Γνώση του Α όταν οι Β , C δεν γνωρίζουν το χρώμα τους

Ορισμός Έστω M_A ένα μοντέλο Kripke που αναπαριστά την γνώση του A: Ο παίκτης Α *γνωρίζει ότι αληθεύει* θ, άν $M_A \models \theta$.

Take any cluster **S** of possible worlds that A can not distinguish between.

Partition this cluster into sub-clusters, say T1, T2, etc., that are *indistinguishable for B*. That is, B can not distinguish between members of T1; B can not distinguish between members of T2, and so on.

1) By [B sees A], A knows that either B knows AisWh or B knows ¬AisWh.

This means that in T1 it cannot happen that AisWh is true at some worlds and false at others; similarly for T2, and so on. Briefly, for each k, either AisWh is true at all the possible worlds of Tk, or else AisWh is false at all the possible worlds of Tk.

2) By [B hears C], A knows that B knows that AisWh \lor BisWh.

Then AisWh ∨ BisWh must be true throughout each Tk.
Combining with (1) it follows that, <u>for each k</u>:

either AisWh is true at every possible world of Tk,
or BisWh is true at every possible world of Tk.

Άρα, AisWh \vee K_B BisWh is true at every possible world of Tk.

Since the Tk are a partition of **S**, AisWh \vee K_B BisWh must be true at every world of **S**. Since AisWh \vee K_B BisWh is true at all the worlds that A thinks are possible,

 M_A |= AisWh \vee K_B BisWh.

3) By [B doesn't know], A knows that B doesn't know BisWh.

Then $\mathbf{M}_{\mathbf{A}} \mid = \neg \mathbf{K}_{\mathbf{B}} \operatorname{BisWh} ,$

and $M_A \mid = AisWh$.

ΕΡΩΤΗΜΑ Τι συμβαίνει όταν ο Α είναι μαύρος;

Tableau proof for:1,2 = A knows (AisWh \vee K _B BisWh)				
1	(s1)	A knows tha	t (B knows AisWh or B knows ¬AisW	h)
2	(s1)	A knows tha	t B knows that (AisWh \lor BisWh)	
3	(s1)	– A knows	(AisWh ∨ K _B BisWh)	
4	(s1 A	s2)	\neg (AisWh $\lor~$ K _B BisWh)	from 3
5	(s1 A	s2)	¬ AisWh	from 4
6	(s1 A	s2)	¬ K _B BisWh	from 4
7	(s1 A	s2 B s3)	¬ BisWh	from 6
8	(s1 A	s2)	B knows that AisWh \lor BisWh	from 2
9	(s1 A	s2 B s3)	AisWh ∨ BisWh	from 8
10	(s1 A	s2 B s3)	AisWh	from 9 , 7
11	(s1 A	s2) B kno	ws AisWh or B knows —AisWh	from 1

BRANCH 1

- 11,1 (s1 A s2) B knows ¬AisWh
- 12,1 (s1 A s2 B s3) AisWh

X with 10

BRANCH 2

- 11,2 (s1 A s2) B knows AisWh
- 12,1 (s1 A s2) AisWh

X with 5

Tableau proof for:1,2,3 = A knows AisWh

- 1 (s1) A knows that (B knows AisWh or B knows –AisWh)
- 2 (s1) A knows that B knows that AisWh \vee BisWh
- 3 (s1) A knows that B doesn't know BisWh
- 4 (s1) \neg A knows AisWh
- 5(s1 A s2) \neg AisWhfrom 46(s1 A s2)B doesn't know BisWhfrom 37(s1 A s2)B knows that AisWh \lor BisWhfrom 28(s1 A s2 B s3) \neg BisWhfrom 6
- 9
 (s1 A s2 B s3)
 AisWh ∨ BisWh
 from 7

 10
 (s1 A s2 B s3)
 AisWh
 from 9, 8
- 11 (s1 A s2) B knows AisWh or B knows ¬AisWh from 1

BRANCH 1

- (s1 A s2) B knows ¬AisWh
- (s1 A s2 B s3) AisWh

X with 10

BRANCH 2

- (s1 A s2) B knows AisWh
- (s1 A s2) AisWh

X with 5