x leaves, we run into the quantifier Vz. This
means that those occurrences of = are actually bound to Yz so they represent,
or stand for, any possible value of x.

2. In walking upwards, the only quantifier that the leaf node y runs into is Vx but
that = has nothing to do with y; x and y are different place holders. So y is free
in this formula. This means that its value has to be specified by some additional
information, for example, the contents of a location in memory.

Definition 2.6 Let ¢ be a formula in predicate logic. An occurrence of z
in ¢ is free in ¢ if it is a leaf node in the parse tree of ¢ such that there
is no path upwards from that node x to a node Vx or dz. Otherwise, that
occurrence of x is called bound. For Vz ¢, or dz ¢, we say that ¢ — minus
any of ¢’s subformulas 3z, or V1 — is the scope of Vz, respectively Jz.

Thus, if x occurs in ¢, then it is bound if, and only if, it is in the scope of
some dz or some Vz; otherwise it is free. In terms of parse trees, the scope
of a quantifier is just its subtree, minus any subtrees which re-introduce a
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Figure 2.2. A parse tree of a predicate logic formula illustrating free
and bound occurrences of variables.

quantifier for z; e.g. the scope of Vz in Va (P(z) — 3z Q(x)) is P(x). It is
quite possible, and common, that a variable is bound and free in a formula.
Consider the formula

(Vo (P(z) A Q(x))) — (=P(x) V Q(y))

and its parse tree in Figure 2.2. The two = leaves in the subtree of Vx are
bound since they are in the scope of V, but the leaf x in the right subtree of
— is free since it is not in the scope of any quantifier Vx or 3x. Note, however,
that a single leaf either is under the scope of a quantifier, or it isn’t. Hence
individual occurrences of variables are either free or bound, never both at
the same time.

2.2.4 Substitution
Variables are place holders so we must have some means of replacing them
with more concrete information. On the syntactic side, we often need to
replace a leaf node x by the parse tree of an entire term ¢. Recall from the
definition of formulas that any replacement of x may only be a term; it
could not be a predicate expression, or a more complex formula, for x serves
as a term to a predicate symbol one step higher up in the parse tree (see
Definition 2.1 and the grammar in (2.2)). In substituting ¢ for x we have to
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leave untouched the bound leaves x since they are in the scope of some Jz
or Yz, i.e. they stand for some unspecified or all values respectively.

Definition 2.7 Given a variable x, a term ¢ and a formula ¢ we define ¢[t/z]
to be the formula obtained by replacing each free occurrence of variable x
in ¢ with t.

Substitutions are easily understood by looking at some examples. Let f be a
function symbol with two arguments and ¢ the formula with the parse tree
in Figure 2.1. Then f(x,y) is a term and @[f(x,y)/z] is just ¢ again. This
is true because all occurrences of x are bound in ¢, so none of them gets
substituted.

Now consider ¢ to be the formula with the parse tree in Figure 2.2. Here
we have one free occurrence of x in ¢, so we substitute the parse tree of
f(z,y) for that free leaf node = and obtain the parse tree in Figure 2.3.
Note that the bound z leaves are unaffected by this operation. You can see
that the process of substitution is straightforward, but requires that it be
applied only to the free occurrences of the variable to be substituted.

A word on notation: in writing ¢[t/x], we really mean this to be the
formula obtained by performing the operation [t/z] on ¢. Strictly speaking,
the chain of symbols ¢[t/z] is not a logical formula, but its result will be a
formula, provided that ¢ was one in the first place.

Figure 2.3. A parse tree of a formula resulting from substitution.
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Unfortunately, substitutions can give rise to undesired side effects. In
performing a substitution ¢[t/x], the term ¢ may contain a variable y, where
free occurrences of x in ¢ are under the scope of Jy or Vy in ¢. By carrying
out this substitution ¢[t/x], the value y, which might have been fixed by a
concrete context, gets caught in the scope of Jy or Vy. This binding capture
overrides the context specification of the concrete value of y, for it will now
stand for ‘some unspecified or ‘all,” respectively. Such undesired variable
captures are to be avoided at all costs.

Definition 2.8 Given a term t, a variable x and a formula ¢, we say that
t is free for z in ¢ if no free x leaf in ¢ occurs in the scope of Yy or Jy for
any variable y occurring in t.

This definition is maybe hard to swallow. Let us think of it in terms of
parse trees. Given the parse tree of ¢ and the parse tree of ¢, we can perform
the substitution [t/z] on ¢ to obtain the formula ¢[t/z]. The latter has a
parse tree where all free x leaves of the parse tree of ¢ are replaced by the
parse tree of t. What ‘¢ is free for = in ¢’ means is that the variable leaves of
the parse tree of t won’t become bound if placed into the bigger parse tree
of ¢[t/x]. For example, if we consider z, t and ¢ in Figure 2.3, then ¢ is free
for x in ¢ since the new leaf variables x and y of t are not under the scope
of any quantifiers involving x or y.

Example 2.9 Consider the ¢ with parse tree in Figure 2.4 and let ¢ be
f(y,y). All two occurrences of x in ¢ are free. The leftmost occurrence of
x could be substituted since it is not in the scope of any quantifier, but
substituting the rightmost z leaf introduces a new variable y in ¢ which
becomes bound by Vy. Therefore, f(y,y) is not free for = in ¢.

What if there are no free occurrences of = in ¢?7 Inspecting the definition
of ‘t is free for x in ¢,” we see that every term t is free for z in ¢ in that
case, since no free variable x of ¢ is below some quantifier in the parse tree
of ¢. So the problematic situation of variable capture in performing ¢[t/z]
cannot occur. Of course, in that case ¢[t/z] is just ¢ again.

It might be helpful to compare ‘t is free for z in ¢’ with a precondition of
calling a procedure for substitution. If you are asked to compute ¢[t/x| in
your exercises or exams, then that is what you should do; but any reasonable
implementation of substitution used in a theorem prover would have to check
whether t is free for  in ¢ and, if not, rename some variables with fresh
ones to avoid the undesirable capture of variables.
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this formula

the term f(y,y) is e a
not free for x in

Figure 2.4. A parse tree for which a substitution has dire consequences.

2.3 Proof theory of predicate logic

2.3.1 Natural deduction rules

Proofs in the natural deduction calculus for predicate logic are similar to
those for propositional logic in Chapter 1, except that we have new proof
rules for dealing with the quantifiers and with the equality symbol. Strictly
speaking, we are overloading the previously established proof rules for the
propositional connectives A, V etc. That simply means that any proof rule
of Chapter 1 is still valid for logical formulas of predicate logic (we origi-
nally defined those rules for logical formulas of propositional logic). As in
the natural deduction calculus for propositional logic, the additional rules
for the quantifiers and equality will come in two flavours: introduction and
elimination rules.

The proof rules for equality First, let us state the proof rules for
equality. Here equality does not mean syntactic, or intensional, equality,
but equality in terms of computation results. In either of these senses, any
term ¢ has to be equal to itself. This is expressed by the introduction rule
for equality:

T (2.5)

which is an axiom (as it does not depend on any premises). Notice that it
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may be invoked only if ¢ is a term, our language doesn’t permit us to talk
about equality between formulas.

This rule is quite evidently sound, but it is not very useful on its own.
What we need is a principle that allows us to substitute equals for equals
repeatedly. For example, suppose that y * (w + 2) equals y * w + y * 2; then
it certainly must be the case that z > y % (w + 2) implies z > y *w + y * 2
and vice versa. We may now express this substitution principle as the rule
=e:

ty =ty Plt1/x]
plta/7]

Note that ¢t; and to have to be free for x in ¢, whenever we want to apply
the rule =e; this is an example of a side condition of a proof rule.

=e.

Convention 2.10 Throughout this section, when we write a substitution
in the form ¢[t/x], we implicitly assume that ¢ is free for x in ¢; for, as we
saw in the last section, a substitution doesn’t make sense otherwise.

We obtain proof

1 (x4+1)=(1+x) premise
2 (x+1>1)— (x+1>0) premise
3 l1+z>1)—=(1+2z>0) =el,2

establishing the validity of the sequent
r+l=14z(z+1>1)—=(x+1>0) F (I14+2)>1— (14+x)>0.

In this particular proof t; is (z+ 1), t2 is (14+z) and ¢ is (z > 1) —
(z > 0). We used the name =e since it reflects what this rule is doing to
data: it eliminates the equality in ¢; = t2 by replacing all t; in @[t1/z]
with to. This is a sound substitution principle, since the assumption that
t1 equals to guarantees that the logical meanings of ¢[t1/z] and @[ta/x]
match.

The principle of substitution, in the guise of the rule =e, is quite powerful.
Together with the rule =i, it allows us to show the sequents

tr=tobta =1t (2.6)
t = tg, to =13+t =t3.
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A proof for (2.6) is:

1 t1 =to premise
2 ti1 =1t =i
3 t2 == tl =€ 1, 2

where ¢ is x = t;. A proof for (2.7) is:

1 to =ts3 premise
2 t1 =t2 premise
3 t1=t3 =el,2

where ¢ is t; = x, so in line 2 we have ¢[t2/z] and in line 3 we obtain ¢[t3/x],
as given by the rule =e applied to lines 1 and 2. Notice how we applied the
scheme =e with several different instantiations.

Our discussion of the rules =i and =e has shown that they force equality
to be reflexive (2.5), symmetric (2.6) and transitive (2.7). These are minimal
and necessary requirements for any sane concept of (extensional) equality.
We leave the topic of equality for now to move on to the proof rules for
quantifiers.

The proof rules for universal quantification The rule for eliminat-
ing V is the following:

Va ¢

[t/ x]
It says: If Vx ¢ is true, then you could replace the = in ¢ by any term ¢
(given, as usual, the side condition that ¢ be free for x in ¢) and conclude

that ¢[t/x] is true as well. The intuitive soundness of this rule is self-evident.
Recall that ¢[t/z] is obtained by replacing all free occurrences of z in ¢

Vze.

by t. You may think of the term ¢ as a more concrete instance of x. Since ¢
is assumed to be true for all x, that should also be the case for any term t.

Example 2.11 To see the necessity of the proviso that ¢ be free for x in
¢, consider the case that ¢ is Jy (x < y) and the term to be substituted
for x is y. Let’s suppose we are reasoning about numbers with the usual
‘smaller than’ relation. The statement Vz ¢ then says that for all numbers
n there is some bigger number m, which is indeed true of integers or real
numbers. However, ¢[y/z] is the formula Jy (y < y) saying that there is a
number which is bigger than itself. This is wrong; and we must not allow a
proof rule which derives semantically wrong things from semantically valid
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ones. Clearly, what went wrong was that y became bound in the process of
substitution; y is not free for x in ¢. Thus, in going from Vx ¢ to ¢[t/z],
we have to enforce the side condition that ¢ be free for x in ¢: use a fresh
variable for y to change ¢ to, say, 3z (r < z) and then apply [y/z] to that
formula, rendering 3z (y < z).

The rule Vzi is a bit more complicated. It employs a proof box similar
to those we have already seen in natural deduction for propositional logic,
but this time the box is to stipulate the scope of the ‘dummy variable’ x
rather than the scope of an assumption. The rule Vz i is written

Zo

$lzo/]
V¢

It says: If, starting with a ‘fresh’ variable zg, you are able to prove some
formula ¢[zo/z] with o in it, then (because xo is fresh) you can derive
Vzx ¢. The important point is that xg is a new variable which doesn’t occur
anywhere outside its boxr; we think of it as an arbitrary term. Since we
assumed nothing about this xg, anything would work in its place; hence the
conclusion Vx ¢.

It takes a while to understand this rule, since it seems to be going from

Vxi.

the particular case of ¢ to the general case V& ¢. The side condition, that
xg does not occur outside the box, is what allows us to get away with
this.

To understand this, think of the following analogy. If you want to prove
to someone that you can, say, split a tennis ball in your hand by squashing
it, you might say ‘OK, give me a tennis ball and I'll split it.” So we give you
one and you do it. But how can we be sure that you could split any tennis
ball in this way? Of course, we can’t give you all of them, so how could we
be sure that you could split any one? Well, we assume that the one you did
split was an arbitrary, or ‘random,’ one, i.e. that it wasn’t special in any
way — like a ball which you may have ‘prepared’ beforehand; and that is
enough to convince us that you could split any tennis ball. Our rule says
that if you can prove ¢ about an xg that isn’t special in any way, then you
could prove it for any x whatsoever.

To put it another way, the step from ¢ to Vx ¢ is legitimate only if we have
arrived at ¢ in such a way that none of its assumptions contain x as a free
variable. Any assumption which has a free occurrence of x puts constraints
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on such an x. For example, the assumption bird(z) confines x to the realm
of birds and anything we can prove about x using this formula will have
to be a statement restricted to birds and not about anything else we might
have had in mind.

It is time we looked at an example of these proof rules at work. Here is a
proof of the sequent Vx (P(x) — Q(x)), Yz P(x) F VzQ(x):

1 Vz (P(x) — Q(x)) premise
2 Vr P(x premise
3 zo P(xo) — Q(zo) Vrel

4 P(z0) Vre 2

5 Q(xo) —e 3,4

6 Vo Q(x) Vai3-5

The structure of this proof is guided by the fact that the conclusion is
a vV formula. To arrive at this, we will need an application of Vz1i, so we
set up the box controlling the scope of xy. The rest is now mechanical:
we prove Vz Q(x) by proving Q(z¢); but the latter we can prove as soon as
we can prove P(zg) and P(x¢) — Q(z¢), which themselves are instances of
the premises (obtained by Ve with the term (). Note that we wrote the
name of the dummy variable to the left of the first proof line in its scope
box.

Here is a simpler example which uses only Vx e: we show the validity of
the sequent P(t), Vo (P(x) — —Q(x)) F —Q(t) for any term ¢:

1 P(t) premise
2 Vz (P(x) — -Q(x)) premise
3 P(t) — —Q(t) Vre?2

4 -Q(t) —ed, 1

Note that we invoked Ve with the same instance ¢ as in the assumption
P(t). If we had invoked Vz e with y, say, and obtained P(y) — —Q(y), then
that would have been valid, but it would not have been helpful in the case
that y was different from ¢. Thus, Vxe is really a scheme of rules, one for
each term t (free for z in ¢), and we should make our choice on the basis of
consistent pattern matching. Further, note that we have rules Vxi and Vze
for each wvariable x. In particular, there are rules Vyi, Vye and so on. We
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will write Vi and Ve when we speak about such rules without concern for the
actual quantifier variable.

Notice also that, although the square brackets representing substitution
appear in the rules Vi and Ve, they do not appear when we use those rules.
The reason for this is that we actually carry out the substitution that is asked
for. In the rules, the expression ¢[t/x] means: ‘¢, but with free occurrences
of x replaced by t.” Thus, if ¢ is P(z,y) — Q(y, 2) and the rule refers to
¢la/y], we carry out the substitution and write P(z,a) — Q(a,z) in the
proof.

A helpful way of understanding the universal quantifier rules is to com-
pare the rules for V with those for A. The rules for V are in some sense
generalisations of those for A; whereas A has just two conjuncts, V acts like
it conjoins lots of formulas (one for each substitution instance of its vari-
able). Thus, whereas Al has two premises, Vi has a premise ¢lxg/x] for
each possible ‘value’ of zy. Similarly, where and-elimination allows you to
deduce from ¢ A v whichever of ¢ and ¥ you like, forall-elimination allows
you to deduce ¢[t/x] from Vz ¢, for whichever ¢ you (and the side condition)
like. To say the same thing another way: think of Vzi as saying: to prove
Va ¢, you have to prove ¢[xg/z] for every possible value zg; while Ai says
that to prove ¢1 A ¢ you have to prove ¢; for every i = 1, 2.

The proof rules for existential quantification The analogy between
vV and A extends also to 3 and V; and you could even try to guess the rules
for 3 by starting from the rules for V and applying the same ideas as those
that related A to V. For example, we saw that the rules for or-introduction
were a sort of dual of those for and-elimination; to emphasise this point, we
could write them as

¢1/\¢2/\e o w
b Ve

where k can be chosen to be either 1 or 2. Therefore, given the form of
forall-elimination, we can infer that exists-introduction must be simply

[t/ x]
Jxg

Indeed, this is correct: it simply says that we can deduce Jx ¢ whenever we
have ¢[t/x] for some term ¢ (naturally, we impose the side condition that ¢
be free for z in ¢).

In the rule Ji, we see that the formula ¢[t/x] contains, from a compu-
tational point of view, more information than 3z ¢. The latter merely says

ZT1.
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that ¢ holds for some, unspecified, value of x; whereas ¢[t/x] has a witness
t at its disposal. Recall that the square-bracket notation asks us actually to
carry out the substitution. However, the notation ¢[t/z| is somewhat mis-
leading since it suggests not only the right witness ¢ but also the formula
¢ itself. For example, consider the situation in which ¢ equals y such that
¢ly/x] is y = y. Then you can check for yourself that ¢ could be a number
of things, like x = x or x = y. Thus, Jz ¢ will depend on which of these ¢
you were thinking of.

Extending the analogy between 3 and V, the rule Ve leads us to the
following formulation of Je:

xo ¢lro/]

Jx ¢ X
X
Like Ve, it involves a case analysis. The reasoning goes: We know dx ¢ is

Je.

true, so ¢ is true for at least one ‘value’ of x. So we do a case analysis over
all those possible values, writing xy as a generic value representing them
all. If assuming ¢[xo/x] allows us to prove some x which doesn’t mention
xg, then this x must be true whichever zyp makes ¢[xo/x] true. And that’s
precisely what the rule Jde allows us to deduce. Of course, we impose the
side condition that zp can’t occur outside its box (therefore, in particular,
it cannot occur in ). The box is controlling two things: the scope of xp and
also the scope of the assumption ¢[xg/z].

Just as Ve says that to use ¢1 V ¢2, you have to be prepared for either of
the ¢;, so Je says that to use dx ¢ you have to be prepared for any possible
¢[zo/x]. Another way of thinking about Je goes like this: If you know 3z ¢
and you can derive some x from ¢[xo/z], i.e. by giving a name to the thing
you know exists, then you can derive x even without giving that thing a
name (provided that x does not refer to the name ).

The rule Jze is also similar to Ve in the sense that both of them are
elimination rules which don’t have to conclude a subformula of the formula
they are about to eliminate. Please verify that all other elimination rules
introduced so far have this subformula property.? This property is computa-
tionally very pleasant, for it allows us to narrow down the search space for
a proof dramatically. Unfortunately, dz e, like its cousin Ve, is not of that
computationally benign kind.

2 For Vz e we perform a substitution [t/z], but it preserves the logical structure of ¢.
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Let us practice these rules on a couple of examples. Certainly, we should
be able to prove the validity of the sequent Yz ¢ + dx ¢. The proof

1 YV ¢ premise
2 ¢lz/z] Vzel
3 Jx ¢ Jxi2

demonstrates that, where we chose ¢t to be x with respect to both Vxe and
to Jzi (and note that z is free for x in ¢ and that ¢[z/x] is simply ¢ again).

Proving the validity of the seque