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Preface

There are many kinds of books on formal logic. Some have philosophers
as their intended audience, some mathematicians, some computer scien-
tists. Although there is a common core to all such books, they will be
very different in emphasis, methods, and even appearance. This book
is intended for computer scientists. But even this is not precise. Within
computer science formal logic turns up in a number of areas, from pro-
gram verification to logic programming to artificial intelligence. This
book is intended for computer scientists interested in automated theo-
rem proving in classical logic. To be more precise yet, it is essentially
a theoretical treatment, not a how-to book, although how-to issues are
not neglected. This does not mean, of course, that the book will be of no
interest to philosophers or mathematicians. It does contain a thorough
presentation of formal logic and many proof techniques, and as such it
contains all the material one would expect to find in a course in formal
logic covering completeness but not incompleteness issues.

The first item to be addressed is, What are we talking about and why
are we interested in it? We are primarily talking about truth as used
in mathematical discourse, and our interest in it is, or should be, self-
evident. Truth is a semantic concept, so we begin with models and their
properties. These are used to define our subject.

The second issue is how we, as limited human beings, can know what is
true. For this we have a device called a proof. Many formal proof pro-
cedures have been developed over the years: axiom systems, natural de-
duction, tableaux, resolution. We present several of these and show how
they are used. Of course, the connections between these proof procedures
and truth must be established. We need what are called soundness and
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completeness results. Ours are demonstrated in a uniform way for all
the systems we consider. Thus, we are able to discuss many formal proof
procedures without doing much more work than if we had only discussed
one.

Finally, how can we get a machine—a computer—to use one of our
proof procedures? When we human beings prove things, we bring all
our insight and experience to bear, not to mention the wisdom of the
past stored up in books. We are still learning how to give machines such
knowledge. Generally, we must be satisfied if we can give a computer
a simple-minded recipe by which it can find proofs, even though the
proofs may not be very clever. So, which of the formal proof procedures
that humans have developed will allow themselves to be applied blindly,
mechanically? What recipes can we give a computer that are reasonably
efficient and still are guaranteed to work? After semantics and formal
proof procedures, this constitutes the third major topic of the book.

We discuss automation for tableaux and for resolution. For tableau sys-
tems we give usable implementations in Prolog and we prove, of these
implementations, that they do the job. Similar implementations of reso-
lution are set up as exercises and projects. We have chosen Prolog as our
implementation language because it allows us to get to the heart of the
matter almost immediately, and results in code that is rather easy to fol-
low. If you do not already know Prolog, here is a good opportunity; the
understanding of Prolog that is necessary is fairly basic. We use few pro-
gramming tricks. Indeed, if one understands the Prolog code given here,
implementing comparable theorem provers in other languages should be
straightforward. We do not claim that our theorem provers are particu-
larly efficient, though. We tried to commit our quota of sins on the side
of clarity, instead of efficiency. First understand, then speed it up if you
can.

Automated theorem proving has two goals: (1) to prove theorems and
(2) to do it automatically. Over the years experience has shown these
goals are incompatible. Fully automated theorem provers for first-order
logic have been developed, starting in the 1960s, but as theorems get
more complicated, the time that theorem provers spend tends to grow
exponentially. As a result, no really interesting theorems of mathematics
can be proved this way—the human life span is not long enough.

The problem is to prove interesting theorems; the solution is to give
theorem provers heuristics—roughly, rules of thumb for knowledge and
wisdom. Some heuristics are fairly general; for example, in a proof that
is about to break into several cases, do as much as possible that will be
of broad applicability before the division into cases occurs. But many
heuristics are area-specific; for instance, heuristics appropriate for plane
geometry will probably not be appropriate for group theory. The devel-
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opment of good heuristics is a major area of research and requires much
experience and insight.

But still, heuristics must be imposed on some basic, underlying proof
mechanism. And it is here that fully automated theorem provers play
their role. Generally, heuristics are implemented as restrictions or mod-
ifications to such systems. So, as a basis for more sophisticated work,
for general understanding, and for historical reasons as well, fully au-
tomated theorem provers are the place to start, and they are what we
will be concerned with here. We will develop the foundations for further
reading and research, but we will not go beyond that.

Almost all fundamental work on automated theorem proving has been
based on Resolution, a method that is due to J. A. Robinson [42] in
the 1960s and that descends from techniques developed by Herbrand
[25] in the 1930s. But there is another method, Semantic Tableauz, also
developed in the 1960s, by R. M Smullyan [48], which descends from
work of Gentzen [22] in the 1930s and Beth [5] in the 1950s. (Tableaux
actually first appeared in [30], though this paper was largely unknown
until recently.) Gentzen’s and Herbrand’s work are closely related, but
still resolution and semantic tableaux have different flavors to them.
Tableau-based theorem provers have been comparatively rare in the field.
Both methods are, we think, of basic importance. A few books have
treated both [2, 21] and are recommended for additional reading.

So, a brief outline of the book is this. We begin with propositional logic,
move on to first-order logic, then finish up with first-order logic with
equality. For each of these we present both resolution and semantic tab-
leau systems as primary. Implementations of semantic tableaux in Pro-
log are given, and similar implementations of resolution are outlined as
projects. We also present natural deduction, Gentzen sequent calculi,
and axiomatic systems, because these require little additional work and
are common in the literature, though they are generally less appropriate
for automated theorem proving. Also, for each level of logic that we con-
sider, we discuss necessary semantical background: Boolean valuations in
the propositional case; models in the first-order case; and normal models
in the first-order case with equality. Soundness and completeness of our
theorem provers is established. Details of syntax, as well as semantics are
presented, including normal form theorems. In general we use the device
of uniform notation that is due to R. M. Smullyan, which allows us to
have many connectives and quantifiers present in our language without
the need for elaborate theorem provers with many special cases. We hope
to keep it clean and elegant.



Preface to the Second Edition

This edition differs from the previous one in three ways. First, it contains
much new material. Second, revisions of the original material have been
made throughout. Third, it contains this preface.

Chapter 8 is almost entirely new (a few sections were moved to it from
elsewhere). The new material consists of the following:

1. A discussion of the AE calculus. This is a decidable part of first-
order logic that is natural from the tableau perspective, powerful,
easy to implement, and of historical significance.

2. Herbrand’s theorem. This is presented twice: non-constructively
and constructively. The non-constructive version is based on the
model existence theorem; the constructive one, on the tableau for-
mulation.

3. Gentzen’s theorem (Gentzen’s Hauptsatz). The proof is essentially
the constructive one of Gentzen, but following Smullyan, it is formu-
lated explicitly for the tableau calculus. This reformulation tends
to clear away some of the unnecessary detail.

4. A proof that is due to Statman that cut elimination can make proofs
blow up exponentially.

5. Craig’s interpolation theorem. A non-constructive proof, based on
the model existence theorem, was in the first edition and is still
present. But now a second, constructive, proof has been added.
This proof extracts an interpolant from a tableau proof.
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6. Lyndon’s interpolation theorem. This refinement of Craig’s theorem
is obtained from the same proof, with no additional work.

7. Lyndon’s homomorphism theorem. This adds to Beth’s theorem an
additional application of interpolation results and is of considerable
interest for its own sake.

It was pointed out by Reiner Hihnle and Peter Schmitt, and indepen-
dently by Wilfried Sieg, that the so-called Free-Variable 6-Rule given
in the first edition was unnecessarily inefficient. (This rule deals with
occurrences of existential quantifiers in tableau or resolution proofs.)
Following their suggestions, a new version of the rule has replaced the
old one. This required some changes in soundness proofs, but primar-
ily it also forced the rewriting of much of the Prolog implementation
of the first-order tableau theorem prover (and the version incorporating
equality).

At the suggestion of Krzysztof Apt, the original treatment of Multiple
Unification in Chapter 7 has been modified. In the original version it
used the proof of the Unification Theorem, now it uses the Theorem
itself.

A number of exercises were added. In addition, those exercises that are
essentially programming projects have been clearly marked (with P as
a superscript). There are almost 30 such exercises—they range from
relatively easy modifying of programs in the text to substantial pieces
of new work.

Since the first edition of this work appeared, numerous papers and books
on automated theorem-proving have been published, most of which are
beyond our scope. There are, however, two items that are most pertinent,
both handbooks. The first is the Handbook of Logic in Artificial Intel-
ligence and Logic Programming [20]. This is an extensive multi-volume
work; fortunately most volumes have already appeared. It includes cov-
erage of topics like unification, and resolution and tableau theorem-
proving. The other item is the Handbook of Tableau Methods [13], which
should appear shortly. As its name implies, it contains thorough presen-
tations of tableau techniques, applied to both classical and non-classical
logics.

Finally, lengthy sections of Prolog code are included in the text. These
can be obtained in the following ways: First, by anonymous ftp, at the
address ftp.springer-ny.com, in the directory /pub/supplements /mfitting
(log on as anonymous, and use your e-mail address as password); second,
at web site http://www.springer-ny.com/supplements/mfitting.html.
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1

Background

There are many useful logics: temporal, modal, relevance, intuitionistic,
etc. They differ in what concepts are being considered and in what the
basic features of these concepts are thought to be. For example, should
the passage of time play a formal role (as in temporal logic), or not?
Must existence assertions have constructive content (as in intuitionistic
logic), or not? In the family of formal logics, one is central: classical
logic. It is the most widely used logic, the logic underlying mathematics
as it is generally practiced, and the logic on top of which many others
have been built. Indeed, for most people who have occasion to use formal
methods, logic is synonymous with classical logic. Classical logic is the
subject of this book. Our formal treatment of classical logic begins in
the next chapter; here we present the intuitive background. We want to
make sure there is a ground-level informal understanding before erecting
a rigorous mathematical structure.

In everyday life there are assertions whose truth value is unclear or
problematic, such as “That is an ugly chair,” and “Then so are you.”
Classical logic is incapable of dealing with such things. In fact, classical
logic was created to embody the reasoning principles of mathematics,
where ambiguity and imprecision are a Bad Thing. When classical logic
is applied to non-mathematical examples, the examples are first “math-
ematicized.” In the real world we might argue about whether block B is
behind block A or not—maybe it depends on one’s point of view. But
we can create an ideal world, a mathematical model, in which either
B is behind A, or it isn’t. Classical logic can be used to reason cor-
rectly about such a model. Whether the model accurately reflects the
real world is a separate issue. But this is standard operating procedure
generally, not just where logic is concerned. Differential equations don’t
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describe a real-world vibrating string; they describe the behavior of a
mathematical model of a vibrating string, which in turn captures the
real thing more or less well, depending.

So, in classical logic we investigate the principles of reasoning for perfect
worlds, where truth is unqualified and there are no shades of grey.

When we reason we use sentences. These sentences are built up from
primitive assertions about the world (or rather, our model of it). They
are built up using words like and, or, not, implies, every, some, and
equals. Basically, it is the behavior of these words that we will study.
Most of these words have meanings that are fairly straightforward to
grasp in an informal, intuitive way. But we should be a little careful
about implies, because it plays a very central role, and is used in several
senses in everyday discourse (even among mathematicians).

Commonly, one says “P implies Q” only if one already knows that P is
the case. “P implies Q” is thus often used as another way of asserting Q.
But in reading mathematics, we are frequently faced with the assertion
“P implies Q" where the truth of P is not known, or even where P is
false. Consider, for example: “whatever integer  is, x is even implies
z +2 is even.” This seems correct, but then we could take z to be 7, and
we find we are committed to the truth of “7 is even implies 7+2 is even.”
This is disconcerting, but it would be wrong to call “7 is even implies
742 is even” false, because the more general sentence from which it came
would then be false, which is not acceptable. We could say that “7 is even
implies 7 4 2 is even” is neither true nor false, but in mathematics we
want every sentence to have an unambiguous truth value. Then we are
forced to take it to be true. This is not really counterintuitive, it is simply
a case that does not come up in everyday life, that of something false
implying something false. Similar difficulties are met in two other cases:
false implying true, and true implying true. Both are taken to be true in
mathematical usage. What all this amounts to is that mathematicians
use smplies in what is called the material sense; “P implies Q” is taken
to mean nothing more than “either P is false or (P is true and so) Q is
true.” “P implies Q” entails no particular relationship between P and
Q (as it would in relevance logic say) save the single condition: Q must
be true if P is true.

Special symbols are introduced to represent the logical constructs we
have been discussing. We write A for and, V for or, - for not, > for
implies, V for every and 3 for some. The symbols A, V, = and D are
called logical connectives (there are others as well that we will introduce
in the next chapter). The symbols V and 3 are called quantifiers. Other
books may use different symbols.
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Now we begin looking at how these notions are used in a particular math-
ematical theory. We have chosen arithmetic, the theory of the natural
numbers, 1, 2, 3,..., because it is familiar to everyone.

Numbers are abstract objects. If we are to talk about them, we need
names for them. Let us say we have a constant symbol 1, which we
intend as a name for the first of the natural numbers. (It is important
not to mix up the symbol with the object it is naming.) Also suppose
we have a one-place function symbol s, intended to denote the successor
function. Then s(1) names the second natural number, s(s(1)) names
the third, and so on. We also want some operation symbols, say + and
X, intended to denote addition and multiplication. Now we can form
more complicated names like s(s(1)) x (1 + s(1)), and even name-like
expressions containing variables, such as z + s(1). These expressions are
called terms. Loosely, a term is a name, or something that would become
a name if names were substituted for variables.

Next, there are expressions that make assertions but that do not involve
any logical connectives or quantifiers; examples are s(1) + s(s(1)) =
s(s(s(s(1)))) and s(1) > 1. There are also assertion-like expressions,
containing variables, such as £ +1 = s(s(1)). Such expressions are called
atomic formulas. Notice that we have assumed we have in our language
relation symbols = and >. Saying what relation symbols we have avail-
able is part of the specification of the language of arithmetic. If we think
of = as denoting the equality relation and > as denoting the greater-
than relation, then atomic formulas without variables are either true or
false, and those with variables become true or false when values for the
variables are specified.

Starting with atomic formulas, using connectives and quantifiers, we
may build up more complex expressions, or formulas, for example: —(1+
s(1) = 1). If we take the various symbols as denoting numbers, functions
and relations as described previously, 1 + s(1) = 1 is false, and hence
=(1 + s(1) = 1) is true. Further, (1 +1 = s(1)) A =(1 + s(1) = 1)
asserts that both (1 +1 = s(1)) and —(1 + s(1) = 1) hold, and so it is
true. (3z)(z + 1 = s(1)) asserts that for some value of the variable z,
z+1 = s(1) is true, and this is so, hence (3z)(z+1 = s(1)) is true. On the
other hand, (Vz)(z+1 = s(1)) is false. For a more complicated example,
(vV2)[(Fy)(s(1) x y = z) D (F=2)(s(1) x z = s(s(z)))] is true (informally,
it asserts that whatever number z is, if z is even, so is = + 2).

Generally, we will use the word sentence for a formula that does not
have variables we can substitute values for. It is sentences that we think
of as making assertions.

Two separate notions were intertwined in the preceding discussion. We
have a formal language that we use to make assertions in the form of
sentences, and we have a mathematical structure that the assertions are
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about. The relationship between sentence and subject matter is some-
thing we rarely think about in most of mathematics, but it is a central
issue in logic.

On the one hand we have created a formal language of arithmetic, with
a constant symbol 1, a function symbol s, two operation symbols + and
x, and two relation symbols = and >, and various other constructs like
variables, connectives, and quantifiers. This formal language could be
modified in many ways: We could add other constant symbols like 2 and
3, we could add predicate symbols like is_even, and so on. We could make
many changes and still have a language suitable for saying things about
numbers. Likewise, we could have designed a formal language suitable for
a different purpose altogether—we will do so shortly. This part of formal
logic is syntaz, the specification of a formal language and its constituent
parts.

On the other hand we have a mathematical structure. There is a domain,
the positive integers, that we think of our variables as ranging over and
our quantifiers as quantifying over. There is a particular member of this
domain for the constant symbol 1 to name; there are particular functions,
operations, and relations on the domain for our function symbol, oper-
ation symbols, and relation symbols to designate. In short, our formal
language has been given a particular interpretation in a model. Unless
we have done this, it makes no sense to say a term is a name, or a sen-
tence is true. Meanings must be assigned to the expressions of a formal
language. This part of formal logic is semantics.

We consider a few more examples before we turn to general consider-
ations. A group is a mathematical structure with a binary operation
that is associative, for which there is a (right and left) identity element,
with each element having a (right and left) inverse. Suppose we create a
language having one constant symbol, e, intended to denote the group
identity; one function symbol i, intended to denote the map from ob-
jects to inverses; one operation symbol, o, to denote the group operation;
and the equality symbol =. The following sentences, the group axioms,
embody the properties required of a group:

1 (V2)(Vy)(V2)[z o (y 0 2) = (zoy) o 2]

2. (Vo)[(xoce=z)A(eox=x)]

3. (Vz)[(zoi(z) =€) A (i(z) oz =€)
Now, what is a group? It is any structure in which the relation symbol =
is interpreted by the equality relation and in which these three sentences

are true. One of the first results established in a course on group theory
is that the inverse operation is an involution, (Vz)(i(i(z)) = z). In other
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words, this sentence is true in all groups. In some sense it “follows from”
the three group axioms by purely logical considerations. We will provide
methods that allow us to show this is so.

For the next example, suppose we have a formal language with relation
symbols parent_of, male, and female. A ‘standard model’ is one whose
domain is a collection of people, and in which parent_of(x,y) is true just
when z is a parent of y, male(z) is true just when z is a male, and
female(z) is true just when z is a female. Then in each standard model,
the formula parent_of(x,y) A male(x) is true if z is the father of y. You
might try writing formulas that, in standard models, characterize the
brother, sibling, and aunt relations. Also add an equality symbol to the
language, and write a sentence asserting that each person has a unique
father and a unique mother.

The final example also assumes we have not only a formal language,
but a particular family of models in mind. This time we have predicate
symbols Cube, Small, Large, and so on, and two-place relation symbols
Smaller, RightOf, BackOf, and so on. A standard model now is one in
which the domain consists of three-dimensional objects, Cube(x) is true
if x is a cube, and so on. We can write sentences asserting things like
“If one object is to the right of another, then the first is a small cube.”
In fact, this example is taken from a very nice piece of software entitled
“Tarski’s World,” which allows one to become familiar with the basic
concepts of the semantics of first-order logic. We recommend it highly
[3]. (“Tarski’s World” is available as a program for the Macintosh, for
Windows, and for the Next, either alone, or as part of a book package,
“The Language of First-Order Logic.” Information is available from the
distributor, Cambridge University Press, or from the web site http://csli-
www.stanford.edu/hp/.)

Next we turn to general considerations. It is not up to us to decide which
sentences of our formal language of arithmetic are true when interpreted
as being about numbers. This is a book on logic, not arithmetic. But
it is part of our job to determine which sentences are true because of
their logical structure alone, and not because of any special facts about
numbers.

For example, consider the following sentence: (Vz)[(z + 1 = s(s(1))) V
—(z+1 = s(s(1)))]. This is a true sentence of arithmetic, but we can show
it is true without using any special facts about the natural numbers. To
see this, replace (z + 1 = s(s(1))) by (---z---), thus concealing much
of the sentence structure. Then the sentence becomes (Vz)[(---x---) V
=(---x---)], and this will be true, provided, for each object n in our
model, (---n---)V—(---n---)is true. This, in turn, will be true for any
particular n provided, either (---n---) is true or —(---n - --) is true. But
this must be the case, since —(---n---) is true precisely when (---n---)
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is not true. Thus, we are entitled to say (Vz)[(z+1 = s(s(1)))V—(z+1 =
s(s(1)))] is true by logic alome, since its truth depends on no particular
facts about numbers but only on the meanings of the logical connectives
and quantifiers.

If we have a sentence of arithmetic, and we want to show it is true by
its logical form alone, what sorts of things may we use, and what sorts
of things are we not allowed to use? We may use the fact that 1 denotes
an object, but we may not use the fact that it denotes the first natural
number. We may use the fact that + denotes an operation; we may
not use the fact that it denotes addition. Similar considerations apply
to x and s. We may use the fact that > denotes a relation, but not
that it denotes greater-than. What we may assume about = is a special
issue, which we will discuss further. Finally, we may not even assume
particular facts about the domain, such as that it is countably infinite,
or even that it is infinite.

Then what we are left with is this. A sentence is true by logic alone if
it is true, no matter what domain we take its variables and quantifiers
to range over, no matter what members of that domain its constant
symbols name, and no matter what functions, operations, and relations
on that domain its function, operation, and relation symbols designate.
Such sentences are called valid.

In addition to validity, we also want to know what follows from what;
which sentences are consequences of which others. This notion has a
characterization similar to validity. A sentence X is a logical consequence
of a set S of sentences if X is true whenever all the members of S are true,
no matter what domain the variables and quantifiers of the language
are thought of as ranging over, and no matter how the symbols of the
language are interpreted in that domain.

It is one of the jobs of formal logic to properly define the notions of
formal language, of model, of truth in a model, of validity, and of logical
consequence. We have sketched the ideas informally; formal counterparts
will be found in subsequent chapters.

It is not enough to have a definition of validity; we also want to be
able to establish that certain sentences are, in fact, valid. In elemen-
tary arithmetic, algorithms have been devised that let us compute that
249 4 128 = 377. To apply such algorithms, we do not use the numbers
249 and 128 or the operation +. Indeed, most of us have rather vague
conceptions of what these things actually are. Rather, we perform cer-
tain mechanical manipulations on strings of symbols. Similar algorithms
have been developed for classical logic; they are called proof procedures.
A proof procedure does not make use of the meanings of sentences, it
only manipulates them as formal strings of symbols. A proof procedure
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is said to prove a sentence or not, as the case may be. A proof proce-
dure, then, is an algorithm in the usual mathematical sense and can be
studied just like any other algorithm. In particular, correctness results
can be established. It should be verified, of a proof procedure, that

1. It only proves valid sentences (it is sound).

2. Tt proves every valid sentence (it is complete).

In fact, even more is wanted; we should have proof procedures capable of
dealing with logical consequence, not just with validity. The creation and
investigation of proof procedures that capture validity and consequence
are also part of formal logic.

We have yet a further goal. We want to investigate proof procedures that
are suitable for computer implementation, and we want to implement
them. Most proof procedures in the literature are non-deterministic.
Many of them are capable of producing ‘short’ proofs when used with
knowledge and intelligence, but when used purely mechanically, they can
be extraordinarily inefficient. Certain ones, however, are well adapted
to mechanical use. Resolution is the best-known such proof procedure;
the semantic tableaur procedure is another, though it has not had the
intensive development that resolution has. We will present both systems
in considerable detail and discuss their implementation. We will also
present several other proof procedures of more traditional kinds, partly
for comparisons’ sake, partly because they are common in the literature
and should be part of one’s general knowledge.

Issues of truth, validity, and consequence can be divided into levels of
difficulty. At the simplest level we ask, What sentences are true solely
because of the way they use the logical connectives—never mind the
role of the quantifiers, variables, constant symbols, function symbols, or
relation symbols? Restricting our attention to the role of logical connec-
tives‘yields what is called propositional logic. This is much simpler to
deal with, and a wide variety of techniques have been developed that
are suitable for it. We devote the first several chapters to propositional
logic, both for its own sake, and because it provides a good background
for the more difficult logics that follow.

Next we ask, What sentences are true because of the way they use the
logical connectives and the quantifiers? This is the study of first-order
logic and is the heart of the book.

The greater-than relation makes sense only for certain domains, and this
also holds true for virtually all other relations. But the equality relation
is meaningful for every domain. Suppose we ask which sentences are true
because of their use of the logical connectives, the quantifiers, and the
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equality relation. Normal models are models in which the symbol = is
interpreted as designating the equality relation. Restricting models to
those that are normal gives us first-order logic with equality. It is the
appropriate setting for the development of most formal mathematical
theories. As it happens, the theoretical role of equality is easy to charac-
terize, but it makes things much more difficult when implementing proof
procedures. We take this up as our final major topic.

This is not the entire of classical logic. The quantifiers we have been
discussing range over objects. We can also consider quantifiers ranging
over properties. This is second-order logic. There is also third-order logic,
fourth-order logic, and so on, and also type theory, which embodies them
all. We do not go beyond first-order logic here; though we recommend
Andrews’ work [2] for those who are interested. Finally, we recommend
several other books on logic, with particular relevance to automated
theorem proving [21, 31, 44, 57].
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Propositional Logic

2.1
Introduction

In classical propositional (or sentential) logic we study the behavior of
the propositional connectives, such as and and or. We assume we have
a family of sentences (hence the name ‘sentential’) that can be thought
of as expressing propositions (hence the name ‘propositional’). For in-
stance, the English sentence “Snow is white,” expresses the proposition
that snow is white, which happens to be true. We begin with a family of
elementary, or atomic, sentences, whose internal structure we do not an-
alyze. Indeed, we represent these by single letters, propositional letters.
All that matters for us is that these are either true or false, but never
both. (Better said, the propositions expressed by these sentences are ei-
ther true or false, but we will ignore such niceties from now on.) Then
we form more elaborate sentences from these using the propositional
connectives. Our major concern is how the truth or falsity of compound
sentences depends on the truth or falsity of the atomic sentences mak-
ing them up. In particular, we would like to know which compound
sentences must be true, independently of the status of their atomic con-
stituents. For propositional logic these are called tautologies. Much of
classical propositional logic amounts to determining which sentences are
tautologies.

We begin with formal definitions and a proper characterization of the
notion of tautology—in effect the familiar mechanism of truth tables is
used here. Then, in the next two chapters, we turn to proof theoretic
methods—axiom systems, natural deduction, resolution, and semantic
tableaux. Each of these amounts to a set of rules, which, if followed
correctly, must determine the tautologyhood of a given propositional
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sentence. Thus, we wind up with several algorithms, algorithms based
on resolution, on tableaux, etc. For each of these, we must prove formally
that it meets our specifications. In propositional logic, a proof procedure
(algorithm) that proves only tautologies is called sound. If it proves every
tautology, it is called complete. So, for each kind of proof procedure, we
must establish soundness and completeness. Finally, in the next chapter,
we consider implementation issues for some of these proof procedures.

Truth tables themselves are implementable, so what is the need for other
kinds of mechanisms? First, truth tables are always inefficient, while on
a case-by-case basis, other mechanisms can be much better. But more
fundamentally, the truth table mechanism is limited to the classical,
propositional setting. Axiom systems, natural deduction, and so on, all
extend readily to encompass classical first-order logic (allowing quanti-
fiers), and even various non-classical logics. We will carry out the ex-
tension to the first-order setting, but we will not consider non-classical
logics here at all. Since the classical propositional case is the simplest
of all, it is best to get a thorough understanding of the various proof
mechanisms here first, before moving on to more complicated things.

Just as with programming languages, each logic has its syntax and its
semantics. In the case of classical propositional logic, these are rather
simple. We begin with syntax, defining the class of formulas.

We assume we have an infinite list, Py, Ps,..., of propositional letters.
Informally, we can think of propositional letters as expressing proposi-
tions, without analyzing how. Formally, we may think of these as letters
of an infinite (countable) alphabet. The only real requirement is that
they should be distinct and recognizable. In general we will informally
use P, Q,...for propositional letters, rather than P;, Ps,....

A formula will be a word built up from propositional letters using propo-
sitional connectives. Propositional connectives can be zero-place (con-
stants), one-place, two-place (binary), three-place, and so on. There are
naturally two constants, since classical logic is a two-valued logic. We
will denote these by T and L, for ¢true and false, respectively. Negation
(—) is the only one-place connective of interest. Three-or-more-place con-
nectives rarely occur in practice. Different works on logic tend to differ
on what is taken as a binary connective. Some may consider only A and
V, while others may allow D, =, and maybe more (or less). We leave
the choice open for now and give a kind of generic definition. The is-
sue will be considered again when we discuss semantics. The only other
symbols we will need, to form propositional formulas, are left and right
parentheses.



2.2.  Propositional Logic—Syntax 11

Definition 2.2.1

Definition 2.2.2

Theorem 2.2.3

A (propositional) atomic formula is a propositional letter, T or L.
The set of propositional formulas is the smallest set P such that

1. If A is an atomic formula, A € P.
2. XeP=-XeP.
3. If o is a binary symbol, then X,Y € P = (X oY) € P.

As an example, if A and V are binary symbols, then —((P; A P)Vv—(PsA
—T)) is a propositional formula. You should try showing this.

The definition of propositional formula presupposes the existence of a
(unique) smallest set meeting conditions 1 through 3, where smallest
means is a subset of all others. But the existence of such a set is easily
established. First, there are sets meeting conditions 1 through 3, for ex-
ample, the universal set consisting of all words formed from the symbols
we are using. Next, it is easy to verify that the intersection of any family
of sets meeting conditions 1 through 3 is another set meeting these con-
ditions. Now, just form the intersection of the (nonempty) family of all
sets meeting conditions 1 through 3. This will be the smallest such set.

From time to time we will define other concepts using this same tech-
nique. Defining things this way yields useful immediate consequences.
One is a method of proof, the other is a method of definition.

(Principle of Structural Induction)
Every formula of propositional logic has a property, Q, provided:

Basis step Every atomic formula has property Q.
Induction steps

If X has property Q so does —X.

If X andY have property Q so does (X oY), where o is a binary
symbol.

Proof Let Q" be the set of propositional formulas that have property
Q. The basis step and the induction steps say that Q* meets conditions
1 through 3 of the definition of propositional formula. Since the set P
of propositional formulas is the smallest set meeting these conditions, it
follows that P is a subset of Q*, and hence every propositional formula
has property Q. O

The other basic principle we need will allow us to define functions on
the class of propositional formulas.
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Theorem 2.2.4

Theorem 2.2.5

(Principle of Structural Recursion) There is one, and only one,
function f defined on the set P of propositional formulas such that:

Basis step The value of f is specified explicitly on atomic formu-
las.

Recursion steps

The value of f on —X is specified in terms of the value of f
on X.

The value of f on (X oY) is specified in terms of the values of
f on X and on'Y, where o is a binary symbol.

We omit the proof of this theorem, which is similar to that of structural
induction, but which requires consideration of existence principles for
functions, and more generally sets, and so would take us rather far afield.

Syntax is really part of the subject matter of automata theory. It is
immediate from the form of the definition that propositional formulas
are a context free language, and hence much is known about them [28].
The main thing we need is that we have an unambiguous grammar. We
state this as a theorem and leave the proof as a series of exercises. In
fact, the theorem is needed for the proof of the Principle of Structural
Recursion, Theorem 2.2.4.

(Unique Parsing) Every propositional formula is in exactly one of
the following categories:

1. atomic
2. =X, for a unique propositional formula X

3. (X oY) for a unique binary symbol o and unique propositional for-
mulas X and Y

Exercise 2.2.3 shows that every propositional formula falls into at least
one of the three categories listed in the Unique Parsing Theorem. It is
more work to demonstrate uniqueness, however. The job is easier in a
restricted setting in which there are no negations. So, temporarily, by a
restricted formula, we mean a propositional formula that does not con-
tain any negation symbols (—). It is trivial that a restricted formula
can not fall into both categories 1 and 3 of the Unique Parsing Theo-
rem. Then Exercise 2.2.6 establishes the theorem for restricted formulas.
Finally, Exercise 2.2.8 establishes the full version.

We will occasionally need the notion of subformula. Informally, a subfor-
mula of a formula is a substring that, itself, is a formula. The following
is a more rigorous characterization:
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Definition 2.2.6

Definition 2.2.7

Exercises

Immediate subformulas are defined as follows:

1. An atomic formula has no immediate subformulas
2. The only immediate subformula of =X is X

3. For a binary symbol o, the immediate subformulas of (X oY) are
X and Y.

Let X be a formula. The set of subformulas of X is the smallest set S that
contains X and contains, with each member, the immediate subformulas
of that member. X is called an improper subformula of itself.

2.2.1. For a propositional formula X, let b(X) be the number of oc-
currences of binary symbols in X. Prove using structural induction that,
for every formula X, b(X) = number of left parentheses in X = number
of right parentheses in X. (Hence every propositional formula has the
same number of left as right parentheses.)

2.2.2. Using structural recursion, we define a function d on the set of
propositional formulas as follows: If P is atomic, d(P) = 0. d(-X) =
d(X)+1.d((X 0Y)) = d(X) +d(Y) + 1. For a propositional formula X,
d(X) is called the degree of X. Assuming O and V are binary symbols,
calculate d((—P > —(Q V R))).

2.2.3. Suppose F' were a propositional formula that fell into none of
the three categories stated in the Unique Parsing Theorem. Let P° be
the set P of propositional formulas, with F' removed. Show that P° still
meets the conditions of the definition of propositional formula. Since
P° is a proper subset of P, and P was the smallest set meeting the
conditions, we have a contradiction.

2.2.4. Show that every proper initial segment of a restricted formula
has more left than right parentheses. (Hint: Use Structural Induction
and Exercise 2.2.1.)

2.2.5. Show that no proper initial segment of a restricted formula is
itself a restricted formula. (Hint: Use Exercise 2.2.4.)

2.2.6. Using Exercise 2.2.5 show that, if a restricted formula is of the
form (X oY) and also (U e V), where o and e are binary symbols, then:
X=U,Y=V,a.ndo=o,

2.2.7. Show the following:

1. No propositional formula consists entirely of negation symbols
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2. A proper initial segment of a propositional formula is either a string
of negation symbols or contains more left than right parentheses

3. No proper initial segment of a propositional formula is itself a
propositional formula.

2.2.8. Using Exercise 2.2.7, prove the full version of the Unique Parsing
Theorem.

2.2.9. Assume D, =, and | are binary symbols. Determine the set of
subformulas of the following:

L (P2Q)=(Q|~R)).
2. (T>P)>Q).

Classical logic is two-valued. We take as the space of truth values the
set Tr = {t,f}. Here t and f are simply two distinct objects. We will, of
course, think of t as representing truth and f as representing falsehood.
Next, we must say how to interpret each of the operation symbols from
the previous section by an operation on Tr. Negation is easy: From now
on we assume we have a mapping — : Tr — Tr, given by —(t) = f, and
—(f) = t. (We will generally follow the custom of using the same notation
for an operation symbol of the formal language defined in Section 2.2,
and for an operation on Tr. This should cause no confusion and will
simplify terminology somewhat.)

Binary connectives are a more complicated affair. It is clear that there
are 16 different two-place functions from Tr to itself. But not all of these
are of interest. One of them is the trivial map that sends everything to
t. Another is the identically f map. (These correspond to our language
constants T and L.) Ruling these out, we still have 14 maps. One of these
is the map f(z,y) = z, and another is g(z,y) = —z, identity and nega-
tion with respect to the first input. Two more functions behave similarly
with respect to the second input. Tossing these out, we are down to 10
binary operations. These 10 are all of genuine interest, though some play
a more important role than others. For reasons that will be discussed
later, we divide the 10 into two categories, primary and secondary. We
give their definitions, and the symbols by which we will denote them, in
Table 2.1.

Among the Primary Connectives, A (and), V (or), and D (implies) are
probably the most familiar. C is backward implication, which is used in
Prolog, but for which the common Prolog notation is :- or <. 2 and
¢ are simply D and C negated. ] is conveniently read “not both” or
“NAND,” while | may be read “neither-nor” or “NOR.” In fact, T and
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TABLE 2.1. Primary and Secondary Connectives

| are A and V negated. Finally, for the Secondary Connectives, = (if
and only if) is probably familiar, while # is = negated. In fact, # is the
standard exclusive-or.

From now on we assume that for each of the Primary and Secondary
Connectives we have a corresponding binary operation symbol in the
formal language of propositional logic. To make the relationship between
symbol and operation more memorable, we will overload our notation.
From now on, A will be a binary operation symbol of our formal language
and will also denote an operation on Tr, according to Table 2.1. This
double usage should cause no difficulty, as context will make clear which
is meant.

It is well-known that — and A form a complete set of connectives in that
all others can be defined using them. For instance, assuming z and y
range over Tr, (x Vy) = -(—z A ~y) and (z D y) = ~(z A —y). By all
others, we mean exactly that: all two-place, three-place, . . . operations on
Tr can be defined from — and A alone. Exercises 2.3.1 and 2.3.5 ask for a
proof of this. Two of the binary connectives are complete by themselves.
Exercise 2.3.2 asks you to show there are at least two; Exercise 2.3.4
asks you to show there at most two, which is harder.

2.3.1. Show that all binary connectives can be defined using — and
any one of the Primary Connectives.

2.3.2. Show that all binary connectives can be defined using either T
or | alone.

2.3.3. Show that no Primary Connective can be defined using — and
the Secondary Connectives.

2.3.4. Show that | and | are the only binary connectives that are
complete by themselves.

2.3.5. Show that all three-place, four-place,...operations on Tr can
be defined using —, A, and V (and hence using — and any Primary
Connective, by Exercise 2.3.1).
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Definition 2.4.1

Proposition 2.4.2

Proposition 2.4.3

Example

Now we connect syntax and semantics. We are interested in those propo-
sitional formulas that must be true because of their logical structure,
without reference to the meanings of the propositional letters involved.
Such formulas are called tautologies; we give a proper definition later. Of
course, we must say how an operation symbol, A say, is to be interpreted.
We will interpret it as naming the operation on Tr that we designated
by A in Table 2.1. More generally, as we remarked in Section 2.3, we
follow the convention of using the same notation to refer to a binary op-
eration on Tr and to be a binary operation symbol of our propositional
language.

For reading ease, from now on we will generally omit the outer set of
parentheses in a propositional formula, writing X VvV —X, for instance,
instead of (X V —X). This does not change the official definition.

A Boolean valuation is a mapping v from the set of propositional formulas
to the set Tr meeting the conditions:

1. »(T) =t; v(Ll)="1.
2. v(=X) = w(X).

3. v(X oY) = v(X) ov(Y), for any of the binary operations o of
Table 2.1.

It turns out Boolean valuations are easy to specify; the following two
propositions provide a simple mechanism. We leave the proofs to you,
as exercises.

For each mapping f from the set of propositional letters to the set Tr,
there is a Boolean valuation v that agrees with f on the propositional
letters.

If v1 and vy are two Boolean valuations that agree on a set S of propo-
sitional letters, then v1 and vy agree on every propositional formula that
contains only propositional letters from S.

Consider the Boolean valuation v such that on the propositional letters
P, Q, and R, we have v(P) =t, v(Q) = f and v(R) = f, and to all other
propositional letters v assigns f. By Proposition 2.4.2, there is a Boolean
valuation that meets these conditions, and by Proposition 2.4.3, there is
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Definition 2.4.4

Definition 2.4.5

Definition 2.4.6

exactly one. Now:

v((P1-Q)>R)

I

v(P 1-Q) D v(R)
(v(P) T v(=Q)) 2> v(R)
(v(P) T (Q)) 2 v(R)
t1-f)Df
(t1t)of

fof

t.

It

It

We are interested in those propositional formulas that can’t help being
true. The following makes this rather vague notion precise.

A propositional formula X is a tautology if v(X) = t for every Boolean
valuation v.

It is decidable whether or not a formula X is a tautology. We have to
check the behavior of X under every Boolean valuation. By Proposi-
tion 2.4.2, a Boolean valuation is determined by its action on propo-
sitional letters, and by Proposition 2.4.3 we only need to consider this
action on propositional letters that actually appear in X. If X contains
n different propositional letters, we will need to check 2™ different cases.
Truth tables provide a convenient technique for doing this. We do not
describe truth tables here, as you are probably already familiar with
them.

A set S of propositional formulas is satisfiable if some Boolean valuation
v maps every member of S to t.

To be a tautology, every line of a truth table must make a formula true.
To be satisfiable, at least one line must do this. This is inexact, however,
since formulas are tautologies, but sets of formulas are satisfiable. An
infinite set can be satisfiable, but a direct truth table verification of this
would not be possible. There is a useful and simple connection between
the two notions: X is a tautology if and only if {—X} is not satisfiable.

For classical propositional logic, there is an elegant notion of duality that
can help give some insight into the structure of the logic.

Suppose o and e are two binary operations on Tr. We say e is the dual of
oif ~(zoy) = (—~ze—y). If e is dual to o, we also say the corresponding
binary operation symbol e is dual to the binary symbol o.
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For example, V is the dual of A because =(X AY) = (=X V-Y). Duality
is symmetric, so we can simply refer to two binary connectives as duals of
each other. We leave the proof of this to you, as well as the determination
of which connectives are duals.

For a propositional formula X, we write X¢ for the result of replacing
every occurrence of T in X with an occurrence of |, and conversely, and
replacing every occurrence of a binary symbol in X with an occurrence
of its dual. We refer to X¢ as the dual formula of X.

It is not hard to see that if @ and o are dual binary symbols then for
any formulas X and Y, (X ¢ Y)¢ = (X% 0 Y?). Next we give exercises
concerning this notion. As a special case of Exercise 2.4.12, for instance,
it follows that (P A Q) D P is a tautology because P D (P V Q) is.

2.4.1. (To establish Proposition 2.4.2.) Show that if f is a mapping
from the set of propositional letters to Tr, then f can be extended to a
Boolean valuation v. (Hint: use Structural Recursion.)

2.4.2. (To establish Proposition 2.4.3.) Show that if v; and v, are two
Boolean valuations that agree on a set S of propositional letters (which
may not include all propositional letters), then v; and v, agree on all
propositional formulas that contain only propositional letters from S.
(Hint: use Structural Induction.)

2.4.3. Which of the following are, and which are not tautologies?

1. (P>Q)D>P)DP
(POQN@QDOR)V(ROQ)A(QDP)
CPAQA(P=1)#@Q=1)
(PO2Q)T(PDQ)=(PA-Q)
(PoQANQ=1)D(P=1)
(PoQA(Q=T)D(P=T)
(P£Q)=(Q#P)

8. (P£(Q#R)=((P#£Q)#R)

2.4.4. Show that for any propositional formulas X and Y, and any
Boolean valuation v:

N e o p W

1. (X =Y) =t if and only if v(X) = v(Y).
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2. v(X #Y) =t if and only if v(X) # v(Y).

3. (X DY) =t if and only if (v(X) = f or v(Y) = t) if and only if
(v(X) = t implies v(Y) = t).

2.4.5. Let F be a family of Boolean valuations. We define a new
Boolean valuation A F by specifying it on propositional letters as fol-
lows: For a propositional letter P, A F(P) = t if and only if v(P) =
t for every v € F. Show that for A; and B propositional letters, if
(A1 A...ANAp) D B is true under every Boolean valuation in F then
it is true under A F. (Propositional formulas of this form are called
propositional Horn clauses. Loosely, this exercise says that the truth of
propositional Horn clauses is preserved under the intersection of Boolean
valuations.)

2.4.6. Suppose vy, vz are Boolean valuations and every propositional
letter that v; makes true, vy also makes true.

1. Prove that if X is any formula that contains only the connectives
A and V, and if v1(X) = t, then v3(X) = t.

2. Must the converse be true? That is, if X contains only A and V,
and vo(X) = t, must v1(X) = t? Justify your answer.

2.4.7. Suppose F(A4,,...,A,) is a propositional formula whose propo-
sitional letters are among A;,...,A,, and let X;,..., X,, be n arbi-
trary propositional formulas. We denote by F(Xi,...,X,) the result
of simultaneously replacing all occurrences of 4; by X; (i = 1,...,n)
in F(Ay,..., Ap). (For example, if F(A,B) = (AA T)V —-B, then
F(PO>Q,PVR)=((PD>Q)AT)V~(PVR).) Show: if F(Ay,...,A)
is a tautology, so is FI(X1,...,X,).

2.4.8. Prove that if e is the dual connective of o, then o is also the
dual connective of e.

2.4.9. For each primary and secondary connective, determine its dual.

2.4.10. For each propositional formula X, let X be the result of re-
placing every occurrence of a propositional letter P in X with —P. Prove
that for a propositional formula X, if X is a tautology so is X.

2.4.11. Using the notation of the previous exercise, prove that for ev-
ery propositional formula X, and for every Boolean valuation v, v(=X) =
v(X?). (Hint: Structural Induction.)

2.4.12. Prove that if the propositional formula X D Y is a tautology,
sois Y¢ D> X9
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2.5

The
Replacement
Theorem

Theorem 2.5.1

Exercise 2.4.4 says that the binary connective = has a close relation-
ship with equality. In this section we establish a result analogous to the
familiar substitution property of equality that says one can substitute
equals for equals. The result is fundamental, intuitive, and we generally
use it without explicitly saying so.

We find notation like that used in Exercise 2.4.7 convenient. When we
write F(P), we mean F is a propositional formula, and occurrences
of the propositional letter P play a special role. Then later, when we
write F'(X) for some propositional formula X, we mean the formula that
results from F' when all occurrences of P are replaced by occurrences
of the formula X. For example, if F'(P) is the propositional formula
(P D> Q)V-P,andif X is (PAR), then F(X)is (PAR) D Q)V—~(PAR).
Note that, as in this example, the replacement formula X may introduce
fresh occurrences of the propositional letter P. We do not require that
P actually have occurrences in F(P), and this is an important point.
F(X) is the result of replacing all occurrences of P by occurrences of X,
if there are any.

(Replacement Theorem, Version One)  Let F(P), X and Y be

propositional formulas, and v be a Boolean valuation. If v(X) = v(Y)
then v(F (X)) = v(F(Y)).

Proof Suppose we call a propositional formula F(P) good if
v(X) =v(Y) implies v(F(X)) = v(F(Y)) (for all X, Y and v). (x)

We must show that all propositional formulas are good, and we can use
Structural Induction.

Basis Step Suppose F'(P) is atomic. Then there are two cases, ei-
ther F(P) = P or F(P) # P.If F(P) = P, then F(X) = X and
F(Y) =Y, and () is trivially true. If F(P) # P, then F(X) =
F(Y) = F(P), and (x) is again trivially true. Thus all atomic for-
mulas are good.

Induction Step Suppose G(P) and H(P) are both good proposi-
tional formulas (induction hypothesis), and F(P) = G(P) o H(P)
where o is some binary symbol; we show F(P) is good. Well, if
v(X) = v(Y), then

v(F(X)) =v(G(X)o H(X)) (def. of F)

v(G(X)) ocv(H(X)) (def. of Boolean valuation)
v(G(Y))ov(H(Y)) (ind. hypothesis)

v(GY)o H(Y)) (def. of Boolean valuation)
=v(F(Y)) (def. of F)

Thus, in this case F(P) is good.
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Theorem 2.5.2

Example

Definition 2.5.3

Proposition 2.5.4

The induction step involving negation is established similarly. Now it
follows by the Principle of Structural Induction that all propositional
formulas are good, and we are done. O

(Replacement Theorem, Version Two) If X =Y is a tautology,
sois F(X) = F(Y).

Proof Suppose X =Y is a tautology. Let v be an arbitrary Boolean
valuation; we must show that v(F(X) = F(Y)) = t. Since X =Y is
a tautology, v(X = Y) = t, so v(X) = v(Y) by Exercise 2.4.4. Then
v(F (X)) = v(F(Y)) by Theorem 2.5.1, hence v(F(X) = F(Y)) = t by
Exercise 2.4.4 again. O

Suppose we let F'(A) be the formula [(-=P V Q) A (R T —A)]. Since
(-PVQ) = (P D Q) is a tautology, by Theorem 2.5.2 so is F(-PVQ) =
F(P > Q),or [(-PVQ)A(RT (-PVQ))] =[(-PVQ)A(RT (P> Q)]
Here is an informal but useful way of describing this: we have replaced
one occurrence of =P V Q by its equivalent, P D Q, in (-PV Q) A (R T
(=P Vv Q)) to turn it into its equivalent, (=P V Q) A (R T (P D Q)).

We illustrate the uses of this theorem by showing every propositional
formula can be put into negation normal form.

A propositional formula X is in negation normal form if the only nega-
tion symbols in X occur in front of propositional letters.

Every propositional formula can be put into a negation normal form.
More precisely, there is an algorithm that will convert a propositional
formula X into a propositional formulaY , where Y is in negation normal
form and X =Y is a tautology.

Since negation normal form will not play a major role in the development
here, we do not give a formal proof of this theorem but only sketch the
ideas. Say we wish to put X into negation normal form. If we are not
already done, X must contain a subformula of the form —Z where Z
is not a propositional letter. Choose such a subformula and, using the
Replacement Theorem, substitute for it an equivalent formula in which
the negation symbols occur “further inside.” For instance, if we have
a subformula —~(U A V) of X, we can replace it with -U Vv -V, since
~(UAV) = (-UV-V) is a tautology (recall that A and V are duals). If
we have ——U, we can replace it with U, since -—U = U is a tautology.
If we have -1, we can replace it with T, and so on.



22 2. Propositional Logic

Exercises

2.5.1. Put the following formulas into negation normal form:
1. =(=(P > Q) V —R).
2. 2(PT1Q)=R).
3. "(P#£Q)AN-(P=R).

2.5.2. Put the propositional formulas of the previous exercise into a
negation normal form in which the only binary connectives are A and V.

2.5.3. In propositional logic, assume all formulas are built up from
propositional letters using only — and V. Also assume P is a fixed
propositional letter. We define two functions v and w from triples of
formulas to formulas as follows. First, on a propositional letter L:

[ X fL=PR
v(X,Y,L) = { L otherwise
(Y fL="R
w(X,Y,L) = { L otherwise

Then, on non-atomic formulas:
v(X,Y,~Z) = w(X,Y, Z)
w(X,Y,-Z) = w(X,Y,Z)
(X, Y, ZVW)=v(X,Y,Z) Vu(X,Y,W)
w(X,Y,ZVW)=w(X,Y,Z)vVw(X,Y,W)

1. Let Z = Py V =(Q V Py) (where @ is a propositional letter differ-
ent from Pp). Compute w(X,Y,~Z) Vw(X,Y, Z), and show it is a
tautology, provided - X VY is.

2. Show, by structural induction on Z that, whenever - X VY is a
tautology, so is w(X,Y,~Z) Vw(X,Y, Z).

2.5.4. It follows from Exercise 2.4.7 that, if F'(P) is a tautology, so are
both F(T) and F(L). Now show the converse: if both F(T) and F(Ll)
are tautologies, so is F'(P).

2.5.5. Devise a decision procedure for being a tautology, based on the
previous exercise. Compare the result with the truth table method.

2.5.6. Let X be a formula that contains no occurrences of T or L
and no connectives except =. Show that X is a tautology if and only if
X contains an even number of occurrences of each propositional letter.
Hint: First show that the connective = is associative and commutative
and that (Z = (P = P)) = Z is a tautology.
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2.6
Uniform
Notation

Proposition 2.6.1

‘Works on logic tend to adopt a small number of connectives as basic and
take others as defined. Generally, this has the virtue of cutting down on
the number of cases that must be considered when discussing techniques
and methods. Exercise 2.3.1 is what makes it possible to proceed this
way. But instead, we will use a device that is due to R. M. Smullyan
[48], uniform motation, that allows us to have a very large set of basic
connectives while still not having to do unnecessary work in proving
theorems about our logic, or in writing automated theorem provers. The
method works well for all the Primary Connectives, but not for the
Secondary Connectives.

e From now on, = and # will be treated as defined, in terms of
negation and the Primary Connectives.

Of course, we still have results like the Replacement Theorem 2.5.1, 2.5.2
available, even though = is a defined connective. For our basic binary
connectives, we take all of the Primary Connectives.

We group all propositional formulas of the forms (X oY) and ~(X oY)
(where o is a Primary Connective) into two categories, those that act
congunctively, which we call a-formulas, and those that act disjunctively,
which we call 3-formulas. For each a-formula we define two components,
which we denote a3 and as. Similarly, we define components 8; and (s
for each B-formula. This is done in Table 2.2.

Conjunctive Disjunctive
« a1 Qa2 ,3 ,61 ,62
XAY X Y| -(XAY)|-X -Y
-(XVY) | - X Y XVvYy X

Y
~«(XoY)| X -v| XxoY |-Xx Y
~“(XcY)|-X Y| Xcv X -y
~“(X1Y)| X Y X1Y |-X -Y

Xly |-Xx Y| -(xly)| X Y

X2Y X -Y|-(X2Y)|-X Y
X¢Y |-X Y|-(X¢Y)| X -Y

TABLE 2.2. - and #-Formulas and Components

The following accounts for what we said about a-formulas being con-
junctive and B-formulas being disjunctive:

For every Boolean valuation v, and for all a- and (B-formulas:

v(a) = v(ar) A v(az)

v(B) = v(B1) V v(B2)
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Corollary 2.6.2

Theorem 2.6.3

For every a and B, a = (o A a2) and B = (61 V B2) are tautologies.

Next, we have an alternative to the original version of structural induc-
tion, Theorem 2.2.3. We use the first version to establish this one, and
it is this that will be of primary use from now on.

(Principle of Structural Induction) Every formula of proposi-
tional logic has a property, Q, provided:

Basis step Every atomic formula and its negation has property Q.

Induction steps
If X has property Q, so does -—X.
If a1 and ag have property Q, so does a.
If 81 and B2 have property Q, so does 3.

Proof Suppose Q is a property that meets these conditions. Say we call
a propositional formula X good, provided both X and —X have property
Q. If we show every propositional formula is good, it will follow that
every formula has property Q. And we can use the original Principle of
Structural Induction from Section 2.2 to show this.

If X is atomic, X is good by the basis step.

Next we show that the set of good formulas is closed under negation.
Suppose X is good. Then both X and —X have property Q. Since X has
property Q, by the first of the induction steps, ——X also has property
Q. Thus both =X and ==X have property Q, so —X is good.

Suppose X and Y are good, and o is a Primary Connective; we show
(X oY) is good. If (X oY) is an a-formula, ~(X oY) is a B-formula; if
(X oY) is a B-formula, (X oY) is an «. In either case, both a; and
B1 are among X, -X. X is good by hypothesis, hence —X is also good
by the preceding paragraph. Then both X and —X have property Q;
in other words, both a; and (3; have property Q. Both as and (3, are
among Y, Y, and by a similar argument both have property Q. Then,
by the last two of the induction steps, both a and 3 have property Q,
and it follows that (X oY) is good.

Now, by the original Principle of Structural Induction, Theorem 2.2.3,
every propositional formula is good, hence every propositional formula
has property Q, and we are done. O

There is also a version of Structural Recursion that uses uniform nota-
tion. We state it, but omit the proof.
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Theorem 2.6.4 (Principle of Structural Recursion) There is one, and only one,
function f defined on the set P of propositional formulas such that:

Basis step The value of f is specified explicitly on atomic formulas
and their negations.

Recursion steps

The value of f on ~—X 1is specified in terms of the value of f
on X.

The value of f on a is specified in terms of the values of f on
a1 and as.

The value of f on B is specified in terms of the values of f on
B1 and Ba.

In Exercise 2.2.2, we defined the notion of degree. Now we define a notion
we call rank, which relates better to uniform notation than degree does.
The theorem just stated is needed here.

Definition 2.6.5 The function r on the set P of propositional formulas is defined as fol-
lows: First, for atomic formulas and their negations. If A is a proposi-
tional letter, 7(A) = r(-A) =0. r(T) =r(L) =0. r(=T) =r(-L) = 1.
Next, the recursion steps: r(——Z2) = r(Z) + 1; r(a) = r(a1) + r(a2) +
1;7(B) = r(B1) +7(B2) + 1. The rank of a formula X is the number r(X).

Exercises 2.6.1. Compute the degree and the rank of the following:

L (P>Q)>(@QI|—R).
2. (TODP)DQ.
3. Q> (T >o>P).

2.6.2. Suppose we define the depth h(X) of a propositional formula X
as follows: If A is a propositional letter, h(A) = h(—A) = 0. h(T) =
h(L) =0. h(=T) = h(—L) = 1. And, using recursion, h(——Z) = h(Z) +
1; h(a) = max{h(a1), h(az)} + 1; h(B) = max{h(51), h(B2)} + 1.

1. Prove that for any propositional formula X, r(X) < 2»(X) — 1.

2. Prove that for every non-negative integer n there is a formula X of
depth n whose rank is 2™ — 1.

2.6.3. Prove Proposition 2.6.1.
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2.7
Konig's
Lemma

Definition 2.7.1

Theorem 2.7.2

We digress from formal logic briefly to present a result about trees that
will be of fundamental use throughout this work. Its statement and proof
are easy, but the consequences are profound. We do not give a definition
of tree here; we assume you are familiar with the notion already. All our
trees will be rooted; we will not say so each time. We do not require a
tree to be finite.

A tree is finitely branching if each node has a finite number of children
(possibly 0). A tree is finite if it has a finite number of nodes; otherwise
it is infinite. Likewise, a branch is finite if it has a finite number of nodes;
otherwise it is infinite.

FIGURE 2.1. Examples of Trees

Examples of trees are given in Figure 2.1. In each case the displayed
pattern is assumed to continue. The tree on the left is finitely branch-
ing but infinite. It has an infinite branch. The tree on the right is not
finitely branching, every branch is finite, but branches are arbitrarily
long. Kénig’s Lemma says that if we don’t allow infinite branching, the
left-hand example shows the only way a tree can be infinite.

(Ko6nig’s Lemma) A tree that is finitely branching but infinite must
have an infinite branch.

Proof Suppose T is a finitely branching, infinite tree. We will show
T has an infinite branch. By a descendant of a node, we mean a child
of it, or a child of a child, or a child of a child of a child, etc. Let us
(temporarily) call a node of T good if it has infinitely many descendants.

The root node of T is good, since every other node of T is its descendant,
and T is infinite.

Suppose N is a good node of T. Since T is finitely branching, N has
a finite set of children; say Ci,..., Cp. If child C; were not good, it
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Exercises

2.8
Normal Forms

Definition 2.8.1

would have a finite number of descendants, say c;. If none of C,..., C,
were good, N would have ¢; + - - + ¢, + n descendants, contradicting
the assumption that N had infinitely many descendants. Consequently,
some C; must be good. In brief, we have showed that a good node must
have a good child.

Now, the root node of T is good. It has a good child; pick one. It, in
turn, has a good child; pick one. And so on. Since the process never
stops, in this way we trace out an infinite branch of T. O

The following is an amusing application of Kénig’s Lemma (see Smullyan
[49]). We are going to play a game involving balls labeled with positive
integers. There is no restriction on how many balls can have the same
number or on how big the numbers can be. Suppose, at the start, we
have a box containing just one ball. We are allowed to remove it and
replace it with as many balls as we please, all having lower numbers.
And this is also what we do at each stage of the game: Select a ball in
the box, remove it, and replace it with balls having lower numbers. For
instance, we could remove a ball labeled 27 and replace it with 1,000,000
26s. The problem is to show that, no matter how we proceed, eventually
we must remove all balls from the box.

2.7.1. Use Konig’s Lemma to show we must empty the box out. (Hint:
Suppose we create a tree as follows: The nodes are all the balls that have
ever been in the box. The root node is the ball that is in the box at the
start. The children of a ball are the balls we replace it with.)

If propositional formulas are standardized, it is sometimes easier to es-
tablish their tautologyhood or their satisfiability. In fact, most auto-
mated theorem-proving techniques convert formulas into some kind of
normal form as a first step. We have already met one normal form,
negation normal form, but it does not have enough structure for many
purposes. In this section we introduce two more normal forms, both built
on the following idea: Since the behavior of all Primary Connectives can
be described in conjunctive/disjunctive terms, we will eliminate all other
binary connectives in favor of just conjunctions and disjunctions. The
conjunction operation A is commutative and associative. Consequently,
in a conjunction of many items, placement of parentheses and order
does not really matter and similarly for disjunction. So, we begin by
introducing generalized conjunction and disjunction notation.

Let X1, Xa,..., X, be a list of propositional formulas (possibly empty).
We define two new types of propositional formulas as follows:
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Definition 2.8.2

Definition 2.8.3

[X1,X2,...,X,] is the generalized disjunction of X1, Xs,..., Xn,

(X1,X2,...,Xn) is the generalized conjunction of X, X, ...,
Xn.

If v is a Boolean valuation, then in addition to the original conditions,
we also require

v([X1,X2,...,Xn]) = t if v maps some member of the list X7,
Xo,..., Xpn to t, v([X1,X2,...,X,]) = f otherwise;

v((X1,X2,...,Xp)) = t if v maps every member of the list X1,
X, .., Xp to t, v((X1, X2, ..., X,)) = f otherwise.

The case of the empty list is a little tricky. For every Boolean valuation
v, v([ ]) = f because, for v to map [ ] to t, it must map some member
of [ ] to t, and there aren’t any members. Consequently, [ ] = L is a
tautology. Similarly, ( ) = T is a tautology. One- and two-member lists
are more straightforward: [X] = X and (X) = X are both tautologies,
asare [X,Y]=XVY and (X,Y) =X AY.

To keep special terminology at a minimum, we will use the term con-
Junction to mean either a binary conjunction, as in earlier sections, or a
generalized conjunction. Context will generally make our meaning clear;
if it does not, we will say so. We reserve the term ordinary formula to
mean one without generalized conjunctions and disjunctions (and, for
that matter, not containing secondary connectives, except as abbrevia-
tions). The Replacement Theorems, 2.5.1 and 2.5.2, extend to include
generalized conjunctions and disjunctions. We make use of this, but omit
the proof. The essential items needed are left to you as an exercise.

Resolution theorem proving is built around the notion of a clause. We
are about to define this. At the same time we define what we call a dual
clause. This terminology is not standard, but it will play for semantic
tableaux the role that clauses play for resolution.

A literal is a propositional letter or the negation of a propositional letter,
or a constant, T or L.

A clause is a disjunction [X7, X2, ..., X,] in which each member is a lit-
eral. A dual clause is a conjunction (X1, X5, ..., X,) in which each mem-
ber is a literal. A propositional formula is in conjunctive normal form or
is in clause form or is a clause set if it is a conjunction (Cy, Cy, ..., Cy)
in which each member is a clause. A propositional formula is in disjunc-
tive normal form or is in dual clause form or is a dual clause set if it is
a disjunction [D1, Dy, ..., D,] in which each member is a dual clause.
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Theorem 2.8.4

For example, ([P, ~Q], [T, R,—S],[]) is in clause form. Under a Boolean
valuation, it will be treated as a conjunction, each term of which is a
disjunction of literals, and similarly for dual clause form. Notice, by the
way, that all conjunctive and all disjunctive normal form formulas are
also in negation normal form.

(Normal Form) There are algorithms for converting an ordinary
propositional formula into clause form and into dual clause form.

The proof of this will, more or less, occupy the rest of the section. We
begin with the algorithm for converting a formula into clause, or con-
junctive normal form. Say the ordinary formula to be converted is X.
We describe a sequence of steps, each of which produces a conjunction,
whose members are disjunctions. The last step of the sequence is a con-
junctive normal form. The algorithm is non-deterministic; at each stage
there are choices to be made of what to do next. We will show the
algorithm works no matter what choices are made.

Step 1. Start with ([X]).

Now, having completed step n, producing (Di, D», ..., D), where the
members D; are disjunctions, if we do not yet have conjunctive normal
form, go on to the following:

Step n + 1. Select a member, D;, which contains some non-literal; select
a non-literal member, say N, and:

If N is =T replace N with 1.

If N is -1 replace N with T.

If N is =—Z replace N with Z.

If N is a B-formula, replace N with the two formula se-
quence f31, (2.

If N is an o-formula, replace the disjunction D; with two
disjunctions, one like D; but with « replaced by o and one
like D; but with « replaced by as.

This constitutes a complete description of the algorithm. We can present
it somewhat more perspicuously if we first introduce some reduction
rules. We give these in Table 2.3.

These rules are to be thought of as rewrite rules for conjunctions of
disjunctions. More specifically, if S is a conjunction, with a member D
that is a disjunction, and if N is a member of D, then if N is =—Z,
N may be replaced with Z, and similarly for the cases where N is =T
and —.L. If N is 3, N may be replaced with the two formulas 31 and Ba.
Finally, if N is «, then D itself may be replaced with the two disjunctions
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Lemma 2.8.5

Example

=z 2T =L
Z L T

aq (6%}

P P

TABLE 2.3. Clause Set Reduction Rules

D; and D3, where D, is like D except that a has been replaced with
a1, and D, is like D but with « replaced with as. Now, the key fact
concerning these rules can be easily stated and verified.

(Conjunctive Rewrite) If S is a conjunction of disjunctions, and
one of the clause set reduction rules is applied to S, producing S*, then
S = §* is a tautology.

Proof This follows easily from Exercise 2.8.1, the fact that o = (a3 Aas)
and B = (B V B2) are tautologies, and the Replacement Theorem. O

Using the Clause Set Reduction Rules, the algorithm given previously
can be stated in a simpler schematic form.

Clause Form Algorithm To convert the ordinary propositional for-
mula X to clause form,
Let S be ([X])
While some member of S contains a non-literal do

select a member D of S containing a non-literal

select a non-literal N of D

apply the appropriate clause set reduction rule

to NV in D producing a new S

end.

The following is a conversion of
(P>(Q>2R)>(P>Q)D(PDR))

into clause form using the Clause Form Algorithm. Make sure you can
Justify the steps. Note that there is considerable redundancy in the final
result. This can be eliminated, but we do not do so now.

LA([(P>(@DR)>((P>Q)> (P> R)))
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(P> (@D R),(P>Q)>(PDR))
(-(P>(@>R),~(P>Q),(P>R))
((~(P>(@>R),~(P>Q),~PR])

([P,~(P > @Q),~P,R],[~(Q > R),~(P > Q),~P, R])

([P, P,~P,R],[P,~Q,~P, R],[~(Q > R), ~(P > @), ~P, R])

<[P7 P, “P7R]7 [P, —‘Qy*‘PyR]’ [Qyﬁ(P o) Q)y _‘PyR]a
[ﬁRa“(P ) Q)’ -P, R]>

8' <[P’ P7 4‘P7 R]7 [P’ _‘Q7 _‘P7 R]7 [Q? P’ ﬁP? R]7 [Q’ ﬁQ’ _‘P’ R]’
[-R, ~(P > @), P, R])

N e o R wN

9. (([P,P,~P,R], [P,~Q,-P,R], [Q,P,~P,R], [Q,~Q,~P, R],
[_‘Ra Pa _‘Pa R]7 [_'Ra _'Q7 ﬁ-Pa R]>

Merely giving an algorithm is not enough; we must verify that it works
the way we think it should. Specifically, we must consider correctness
and termination. Correctness says that if the algorithm halts, then it
halts with the right answer. The termination question is, Under what
circumstances will the algorithm halt? We will have to deal with such
issues frequently, so we take some extra space now to introduce general
methods that have been developed in the area of program verification.

Informally, a loop invariant for a while-loop W is an assertion A having
the property that, if it is true, and the body of the loop W is executed,
then A is still true. Since the execution of the loop body can alter values
of variables, the ‘meaning’ of A afterward may not be the same as before.
For A to be a loop invariant, it is the truth of A that must be preserved.
Here is a useful form of mathematical induction, specially tailored for
program verification.

Induction Principle for While Loops If A is true at the first entry
into a while loop, and if A is a loop invariant for that while loop, then
A will be true when the loop terminates (if ever).

Say we execute the Clause Form Algorithm, starting with the propo-
sitional formula X. Let A be the assertion: S is a conjunction, whose
members are disjunctions, and S = X is a tautology. The algorithm
makes an assignment of an initial value to S of ([X]), and this trivially
makes assertion A true at the first entry into the while loop. It follows
from the Conjunctive Rewrite Lemma that A is a loop invariant. Then
A must be true at termination as well. But the termination condition is
that only literals are present. It follows that at termination S must be
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in conjunctive normal form, and equivalent to X; that is, correctness of
the Clause Form Algorithm is established.

The Clause Form Algorithm permits choices to be made in the while-loop
body, and hence there may be several different ways of executing it. In
other words, it has a non-deterministic character. What we mean by ter-
mination for a non-deterministic algorithm must be carefully specified.
One possibility is that at least one way of executing the algorithm must
terminate. This is what is generally thought of when non-deterministic
algorithms are considered. We will refer to this as weak termination.
One reason non-deterministic algorithms are viewed with some disfavor
is that they often only weakly terminate: We have termination if the
right choices are made at each step, otherwise not. First-order theorem-
proving algorithms are generally of this nature, which is one reason why
the subject is so difficult. But in the present case, we can do much better:
No matter what choices are made in executing the Clause Form Algo-
rithm, it must terminate. We will refer to this as strong termination.
Strong termination allows us to impose a wide variety of heuristics on
what choices to make, without affecting termination. It is a very nice
state of affairs, indeed.

Our proof of strong termination is based on Konig’s Lemma. In fact,
the application of Kénig’s Lemma at the end of Section 2.7 to show ter-
mination of the game involving numbered balls is exactly what we need
here. In Definition 2.6.5 we defined the rank of an ordinary propositional
formula. Suppose we extend this and define the rank of a generalized
disjunction of propositional formulas to be the sum of the ranks of the
individual propositional formulas. Now associate with each generalized
conjunction S whose members are generalized disjunctions a box B of
numbered balls in the following simple way. For each generalized dis-
junction D in S, if the rank of D is positive, put a ball in B labeled
with the rank of D. We leave it to you to check that each pass through
the loop in the Clause Form Algorithm corresponds exactly to taking a
ball from the box B associated with S and replacing it with either two
balls with lower numbers (in the a-case) or with one ball with a lower
number (in all other cases). By Exercise 2.7.1, no matter how we pro-
ceed, eventually the box must empty out. The only way this can happen
is if S has been converted into a generalized conjunction all of whose
members have rank 0, which means only literals are present. But this is
the termination condition for the loop.

We have now finished the proof of the conjunctive half of the Normal
Form Theorem. With this behind us, the disjunctive half can be dealt
with more swiftly. We begin with a new set of reduction rules, given in
Table 2.4, suitable for converting formulas into dual clause form. Essen-
tially, o and 8 have switched roles from the Clause Set Reduction Rules.



Exercises 33

Lemma 2.8.6

Exercises

-=Z T -L % _'8_
Z L1 T (03] Bl ‘ 52
Q2

TABLE 2.4. Dual Clause Set Reduction Rules

This time the rules are to be thought of as rewrite rules for disjunctions
of conjunctions. If S is a disjunction, with a member C, which is a
conjunction, and if N is a member of C, then if N is -—Z, N may be
replaced with Z, and similarly for the cases where N is =T and L. If
N is o, N may be replaced with the two formulas a; and az. And if N
is 3, then C itself may be replaced with the two conjunctions C; and
C5, where C is like C except that 3 has been replaced with 3;, and C>
is like C but with 3 replaced with 5.

(Disjunctive Rewrite) If S is a disjunction of conjunctions, and
one of the Dual Clause Set Reduction Rules is applied to S, producing
S*, then S = S* is a tautology.

Dual Clause Form Algorithm To convert the ordinary propositional
formula X to dual clause form,

Let S be [(X)]
While some member of S contains a non-literal do
select a member C of S containing a non-literal
select a non-literal N of C
apply the appropriate dual clause set reduction rule
to N producing a new S

end.

2.8.1. Show that the following are tautologies (n or k may be 0):

1. [Al,...,An,(U\/V),Bl,...,Bk] = [Al,...,An,U,‘/:Bl,...,Bk].

2. [Al,...,An,(U/\V),Bl,...,Bk] =
([Al,...,An,U,Bl,...,Bk] AN [Al, ceey An,‘/,Bl,...,Bk]).

3. (Al,...,An,(U/\V),Bl,...,Bk> = <A1,...,An,U,‘/,Bl,...,Bk>.
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4. <A1,...,An,(U\/V),Bl,...,Bk> =
((A1,...,Ap,U,B1,...,By) V (As,..., An,V,By,..., By)).

2.8.2. The duality principle extends. Show the following are tautolo-
gies:

1. —\[Xl, o ,Xn] = <—|X1, ey *1Xn>.

2. —1<X1,. .o ,Xn> = [—1X1,. cey n]
2.8.3. Show that if X =Y is a tautology, so are

1. [Al,...,An,X,Bl,...,Bk] = [Al,...,An,Y,Bl,...,Bk].
2. <A1,...,An,X,Bl,...,Bk> = <A1,...,An,KBl,...,Bk>.

2.8.4. Apply the Clause Form Algorithm and convert the following
into clause form:

1. PV —P.
2. PA-P.
3. (PLQ)1~(PlQ).
4 ~(P>(@>R))>((P>Q)D(PDR))).
5 (PC(QTR))|-P.
2.8.5. Prove Lemma 2.8.6.

2.8.6. Apply the Dual Clause Form Algorithm to convert the formulas
of Exercise 2.8.4.

2.8.7. Establish the correctness and strong termination of the Dual
Clause Form Algorithm.
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2.9

Normal Form
Implementa-
tions

Now that we have algorithms for converting formulas into clause and
dual clause forms, we want to embody these algorithms in programs.
We have chosen the language Prolog for this job because it lets us get
to the heart of the matter with a minimum of preliminary detail. We do
not discuss the general ideas of programming in Prolog; several readily
available books do this. A recommended standard here is provided by
Clocksin and Mellish [10]; another more advanced work is Sterling and
Shapiro [51].

Prolog allows one to define ‘operators.” Essentially, this is a matter of
convenient syntax. For example, we can specify that the name and will
always be used as an infix binary connective, and hence p and q will be
meaningful. Prolog also allows one to specify an order of precedence and
whether infix operators will be left or right associative. In the implemen-
tation that follows we specify neg to be a prefix operator, which we use
to stand for = (we do not use not, because this already has a meaning
in most Prologs). For the Primary Connectives, we use and for A, or for
V, imp for D, revimp for C, uparrow for T, downarrow for |, notimp for
2, and notrevimp for ¢. We assume all occurrences of = and # have
been translated away. neg is defined to have a precedence of 140. The
Primary Connectives are all defined to be infix, right associative, and
are given precedences of 160. All this is done at the beginning of the
program, using the op predicate. The precedence numbers selected may
need to be changed for different Prolog implementations, and the syntax
appropriate for the op predicate varies somewhat too. Apart from this,
the program should work as written in any ‘Edinburgh syntax’ Prolog.

Before giving the Prolog program, a word about its abstract structure
may help. Suppose we call a directed graph well-founded if, for each
node a, every path starting at a is finite. Starting at any node in such
a graph, at a, say, there is at least one maximal path, which begins at
a and ends at a node with only incoming edges, and we can find such
a path by simply following edges until we can’t do so any further. Now,
suppose we have clauses for a Prolog predicate that generates the edges
of a well-founded, directed graph; say the predicate edge(X,Y) is true
exactly when X and Y are nodes and there is an edge from X to Y. Then
there is a simple, and standard, way of writing a graph search program
to find maximal paths. We just add the following clauses:

path(X, Y) :- edge(X, Z), path(Z, Y).
path(X, X).

Now consider the following graph: The nodes are disjunctions of conjunc-
tions. There is an edge from node One to node Two if the application of
a single Dual Clause Set Reduction Rule will turn One into Two. (This
corresponds to a single pass through the while loop of the Dual Clause
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Form Algorithm.) The Dual Clause Form Algorithm is correct, and this
amounts to saying that if we start at a node and follow edges until we
reach a node with only incoming edges, that node will be a dual clause
form of the node at which we started. Also, the Dual Clause Form Al-
gorithm strongly terminates, and this amounts to saying that the graph
we have created is well-founded.

Now, the Prolog program is easily described. The singlestep predicate
generates edges in the graph just described. We want to find maximal
paths. The predicate that corresponds to path is now called expand, for
obvious reasons. Finally, there is a ‘driver’ predicate, dualclauseform,
that simply takes an ordinary formula X, turns it into the equivalent of
[(X)], and calls on the expand predicate. For convenience both general-
ized conjunctions and generalized disjunctions are represented as lists;
context can easily determine which is meant. So, finally, to use the pro-
gram for converting a formula x to dual clause form, enter the query
dualclauseform(x,V), where V is a Prolog variable. Prolog will return
a value for V that is a list of the dual clauses making up the dual clause
form.

/* Dual Clause Form Program

Propositional operators are: neg, and, or, imp, revimp,
uparrow, downarrow, notimp and notrevimp.

*/

7-op(140, fy, neg).
?-op(160, xfy, [and, or, imp, revimp, uparrow, downarrow,
notimp, notrevimp]).

/* member(Item, List) :- Item occurs in List.

*/

member(X, [X | _1).
member (X, [_ | Taill) :- member (X, Tail).

/* remove(Item, List, Newlist) :-
Newlist is the result of removing all occurrences of
Item from List.

*/

remove(X, [ 1, [ 1).
remove (X, [X | Tail], Newtail) :-
remove (X, Tail, Newtail).
remove (X, [Head | Taill], [Head | Newtaill) :-
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remove (X, Tail, Newtail).

/* conjunctive(X) :- X is an alpha formula.

*/

conjunctive(_ and _).
conjunctive(neg(_ or _.)).
conjunctive(neg(_ imp _)).
conjunctive(neg(_ revimp _)).
conjunctive (neg(_ uparrow _)).
conjunctive(_ downarrow _).
conjunctive(_ notimp _).
conjunctive(_ notrevimp _).

/* disjunctive(X) :- X is a beta formula.

*/

disjunctive(neg(_ and _)).
disjunctive(_ or _).
disjunctive(_ imp _).
disjunctive(_ revimp _).
disjunctive(_ uparrow _).
disjunctive(neg(_ downarrow _)).
disjunctive(neg(_ notimp _)).
disjunctive(neg(_ notrevimp _)).

/* unary(X) :- X is a double negation,
or a negated constant.

*/

unary(neg neg _).
unary(neg true).
unary(neg false).

/* components(X, Y, Z) :- Y and Z are the components
of the formula X, as defined in the alpha and
beta table.

*/

components(X and Y, X, Y).
components(neg(X and Y), neg X, neg Y).
components(X or Y, X, Y).

components (neg(X or Y), neg X, neg Y).
components(X imp Y, neg X, Y).
components (neg(X imp Y), X, neg Y).
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components(X revimp Y, X, neg Y).
components (neg(X revimp Y), neg X, Y).
components (X uparrow Y, neg X, neg Y).
components (neg(X uparrow Y), X, Y).
components (X downarrow Y, neg X, neg Y).
components (neg(X downarrow Y), X, Y).
components (X notimp Y, X, neg Y).
components (neg(X notimp Y), neg X, Y).
components (X notrevimp Y, neg X, Y).
components(neg(X notrevimp Y), X, neg Y).

/* component(X, Y) :- Y is the component of the
unary formula X.

*/

component (neg neg X, X).
component (neg true, false).
component (neg false, true).

/* singlestep(0ld, New) :- New is the result of applying
a single step of the expansion process to 01d, which
is a generalized disjunction of generalized
conjunctions.

*/

singlestep([Conjunction | Rest], New) :-
member (Formula, Conjunction),
unary(Formula),
component (Formula, Newformula),
remove (Formula, Conjunction, Temporary),
Newconjunction = [Newformula | Temporaryl],
New = [Newconjunction | Rest].

singlestep([Conjunction | Rest], New) :-
member (Alpha, Conjunction),
conjunctive(Alpha),
components (Alpha, Alphaone, Alphatwo),
remove (Alpha, Conjunction, Temporary),
Newcon = [Alphaone, Alphatwo | Temporary],
New = [Newcon | Rest].

singlestep([Conjunction | Rest], New) :-
member (Beta, Conjunction),
disjunctive(Beta),
components(Beta, Betaone, Betatwo),
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remove (Beta, Conjunction, Temporary) ,
Newconone = [Betaone | Temporary],
Newcontwo = [Betatwo | Temporary],
New = [Newconone, Newcontwo | Rest].

singlestep([Conjunction|Rest], [Conjunction|Newrest]) :-
singlestep(Rest, Newrest).

/* expand(0ld, New) :- New is the result of applying
singlestep as many times as possible, starting
with 01d.

*/

expand(Dis, Newdis) :-
singlestep(Dis, Temp),
expand(Temp, Newdis).

expand(Dis, Dis).

/* dualclauseform(X, Y) :— Y is the dual clause form of X.
*/

dualclauseform(X, Y) :- expand([[X1], Y).

2.9.1F.  Write a Prolog program for converting a propositional formula,
into clause form.

2.9.2P.  Write a Prolog program implementing the algorithm for con-
verting a propositional formula into negation normal form that was pre-
sented at the end of Section 2.5.

2.9.3F. Write a Prolog program for translating away occurrences of
= and #.

2.9.4F. Write a Prolog program implementing the degree function
defined in Exercise 2.2.2 and another implementing the rank function
defined in Definition 2.6.5.
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Semantic Tableaux and Resolution

3.1
Propositional
Semantic
Tableaux

We will present several proof procedures for propositional logic in this
chapter and the next. Two of them are especially suitable for automa-
tion: resolution [42] and semantic tableaux [48]. Of these, resolution is
closely connected with conjunctive normal or clause forms, while the se-
mantic tableaux system is similarly connected with disjunctive normal
or dual clause forms. We discuss semantic tableaux rules in this section
and resolution in Section 3.3. We begin with a general description that
is suited to either hand or machine implementation and give a Prolog
implementation in Section 3.2.

Both resolution and tableaux are refutation systems. To prove a formula
X, we begin with -X and produce a contradiction. The procedure for
doing this involves expanding —X so that inessential details of its logical
structure are cleared away. In tableaux proofs, such an expansion takes
the form of a tree, where nodes are labeled with formulas. The idea is
that each branch should be thought of as representing the conjunction
of the formulas appearing on it and the tree itself as representing the
disjunction of its branches.

To begin, we restate the Dual Clause Set Reduction Rules from Sec-
tion 2.8, but now we call them Tableau Fzpansion Rules. They are given
in Table 3.1

Next we say something about how the rules in Table 3.1 are intended
to be applied. Basically, they allow us to turn a tree with formulas as
node labels into another such tree. Suppose we have a finite tree T with
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Definition 3.1.1

Example
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TABLE 3.1. Tableau Expansion Rules

nodes labeled by propositional formulas. Select a branch § and a non-
literal formula occurrence X on 6. If X is ——Z, lengthen 6 by adding a
node labeled Z to its end. Similarly, if X is =T, add L, and if X is —.L,
add T. If X is «, add a node to the end of 8 labeled a1 and another node
after that labeled as. Finally, if X is 3, add left and right children to the
final node of 6, and label one (3; and the other (B5. Call the resulting tree
T*. We say T* results from T by the application of a Tableau Expansion
Rule. If it is necessary to be more specific, we may say T™* results from

the application of the a-rule, or whichever, to formula occurrence X on
branch 6.

Now we define the notion of a tableau. Our definition is a little more
general than we need at the moment since we allow finite sets of formulas
at the start. The added generality will be of use when we come to prove
completeness. The definition is a recursive one.

Let {A1,...,A,} be a finite set of propositional formulas.

1. The following one-branch tree is a tableau for {A;1,...,A,}:

Ay
Az
A,
2. If T is a tableau for {A;,...,A,} and T* results from T by the

application of a Tableau Expansion Rule, then T* is a tableau for
{A17 R An}

Figure 3.1 shows a tableau for {P | (QV R), =(Q A —R)}. The numbers
are not an official part of the tableau but have been added to make
talking about it easier. In this tree, 1 and 2 make up the set the tableau
is for; 3 and 4 are from 2 by the (-rule; 5 is from 4 by the —— rule; 6
and 7 are from 1 by the a-rule; 8 and 9 are from 7 by the a-rule. Notice
that we never applied the a rule to 1 on the right-hand branch. Also,
we chose to apply a rule to 2 before we did to 1.
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Definition 3.1.2

Definition 3.1.3

Example

1. P|(QVR)
2. -(QAN-R)
3. °Q 4. -—R
6. -P 5 R
7. —|(Q \Y R)
8. —Q
9. -R

FIGURE 3.1. Tableau for {P | (Q V R), =(Q A —~R)}

A branch 6 of a tableau is called closed if both X and —X occur on 6 for
some propositional formula X, or if 1 occurs on 6. If A and —A occur
on 6 where A is atomic, or if L occurs, 6 is said to be atomically closed.
A tableau is (atomically) closed if every branch is (atomically) closed.

As we remarked earlier, both tableau and resolution-style proofs are
refutation arguments. That is, a proof of X amounts to a refutation of
-X.

A tableau proof of X is a closed tableau for {~X}. X is a theorem of the
tableau system if X has a tableau proof. We will write -,; X to indicate
that X has a propositional tableau proof.

Figure 3.2 shows a tableau proof (with numbers added for reference) of
[(PD(@DR))D((PVS)D((Q>R)VS)). Init, 1is the negation
of the formula to be proved; 2 and 3 are from 1 by «; 4 and 5 are from
3 by a; 6 and 7 are from 5 by «; 8 and 9 are from 2 by 3. 10 and 11 are
from 4 by 3. Reading from left to right, the branches are closed because
of 8 and 10, 7 and 11, and 6 and 9. Notice that on one of the branches
closure was on a non-atomic formula.

Of course, we must establish that the tableau procedure does what we
want. To be precise, we must show soundness: anything provable is a
tautology (Section 3.4). And we must show completeness: all tautologies
have proofs (Section 3.7). Indeed, we will show a particularly strong ver-
sion that says, as long as we eventually apply every Tableau Expansion
Rule once to every non-literal formula occurrence on every branch, we
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L =[(P>(@QDR)D((PVS)D(UQDR)VS))]
2. PD>(QDR)

3. ~((PVS)>((Q@>R)VS))

4. PVS

5. ~(QDR)VS)

6. (Q D R)

7. =8

FIGURE 3.2. Proof of [(P D (Q D R)) D ((PVS)D ((Q DR)VS)))

will find a proof if one exists. We will also show that testing for closure
can be restricted to the level of literals without affecting completeness.

Tableau proofs can be very much shorter than truth table verifications.
As a trivial example, if X is a propositional formula with n propositional
variables, a truth table for X V—X will have 2" lines, but a closed tableau
begins with —~(X V —X), proceeds with the « rule to add -X and ——X,
and is closed at this point (though it is not atomically closed). Further,
the tableau method extends easily to handle quantifiers, while the truth
table method does not.

The tableau rules are non-deterministic—they say what we may do, not
what we must do. They allow us to choose which formula to work with
next, on which branches. They allow us to skip formulas or use them
more than once. And they allow us to close branches at the atomic
level or at a more complex level if we can. People generally find this
freedom useful, and often judicious choices of rule applications can pro-
duce shorter proofs than might be expected. On the other hand, when it
comes to incorporating the tableau system in a deterministic computer
program, some standardized order of rule applications must be imposed,
and various limitations on the basic tableau freedom will be necessary.
One limitation turns out to be very fundamental, and we discuss it now.
As we remarked, in constructing tableaux we are allowed to use formulas
over and over. For instance, if a occurs on a branch, we can add a; and
az, and later we can add «; and a2 again, since « is still present. For
certain non-classical logics, this ability to reuse formulas is essential (see
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Definition 3.1.4

Fitting [16]). But if we are allowed to reuse formulas, how do we know
when we should give up on a proof attempt? After all, there will always
be something we can try; if it didn’t work before, maybe it will now.
Fortunately, for classical propositional logic, it is never necessary to use
a formula more than once on any branch. This makes the task of imple-
menting tableaux easier. On the other hand, it makes the proof of tableau
completeness somewhat more work. If we allow the reuse of formulas,
completeness of the tableau system can easily be proved by a general
method, based on the Model Existence Theorem from Section 3.6, and
this same method allows us to prove the completeness of many other
types of proof procedures. If we impose a no-reuse restriction, the easy
general methods fail us, and we must introduce other techniques. Since
the restriction is so important, we introduce some special terminology
for it.

A tableau is strict if in its construction no formula has had a Tableau
Expansion Rule applied to it twice on the same branch.

In constructing strict tableaux by hand, we might keep track of which
formulas have had rules applied to them by simply checking them off
as they are used. But a formula occurrence may be common to several
branches, and we may have applied a rule to it on only one of them. An
easy way of dealing with this is to check the occurrence off but add fresh
occurrences at the ends of those branches where we have not used it.

A strictness restriction is of more importance for machine implementa-
tion. In our implementation we will represent a tableau as a list of its
branches, and a branch as a list of its formulas. (This is the same data
structure we used for the Dual Clause Form Algorithm implementation.)
Using this representation a formula occurrence that is common to several
branches turns into multiple occurrences, in several lists. Then a strict
tableau construction is easy to keep track of: When we use a formula on
a branch, or list, we simply remove it. Notice that now Tableau Expan-
sion Rule applications become identical with Dual Clause Set Reduction
Rule applications. There are some important differences, however. The
procedure here may produce a closed tableau before all possible Expan-
sion Rules have been applied. In particular, we do not have to apply the
appropriate Tableau Expansion Rule on every branch that goes through
a given formula occurrence. This means that, by being clever about when
to check for closure and about which Tableau Expansion Rules to ap-
ply, and when to apply them, we may be able to produce a short proof
instead of a long one. In other words, there is considerable scope for
heuristics.

(PA(Q D (RVS))) D (PVQ) is a theorem. Figure 3.3 gives two different
tableau proofs for this formula. Clearly, the right-hand proof is shorter



46 3. Semantic Tableaux and Resolution

Exercises

~(PA(QD(RVS)))D(PVQ))
PA(Q> (RVS))

~(PV Q)
P
~(PA(@QD(RVS)))D(PVQ))
Q@O (RVS) PAQOS (RVS))
/\ ~(PVQ)
-Q RV S SD(R\/S)
SN 9
R S -Q
~P -P
-Q  -Q

FIGURE 3.3. Two Tableau Proofs of (P A (Q D (RV S))) D (PVQ)

than the left. And much more dramatic examples can be given. Now,
having raised the issue of heuristics, we abandon it for the time being.

3.1.1. Give tableau proofs of the following:

(POQ)A(Q@DR))D~(=RAP).

(-P>Q)>(P>Q)>Q).

(P>Q)D>P)DP.

(P1P)T7P.

~(PLlQ) L (PVQ)).

(P l-Q)Cc~(PTQ).
(((A>B)>(-C>-D))DC)DE)D((E>A)D(DDA).
PTQIRNT((PTRTITPNT((STQ)TUPTS)T(PTSI)))-
9. PT@QIRNTW((STRT(PTS)T(PTS)) T (PT(PTQ)).

3.1.2. The exclusive-or connective, #, can be defined in terms of the
Primary Connectives:

P£Q)=((PA-Q)V (P AQ)).

© N o o~ W b=

1. Using this definition, give a tableau proof that # is commutative.

2. Similarly, give a tableau proof showing that s is associative.
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3.2
Propositional
Tableaux Im-
plementations

In Section 3.7 we will prove completeness of the tableau procedure, and
in Section 3.8 we will show it remains complete even when several re-
strictions are imposed. These restrictions are critical for successful im-
plementation, so we discuss them briefly now.

First, all tableaux in this section will be strict. Second, the tableau
rules allow testing for branch closure at any time; we will show it is
enough to test for atomic closure only, and only after all possible Tableau
Expansion Rules have been applied.

Finally, the tableau rules are non-deterministic, but we will show they
have a certain strong completeness property. The order in which the
rules are applied doesn’t matter, as long as we eventually try everything
once. This means we still have considerable freedom for the imposition
of heuristics.

Incidentally, we represent a tableau itself as a list of its branches, and
a branch as a list of its formulas. If we discover that a branch is closed,
we remove it from the list. Then the empty list of branches represents a
closed tableau.

If we apply all the Tableau Expansion Rules we can, removing the for-
mulas to which they have been applied, what we are doing is producing a
Dual Clause Form expansion. We already have the Dual Clause program
of Section 2.9, so all we have to do is add a test for closure. Consequently,
a tableau theorem prover can be produced very simply as follows: Begin
with the program from Section 2.8, and remove the Prolog clause for
dualclauseform, which we will not need now. Then add the following
clauses that test a tableau for closure:

/* closed(Tableau) :- every branch of Tableau contains a
contradiction.

*/

closed([Branch | Rest]) :-
member (false, Branch),
closed(Rest) .

closed([Branch | Rest]) :-
member (X, Branch),
member (neg X, Branch),
closed(Rest) .

closed([ 1).

Now, all we have to do is expand, using the expand predicate from the
earlier program, then test the result for closure. The following will do
the job.
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/* test(X) :- create a complete tableau expansion
for neg X, and see if it is closed.

*/

test(X) :-
expand([[neg X11, Y),
closed(Y).

The test predicate has an efficiency problem (though not a logical one).
If we use test on a formula that is provable, the call on expand will suc-
ceed, then the call on closed will also succeed, all as expected. On the
other hand, if we try this on something that is not provable, the call on
expand will still succeed, but the call on closed will fail, causing back-
tracking to expand. But expand can succeed in several ways (essentially
since dual clause forms are not unique), and closed will never succeed.
Consequently, before the program terminates in failure, it will be forced
to run through many ways of expanding into dual clause form. Since
we know it is enough to try only one such expansion, much unnecessary
work is being done. Clearly, this is a proper place for Prolog’s cut !,
which prevents backtracking. The test clause should be replaced by the
following, which will be more efficient in cases involving a non-theorem:

test(X) :-

expand([[neg X11, Y),
!

L)

closed(Y).

It would be a little nicer if the program could respond with polite mes-
sages, “yes, it’s a theorem” or “no, it’s not a theorem,” say. This minor
improvement is most simply handled using an if-then—else construction.
This exists in some Prologs and is easily implemented in the rest. The
following clauses are taken from Sterling and Shapiro [51].

/* if_then_else(P, Q, R) :-

either P and @, or not P and R.
*/
if_then_else(P, Q, R) :- P, !, Q.
if_then_else(P, Q, R) :- R.

Now, here is an improved version of the test predicate.

/* test(X) :- create a complete tableau expansion
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for neg X, if it is closed, say we have a
proof, otherwise, say we don’t.

*/

test(X) :-
expand([[neg X11, Y),
if_then_else(closed(Y), yes, no).

yes :- write(’Propositional tableau theorem’), nl.

no :- write(’Not a propositional tableau theorem’), nl.

Notice that we no longer have a cut after expand. What follows it now is
not closed, which might or might not succeed, but if_then_else, which
is written so that it always succeeds. Thus we not only get nicer responses
from our program; we have also made it a little more structured.

A notable inefficiency is still present, however. Say we want to prove
the tautology (P A Q) V —(P A Q). A tableau for this will begin with
=((PAQ)V —(PAQ)), then using the a-rule, it will continue with the
two formulas —(P A Q) and ——(P A Q). At this point the tableau is
closed, since one of these formulas is the negation of the other. But if we
use our program to find a proof, work continues beyond this point, since
the program must produce a complete expansion into dual clause form
before checking for closure. In this case not much extra work is required,
but we could just as well have asked for a proof of F'V —~F where F'is a
formula of great complexity. For such cases a version of the program that
checks for closure frequently might be desirable. It is easy to modify our
program so that it checks for closure after each application of a Tableau
Expansion Rule. First, remove the earlier Prolog clauses for expand, and
replace them by the following clauses for expand_and_close:

/* expand_and_close(Tableau) :-
some expansion of Tableau closes.

*/

expand_and_close(Tableau) :-
closed(Tableau) .

expand_and_close(Tableau) :-
singlestep(Tableau, Newtableau), !,
expand_and_close(Newtableau) .

We noted the use of Prolog’s cut, to prevent retries of tableau expansions.
We made use of the same device here, but this time we pass a cut after
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every application of a single Tableau Expansion Rule. Just as before, the
program would be correct without this cut but would be less efficient.
Now, finally, replace the clause for test used by the following.

/* test(X) :- create a tableau expansion for neg X,
if it is closed, say we have a proof,
otherwise, say we don’t.

*/

test(X) :-
if_then_else(expand_and_close([[neg X]1), yes, no).

Which is the better program version? It depends. If one is trying to prove
a formula like F' V —F, where F is very complicated, the version that
tests for closure frequently is clearly better. But for tautologies whose
proofs have no short-cuts, a program that tests often for closure would
be wasting time. Such tests are expensive, after all. So, which is better
depends on what you know about the formula. In other words, heuristics
play a role.

There is yet one more inefficiency left in the final version of the imple-
mentation. Suppose a tableau construction has been carried out to the
point where there are five branches, four of which have closed. The predi-
cate called expand_and_close will test the entire tableau for closure, find
it is not closed, then apply a Tableau Expansion Rule, and test the entire
tableau once again for closure. But there were four closed branches; they
will still be closed and need not have been checked again. As written,
these unnecessary closure checks must be made. A better version of the
program would remove a branch from the tableau whenever it has been
discovered to be closed, thus avoiding useless labor.

3.2.1P.  Write a modified version of the Prolog propositional tableau
program that removes closed branches from the tableau as it generates
it, thus avoiding redundant tests for closure.

3.2.2F.  The connectives = and # are not primary, and so the tableau
system implemented above cannot treat formulas containing them. They
can be added easily if we “cheat” a little, as follows. Think of X = Y
as an «, with a; being X D Y and as being Y O X. Likewise think of
=(X =Y) as a 8 with 3; being ~(X DY) and 2 being (Y D X).
The connective # is treated similarly.

Modify the tableau implementation of this section so that = and # can
appear in formulas, using the device just outlined.
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3.3
Propositional
Resolution

Example

Tableau proofs are connected with the notion of Dual Clause Form. In
the same way, resolution proofs are related to Clause Forms. Indeed,
most common versions of resolution begin with a complete conversion
to clause form, followed by applications of what is called the Resolution
Rule. But, just as tableaux can close before a full conversion to Dual
Clause Form has been carried out, so too, the Resolution Rule can be
applied before we have reached Clause Form. Thus, we will begin by
describing a kind of non-clausal resolution; we discuss the more conven-
tional version later.

Tableau proofs are presented as trees, where a branch stands for the
conjunction of the formulas on it, and the tree itself stands for the dis-
junction of its branches. Thus, trees are convenient ways of displaying
generalized disjunctions of generalized conjunctions. Resolution involves
the dual notion: generalized conjunctions of generalized disjunctions.
This time trees are not convenient for graphical representation. Instead
we represent generalized disjunctions in the usual way, listing the dis-
juncts within square brackets. And we represent a conjunction of dis-
junctions by simply listing its members in a sequence, one disjunction
to a line. Then what takes the place of Tableau Expansion Rules are
rules for adding new lines, new disjunctions, to a sequence. We begin
by restating the Clause Set Reduction Rules, but this time we call them
Resolution Expansion Rules, Table 3.2.

~—=Z oI =L
Z 1 T

B
B o |
B2

TABLE 3.2. Resolution Expansion Rules

The rules in Table 3.2 are intended to specify which disjunctions follow
from which. Suppose we have a disjunction D containing a non-literal
formula occurrence X. If X is ——Z, then a disjunction follows that is
like D except that it contains an occurrence of Z where D contained
——Z. Similarly, if X is =T or —.L. If X is 3, a disjunction follows that
is like D except that it contains occurrences of both 3; and (32 where
D contained 3. If X is «, two disjunctions follow, one like D but with
a replaced by a1, the other with a replaced by as. In each case we say
the new disjunction (or disjunctions) follows from D by the application
of a Resolution Expansion Rule.

The following is a sequence of disjunctions in which each, after the first
two, follows from earlier lines by the application of a Resolution Expan-
sion Rule:
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Definition 3.3.1

Definition 3.3.2

1. [P | (QAR)]

2. [~(QV(P>Q))
3. [-P]

4. [-(Q A\ R)]
5. [-Q,~R]
6. [-Q]

7. [~(P 2 Q)

Here 3 and 4 are from 1 by «; 5 is from 4 by 3; and 6 and 7 are from 2
by a.

For tableaux we distinguished between strict and non-strict. We do the
same thing here and for the same reasons.

We call a sequence of Resolution Expansion Rule applications strict if
every disjunction has at most one Resolution Expansion Rule applied
to it.

The easiest way to ensure strictness is to check off a disjunction whenever
we apply a rule to it. The previous example is, in fact, strict.

Strict Resolution Expansion Rule applications allow no formula reuse,
non-strict ones do. Just as with tableaux, completeness of the non-strict
version of resolution can be proved easily and by general methods; com-
pleteness of the strict version is more work and requires special tech-
niques. But again, just as with tableaux, the strict version is by far the
one best suited for implementation.

Resolution Expansion Rules are familiar, under the name Clause Set
Reduction Rules. Now we introduce a rule of quite a different nature,
the Resolution Rule.

Suppose D; and D5 are two disjunctions, with X occurring as a member
of D; and —X as a member of D,. Let D be the result of the following:

1. Deleting all occurrences of X from D,
2. Deleting all occurrences of - X from D,

3. Combining the resulting disjunctions
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Example

Definition 3.3.3

Definition 3.3.4

We say D is the result of resolving D1 and D2 on X. We also refer to
D as the resolvent of D; and D», with X being the formula resolved on.
We also allow a trivial special case of resolution. If F' is a disjunction
containing 1, and D is the result of deleting all occurrences of L from
F', we call D the trivial resolvent of F.

The result of resolving [P,Q D R] and [AAB,-P]on Pis [@Q D R, AAB].
The result of resolving [A A B] and [-(A A B)] on A A B is the empty
clause [ ]. The trivial resolution of [P,Q T R, 1] is [P,Q T R].

Propositional Resolution Rule D follows from the disjunctions D;
and D2 by the Resolution Rule if D is the result of resolving D; and D,
on some formula X. If X is atomic, we say this is an atomic application of
the Resolution Rule. Likewise, D follows from D; by a trivial application
of the Resolution Rule if D is the trivial resolvent of D;.

There is no analog of strictness for the Resolution Rule. If we are not
allowed to use disjunctions more than once in Resolution Rule applica-
tions, completeness can not be proved.

Next we define the notion of a Resolution Expansion. The definition is
a recursive one and a bit more general than we need just now.
Let {A1, A, ..., Ay} be a finite set of propositional formulas.

1.

[A41]
[A42]

[An]
is a Resolution Ezrpansion for {A1, Ay, ..., Ap}.

2. If S is a Resolution Expansion for {A;, Az,...,A,} and D results
from some line or lines of S by the application of a Resolution
Expansion Rule or the Resolution Rule, then S with D added as a
new last line is also a Resolution Expansion for {A;, As,..., A, }.

Recall from Section 2.8 that [ ] is always f under any Boolean valuation.
If we think of a resolution expansion as the conjunction of its lines, any
Resolution Expansion containing [ | must also evaluate to f under every
Boolean valuation.

We call a Resolution Expansion containing the empty clause closed.
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Definition 3.3.5

Example

Resolution, like the tableau system, is a refutation system. To prove X
we attempt to refute its negation.

A resolution proof of X is a closed resolution expansion for {~X}. X is
a theorem of the resolution system if X has a resolution proof. We will
write -, X to indicate that X has a propositional resolution proof.

The following is a (strict) resolution proof of (P A Q) V (R D S)) D
(PV(RDS)AN(QV(RDS))):
F((PAQ)V(RD8)D((PV(RDS)AQV(RDS))))
(PAQ)V(RDS)]

[F((PV(RDS)AQV(RDS)))]

[PAQ,RD 5]

[P,R D S]

[Q,RDS]

[~(PV(RDS)),~(QV(R>S))]

[-P,~(QV (R D 9))]

[~(B>S5),~(QV(R>S))]

[~P, ~Q]

. [P, ~(R D 9)]

- [H(RDS),~Q]

. [F(RD8),~(RD9)]

- [P Q]

- [=Q

. [R>S]

17. []

© 0 N oo W N

e e T T S = S SO
T N O =

In this, 2 and 3 are from 1 by «; 4 is from 2 by 8; 5 and 6 are from 4
by a; 7 is from 3 by 8; 8 and 9 are from 7 by o; 10 and 11 are from 8
by «a; and 12 and 13 are from 9 by a. Now 14 is by the Resolution Rule
on R D Sin 5 and 12; 15 is by Resolution on P in 10 and 14; 16 is by
Resolution on @ in 6 and 15; and 17 is by Resolution on R D> S in 13
and 16. Note that not all Resolution Rule applications are at the atomic
level. This is not the only resolution proof for this formula. You might
try finding others.
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3.4
Soundness

Definition 3.4.1

Proposition 3.4.2

As we remarked earlier, the resolution system is complete even if all Res-
olution Rule applications are atomic and follow all Resolution Expansion
Rules, applications of which are strict. Further, just as with tableaux,
as long as all possible Resolution Expansion Rules and all possible Res-
olution Rule applications get made in a proof attempt, a proof must be
found if one exists. We will prove all this later, but use can be made of
it now in implementing a resolution theorem prover.

3.3.1. Redo Exercise 3.1.1, but giving resolution instead of tableau
proofs.

3.3.2. Redo Exercise 3.1.2 on the exclusive-or connective, using reso-
lution instead of tableaux.

3.3.3P.  Write a resolution theorem prover in Prolog. Use the tableau
program in Section 3.2 as a starting point.

A proof procedure for propositional logic is called sound if it can prove
only tautologies. In effect this is a correctness issue; we want theorem-
proving algorithms to give no incorrect answers. We will show soundness
in some detail for the tableau system and leave the resolution version as
a series of exercises. Incidentally, if we show the basic tableau or resolu-
tion system is sound, it remains sound no matter what restrictions we
impose, because restrictions can only have the effect of making it im-
possible to prove certain things. Consequently, we prove soundness with
no restrictions. It follows that resolution and tableaux with strictness
requirements are also sound, for instance.

Any algorithm based on the tableau system will have the general form:
Begin with some initial tableau, then keep applying Tableau Expan-
sion Rules in some order until a closed tableau is generated. Our proof
of soundness is based on the following simple idea: We define what it
means for a tableau to be satisfiable, then we show that satisfiability
is a loop invariant. From this, soundness will follow easily. The defini-
tion of satisfiability is straightforward, once we remember the connection
between tableaux and disjunctions of conjunctions.

A set S of propositional formulas is satisfiable if some Boolean valuation
maps every member of S to t. A tableau branch 6 is satisfiable if the set
of propositional formulas on it is satisfiable. A tableau T is satisfiable if
at least one branch of T is satisfiable.

Any application of a Tableau Ezpansion Rule to a satisfiable tableau
yields another satisfiable tableau.
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Proposition 3.4.3

Theorem 3.4.4

Proof Suppose T is a satisfiable tableau, and a Tableau Expansion Rule
is applied to formula occurrence X on branch 6 of T, producing a tableau
T*. We must show T* is also a satisfiable tableau. The proof has several
cases and subcases, all of which are simple. Since T is satisfiable, T has
at least one satisfiable branch. Choose one, say it is branch 7.

Case 1 7 # 6. Then since a rule was applied only to 6, 7 is still a
branch of T*, hence T* is satisfiable.

Case 2 7 = 0. Then 0 itself is satisfiable, say the Boolean valuation
v maps all formulas on 6 to t. Now we have subcases depending on
which Rule was applied to the formula occurrence X.

Subcase 2a X = «. Then 0 was extended with a; and as to
produce T*. Since a occurs on 8, v(a) = t. By Proposition 2.6.1,
v(a) = v(aq) A v(az); hence, v must map both a; and as to t.
Consequently, v maps every formula on the extension of  in T*
to t, and thus, T* is satisfiable.

Subcase 2b X = 3. Then left and right children were added to
the last node of 6, one labeled 8 and one labeled G,, to produce
T*. Since 8 occurs on 6, v(8) = t. But v(8) = v(B1) V v(52),
hence one of 8, or §; must be mapped to t by v. It follows
that either every formula on the left-hand branch extending 6 is
mapped to t by v, or else every formula on the right-hand branch
extending 6 is mapped to t. In either event, T* has a satisfiable
branch and hence is a satisfiable tableau.

The other subcases, corresponding to X being ——Z, =T or —.L, are
treated by straightforward arguments. We omit these. O

If there is a cl osed tableau for a set S, then S is not satisfiable.

Proof Suppose there is a closed tableau for S, but S is satisfiable; we
derive a contradiction. The construction of a closed tableau for S begins
with an initial tableau consisting of a single branch whose nodes are
labeled with members of S. Since S is satisfiable, this initial tableau is
satisfiable. By Proposition 3.4.2, every subsequent tableau we construct
must also be satisfiable, including the final closed tableau. But there are
no closed, satisfiable tableaux. O

(Propositional Tableau Soundness)
If X has a tableau proof, then X is a tautology.

Proof A tableau proof of X is a closed tableau for {-X}. By the pre-
ceding proposition, if there is a closed tableau for {~X}, then {-X}is
not a satisfiable set. It follows that X is a tautology. O
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Definition 3.4.5

Proposition 3.4.6

Proposition 3.4.7

Theorem 3.4.8

Exercises

Next we turn to resolution. Essentially, we simply apply ideas that are
dual to those we used for tableaux.

A resolution expansion is satisfiable if some Boolean valuation maps
every line of it to t.

If we think of a tableau as a graphical representation of a generalized
disjunction (of branches) of generalized conjunctions (of formulas on a
branch), then satisfiability for a tableau simply means some Boolean
valuation maps it to t. In a similar way, if we think of a resolution
expansion as a generalized conjunction, of its disjunctions, satisfiability
again means some Boolean valuation maps it to t.

Any application of a Resolution Expansion Rule or the Resolution Rule to
a satisfiable Resolution Expansion yields another satisfiable Resolution
FEzxpansion.

If there is a closed Resolution Ezpansion for a set S, then S is not
satisfiable.

(Propositional Resolution Soundness)
If X has a resolution proof, then X is a tautology.

3.4.1. Show that a closed tableau is not satisfiable.
3.4.2. Prove Proposition 3.4.6.

3.4.3. Prove Proposition 3.4.7.

3.4.4. Prove Theorem 3.4.8.
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3.5
Hintikka's
Lemma

Definition 3.5.1

Proposition 3.5.2

We must show completeness of both the propositional tableau and reso-
lution systems. That is, we must show that each tautology actually has a
proof in these systems. There are many ways of doing this. For instance,
the similarity between tableau construction in Section 3.1 and the Dual
Clause Form Algorithm from Section 2.8 is more than coincidence. If an
attempted tableau proof does not terminate in closure, it will terminate
with a Dual Clause Form, and a proof of completeness can be based
on this. The problem is that such a method does not extend readily to
first-order logic. So rather than using this here, we take a more abstract
approach that does generalize well, though it may seem like overkill for
the propositional case. We begin by proving the propositional version of
a Lemma that is due to Hintikka; we will see more elaborate versions of
it in later chapters.

A set H of propositional formulas is called a propositional Hintikka set,
provided the following:

1. For any propositional letter A, not both A € H and —A € H.
2. L¢H; =T ¢ H.

3. ~ZcH=ZcH.

4. ace H=a; € Hand a; € H.

5. e H= 6 €Hor 3 cH.

For example, the empty set is trivially a Hintikka set. The set of all
propositional variables is a Hintikka set. The set {P A (-Q D R), P,
(—-Q D R), -—Q, Q} is a Hintikka set. Notice that conditions 3 through 5
all say, if certain formulas belong, so must certain simpler ones. Hintikka
sets are also called downward saturated. The main result concerning these
sets is due to Hintikka [27]

(Hintikka’s Lemma)  Every propositional Hintikka set is satisfiable.

Proof Let H be a Hintikka set. We produce a Boolean valuation map-
ping every member of H to t. As we observed in Section 2.4, every
mapping from the set of propositional letters to Tr extends to a unique
Boolean valuation. Well, let f be the mapping defined as follows: For a
propositional letter A, f(A) =t if A € H; f(A) = f if ~A € H; other-
wise f(A) is arbitrary, say for definiteness f(A) = f if neither A nor —A
is in H. Note that condition 1 ensures that f is well-defined. Now let v
be the Boolean valuation extending f. v maps every member of H to t
(we leave the verification as an exercise). O



Exercises 59

Exercises

3.6

The Model
Existence
Theorem

Definition 3.6.1

3.5.1. The definition requires that a propositional Hintikka set be con-
sistent at the atomic level. Prove by Structural Induction that, if H is a
propositional Hintikka set, and if X is any propositional formula, then
not both X € H and -X € H.

3.5.2. Complete the proof of Proposition 3.5.2. More specifically, let
us say a propositional formula X has property @ provided X € H =
v(X) = t. In other words, X has property Q, provided either X is not
in H or else v(X) = t. Now use Structural Induction 2.6.3, and show
every propositional formula has property Q.

Hintikka’s Lemma connects syntax and semantics. In this section we
state and prove a more complicated and more powerful theorem that
also relates syntax and semantics. The proof contains the essence of a
‘standard’ completeness argument. With the argument given abstractly
once and for all, completeness of resolution and tableaux formulations
will be easy consequences and so will the completeness of several other
proof procedures for classical propositional logic. It is partly because we
can deal with several systems at once that we go to the trouble of doing
this work at the level of abstraction we have chosen.

Most completeness proofs make use of the notion of consistency, which
is relative to a particular proof procedure, such as resolution. A set of
formulas is generally called consistent if no contradiction follows from
it using the machinery of the proof procedure. Then various features
of consistency are used to construct a Boolean valuation. By looking
carefully at such constructions, one can identify those features of consis-
tency that are essential. An abstract consistency property is something
having these features, and the Model Existence Theorem is the asser-
tion that these features are sufficient for the construction of a suitable
Boolean valuation. (Boolean valuations are simplified versions, sufficient
for propositional logic, of the first-order models that will be introduced
in Chapter 5. This accounts for the name of the theorem.)

There is a minor technical point before we get down to business. Instead
of talking about a consistency property, say C, of sets of formulas, we
talk about the collection of all sets having property C. In fact, we identify
this collection with C itself. Thus, an abstract consistency property is
defined to be a collection C of sets of formulas, meeting certain closure
conditions. If a set S is in the collection C, we can refer to S as C-
consistent.

Let C be a collection of sets of propositional formulas. We call C a propo-

sitional consistency property if it meets the following conditions for each
Sec:
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Theorem 3.6.2

1. for any propositional letter A, not both A € S and -4 € S.
2. LS, T &S.

3. —mZeS=Su{Z}ecC.

4. € S= SU{a, a2} eC.

5. e S=SU{Bi}eCor SU{B}eC.

For instance, item 5 says that if S is C-consistent and contains 3, then
it remains C-consistent when one of 31 or (32 is added, and similarly for
the other items.

(Propositional Model Existence) If C is a propositional consis-
tency property, and S € C, then S is satisfiable.

Proof The basic idea of the proof is to show that any member S of a
Propositional Consistency Property can be enlarged to another member
that is a Hintikka set, which will be satisfiable by Hintikka’s Lemma. If
S is finite this is easy. If & € S, a1 and a; can be added, by item 4 of the
definition, to produce another member of the consistency property, and
similarly for other kinds of formulas. So, just keep adding what we need
to produce a Hintikka set; the process must terminate because S is finite.
It is a good exercise for you to carry out the details of this sketchy argu-
ment, under the assumption that S is finite. But if S is infinite, things are
not so simple. We can, one by one, add the formulas we want to have in
a Hintikka set, but the process need not terminate. Instead, we may find
ourselves producing an infinite sequence of larger and larger members of
the consistency property, and what we want is the limit (chain union) of
this sequence. But there is no guarantee that Propositional Consistency
Properties are closed under limits. Consequently, the proof that follows
begins with an argument that Propositional Consistency Properties can
always be extended to ones that are closed under limits. This portion
of the proof requires several preliminary results, whose verification we
leave to you as exercises.

1. Call a Propositional Consistency Property subset closed if it con-
tains, with each member, all subsets of that member. Every Propo-
sitional Consistency Property can be extended to one that is subset
closed.

2. Call a Propositional Consistency Property C of finite character pro-
vided S € C if and only if every finite subset of S belongs to C. Ev-
ery Propositional Consistency Property of finite character is subset
closed.
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3. A Propositional Consistency Property that is subset closed can be
extended to one of finite character.

Finally, being of finite character is enough to guarantee the existence of
limits. More precisely, suppose C is a Propositional Consistency Property
of finite character, and Si, Sa, Ss3, ... is a sequence of members of C
such that S; € S € S3 C .... Then J; S; is a member of C.

The argument for this goes as follows. Since C is of finite character,
to show |J; S; € C, it is enough to show every finite subset of |J; S;
is in C. So, suppose {A1,...,Ax} C U, Si; we show {Ai,...,Ax} € C.
For each i = 1,...,k, A; € S,, for some smallest integer n;. Let N =
max{ni,...,nk}. It is easy to see each A; € Sy. But Sy € C, and C is
subset closed, hence {A1,...,Ax} € C.

Now for the heart of the proof. Suppose S belongs to a Propositional
Consistency Property C. By Items 1 and 3, every Propositional Consis-
tency Property can be extended to one that is of finite character. We
may assume this has already been done, and so C is of finite character.

Since the list of propositional letters is countable, the entire set of propo-
sitional formulas is countable as well. This is a standard result of set

theory, and we do not prove it here. Let X;, X3, X3, ... be an enu-
meration of all propositional formulas in some fixed order. We define a
sequence, S1, Sz, S3, ... of members of C as follows:
S; =S8
3 _{SnU{Xn} if S, U{X,}ecC
nt+l = Sy otherwise

Then every S, € C, and also S, is a subset of S,1. Finally, let H =
S1 U Sy U Sz U.... Trivially, H extends S. Also, since C is of finite
character, it is closed under chain unions, and hence H € C.

H is maximal in C; that is, if H C K for some K € C, then H = K.
Reasons: Suppose H is a proper subset of K, where K € C. Then for
some propositional formula X, we have X, € K but X, ¢ H. Since
X, ¢ H, X,, & S,y1, which implies S, U{X,} ¢ C. But S,U{Xx,} C K,
since S,, C H, and H C K, and also X,, € K. Since C is subset closed,
S, U{X,} € C, and we have a contradiction.

H is a Hintikka set. Reasons: Suppose o € H; we show a1, oz € H. Since
a€Hand HeC, HU {aj,az} € C. But this set extends H, which is
maximal, hence it must be identical with H, which means a1, a2 € H.
The other conditions are verified similarly.
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Now, by Hintikka’s Lemma, H is satisfiable, hence, so is S, since S C
H.O

Mathematically, it is often of interest to work with languages having an
uncountable set of propositional letters. The Propositional Model Exis-
tence Theorem is still true when using such languages, though the proof
we gave will not work. This proof explicitly makes use of countability.
Alternate proofs based on the Axiom of Choice or Zorn’s Lemma, can be
given instead. We do not do so here.

We illustrate the power of the Model Existence Theorem by proving two
of the fundamental theorems of propositional logic. Both are semantic in
nature; neither mentions a proof procedure. The first is the Compactness
Theorem; we will need it later.

(Propositional Compactness) Let S be a set of propositional
formulas. If every finite subset of S is satisfiable, so is S.

Proof Assume every finite subset of S is satisfiable. Let C be the fol-
lowing collection of sets of propositional formulas: Put a set W in C,
provided every finite subset of W is satisfiable. Trivially, S is in C. We
claim C is a Propositional Consistency Property. Once this is shown,
satisfiability of S follows immediately from the Propositional Model Ex-
istence Theorem.

Suppose W € C, but both 4 and —A are in W, where A is a propositional
letter. Then {4, -A} is a finite subset of W, but it is not a satisfiable
set. Consequently, we can not have both A and —A4 in W.

Suppose W € C and a € W. We show every finite subset of W U {a1, a2}
is satisfiable and hence that W U {a;, as} is in C. Now, a finite subset of
WU{a1, a2} may or may not include a; and as. If it includes neither, it
is a finite subset of W alone and hence is satisfiable because W € C. The
argument for the cases where it includes one of a; or a2 is similar to the
argument for the case where it includes both, so we consider only that
one. Suppose we have the set Wy U {1, a2}, where Wy is a finite subset
of W. Now, Wy U {a} is also a finite subset of W, hence it is satisfiable.
But any Boolean valuation mapping every member of Wo U {a} to t
must map « to t, hence both a; and @z must also be mapped to t. That
is, Wo U {@, a1, az} is satisfiable, hence so is its subset W U {1, as}.

The rest of the proof is similar and is left as an exercise. O

Our second application of the Model Existence Theorem is Craig’s In-
terpolation Theorem. This result has important model-theoretic conse-
quences, and we will consider it more fully once first-order logic has been
introduced.
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Definition 3.6.4

Theorem 3.6.5

Exercises

A formula Z is an interpolant for the implication X D Y if every propo-
sitional letter of Z also occurs in both X and Y andif X D Zand Z DY
are both tautologies.

For example, (P V (Q A R)) D (P V ——Q) has PV Q as an interpolant;
(P A—=P) D> Q has L as an interpolant.

(Craig Interpolation) If X DY is a tautology, then it has an in-
terpolant.

Proof We write (S), as usual, to denote the conjunction of the members
of S. Call a finite set S Craig consistent, provided there is a partition
of S into subsets S; and S, (that is, S = S; U S2 and S1 NSy = 0)
such that (S1) D —(S2) has no interpolant. Let C be the collection of all
Craig-consistent sets. C is a Propositional Consistency Property (Exer-
cise 3.6.5).

Now we show the theorem in its contrapositive form. Suppose X DO Y
has no interpolant. Let S be the set {X, ~Y }, and consider the partition
S1 ={X}, So = {-Y}. If ({X}) D ~({-Y}) had an interpolant Z, then
Z would also be an interpolant for X O Y, hence it does not have an
interpolant. Then S is Craig consistent, and so by the Model Existence
Theorem, S is satisfiable. It follows that X D Y is not a tautology. O

3.6.1. Show that every Propositional Consistency Property can be ex-
tended to one that is subset closed. Hint: Let C be a Propositional Con-
sistency Property. Let CT consist of all subsets of members of C, and
show CT is also a Propositional Consistency Property.

3.6.2. Show that every Propositional Consistency Property of finite
character is subset closed.

3.6.3. Show that a Propositional Consistency Property that is sub-
set closed can be extended to one of finite character. Hint: Let C be a
Propositional Consistency Property that is subset closed. Let C + consist
of those sets S all of whose finite subsets are in C. Show that C* is a
Propositional Consistency Property and extends C.

3.6.4. Finish the proof of the Propositional Compactness Theorem by
showing in detail that C is a Propositional Consistency Property.

3.6.5. Complete the proof of Theorem 3.6.5 by showing that the col-
lection of Craig-consistent sets is a Propositional Consistency Property.

3.6.6. Show that if X D Y is a tautology and X and Y have no
propositional letters in common, then one of X or Y is a tautology.
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3.7

Tableau and
Resolution
Completeness

Definition 3.7.1

Lemma 3.7.2

3.6.7. Let C be a Propositional Consistency Property and let B be a
set of propositional formulas. We say C is B compatible if, for each S € C
and for each X € B, SU{X} € C. Prove that if C is a propositional
consistency property that is B compatible, and if S € C, then S U B is
satisfiable.

Now that the Model Existence Theorem is available, completeness results
are easy to prove, at least for the non-strict versions of tableau and
resolution. In the next section we take up the completeness of tableau
and resolution with restrictions that are useful for implementation. At
that point the Model Existence Theorem can no longer be used.

A finite set S of propositional formulas is tableau consistent if there is
no closed tableau for S.

The collection of all tableau consistent sets is a Propositional Consis-
tency Property.

Proof We must establish that the conditions of Definition 3.6.1 are met.
Items 1 and 2, requiring consistency at the atomic level, are trivial. For
the closure conditions 2 through 5, all are rather similar, so we treat
only one. It is easiest to work in the contrapositive direction. Suppose
a € S, but SU{ay,az} is not tableau consistent; we show that S is not
tableau consistent either.

Since S U {a1, az} is not tableau consistent, there is a closed tableau for
S U{a1,az}. a Is one of the members of S; say S = {a, X1,..., Xn}.
Then we have a closed tableau that looks like the following.

a
X1

Xn
a1
a9 .
rest of closed tableau

To show S itself is not tableau consistent, we must produce a closed
tableau beginning with a, X3,..., X,,. But this is easy. Start with these
formulas, apply the a-rule to add «; and a2, and then continue the
tableau construction exactly as before. O
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Theorem 3.7.3

Definition 3.7.4

Definition 3.7.5

Example

(Completeness for Propositional Tableaux)
If X is a tautology, X has a tableau proof.

Proof We show the contrapositive. If X does not have a tableau proof,
there is no closed tableau for {—~X}. Then {—X} is tableau consistent,
hence satisfiable by the Propositional Model Existence Theorem 3.6.2,
and so X is not a tautology. O

If we change the definition of tableau consistency for a finite set S to no
tableau for S is atomically closed, then nothing essential changes in the
proofs we have given, because condition 1 of Definition 3.6.1 required
only no contradictions at the atomic level. Thus, we have the stronger
result: If X is a tautology, X has a tableau proof in which the tableau
is atomically closed.

The Model Existence Theorem, as it stands, is still not enough to get
us the completeness of strict tableaux. It is possible to strengthen the
Model Existence Theorem for this purpose, but the strengthened version
still does not apply readily to resolution. Consequently, we leave this
approach to you in the Exercises and treat strict versions of tableaux and
resolution by quite different techniques, in the next section. In the rest of
this section, we use the Model Existence Theorem to prove completeness
of resolution without a strictness requirement. It will be convenient to
first introduce some special terminology.

Let S be a set of disjunctions. A resolution derivation from S is a se-
quence of disjunctions, each of which is a member of S, or comes from an
earlier term in the sequence by one of the Resolution Expansion Rules,
or comes from earlier terms by the Resolution Rule. We say a disjunc-
tion D is resolution derivable from S if D is the last line of a resolution
derivation from S.

If {A;,...,A,} is a set of formulas, a resolution expansion for this set,
and a resolution derivation from {[Ai],...,[Ar]} amount to the same
thing. The notion of resolution derivation is more general though, since
it allows us to start with any family of generalized disjunctions.

Let X be a propositional formula. We say both disjunctions [X, A1,...,
Ap) and [A4, ..., A,] are X -enlargements of [A1, ..., An]. If S is a set of
disjunctions and S* is the result of replacing each member of S by an
X-enlargement, we say S* is an X-enlargement of S.

{[Al,AQ,X], [BI,BQ,Bs,X]} and {[Al, Ag], [Bl, Bz, B3,X]} are both X-
enlargements of {[A1, A2], [B1, B2, B3]}
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Lemma 3.7.6

Definition 3.7.7

Lemma 3.7.8

Suppose S1 and Sz are sets of disjunctions, and S is an X -enlargement
of S1. If the disjunction Dy is resolution derivable from Sy, then there
is an X -enlargement Dy of D, that is resolution derivable from Ss.

Proof The informal idea is quite simple: carry-along occurrences of X
at appropriate points in the resolution derivation from S;. A formal
proof is by induction on the lengths of resolution expansions. Length 1
is trivial.

Suppose the result is known for resolution derivations from S; of length
< n, and we now have a resolution derivation of length n. Say the last
line came from an earlier line using the B-Resolution Expansion Rule.
Then the resolution derivation from S; looks like:

[/87A1,:"7Ak]

[ﬂ17ﬂ2aA1.7 .. 'aAk] .

Since [B, A1, ..., Ax] occurs at a line earlier than line n, by the induc-
tion hypothesis, there is a resolution derivation from S, ending with an
X-enlargement, one of [3, A1, ..., Ai] or [X, 3, Ay,..., A]. In the first
case, [B1, B2, A1, ..., Ai] follows by the B-rule, and in the second case,
[X, B1, B2, A1, ..., Ak] follows, still by the B-rule. Either way, the result
is established for line n in the B-case.

This takes care of one case. There are several more, depending on the
rule used to add the n** line. We leave the other cases as an exercise. O]

A finite set S of propositional formulas is resolution consistent if there
is no closed resolution expansion for S.

An equivalent version of this definition follows: {X1,..., X} is resolu-
tion consistent if there is no resolution derivation of the empty clause
from {[X1],...,[X.]}.

The collection of all resolution consistent sets is a Propositional Consis-
tency Property.

Proof Again we must establish that the conditions of Definition 3.6.1
are met. Items 1 and 2, requiring consistency at the atomic level, are
straightforward and are the only ones that directly involve the Reso-
lution Rule. Of the closure conditions 3 through 5, we consider only
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Theorem 3.7.9

the a-case and the (-case. As with tableaux, it is easiest to show the
contrapositive.

Suppose a € S and S U {a1,as} is not resolution consistent. We show
that S itself is not resolution consistent. Say S = {Xi,..., X,,a}. Since
SU{ai, as} is not resolution consistent, there is a resolution derivation,
call it D, of [] from {[X1],..., [X4], [a], [@1], [@2]}. Now, a verification
that S is not resolution consistent can easily be produced as follows.
Start a resolution derivation with [Xi],..., [X,], [o]. Apply the a-rule
to add [a1] and [a2], and then continue with the steps of D.

Next, suppose 3 € S and neither S U {8;} nor S U {82} are resolution
consistent. We show S is also not resolution consistent. This time things
are just a little trickier.

Say S ={8,X1,...,Xn}. Applying the S-rule to a resolution derivation
beginning with [X1], ..., [X,], 8] allows us to add [31, B2]. It follows that
to show S is not resolution consistent, it is enough to show there is a
resolution derivation of [] from [X1],..., [X4x], [8], [B1,B2]-

Since SU{31} is not resolution consistent there is a resolution derivation
of [ ]| from {[X1],..., [Xn],[8],[31]}. Then by Lemma 3.7.6, there is a
derivation from {[X1],...,[X4.],[8],[B1,B2]} of either [ ] or [B2]. In the
first case we are done immediately; the second possibility requires a little
more work. Since S U {32} is not resolution consistent, there is a resolu-
tion derivation, call it D, of [] from {[X1],..., [Xx],[8], [B=]}. All these
disjunctions already occur as lines in the derivation from {[X1],..., [X4.],
(8], [B1, B=]} that we have produced thus far, and we can use these lines
again, since we are not imposing a strictness requirement, so simply con-
tinue by adding the lines of D to produce a derivation of [ ] directly. O

(Completeness for Propositional Resolution)
If X is a tautology, X has a resolution proof.

Proof Exactly as with tableaux: If X does not have a resolution proof,
there is no closed resolution expansion for {—X}. Then {—~X} is resolu-
tion consistent, hence satisfiable by the Propositional Model Existence
Theorem 3.6.2, so X is not a tautology. O

Just as before, we can change the definition of resolution consistency for
a finite set S as follows: There is no closed resolution expansion for S in
which all applications of the Propositional Resolution Rule are atomic.
This does not affect the proof of Theorem 3.7.9, and so we have the
stronger result: If X is a tautology, X has a resolution proof in which
all applications of the Propositional Resolution Rule are atomic.
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Exercises

3.7.1. Call a set U of propositional formulas upward closed if

1. ZeU=-—~ZeU.
2 a1 €UandayseU=>acU.
. 61€Uor BelU=pecU.

Show that any set S has a smallest upward closed extension. (We call
this the upward closure of S and denote it S™.)

3.7.2. Using the notation of Exercise 3.7.1, show that for any sets of
propositional formulas:

(S*) = 8™,

S € S = S} C S%.

S1 C S% = Sy C S%.

If Lis a literal, L€ S* < L e S.

If ~—~Z ¢ S then Z € S* & ——Z € S*.

Ifa¢ Sthen a € S* < a; € S* and ay € S*.

7. If 3¢ S then B € S* < B; € S* or B € S™.

3.7.3. Let C be a collection of sets of propositional formulas. We call
C a strict propositional consistency property if it meets the following
conditions for each S € C:

XA o

For any propositional letter A, not both A € S and -4 € S.
L g8, -T¢8S.

~—Z eS8 = 8 U{Z} e, where S~ is S with =—Z removed.
a€S= 8" U{a,as} €C, where S~ is S with a removed.

BeS=85 U{Bi} eCorS U{B}eC, where S~ is S with 8
removed.

AR ol o A

Show the following: If C is a strict propositional consistency property,
and S € C, then S is satisfiable.

Hint: Suppose C is a strict propositional consistency property. Let C* =
{8* | § € C}, and let C* be the subset closure of C*. Show C* is a
propositional consistency property. Exercise 3.7.2 will be useful.

3.7.4. Use Exercise 3.7.3, and show every tautology has a strict tableau
proof.

3.7.5. Complete the proof of Lemma 3.7.6
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3.8
Completeness
With
Restrictions

Theorem 3.8.1

We now know that every tautology has tableau and resolution proofs.
But for implementation purposes, we need more than that; we need a
way of finding a proof if one exists. Not every implementation of these
proof procedures must do so. As a trivial example, in a tableau con-
struction, if we have -—Z on a branch, we are allowed to add Z. But
there is nothing to say we can’t apply this same rule a second time to
—-—Z, adding another occurrence of Z, then a third, and a fourth, and
so on. This would be particularly stupid, but it is permitted. And if an
implementation proceeds this way, it can run forever without finding a
proof, though one may exist. But we have not yet established that for-
bidding reuse of formulas will leave us with a complete proof procedure.
Indeed, it does not happen with certain non-classical logics, and there
are complications even with first-order classical logic. Fortunately, in
the classical propositional setting, strict tableau and resolution systems
are complete. We prove this now. Our proofs will not use the Model
Existence Theorem.

We begin with tableaux, whose completeness is rather easy to prove.
Then we go on to resolution, which will require more work.

Recall, the strictness restriction is as follows: A Tableau Expansion Rule
can be applied to a formula on a branch only once. Suppose we call a
formula occurrence used on a branch provided it is not a literal, and a
Tableau Expansion Rule has been applied to it on that branch. Then
the restriction is as follows: We are forbidden to apply any rule to a
used formula. We will prove a strong form of completeness that says any
proof attempt that does everything, without violating the restriction on
reusing used formula occurrences, must find a proof if one exists. We
will even show the stronger result that a proof in which each branch
is atomically closed must be found. It is this that justifies the tableau
implementations in Section 3.2.

Suppose X is a tautology. A strict tableau construction process for {—X}
that is continued until every non-literal formula occurrence on every
branch has been used must terminate and do so in an atomically closed
tableau.

Proof Construct a strict sequence of tableaux for {—X}, and continue
until no further Tableau Expansion Rules are applicable. No matter how
this is done, the process must terminate (see Exercise 3.8.1). Let T be
the final tableau produced.

Suppose T is not atomically closed. Let 8 be a branch of T that is not
atomically closed. If =—Z occurs on 0, since every non-literal formula
occurrence has been used, Z must also occur on 6. If a occurs on 6,
both a1 and a must occur. Likewise, if 8 occurs on @, one of 3; or (s
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Corollary 3.8.2

Definition 3.8.3

Proposition 3.8.4

must occur. It follows that the set of formulas occurring on 6, used or
not, is a Hintikka set. By Hintikka’s Lemma 3.5.2, this set is satisfiable.
It includes =X (since ~X occurs on every branch of T). Hence, some
Boolean valuation maps —X to t, so X is not a tautology. O

The tableau system provides a decision procedure for being a tautology.

For resolution we need a dual counterpart of Hintikka’s Lemma. Things
are naturally more complicated, since we now must deal with sets of
clauses rather than with sets of formulas. After some preliminary work,
we introduce a notion of Robinson set and prove the analog we need.

Let C be a set of clauses. We say C is resolution saturated, provided the
result of applying the Propositional Resolution Rule to members of C
always produces another member of C.

If C is resolution saturated and unsatisfiable, then the empty clause is
in C.

Proof According to Exercise 3.8.2, we can assume, without loss of gen-
erality, that C contains no occurrences of L, and so any application of
the Propositional Resolution Rule to members of C is nontrivial. So,
from now on, assume C is a fixed resolution saturated set that is unsat-
isfiable and contains no occurrences of 1.

FIGURE 3.4. The Semantic Tree

The set of propositional letters is countable; let P;, P, Ps,...be a list-
ing of them. Now, consider the complete binary tree 7 displayed in
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Figure 3.4. Following Robinson [43], where this proof has its origins, we
call 7 a semantic tree. In 7 there is no label on the root node, and
otherwise at level n, all left children are labeled P, and all right chil-
dren are labeled —P,. Strictly speaking, there are many semantic trees,
depending on the order in which the propositional letters are listed. In
fact this makes no difference; any semantic tree will do for our purposes
as well as any other. We keep the ordering of propositional letters fixed,
use the tree displayed, and refer to it as the semantic tree.

A Boolean valuation is completely determined by its action on propo-
sitional letters, and each branch of 7 in effect assigns a value to each
propositional letter, since each letter or its negation, but not both, ap-
pears on each branch. Consequently, there is a one-to-one correspon-
dence between Boolean valuations and branches of 7: Pair up branch 6
with the unique Boolean valuation vy assigning to every literal on 6 the
value t.

A pathin a tree is a sequence of nodes starting at the root and proceeding
from parent to child; possibly terminating, possibly not. Maximal paths
are called branches. Every branch is a path, though not every path is
a branch. Also the following notation is handy (and standard): For a
propositional letter P, let P = =P and =P = P.

Let 0 be a path in 7. We say 6 contradicts a clause C if, for each literal
L € C, L occurs as a label on 0. Call a path C-closed if it contradicts
some clause in the resolution saturated set C. Call a node N of 7 a
failure node if the path from the origin to N is C-closed. (Note that if a
node is a failure node, so are its children.)

It is our intention to show the root node of 7 is a failure node. Since the
only clause that the trivial path from the origin to itself can contradict
is the empty clause, it will follow that the empty clause must be in C,
and we will be done.

Every branch of 7 must be C-closed, because otherwise there would be
some branch 6 of 7 that did not contradict any clause in C, and then it
is easy to see the Boolean valuation vg corresponding to 6 would satisfy

C.

Let 0 be a branch of 7. Since 6 is C-closed, there is some clause C € C
that 6 contradicts. Since C is finite, there must be a finite initial segment
of 0 that contradicts C. In other words, every branch of 7 has a finite
initial segment that is C-closed, and so every branch of 7 contains a
failure node. Now let 7* be the subtree of 7 in which every descendant
of a failure node has been deleted. If we can show that 7* is the trivial
tree, consisting of just the root node, we will be done. To do this we
suppose otherwise, and derive a contradiction.
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Theorem 3.8.6

Every branch of 7* is finite, and 7* is binary. It follows from Konig’s
Lemma 2.7.2 that 7* itself is finite. Since 7* is finite, it has a finite
number of branches, and so there is one of maximal length. Since we are
assuming 7 * is nontrivial, a maximal length branch of 7* must end at
a successor node. Say M is a maximal length branch, of the form 6, L,
where L is a left child and 6 is the path from the root of 7* to the parent
of L. (The argument if M ends with a right child is similar.) Note that
by the construction of 7*, L is a failure node, 6, L is C-closed, but 8 is
not.

Let R be the right sibling of L in 7. R is also a failure node, for if it
were not, the shortest C-closed path beginning with 8, R would be longer
than 6, L, but 0, L is of maximal length in 7*. Since € is not C-closed,
it follows that 6, R must also be a branch of 7*.

Now, say the literal that labels node L is P and so —P labels node R.
Each branch 6, L and 6, R is C-closed and so contradicts some clause in
C. Say 0, L contradicts Cr, and 6, R contradicts C'g. It must be that =P
occurs in Cp, for if it did not, 6 itself would already contradict Cp,, but
is not C-closed. Likewise, P must occur in Cgr. Now, let C be the result
of resolving C, and Cgr on P. It is easy to see that 6 contradicts C. But
C is resolution saturated, so C € C and hence 6 is C-closed after all.

We arrived at a contradiction by assuming 7* was nontrivial. Conse-
quently, it is trivial, the root node of 7 is a failure node, and we are
done. O

Let R be a set of disjunctions. We call R a propositional Robinson set if

1. For any member D of R that contains a non-literal, the results of
applying at least one Resolution Expansion Rule to D are also in
R.

2. R is closed under the application of the Resolution Rule to clauses.

3. R does not contain the empty clause.
A propositional Robinson set is satisfiable.

Proof Let R be a propositional Robinson set. If C is the set of clauses
in R, C is resolution saturated by part 2 of the definition. Then C is
satisfiable by Proposition 3.8.4. Let v be a Boolean valuation satisfying
C. We claim v satisfies the entire of R.

In Definition 2.6.5 the notion of the rank of a propositional formula was
introduced, and this was extended to generalized disjunctions in Sec-
tion 2.6.5 by setting the rank of a disjunction to be the sum of the ranks
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Exercises

of the individual propositional formulas. Note that under this definition
the rank of a clause is 0.

We already know that v maps every member of R of rank 0 to t. This
is the start of an induction argument; we leave the rest to you in Exer-
cise 3.8.3. O

Suppose X is a tautology. Strictly construct a sequence of resolution ez-
pansions for {~X}, beginning with applications of Resolution Expansion
Rules, until no further applications are possible, followed by applications
of the Resolution Rule to clauses until no new clauses are added. Such
a process must terminate and do so with a closed resolution expansion.

Proof We leave proof of termination to you as an exercise. Let R be the
set consisting of those generalized disjunctions that occur at any stage
of the process. If no closed resolution expansion is produced, R will be
a Robinson set, hence satisfiable by Theorem 3.8.6. Since {[-X]} € R,
{[-X]} is satisfiable, and it follows that X is not a tautology. O

Resolution as restricted in the Theorem is, in fact, the traditional version
and amounts to a first-stage conversion to clause form, then a second
stage consisting entirely of Resolution Rule applications to clauses.

3.8.1. Complete the proof of Theorem 3.8.1 by showing termination.

3.8.2. Let C be a set of clauses that is resolution saturated. Let C° be
the result of deleting all occurrences of | from the clauses of C. Prove
the following;:

1. C° is resolution saturated.
2. C is satisfiable if and only if C° is satisfiable.
3. []eCifandonlyif [] € C°.

3.8.3. Complete the proof of Theorem 3.8.6 by doing the induction
step. That is, show for each n each disjunction in R of rank n maps to
t under v.

3.8.4. Complete the proof of Theorem 3.8.7 by proving termination.
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3.9
Propositional
Consequence

Definition 3.9.1

Theorem 3.9.2

Definition 3.9.3

Often, instead of wanting to know whether something is a tautology, we
want to know whether it follows from other formulas. Typically we ask:
Is something a consequence of certain axioms? This is a question that
becomes especially interesting when there are infinitely many axioms.

We say a propositional formula X is a propositional consequence of a set
S of propositional formulas, and we write S =, X, provided X maps to
t under every Boolean valuation that maps every member of S to t.

Thus, S =, X if X has to be true whenever the members of S are. The
notion of propositional consequence directly generalizes what we have
been studying: X is a tautology if and only if @ |=, X. Generally, we write
Ep X instead of 0 =, X. The definition of propositional consequence
allows the set S to be infinite, but in fact in any given instance, only a
finite amount of the information in S will be needed.

S Ep X if and only if there is a finite subset So of S such that So =p X.

Proof Suppose there is a finite subset Sp of S such that Sy =, X.
Then S =, X by Exercise 3.9.2, part 2. Conversely, suppose S =, X.
Then by Exercise 3.9.2, part 3, S U {—X} is not satisfiable. By the
Propositional Compactness Theorem 3.6.3, some finite subset of S U
{—X} is not satisfiable. If a set is not satisfiable, neither is any extension
of it, so we can assume SU{—X} has a finite subset that is not satisfiable,
and that subset includes =X . Such a set is of the form Sy U {—X} where
Sp is a finite subset of S. Now by Exercise 3.9.2, part 3 again, Sy =, X. O

In principle then, for an infinite set S, to determine whether S =, X, we
could systematically go through all finite subsets Sy of S to determine
whether Sy =, X, and for finite sets Sy, Exercise 3.9.3 can be used to
convert the problem to one on which resolution or tableaux can be used.
A better way is to modify the resolution and tableau systems to allow
the direct use of premises.

Let S be a set of formulas.

1. The S-introduction rule for tableauzr: Any member X of S can be
added to the end of any tableau branch. We write S Fp,: X if
there is a closed propositional tableau for {—X?}, allowing the S-
introduction rule for tableaux.

2. The S-introduction rule for resolution: [X] can be added as a line to
a resolution expansion, for any X in S. We write S . X if there is
a closed propositional resolution expansion for {—X}, allowing the
S-introduction rule for resolution.
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Theorem 3.9.4

(Strong Soundness and Completeness)
For any set S of propositional formulas, and any propositional formula
X:SEp X iff Stpe X iff Skpr X

Proof Recall the notion of satisfiability (Definition 2.4.5). Now modify
that as follows: A tableau is S-satisfiable if every branch is S-satisfiable,
and a branch is S-satisfiable if there is some Boolean valuation that
maps every formula on the branch to t and also maps every member
of S to t. (Thus, (-satisfiability is equivalent to the standard version of
satisfiability for tableaux.) Now, just as in Section 3.4, one can show that
every Tableau Expansion Rule, and the S-introduction rule too, turns
an S-satisfiable tableau into another S-satisfiable tableau. There are no
closed S-satisfiable tableaux. Consequently if there is a closed tableau
for {—X} allowing the S-introduction rule, the initial tableau can not
be S-satisfiable. This implies that SU{-X} is not satisfiable, and hence
S |p X. We have shown that S ,; X implies S =, X, a soundness
result.

For the completeness direction, the proof using the Model Existence
Theorem adopts readily, though it applies only to tableaux without a
strictness requirement. For a given formula X, call a set S of formulas X-
-tableau inconsistent if S p, X; otherwise, call S X--tableau consistent.
Now we need the following facts, whose proofs we leave to you:

1. For each X, the collection of X—tableau consistent sets is a propo-
sitional consistency property.

2. If S is X-tableau consistent, so is S U {-X}.

Now, suppose we do not have that S p,; X. Then S is X—tableau con-
sistent. By item 2, S U {-X} is also X—tableau consistent. But then by
the Propositional Model Existence Theorem 3.6.2, and item 1, SU{-X}
is satisfiable, and hence we do not have that S |=, X by Exercise 3.9.2,
part 3.

The part of the proof involving Resolution is similar and is left to you. O

Once we have Strong Soundness and Completeness, an alternative proof
of Theorem 3.9.2 is possible. Suppose S =, X. By Strong Completeness
we have S F,; X, and so there is a closed tableau for {—X} using the
S-introduction rule. A closed tableau must be finite, and so only a finite
subset of S was actually used in the tableau, say it is the subset Sy. Then
the tableau also shows that Sp F,: X, and hence by Strong Soundness,
So |=p X. We could have used resolution proofs just as well. The basic
idea is that, whatever our proof procedure, a proof is a finite object and
so can contain only a finite amount of information.
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Exercises

In the proof of Strong Soundness and Completeness, we defined a notion
of X consistency for an arbitrary formula X. It is not hard to see that L
consistency is equivalent to tableau consistency, as defined in Section 3.7.
The proof we gave does not apply if strictness conditions are imposed,
but the result still holds, and proofs along the general lines of those in
the preceding section are possible.

Since we are now dealing with deductions from sets of formulas that
may be infinite, we can not expect implementations to always terminate.
It can be shown that a fair implementation must succeed in finding a
derivation if any exists. Loosely, a fair implementation is one that even-
tually applies any rule that is applicable. In particular it must eventually
introduce each particular member of S, using the S-introduction rule.

3.9.1. Prove the following:

1. {Av-B,Bv-C,CV-D} |, DDA.
2. If S = {Al D Ay, Ay D A3z, A3 D A4,...} then S }Zp A, D A, for

each n.

3.9.2. Prove the following:

1. If A,—A € S, then for any X, S |=p X.
2. f SEp X and S C S*, then S* =, X.
3. S |p X if and only if S U {—-X} is not satisfiable.

3.9.3. Prove that (A4;,...,4,) D X is a tautology if and only if
{41,.. ., A} Ep X

3.9.4. Complete the proof of Theorem 3.9.4 by showing strong sound-
ness and completeness of resolution.

3.9.5. Give an alternate proof of Theorem 3.9.4 by using Exercise 3.6.7.
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Other Propositional Proof
Procedures

4.1
Hilbert
Systems

We have, so far, concentrated on tableaux and resolution as theorem-
proving mechanisms. Since these are much better suited to automation
than other approaches, the emphasis on them will continue through-
out the book. But a wide variety of theorem-proving formalisms have
been developed, based on different insights into the processes by which
one recognizes that a formula expresses a logical truth. In this chapter
we take a brief look at three formalisms in widespread use: axiom sys-
tems, natural deduction, and Gentzen sequents. We also consider the
Davis-Putnam method, which, like tableaux and resolution, is especially
suitable for automation purposes. This section is devoted to axiom sys-
tems, also called Hilbert systems or Frege systems. We will use the name
Hilbert systems.

One can think of both the tableau and resolution mechanisms as in-
volving a kind of backward reasoning. We start with the formula we
are trying to prove, negate it, then break the result down into simpler
and simpler parts until we arrive at an obvious contradiction. By con-
trast a Hilbert system embodies forward-reasoning principles. To prove
a formula, one starts with known tautologies, derives immediate conse-
quences, immediate consequences of the immediate consequences, and
so on, until the desired formula is reached. Since the number of pos-
sible immediate consequences can grow explosively as work progresses,
this approach does not lend itself to proof automation, or even to proof
discovery for human beings. Still, once a Hilbert system proof of some
tautology has been found, it is often easy to follow and explain to others,
and it may provide insights that tableau or resolution arguments lack.
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Definition 4.1.1

Definition 4.1.2

Definition 4.1.3

Classical logic is not the only logic of interest. For certain non-classical
logics, only Hilbert-style formulations are known to exist. For this reason,
for historical reasons, and for reasons just mentioned, Hilbert systems
are widespread, and should be familiar to everyone who uses formal logic.

All Hilbert systems, for whatever logic, have the following features in
common. Certain formulas are designated as axioms. Some rules of
derivation or rules of inference are specified. These rules all say that
some formulas ‘follow from’ others.

A proof in a Hilbert system is a finite sequence Xi, X2, ..., X, of
formulas such that each term is either an axiom or follows from earlier
terms by one of the rules of inference.

A more general notion than proof will be of use here, the notion of
derivation.

A derivation in a Hilbert system from a set S of formulas is a finite
sequence X1, Xa,..., X, of formulas such that each term is either an
axiom, or is a member of S, or follows from earlier terms by one of the
rules of inference.

A proof is simply a derivation from the empty set of formulas. It is
customary to display proofs and derivations by writing a list of the
formulas, one formula to a line. Consequently, from now on we will refer
to a line of a proof or derivation, rather than to a term of it.

X is a theorem of a Hilbert system if X is the last line of a proof. X is
a consequence of a set S if X is the last line of a derivation from S.

We write S Fpp X to symbolize that X has a derivation from S in the
propositional Hilbert system called h. Instead of @) p, X, we will write
Fpr X; this corresponds to X being a theorem.

So far we have given general characteristics of Hilbert systems. If we
are interested in classical propositional logic, we will also want every
axiom to be a tautology and every rule of inference to produce only
tautologies from tautologies. But even so, we have not been sufficiently
restrictive. If we take as axioms all tautologies, and no rules of inference,
we have a system meeting these conditions, and in it every tautology has
a one-line proof. Clearly, this is not a very interesting system. Generally,
the additional assumption is made that there are only a finite number of
axioms, or else that there are an infinite number, but only a finite number
of forms they can take on. For instance, P D P, (PAQ) D (PAQ),
and -Q O —Q all have the common form X D X. If we want these,
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and other formulas of this form, to be axioms, it is customary to say
X D X is an aziom scheme, and any formula of this form is an axiom.
In general, we will allow our axioms to be infinite in number, but they
must be specifiable by a finite number of axiom schemes. Incidentally, we
will adopt the convention that P, Q,...are propositional letters, while
X, Y,...are arbitrary formulas. This makes the presentation of axiom
schemes somewhat simpler. It is a convention we used informally earlier
in the paragraph.

We also want a finite number of rules of inference, and we want them
to be structural in the same sense that axiom schemes are. For instance,
one possible rule of inference follows: If X and Y are arbitrary formulas,
the formula X AY follows from X and Y. Such a rule would allow us to
obtain P A Q from P and @, and also (P D R) A =@ from P D R and
=@. Such a rule is stated schematically as follows:

X Y
XANY’

As it happens, this will not be a rule of inference adopted here, but it
illustrates the kind of thing we intend.

One rule of inference that is often used, but that we will not adopt, is a
rule of substitution. Such a rule states that a formula Y follows from a
formula X, provided Y is the result of uniformly replacing the proposi-
tional letters of X by arbitrary formulas. For example, (PAQ) D (PAQ)
follows from P D P by this rule. Exercise 2.4.7 shows that the rule of
substitution meets the necessary condition of producing tautologies from
tautologies. If a rule of substitution is used, then a finite set of axiom
schemes can be replaced by a finite set of axioms. For various techni-
cal reasons, we find it simpler to use axiom schemes and omit a rule of
substitution.

The most common rule of inference is Modus Ponens. We adopt this as
the only rule of inference in this section.
Modus Ponens
X XDOY
Y

Modus Ponens is stated in terms of the connective D, and this connective
will play a special role in the axiom schemes we have chosen. Indeed,
the first two schemes involve only this connective.

Axiom Scheme 1 X D (Y D X)
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Example

Theorem 4.1.4

Axiom Scheme 2 (XD (Y D> Z))D((XDY)D(X D 2))

More axiom schemes will come, but already we can give an example of
a proof in the system we have thus far.

P D P is a theorem. The following is a proof.

1. Po>((Po>P)>P)D>(PD>(PDP))D(PDP)
2.P>((PD>P)DP)

3. (P>(PDP)D(PDOP)

4. P> (P> P)

5. PDOP

Here 1 is an instance of Axiom Scheme 2, taking X to be P, Y to be
P D P, and Z to be P; 2 is an instance of Axiom Scheme 1, taking X
to be P and Y to be P D P; 3 follows from 1 and 2 by Modus Ponens;
4 is an instance of axiom scheme 1, taking X and Y to be P. Finally, 5
follows from 3 and 4 by Modus Ponens.

If we had written W in place of P in this proof, we would have a proof
outline that shows how to construct a proof of W D W for any particular
formula we might want to put in place of W. We will call such an outline
a proof scheme. Clearly, it is more efficient to give proof schemes rather
than proofs, and this is what we will generally do from now on.

A very important result (that is due independently to Tarski and to
Herbrand) can be established about the system thus far constructed. It
says that there is a proof of X D Y, provided there is a derivation of Y’
from {X}. The proof of this result is as important as its statement; the
proof is constructive and shows how to turn a derivation of Y from {X}
into a formal proof of X O Y. Since such derivations are often easier
to discover, this means we can shortcut much of the work of producing
proofs in a Hilbert system.

(Deduction Theorem)  In any Hilbert system h with at least Aziom
Schemes 1 and 2, and with Modus Ponens as the only rule of inference,
SU{X} Fpr Y if and only if Stpp (X DY).

Proof The argument from right to left is trivial; we concentrate on
the other direction. Suppose S U {X} bFpp, Y5 say Z1, Zo,..., Z, is a
derivation of Y from SU {X} (let us call it Derivation One). In it, each
line is either one of the axioms, a member of S U {X}, or comes from
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Example

earlier lines by Modus Ponens; and Z,, = Y. We show how to convert this
into a derivation (call it Derivation Two) showing that Sy (X DY).

First, prefix each formula of Derivation One with X D, forming the
sequence: X D Z1, X D Za,..., X D Z,. This sequence ends with the
desired formula X D Y, since Z,, =Y, and so it is a preliminary version
of Derivation Two. But it is not necessarily a legal derivation. To turn
it into one, we insert some extra lines, as follows.

If Z; is an axiom or a member of S, then in the Derivation Two candidate,
just before X D Z;, insert the formulas Z; (an axiom or a member of S)
and Z; D (X D Z;) (an axiom). Note that X D Z; follows from these by
Modus Ponens.

If Z; is the formula X, then in the Derivation Two candidate, insert the
steps of a proof of X D X just before X D Z;(= X D X).

If Z; comes from earlier terms of Derivation One by Modus Ponens, then
there must be Z; and Z; with j,k < i and where Zy = Z; D Z;. In the
Derivation Two candidate, there will be corresponding lines X D Z;
and X D Zy = X D (Z; D Z;). Now, insert just before X D Z; the
formulas (X D (Z; © Z;)) D (X D Z;) D (X D Z;)) (an axiom) and
(X D Z;) D (X D Z;) (which follows from earlier terms by Modus
Ponens). Now X D Z; also follows from earlier terms by Modus Ponens.

Call the resulting sequence Derivation Two. It is easy to see it constitutes
a derivation of X DY from S. O

(P> (Q>R)D(Q D (P DR)) is a theorem, and it is easy to argue
for this using the Deduction Theorem, as follows. First, {P D (Q D
R),Q, P} Fpp, R; in fact, the following is a derivation:

1. P>(Q DR)
P

.QDOR

Q

R

ook wN

Using the Deduction Theorem, it follows that {P D (Q D R),Q} Fpn
P D R, and again {P D (Q D R)} Fpr @ D (P D R), and finally,
Fpr (P D (Q D R)) D (Q D (P D R)).

Now we want to add axiom schemes to introduce the other (primary)
connectives. We make use of uniform notation here, to give a compact
presentation.
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Example

Theorem 4.1.5

Definition 4.1.6

Lemma 4.1.7

Axiom Scheme 3 | D X
Axiom Scheme 4 X DO T
Axiom Scheme 5 -—X D X
Axiom Scheme 6 X D (X DY)
Axiom Scheme 7 a D a;
Axiom Scheme 8 a D as

Axiom Scheme 9 (8: D X) D ((82 2 X) D (8D X))

Axiom Scheme 6 can be weakened by requiring that X be atomic. It can
be shown that each instance of the unrestricted version is a consequence
in the resulting Hilbert system.

(=X D X) D X is a theorem (for any choice of formula X). In Axiom
Scheme 9, if we take 3 to be =X D X, then the scheme reads (-—X D
X)D (X > X)D((-X D> X) D X)). =X D X is Axiom Scheme
5, and X D X is provable. Then (-X D X) D X follows using Modus
Ponens.

For the rest of this section, A is the Hilbert system with Axiom Schemes 1
through 9 and the rule of Modus Ponens. It is time to establish soundness
and completeness for the Hilbert system h. Soundness is easy. Every
axiom is a tautology (a fact that is easily checked). Also, if X and X D Y
are tautologies, so is Y, hence, the rule of Modus Ponens produces only
tautologies from tautologies. It follows easily that every line of a proof is
a tautology; in particular the last line. This argument extends easily to
derivations as well; we do not give details. Thus, we have the following:

(Strong Hilbert Soundness)
If Stpn X, then S =, X.

To show completeness we use our favorite tool, the Model Existence
Theorem 3.6.2, and we follow a pattern that worked for tableaux and
resolution.

Let X be a propositional formula. Call a set S of formulas X--Hilbert
inconsistent if S b, X call S X--Hilbert consistent otherwise.

For each formula X, the collection of all X --Hilbert consistent sets is a
propositional consistency property.
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Theorem 4.1.8

Proof Several separate items must be checked. We consider a few in
detail and leave the rest to you.

Suppose S is X—Hilbert consistent; we show =T & S. Or rather, suppose
—T € S; we show S is X—Hilbert inconsistent. Well briefly, since =T € S,
S bpp = T. Since =T D T is an axiom (Axiom Scheme 4), it follows that
S tpp T. Finally, T D (=T D X) is an axiom (Axiom Scheme 6), and
hence S Fpp X.

We also check the -condition, and once again it is simplest to show the
contrapositive. Suppose SU{/; } and SU{B2} are X—Hilbert inconsistent;
we show S U {8} is X—Hilbert inconsistent. Well, we are given that
SU{B1} Fpr X, so by the Deduction Theorem, S p, 81 D X. Similarly
Sbtpr B2 D X. Also (81 D X) D ((B2 D2 X) D (B D X)) is an instance
of Axiom Scheme 9, so it follows that S F,, 8 D X, and hence that
SuU {ﬂ} Fpn X. O

(Strong Hilbert Completeness)
If S |=p X, then S Fpp X.

Proof As usual, we show the contrapositive. Suppose we do not have
that S Fpr X. Then S is X-Hilbert consistent. It follows that S U
{—X} is also X-Hilbert consistent, for if not, SU {-X} F,, X, hence
S Fpr =X D X, and it would follow that S +,, X, since, as we have
shown, (X D X) D X is a theorem. Now, by Lemma 4.1.7, and the
Propositional Model Existence Theorem 3.6.2, S U {—X} is satisfiable,
and hence, we do not have that S =, X. O

There are many different Hilbert systems for classical propositional logic
besides the one we have been considering. Frege’s system took impli-
cation and negation as the only connectives, had Modus Ponens and
Substitution as rules of inference, and had the following six axioms:
P>@Q@>P),(RDS(@>P)D(R>Q) D (RDP)(RD
QQoP)D>@D>(RDP),(Q>P)D(P>D-Q), —P>DPand
P D> ——P. The very influential system of Principia Mathematica [56]
took negation and disjunction as connectives, with implication defined.
The rules of inference were Substitution and a version of Modus Ponens:
from X and =X VY to conclude Y. The axioms were the following:
(PVP) 5 P,Q > (PVQ), (PVQ) > (QVP), (PV(QVR)) > (QV(PVR)),
and (Q D R) D ((PV Q) D (PV R)). In fact, the fourth of these ax-
ioms can be derived from the rest, though it was some time before this
was discovered. As a kind of extreme in this area, consider the Hilbert
system with only the T connective, the rule of inference: Z follows from
X 71 (Y 1 Z) and X; and the formula in part 8 of Exercise 3.1.1 as its
only axiom scheme. This is sound and complete (the other connectives
can all be defined from 7).
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Exercises

We gave the axioms we did to introduce all the Primary Connectives at
once and to prove completeness with a minimum of work. Consequently
we have a rather large number of axiom schemes (Schemes 7 through
9 are really shorthand patterns, with a different actual scheme for each
connective.) In fact, all connectives can be defined from — and D, and
if we choose to do so, the variety of axiom schemes can be considerably
minimized. Exercises 4.1.8 and 4.1.9 show ways of doing this.

4.1.1. Using the proof of the Deduction Theorem, convert the deriva-
tion showing {P D (Q D R),Q, P} Fpr R into a direct proof of (P D
(@>R))> (@D (PDR)).

4.1.2. Give a proof in Hilbert system h of (-X D> 1) D X.

4.1.3. We can give an alternate definition of Hilbert system theorem
as follows. A theorem is a member of the smallest set of formulas that
contains all the axioms and that contains Y whenever it contains X and
X DY. Prove the two definitions of theorem are equivalent.

4.1.4. Suppose we place a restriction on Axiom Scheme 6, that X must
be atomic. Show by induction on the rank of X that X > (-X DY)
has a proof in the resulting Hilbert system, for arbitrary X.

4.1.5. Show (without using Completeness) that Z D ——Z is a theorem
of the Hilbert system h. Hint: Use Axiom Scheme 9, with 8 = -Z > -Z
and X = Z D -—Z.

4.1.6. Interestingly enough, the two axiom schemes for implication,
Axjom Schemes 1 and 2, together with Modus Ponens, do mot char-
acterize the implication of classical logic. Here is one way of showing
this. We move from the two-valued version of D given in Table 2.1 to a
three-valued version by introducing a “middle” truth value, m (read it
as “maybe”). Now, use the following table.

m
t
t

m

Define a 3-valuation to be a mapping v from the set of propositional
formulas to the set {f, m, t} such that v(X DY) = v(X) D v(Y), where
D on the right is given by the table. Call a propositional formula X a
3-tautology if v(X) = t for every 3-valuation v. Now show the following:

1. Every instance of Axiom Schemes 1 and 2 is a 3-tautology.
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2. If X and X D Y are 3-tautologies, so is Y.

3. Every formula provable using Axiom Schemes 1 and 2 and Modus
Ponens is a 3-tautology.

4. Pierce’s law, ((P D Q) D P) D P, is not a 3-tautology.

5. Pierce’s law is a classical tautology.

(Remarks. It can be shown that Modus Ponens, Axiom Schemes 1 and
2, and Pierce’s law do axiomatize classical implication. Without Pierce’s
law, what we get is the implication of a well-known non-classical logic,
intuitionistic logic. This exercise continues in Exercise 4.2.2.)

4.1.7. Complete the proof of Lemma 4.1.7.

4.1.8. Consider the Hilbert system with — and O as primitive and with
Modus Ponens and Axiom Schemes 1, 2, 5, 6, and (=X D X) D X. This
system is complete. Show this by giving proofs in this system of the
following;:

1. ;Y > -X)D(XDY).

2. (XDY)D (Y D —-X).

3. /(X DY) > X (Axiom Scheme 7).

4. (X DY) D> Y (Axiom Scheme 8).

5 (- XD2Z2)>D(YD>Z)>((XDY)DZ)) (Axiom Scheme 9).

4.1.9. Consider the Hilbert system with — and O as primitive, and
with Modus Ponens, Axiom Schemes 1, 2, and (=Y D -X) D ((-Y D
X) D Y). Show this system is complete by using Exercise 4.1.8 and
giving proofs of the following:

1. (- X>X)>X.
2. ==X D X (Axiom Scheme 5).
3. X O (-X DY) (Axiom Scheme 6).
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4.2
Natural
Deduction

Definition 4.2.1

Natural deduction systems constitute another family of proof mecha-
nisms, intended to formalize the kind of reasoning people do in informal
arguments. They are based on the idea of subordinate proofs, in which
one derives conclusions from premises, then discharges those premises to
produce assumption-free results. We will give an example of such a proof
shortly, but first we introduce some typical rules and a mechanism for
displaying subordinate proofs. Many mechanisms exist in the literature;
we will simply write them in boxes, with the first line inside a box being
the particular assumption made in that subordinate proof, and the first
line below the box being the result of discharging the assumption.

A typical rule of many natural deduction systems follows: If one can de-
rive Y from X as an assumption, then one can discharge the assumption
X and conclude that one has proved X D Y. This is given schematically
in Figure 4.1.

XDOY

FIGURE 4.1. A Natural Deduction Rule for Implication

Another typical example is the Modus Ponens Rule. But this must be
formulated with some care. We do not want to use it to derive a con-
clusion from an assumption made earlier in a proof that has now been
discharged. If we think of a proof as being constructed in stages, it is
simple to say which formulas we are allowed to consider at each stage.

The formulas active at a stage in a proof are those occurring in boxes
that have not closed by this stage.

Now the Modus Ponens Rule becomes the following: From X and X D Y,
conclude Y, provided both X and X DY are active.

Note that our rules so far have been paired: one for introducing the con-
nective D and one for using it, in effect, eliminating it. This is a common
and important principle behind the organization of natural deduction
systems.
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Example

1. P> (Q>R)

2. Q
3. P
4 QDR
5. R

6. PDOR

7. Q> (PDR)

8. (PD>(@DR)D(Q>D(P>DR))

FIGURE 4.2. Proof of (P D (Q D R)) D (Q D (P D R))

We have enough machinery to give a simple example of a natural de-
duction proof. The argument in Figure 4.2 should be compared with the
Hilbert system proof in Section 4.1, which used the Deduction Theo-
rem 4.1.4. Here 1 through 3 are assumptions, each starting a subordi-
nate proof; 4 is from 1 and 3 by Modus Ponens (note that at this point
no boxes have closed, so 1 and 3 are both active); and 5 is from 2 and
4), again by Modus Ponens. Now a box is closed, assumption 3 is dis-
charged, to conclude 6. Note that formulas 3 through 5 are no longer
active. Two more assumption discharges produce 7 and 8.

Many different natural deduction systems are described in the literature.
Prawitz [36], for instance, has a particularly elegant one, together with
an important analysis of its proof theory. The system we have chosen to
give does not actually have the rules just considered, though it has some
that are very close. And it contains redundancies. It is designed to make
use of uniform notation so that all Primary Connectives can be brought
in smoothly and to lead to a quick proof of completeness.

L
Constant Rules < —
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X -X
Negation Rules X : :
X 1 I
1
-X X
Primary Connective Rules
aE a a
a1 Q2
ol a1
a2
a
BE =B B2
B B
B2 b1
B B2
pI : :
B2 b1
B B

We have used E and I in rule names to suggest elimination and intro-
duction. Note that one of the Constant Rules is a no-premise rule. Also
some of the rules have two premises; in these, order of premises does not
matter. In applying such rules, the premises must be active. Before we
consider examples of proofs of formulas in this system, it will be useful
to introduce the notion of a derived rule. Loosely, a rule is derived if its
addition does not change the strength of the system. More precisely, a
rule is derived if we can translate any use of it away. Two very useful
derived rules in this natural deduction system are the following:

=X X
X =X

To show the first of these rules is derived, suppose line (n) in a proof
is the formula ——X. Then, without using the proposed new negation
rules, we may proceed as follows:
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(n) X
(n+1) -X
(n+2) L

(n+3) X

Here line n+1 is an assumption. Line n+2 follows from n and n+1 by the
first of the official negation rules. Then line n + 3 follows using the third
negation rule. Thus, we have added X without using any rules other
than the basic ones; consequently, a rule allowing us to add X directly
when ——X is present is a derived rule. The other double negation rule
can be shown to be derived in a similar way.

From now on, we will use the rules for introducing and eliminating double
negations frequently, often without comment.

In the BE rules, suppose we take 3 to be X DY, so that #; = =X and
(B2 =Y. Then the rules become the following;:

XDY XDY
Y -X

The second of these is a common rule, called Modus Tollens. The first is
almost Modus Ponens and has the effect of it when used in conjunction
with a double negation rule. Likewise the SI rules become the following:

Y -X
XDY XDY

The first of these is almost the rule for introducing implication that
we considered earlier; again, a double negation rule is also needed. The
second embodies the principle of contraposition.
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Definition 4.2.2

Theorem 4.2.3

Figure 4.3 contains a proof of -(P A Q) D (=P V —=Q). In it 1 and 2
are assumptions. Taking 3 to be —=(P A Q), the first SE rule says; from
—=P and —(P A Q), conclude —Q. Using this, 3 follows from 1 and 2.
Now, taking B to be —P V —Q, the first 81 rule says; conclude =P V —Q
from a derivation of —=Q from ——P. This allows us to derive 4. Finally,
5 follows, again using SI.

4. -PV-Q

5. ~(PAQ)D (~PV-Q)

FIGURE 4.3. A Natural Deduction Proof of =(P A Q) D (=P V ~Q)

Just as with earlier proof mechanisms, we can introduce a notion of
derivation, as well as of proof.

A natural deduction derivation of X from a set S of formulas meets the
conditions for being a proof of X but also allows the following additional
rule: At any stage, any member of S may be used as a line. We write
S Fpn X to indicate there is a derivation of X from S in the propositional
natural deduction system of this section.

(Natural Deduction Soundness)
If Skpn X, then S =p X.

Proof Unfinished Hilbert system proofs are, themselves, proofs (though
of something else). An unfinished natural deduction proof is not a natural
deduction proof, since there will be premises not yet discharged, boxes
not yet closed. A soundness proof must take this into account.

Suppose we have a possibly unfinished natural deduction derivation,
from a set S. Say the last line contains the formula Z, and at this
stage the assumptions A;,..., A are still active, not having been dis-
charged. We associate with this incomplete derivation the assertion S U
{A1,..., Ax} =p Z. Now, if it could be shown that the assertion associ-
ated with every derivation from S (incomplete or not) is always correct,
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the soundness result would follow immediately. This is done by an in-
duction on the lengths of incomplete derivations. We leave the details to
you as Exercise 4.2.3. O

For completeness we proceed much as we did with earlier systems.

Let X be a propositional formula. Call a set S X--natural deduction
inconsistent if S b, X; otherwise call S X--natural deduction consistent.

For each formula X, the collection of all X --natural deduction consistent
sets is a propositional consistency property.

(Strong Natural Deduction Completeness)
If Sk=p X, then S Fpy X.

4.2.1. Give natural deduction proofs of the following:

1. X > (Y > X).

2. (X2 22)>((XDY)D (X D2Z)).
3. (Y O>O-X)D((-Y DX)DY).

4. (XD2Y)D>X)DX.

5. XAYVZ)DUXAY)V(XAZ)).
6. ( X2Y)D>(~(YVZ)D~(XVZ)).

7. (P1P)1P.

8. =((P1Q) L (PVQ)).

9. (P | -Q) c ~(P1Q).

4.2.2. At the beginning of the section, we considered two simple natu-
ral deduction rules for implication that did not become part of our “of-
ficial” system. Continuing Exercise 4.1.6, we ask you to show that these
two rules do not characterize the implication of classical logic. First,
we re-formulate them using the following notation. We write S - X to
mean X is deducible, using the two implication rules, when S is the set
of premises. With this notation, the rules can be stated equivalently as
follows:

SFX SHXDOY S, X+Y
SFY SFXDOY S, XFX
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4.3
The Sequent
Calculus

Definition 4.3.1

Now, use the 3-valued system of Exercise 4.1.6, define an ordering by
setting f < m < t, and extend 3-valuations to sets of formulas by taking
v(S) = min{v(X) | X € S} (as a special case, v(0)) = t). Call S + X
3-valid if, for every 3-valuation v, v(S) < v(X). Now, show the following:

1. S, X F X is 3-valid.

2. If S-F X and SF X DY are 3-valid, sois SF Y.
3. IfS, XY is 3-valid, sois SFX DY.

4. If ) + X is provable in this system, X is 3-valid.
5

. Pierce’s law is not provable in this system.

(Remark. It can be shown that this system is equivalent to the axiom
system considered in Exercise 4.1.6.)

4.2.3. Complete the proof of the Soundness Theorem 4.2.3.

4.2.4. Verify Lemma 4.2.5, and use it to prove the Strong Complete-
ness Theorem.

The Gentzen sequent calculus can be looked at as an intermediary be-
tween semantic tableaux and natural deduction systems. Historically,
both a natural deduction system and the sequent calculus can be found
in Gentzen’s fundamental paper [22]. Indeed, the sequent calculus itself
is sometimes referred to in the current literature as a natural deduction
system, though we find this confusing and will not do so here.

It will be simplest if we limit the binary connectives to those actually
considered by Gentzen: A, V, and D. Once the signed tableau system has
been introduced, it will be a simple matter for you to devise rules for the
other connectives. So for the rest of this section, formulas are limited to
these binary connectives (and, of course, =, T, and 1).

A sequent is a pair (I', A) of finite sets of formulas.

This definition is a technical one. In practice we use the suggestive
notation introduced by Gentzen: the sequent (I, A) will be written
I' — A. The arrow suggests a kind of implication, and that is, in-
deed, the intention. We also introduce some useful notational abbre-
viations. Instead of writing {44,..., A} — {Bi,..., Bx}, we will write
Ai,...,A, — Bi,...,Bg. For a single formula X, and sets ' and A
of formulas, we will write I', X — A instead of ' U {X} — A, and so
on. Likewise, we will write — A for ) — A, and similarly for other
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occurrences of . Generally, we follow the convention that capital Latin
letters stand for formulas, while capital Greek letters stand for finite sets
of formulas.

We have made a minor departure from Gentzen in our definition of
sequent. For Gentzen a sequent was a pair of lists of formulas, not sets
of formulas. Gentzen included structural rules for rearranging lists and
for dealing with repetitions. By using sets we have avoided this, though
the issue becomes significant if a computer representation of sequent is
to be chosen.

As we remarked, the arrow should be thought of as a kind of implication,
‘“follows from’. Think of a sequent as asserting the following: If all the
formulas on the left of the arrow are true, then at least one of the formu-
las on the right is also true. Technically, we extend Boolean valuations
to sequents as follows:

v([ = A) =t if v(X) = f for some X € I or v(Y) =t for some Y € A.

Note that under this definition, v(—) = f and v(— X) = v(X).

In the sequent calculus, certain very simple sequents are taken as axioms,
and there are rules for deriving new sequents from old. The resulting
system is not simply a Hilbert system, though. For one thing, the arrow
is not a connective but a ‘metalogical’ symbol. Thus, while P — (Q D R)
islegal, P — (Q — R) is not. This restriction allows the axioms and rules
of the sequent calculus to be particularly simple, and a deep analysis of
formal proofs is possible. Now, the axioms and rules are as follows:

Axioms X —-X
1 —
- T

Structural Rule, Thinning IfT'; CT'5 and A; C A; then

I'n—-4A
F2—>A2

Negation Rules

' - AX LX—A
r,-X—A ' - A,-X

Conjunction Rules

X,y —-A r -AX T'—>AY
ILXAY - A r-AXAY
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Example

Disjunction Rules

ILX-—-A IY - A r - AX,Y
ILXvy —- A I'-AXVY

Implication Rules

r-AX INY - A X —->AY
ILX>Y->A I'-A,XD>Y

The rule for introducing a conjunction onto the left-hand side of a se-
quent has a single premise, while the one for introducing a conjunction
onto the right-hand side has two. To conclude I' — A, X AY, we need
bothT' - A, X and I' — A,Y, and similarly for the other connectives.

A proof is a tree labeled with sequents (generally written with the root
at the bottom) meeting the following conditions. If node N is labeled
with I' — A, then if N is a leaf node, I' — A must be an axiom; and
if N has children, their labels must be the premises from which I' — A
follows by one of the sequent calculus rules. The label on the root node
is the sequent that is proved. Finally, a formula X is a theorem of the
sequent calculus if the sequent — X has a proof.

1.P—> P 2.
3.P,Q - P 4.
P,Q—-PAQ
Q_)P/\Qa—‘P

— PAQ,-P,—-Q
—'(P/\Q)—)—‘Pa_'Q
—2(PAQ) D (-PV-Q)

SooNom

FIGURE 4.4. Sequent Calculus Proof of =(P A Q) D (=P V =Q)

Figure 4.4 displays a proof of =(PAQ) D (=P V —Q), arranged as a tree
with 10 as root and 1 and 2 as leaves. In it, 1 and 2 are axioms, from
which 3 and 4 follow, respectively, by thinning; 5 follows from 3 and
4 using a conjunction rule. Then 6 through 8 follow by negation rules.
Finally 9 follows from 8 using a disjunction rule and 10 from 9 by an
implication rule.
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Soundness is easily established. Each axiom is a tautology, and each rule
produces sequents that are tautologies from sequents that are tautolo-
gies. It follows that only tautologous sequents can be proved. We thus
have the following:

(Sequent Calculus Soundness) If X is a theorem of the sequent
calculus, X is a tautology.

Completeness takes work, though once again we can use the Model Ex-
istence Theorem 3.6.2. We first need to associate sequents with sets of
formulas.

~S={-X|X eS8}

Let S be a finite set of formulas. An associated sequent for S is a sequent
T — —A, where I, A is a partition of S, that is, [NA = () and TUA = S.

For example, if S = {X D Y,-X,XAY}, then X DY — -=X,~(XAY)
and =X, X AY — —(X DY) are both associated sequents.

If any associated sequent for S has a proof, every associated sequent
does.

A finite set S of formulas is sequent inconsistent if any (equivalently,
every) associated sequent has a proof. S is sequent consistent if it is not
sequent inconsistent.

The collection of sequent consistent sets is a propositional consistency
property.

We leave the proof of this proposition to you. From it completeness
follows easily.

(Sequent Calculus Completeness) If X is a tautology, then X is
a theorem of the sequent calculus.

Proof Suppose X is not a theorem. Then the sequent — X is not prov-
able. It follows that {—X} is sequent consistent, for otherwise =X —
would be provable, and hence — X, by Exercise 4.3.3. Now, by Propo-
sition 4.3.9 and the Model Existence Theorem, {—X} is satisfiable, and
so X is not a tautology. O
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Relationships between the sequent calculus and natural deduction go
back to Gentzen. Loosely, one can imagine the sequent calculus as pro-
viding a kind of ‘specification language’ for a natural deduction system.
Think of the sequent A,,..., A, — Bi,..., By as asserting the follow-
ing: One of By,..., By can be obtained as a line in a natural deduction
proof whenever all of A;,..., A, are active as premises. Now one wants
a natural deduction system for which the sequent calculus axioms are
true and such that true premises for a sequent calculus rule ensure a true
conclusion. For example, the first of the sequent calculus rules for con-
Jjunction would be true of any natural deduction system that contained
a rule: From X A'Y one can derive both X and Y. Since the sequent
calculus is complete, any natural deduction system meeting the sequent
calculus specifications would also be complete. We do not pursue this
idea further here but recommend Gentzen’s original, and very readable
paper [22].

Smullyan introduced two kinds of semantic tableaux [48], signed and
unsigned. We have been using the unsigned version so far in this book
and will continue to do so. The signed version has no advantages for
classical theorem proving, but there are natural modifications of it that
provide proof mechanisms for intuitionistic [16] and many-valued logics
[7, 19] and that are not available without signs. What is relevant now is
that there is a direct connection between the Gentzen sequent calculus
and Smullyan’s signed tableau system. We briefly sketch the Smullyan
system, and illustrate the connection with an example, though we do
not formally prove the relationship.

First, two new symbols are introduced, T and F, called signs. A signed
formula is a formula prefixed with a sign, such as T X AY or F —-X.
Think of T Z as asserting that Z is true, and F' Z as asserting that Z
is false. Formally, Boolean valuations are extended to signed formulas
by v(T' Z) = v(Z) and v(F Z) = —w(Z). Note that there is a formal
distinction between F' Z and T —Z, just as there is between X — Y and
XDOY.

Next, the tableau rules we have been using are replaced with correspond-
ing signed versions. For example, in the original system we had a rule:
From —(X DY), obtain X and -Y. The signed version follows: From
F X DY, obtain T X and F Y. Similarly, there is an unsigned rule:
From X DY, branch to X and Y. That corresponds to the following:
from T X DY, branch to F X and T Y. We leave it to you to formulate
the various signed versions. Indeed, an a-, 3-classification, and uniform
rule formulations are straightforward.

Finally, a tableau branch is closed if it contains both 7" X and F X , Or
if it contains 7' L, or if it contains F T. A closed tableau for {F X}
constitutes a proof of X.
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F~(PAQ) > (~PV-Q)
T—|(P/\Q)

F-PV-Q

F-P

F-Q

FPAQ

TQ

TP

N\

FP FQ

FIGURE 4.5. Signed Tableau Proof of ~(P A Q) D (=P V —Q)

One can pair signed formulas with sequents in the following straight-
forward way. If a formula X occurs on the left-hand side of an arrow,
associate with it 7' X; if X occurs on the right-hand side, associate with
it F' X. Note the role of the signs here. If we used unsigned formulas,
with negation playing the role of F', we could not tell if we had a for-
mula —~X, because =X occurred on the left-hand side of an arrow, or
because X occurred on the right-hand side. Use of the signs avoids this
ambiguity. Now, each of the sequent calculus rules corresponds exactly
to one of the tableau system rules, though we must keep in mind that
sequent trees are written with the root at the bottom, while tableaux are
written with the root at the top. Consequently, in the correspondence,
rules must be turned over. As an example, the sequent calculus rule in-
troducing X DO Y on the left-hand side of an arrow and the tableau rule
for T X DY clearly correspond.

r-AX TIY—-A TXDY
ILX>Y—-A FX | TY

Using this correspondence, the sequent calculus proof in Figure 4.4 and
the signed tableau proof in Figure 4.5 clearly also correspond. (Remem-
ber to invert things when going from one system to the other.)

We have not spelled out the details of this correspondence but have
relied on your general intuition and understanding. Formal details may
be found in Smullyan [48].
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4.4

The
Davis-Putnam
Procedure

Definition 4.4.1

4.3.1. Give sequent calculus proofs of the following:

1. X o (Y D X).
2 X>¥>22)>((X2Y)D>(X D 2).
3. YD>-X)D((-YD>X)DY).
4. (X2Y)DX)DX.
5 (XAXYVZ)D((XAY)V(XAZ)).
6. ( XDOY)D(~(YVZ)D~(XV2Z).
4.3.2. Give a rigorous proof of the soundness of the sequent calculus.

4.3.3. Show that if I' — A, —X is a theorem of the sequent calculus,
so is I', X — A. Likewise, if I', =X — A is a theorem, so is ' — A, X.
Hint: Use induction on the number of sequents in the proof tree.

4.3.4. Prove Lemma 4.3.7. Hint: Use Exercise 4.3.3.
4.3.5. Prove Proposition 4.3.9.

In 1960 the Davis-Putnam procedure was introduced [14]. This was in-
tended to be a theorem-proving technique suitable for automation, cov-
ering classical propositional and first-order logic. The first-order version
was not as efficient as resolution, which was introduced soon after, be-
cause the notion of unification was missing, but the propositional version
is still among the fastest. We present it here for its own sake and as a
theorem-proving algorithm that is not hard to implement and experi-
ment with.

The Davis-Putnam procedure, like resolution, is a refutation method.
To prove X, start with =X and derive a contradiction. The first phase
is a conversion to clause form, just as with resolution. This has been
discussed in Sections 2.8 and 2.9. Essentially, then, the Davis-Putnam
procedure is a test for the unsatisfiability of a clause form.

A clause is a disjunction of literals. A clause set is a conjunction of
clauses. We now need a more complicated object, a disjunction of clause
sets. We call these blocks (the term was not used in Davis and Put-
nam [14]). Part of the strategy in applying Davis-Putnam methods will
be to keep the number of clause sets in a block to a minimum, preferably
one.

A block is a disjunction of clause sets.
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The procedure involves the mechanical transformation of blocks into
blocks, via simple rewriting rules. Syntactically, all these transforma-
tions have the same general pattern: Replace some clause set in a block
by one or more others. Semantically, each transformation should not
affect satisfiability: The transformed block must be satisfiable if and
only if the original block was satisfiable. The intention is to produce a
block that is obviously satisfiable or not. There are two families of rules.
The first are preliminary rules that are not strictly necessary but that
can considerably speed up later steps. Then there are the primary rules
that are the essence of the Davis-Putnam procedure. We begin with a
discussion of the preliminary rules.

Preliminary Step 1 Remove any repetitions from the clauses in a
block, and (maybe) arrange the literals into some standard order.

It is easy to see that this step can not affect satisfiability. The same
applies to the next; we omit any formal verification.

For a propositional letter P, we set P = —P and —~P = P. The literals
L and L are complementary literals.

Preliminary Step 2 Delete any clause that contains both a literal and
its complement. Delete any clause that contains T. Delete every occur-
rence of 1.

Now we come to the main transformations. We state them, and we ei-
ther prove the necessary semantic facts about each or leave them as
exercises. Then we give examples, and finally, we prove soundness and
completeness.

One-Literal Rule Suppose B is a block containing the clause set S,
and S in turn contains the one-literal clause [L]. Modify B by changing
S as follows: Remove from S all clauses containing L, and delete all
occurrences of L from the remaining clauses of S. (When talking about
applications of this rule, we say it has been used on the literal L.)

To prove that the One-Literal Rule has no effect on satisfiability of
blocks, it is enough to prove the modifications it makes to clause sets
have this property.

Suppose S is a clause set that contains the one-literal clause [L]. Let S*
be like S except that all clauses containing L have been removed, and
from the remaining clauses, all occurrences of L have been deleted. Then
S is satisfiable if and only if S* is satisfiable.
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Proof For the sake of simple notation, we use a Prolog-style convention
when writing clauses. [A | B] denotes a clause whose first item is A,
with B being the clause consisting of the rest of the members. Now,
suppose S is the clause set ([A],[A | C1],...,[A | Cn],["A | D1]...,[0A]
Dy), Eq, ..., Ej), where the literal L is the propositional letter A, and
the only occurrences of A and —A are the ones indicated. Then S* is the
clause set (D1,...,Dg, E1,..., E;).

Suppose first that S is satisfiable. Say the Boolean valuation v maps
every member of S to t. Then in particular, v(A) = t. Also v([-A4 |
D4]) = t, but since v(—A) = f, it must be that v(D;) = t, and similarly
for each D;. And of course, v(F;) = t,..., v(E;) = t. Hence, each
member of S* maps to t under v, so S* is satisfiable.

Next suppose that S* is satisfiable; say the Boolean valuation v maps
every member of S* to t. We define a new Boolean valuation w by
specifying it on propositional letters. For every propositional letter P,
except for A, w(P) = v(P). And w(A) = t. It is obvious that on any
clause K that contains no occurrences of A or - A, v(K) = w(K). Hence
w(E1) = t,..., w(E;) = t, since v(E;) = t,..., v(E;) = t. Further,
since v(D1) = t, w(D;) = t and hence w([—~A | D1]) = t. Similarly,
for [-A | Do],..., [2A | Dg]. Finally, by design, w(A) = t, and hence
w([A | Cq]) =¢,..., w([A | Cp]) = t. And of course, w([A4]) = t. Thus,
w maps every member of S to t, so S is satisfiable. O

Now we give the remaining rules, leaving their semantic properties as
exercises.

Affirmative-Negative Rule Suppose B is a block containing clause
set S, some clauses in S contain the literal L, and no clauses in S contain
L. Modify B by removing from S all clauses containing L. (We will say
this rule has been used on the literal L.)

A clause C; subsumes a clause Cs if every literal in C; also occurs in

Cs.

The idea behind subsumption is simple. If C; subsumes Cs, then if C;
is unsatisfiable, so is Cs. In testing for unsatisfiability, if one clause
subsumes another, we can ignore the one that is subsumed.

Subsumption Rule Suppose B is a block containing the clause set S,
and S contains clauses C; and Cy where C; subsumes C3. Modify B by
removing clause Cy from S.
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Splitting Rule Suppose B is a block containing the clause set S, and
some clauses in S contain the literal L while others contain L. (There
may also be clauses with neither.) Let Sr, be the clause set that results
when all clauses in S containing L are removed, and all occurrences
of I are deleted. Likewise, let St be the clause set that results when
all clauses in S containing L are removed, and all occurrences of L are
deleted. Modify B by replacing the clause set S by the two clause sets
Sp and S3. (When talking about applications of this rule, we say we
have split on the literal L.)

This completes the presentation of the Davis-Putnam Rules. In dis-
cussing their use, the following terminology is handy:

Let B be a block. A Dawis-Putnam derivation for B is a finite sequence
of blocks B1, Bs,..., B,, where B; = B, and otherwise each block in
the sequence comes from its predecessor using one of the four rewriting
rules. A derivation succeeds if it ends with a block in which each clause
set contains the empty clause. A derivation fails if it ends with a block
in which some clause set itself is empty.

To prove a formula X in this system, begin with —X, convert this to
a clause set S, form the block [S], perhaps simplify this using the two
preliminary rules, then show there is a Davis-Putnam derivation that
succeeds.

We apply the technique to the formula (P = Q) V (P = —-Q).

1. Negate the formula:
~((P=Q)V (P=-Q)).

2. Convert to a clause set, and form the corresponding block:
[([Py _'P]7 [_‘P7 _‘QL [Pa Q]a [Qa _'Q]a [Pa _'P]a [Pa ﬁQ]a
[-P,Ql, [Q, ~Q])].

3. Apply Preliminary Rule 2 (four times):
([=P, Q) [P, QL. [P, =Q], [~P, Q])].

4. Use the Splitting Rule, splitting on the literal P:
(=@l @D, ([Q], [-Q])].

5. Apply the One-Literal Rule to each clause set in the block:

(N, <IN

6. Each clause set in the final block contains the empty clause, so the
derivation has succeeded.
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We attempt to prove the formula (PV Q) D (P A Q).

1. Negate the formula:
~((PVQ) D (PAQ)).

2. Convert to a clause set, and form the corresponding block:

[<[Pa Q]v [ﬂpa ﬂQ]>]

3. Use the Splitting Rule, splitting on the literal P:
([=QD), ([QD]-

4. Apply either the One-Literal Rule or the Affirmative-Negative Rule
to each clause set in the block:

(), O

5. Some clause set in the block is empty (in fact, both are), so the
derivation has failed.

Now we must establish soundness and completeness for the procedure.
And for once we will not use the Model Existence Theorem. We did not
specify in what order the rules were to be applied; there is a certain
degree of non-determinism here. We show the strong result that this
non-determinism has no effect on success or failure; we have a decision
procedure.

Suppose an attempt is made to prove the formula X using the Davis-
Putnam procedure, and the attempt is continued until no rule is applica-
ble. Any such attempt must terminate, and it must do so in a success or
in a failure. If it terminates in a success, X is a tautology; if it terminates
in a failure, X is not a tautology.

Proof First, we argue that if a proof attempt terminates it must do so
in a success (with every clause set containing the empty clause) or in
a failure (with some clause set itself empty). We actually establish the
contrapositive. Suppose we have a block B that contains some clause
set S that is not empty and that does not contain the empty clause; we
show we do not have termination. Since S is not empty, we can choose
a clause C from it. And since S does not contain the empty clause, C
itself is not empty, so we can choose a literal L from it. If L does not
occur in any clause in S, we can apply the Affirmative-Negative Rule. If
L does occur in some clauses in S, we can apply the Splitting Rule (or
perhaps the One-Literal Rule). Either way, we do not have termination.

Next we argue that every proof attempt must terminate. But this is easy.
Every rule except for Subsumption reduces the number of distinct literals
that occur in clause sets. Since we began with a finite number, these rules



Exercises 103

Exercises

can be applied only a finite number of times. And the Subsumption Rule
removes clauses, which are finite in number, so it too can be applied only
a finite number of times.

Finally, we argue that termination in success means that X is a tau-
tology, while termination in failure means it is not. X is a tautology if
and only if {-X} is not satisfiable, and our proof attempt begins by
converting —X to a clause set S, and forming the block [S]. Since every
Boolean valuation will assign the same truth value to =X and [S], X
is a tautology if and only if [S] is not satisfiable. Since the rules do not
affect satisfiability, [S] will be satisfiable if and only if the final block in
the derivation is satisfiable. But a block containing the empty clause set
is satisfiable, while a block in which every clause set contains the empty
clause is not. O

As we presented them, the Davis-Putnam Rules are non-deterministic.
According to the theorem just proved, any order of rule application will
produce a proof if one is obtainable. But of course, some attempts will be
speedier than others. It is easy to see that the Splitting Rule multiplies
the number of cases to be considered, so its use should be postponed.
At the other extreme, the One-Literal Rule simply cuts down on the
number of clauses we need to consider without introducing any other
complications, so it should be used in preference to any other rule. In
fact, the order in which we presented the rules is also a good order in
which to apply them.

4.4.1. Prove an application of the Affirmative-Negative Rule will not
affect the satisfiability of a block.

4.4.2. Prove an application of the Subsumption Rule will not affect
the satisfiability of a block.

4.4.3. Prove an application of the Splitting Rule will not affect the
satisfiability of a block.

4.4.4. Use the Davis-Putnam procedure to test the following for being
tautologies:

=

- (P2(QDOR)D>((P>Q)D(PDR)).
. ((P>Q)D(PD>R))D(PD(QDR)).
- (PAQ)=~(-PV Q).

. (PD>Q)V(QDR).

B~ W N
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4.5
Computational
Complexity

4.4.5. Take the exclusive-or connective # to be defined by:
A#%B=(AA-B)V(-~AAB).

Give a Davis-Putnam proof that # is commutative, that is, prove (A #
B) = (B # A). Similarly, give a proof that # is associative. Compare
these with a tableau or resolution version.

4.4.6. Prove that the One-Literal Rule is not necessary; any tautology
can be verified without using this rule.

4.4.7%. Implement the Davis-Putnam procedure.

If we have a mechanism for showing that formulas are tautologies, it is
natural to ask how complicated it is to use. More precisely, as tautologies
get more complex, what happens to the complexity of their verifications.
For truth tables this is easy to see. A truth table for a formula with
n propositional letters will have 2™ lines, so complexity of verification
using truth tables is exponential in n. For other proof procedures such
questions are less straightforward. In this section we very briefly survey
some recent results and give references to the literature. The proofs of
these results are too complicated to be given here.

The 1979 paper by Cook and Reckhow [11] gives a thorough analysis of
computational complexity for Hilbert systems (which are called Frege
systems there), based partly on Reckhow [37]. The complexity of a for-
mula is measured by the number of its symbols and that of a proof by
the number of its lines. It is shown that if we have two Hilbert systems,
using possibly different but complete sets of connectives, then there is a
translation of proofs in one system into proofs in the other that increases
proof length by at most a fixed polynomial in the length of the original
proof. In other words, any two Hilbert systems are equivalent in com-
plexity, up to a polynomial factor. And this result extends to include
natural deduction systems as well. On the other hand, Urquhart [53]
shows this does not extend to resolution.

An obvious problem with Hilbert systems, and with natural deduction
systems as well, is that while a tautology may have a short proof, it may
not be easy to find one. In a Hilbert system a short proof of Y may begin
with short proofs of X and X DY, followed by an application of Modus
Ponens. One can think of X and X DY as Lemmas for the proof of Y.
But finding an appropriate formula X when given the task of proving
Y may be nontrivial. And certainly, X DO Y is more complicated than
Y, so for a portion of the proof, formula complexity goes up instead of
down. Consequently, most, but not all, attempts at automated theorem
proving have relied on mechanisms that build proofs entirely out of parts
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of the formula being proved and do not require outside lemmas. Both
resolution and tableaux have this important property (called analytic in
Smullyan [48]). While this apparently simplifies the problem of finding
proofs, a recent result of Haken says that the complexity of proofs in
resolution systems still grows exponentially in the complexity of the
formulas being proved.

In a resolution system it is possible to begin by doing all the Resolution
Reduction Rule applications first, leaving only the Resolution Rule itself
to be applied. Most implemented theorem provers proceed this way, and
Haken’s analysis [24] starts from this point. So, let S be a set of clauses.
A resolution refutation of S is a sequence of clauses, each a member of
S or following from earlier clauses in the sequence by the Resolution
Ruleply the total number of clauses. The complexity of the set S is
the number of symbols. Haken showed there is a particular sequence of
formulas, P, P, Ps,..., each a tautology, such that the complexity of
— P, when converted to clause form is of the order of n3, but the shortest
resolution refutation of it is of complexity at least ¢™ (for a fixed ¢ > 1).
In other words, for this family of examples, resolution is exponentially

bad.

The formulas P, that Haken used all express ‘pigeonhole’ principles.
These were used earlier [11] in the analysis of Hilbert systems, and their
intuitive content is easy to grasp. If we have n + 1 pigeons but only n
pigeonholes, some pigeonhole must contain two pigeons. More mathe-
matically stated, if f is a function from a set with n + 1 members to a
set with n members, there must be two elements 7 and j of the domain
such that f(i) = f(j). We want to capture the essential content of this
principle by a formula of propositional logic; the result will be P,.

Let n be fixed; we show how to formulate P, . First, we have n+1 pigeons
and n pigeonholes. Let us introduce a family of n(n + 1) propositional
letters, Hy1, Hi, Hz1,..., H;j,... where i ranges from 1 to n + 1
and j from 1 to n. Think of H;; as saying pigeon i is in pigeonhole
j. Now, to say pigeon ¢ is in some pigeonhole, we need the formula
H;,;VH;>2V..VH,,, more compactly written \/;L:1 H; ;. Then, to
say pigeon 1 is in some pigeonhole, and so is pigeon 2, and so on, we
need a conjunction of formulas like this, for ¢ = 1,2,...,n + 1. Briefly,

1
?:1 \/;’=1 H; j expresses what we want.

Next, to say two pigeons are in pigeonhole k, we say 1 and 2 are there,
or else 1 and 3 are there, or else 2 and 3, etc. This becomes

n+1l n+1

\/ \/ (Hi,k A H"k).

i=1 j=i+1
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Then saying some pigeonhole has two pigeons requires a disjunction of
formulas like this, for £k =1,2,...,n:

n n+l n+l

V'V V Hix A Hjp).

k=1 i=1 j=i+1

Finally, combining all this, P, itself becomes the following:

n+l n n n+l n+l
ANV H;>\V \V 'V HixAHjx)
=1 j=1 k=1 i=1 j=i+1

It is not hard to show that, for each n, P, is a tautology. To do this we can
use the informal pigeonhole principle which is, after all, mathematically
correct. The argument goes as follows:

Let v be a Boolean valuation. We wish to show v(P,) = t. If v maps
the left-hand side of the implication of P, to f, we are done, so now
suppose v(/\?:l1 Vi_, H;;) = t. Then for each i € {1,2,...,n + 1},
there is some j € {1,2,...,n} such that v(H; ;) = t. Define a function
f:{,2,...,n+1} — {1,2,...,n} such that f(¢) is the least j for
which v(H; ;) = t. Think of f as mapping pigeons to pigeonholes. By
the informal pigeonhole principle, there must be ¢, j with ¢ < j such
that f(i) = f(§) = k for some k. Then v(H; ) = v(Hj ) = t, so v maps
the right-hand side of the implication of P, to t, and we are done.

While each P, is a tautology and expresses a mathematical fact that
is easily grasped, resolution proofs of P, grow so quickly with n as to
become unmanageable.

Haken’s method of proof was applied by Urquhart [53] to a different
family, S,,, of formulas based on graph properties. In this case the clauses
have a size that varies with n, rather than with n® as happened with
P,. It is still the case that the minimal resolution proof length of S,, is
bounded.below by an exponential in n. But now it is possible to show
that each S, has a short proof in a Hilbert system. From this follows
the result cited earlier that, although Hilbert systems are equivalent to
each other from a complexity point of view, at least up to a polynomial
factor, this equivalence does not extend to resolution.

The status of the pigeonhole principle in Hilbert systems is complex.
Cook and Reckhow [11] showed P, has a Hilbert system proof whose
length grows exponentially with n, while Ajtai [1] showed that there can
be no Hilbert system proof of P, in which the number of symbols is
bounded by a polynomial in n, and the formulas have constant depth
(deepness of subformula nesting).
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Exercises

Note that the results cited do not say that every complex tautology
must have a complex resolution proof. But the existence of families like
P, and S, guarantee that some do. As a matter of fact, a recent paper
[9] shows that in a probabilistic sense, most randomly chosen sequences
of formulas will be bad ones. We must be prepared to guide proofs by
supplying heuristics, since otherwise astronomically long computational
times can arise.

Hilbert systems are inappropriate for automated theorem proving. The
same applies to natural deduction, since Modus Ponens is a rule of both.
Resolution can be exponentially bad. Similar results apply to tableaux.
There is no proof, but there is good reason to believe similar results will

apply to any proposed proof procedure. Heuristics are a necessity, not a
nicety.

4.5.1. Give a resolution proof of Ps.

4.5.2. Give a tableau proof of P,.
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First-Order Logic

5.1
First-Order
Logic—
Syntax

In this chapter we present the syntax and semantics of classical first-
order logic. We also state and prove a Model Existence Theorem, es-
sentially a semantical result, asserting the existence of certain models.
We use the theorem to establish some basic facts about first-order logic,
such as compactness and Lowenheim-Skolem results. In the next chapter
we introduce proof procedures for first-order logic, and then the Model
Existence Theorem will find its primary application, in proving com-
pleteness. Further consequences will be found in Chapter 8, after we
have considered the implementation of proof procedures. This section
sets forth the syntax of first-order logic, which is a considerably more
complicated business than it was in the propositional case.

We work with several different first-order languages, depending on what
applications we have in mind. For instance, if we want to talk about
rings, we will want a constant symbol to denote the zero of a ring; if we
want to talk about rings with unity, we will need an additional constant
symbol to denote the ring unit. Language features like these depend
on the intended applications, but certain items are common to all our
languages. We begin with them.

Propositional Connectives are the same as in propositional logic,
with the Secondary Connectives thought of as defined and the Pri-
mary ones as basic. We also have the propositional constants, T
and L.
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Definition 5.1.1

Definition 5.1.2

Quantifiers

V (for all, the universal quantifier)

3 (there exists, the existential quantifier)
Punctuation ¢)’, ‘(’, and

Variables vy, vs,...(which we write informally as z, y, z,...).
Now we turn to the parts that vary from language to language.
A first-order language is determined by specifying:

1. A finite or countable set R of relation symbols, or predicate symbols,
each of which has a positive integer associated with it. If P € R
has the integer n associated with it, we say P is an n-place relation
symbol.

2. A finite or countable set F of function symbols, each of which has
a positive integer associated with it. If f € F has the integer n
associated with it, we say f is an n-place function symbol.

3. A finite or countable set C of constant symbols.

We use the notation L(R,F, C) for the first-order language determined
by R, F, and C. If there is no danger of confusion, we may abbreviate
L(R,F,C) to just L. Sometimes it is useful to allow the same symbol
to be used as an m-place function symbol and also as an m-place one;
no confusion should arise, because the different uses can be told apart
easily. Similar remarks apply to relation symbols. Further, sometimes it
is useful to think of constant symbols as O-place function symbols.

Having specified the basic element of syntax, the alphabet, we go on to
more complex constructions.

The family of terms of L(R,F, C) is the smallest set meeting the con-
ditions:

1. Any variable is a term of L(R,F, C).
2. Any constant symbol (member of C) is a term of L(R, F, C).

3. If f is an m-place function symbol (member of F) and t1, ..., tn
are terms of L(R, F,C), then f(t1,...,tn) is a term of L(R, F, C).

A term is closed if it contains no variables.
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Example

Definition 5.1.3

Definition 5.1.4

Example

If f is a one-place function symbol, g is a two-place function symbol,
a, b are constants, and x, y are variables, then the following are terms:

f(g(a,z)); g(f(x), 9(z,9)); g(a, g(a, g(a,b))).

Earlier we defined the notion of subformula of a propositional formula.
In essentially the same way, we can define the notion of a subterm of a
term. We omit the formal definition, but we will use the concept from
time to time. We may sometimes be informal about how we write terms.
For instance, if + is a two-place function symbol, we may write z + y
instead of +(z,y). Think of z + y as an unofficial way of designating
the ‘real’ term. In Section 2.2 we established Principles of Structural In-
duction and Structural Recursion for the set of propositional formulas.
The definition of term we gave is very similar to that of propositional
formula, and similar principles apply, with similar justifications. Thus,
we can show every term of L(R,F, C) has a certain property by show-
ing that variables and constant symbols have the property, and that
f(t1,...,t,) has the property whenever each of t1,..., t, does, for each
function symbol f. Similarly, we can define functions on the set of terms
by specifying them outright on variables and constant symbols, and on
f(t1,...,t,) based on the values assigned to t1,. .., t,. This observation
applies equally well to the definition of formula of first-order logic, which
we give shortly. From now on we make free use of these principles, not
always with explicit mention.

An atomic formula of L(R, F, C) is any string of the form R(t1,...,t,)
where R is an n-place relation symbol (member of R) and t¢4,..., t, are
terms of L(R,F,C); also T and L are taken to be atomic formulas of
L(R,F,C).

The family of formulas of L(R,F,C) is the smallest set meeting the
following conditions:

1. Any atomic formula of L(R, F, C) is a formula of L(R,F, C).
2. If A is a formula of L(R, F, C) so is - A.

3. For a binary connective o, if A and B are formulas of L(R,F, C),
so is (A o B).

4. If A is a formula of L(R,F, C) and z is a variable, then (Vz)A and
(3z)A are formulas of L(R, F, C).

If R and g are two-place relation and function symbols respectively, then
(Vz)(Vy)(R(z,y) D (32)(R(z, 2)AR(z,y))) and (Vz)(3y)R(f (,y), z) are
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Definition 5.1.5

Definition 5.1.6

Definition 5.1.7

formulas. We will be informal about parentheses, and instead of the first
formula, we may write

(Ve)(Fy){R(z,y) > (B2)[R(z, ) A R(z,y)]}.

Likewise, if < is a two-place relation symbol, we may write x < y instead
of the official < (z,y), and similarly in other cases. This is to improve
readability, and should be thought of as an informal substitute for the
‘real’ formula.

In Chapter 2 we sketched a proof that the formulas of propositional logic
could be uniquely parsed. A similar result holds in the first-order case.
We neither prove this result nor state it properly, though we make tacit
use of it. Likewise, the notion of rank (Definition 2.6.5) extends to the
first-order setting.

The rank r(X) of a first-order formula X is given as follows: r(4) =
r(—A) = 0 for A atomic, other than T or L. r(T) =7(L) =0. r(=T) =
r(-Ll) = L r(==2) = r(Z) + 1. r(a) = r(a1) + r(a2) + 1. 7(B) =
r(B1) +7(B2) + 1. r(7) = r(v(2)) + 1. 7(6) = r(6(z)) + 1.

Next, we must distinguish between a formula like (Vz)P(z,y) and one
like (Vz)(Jy)P(z,y). In the first, the variable y is not in the scope of
any quantifier, while in the second, every variable is covered by some
quantifier. The notion of free and bound variable is what is needed here.
In the first formula y has a free occurrence, which is not the case with
the second. Note that the definition that follows relies on the Principle
of Structural Recursion.

The free-variable occurrences in a formula are defined as follows:

1. The free-variable occurrences in an atomic formula are all the vari-
able occurrences in that formula.

2. The free-variable occurrences in —A are the free variable occur-
rences in A.

3. The free-variable occurrences in (Ao B) are the free-variable occur-
rences in A together with the free variable occurrences in B.

4. The free-variable occurrences in (Vz)A and (3z)A are the free-
variable occurrences in A, except for occurrences of x.

A variable occurrence is called bound if it is not free.

A sentence (also called a closed formula) of L(R,F,C) is a formula of
L(R,F, C) with no free-variable occurrences.
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5.2
Substitutions

Definition 5.2.1

Definition 5.2.2

Example

Definition 5.2.3

5.1.1. Identify the free-variable occurrences in the following:

1. (Vz)R(z,c) D R(z,c).
2. (Vz)(R(z,c) D R(z,c)).
3. (Vo)[By)R(f(z,y), c) D (32)S(y, 2)]-

Formulas of first-order logic may contain free variables that can be re-
placed by other, more complicated, terms. The notion of substituting
a term for a variable plays a fundamental role in automated theorem
proving. In this section we begin looking at properties of substitution.

For this section, let L(R, F, C) be a fixed first-order language, and let T
be the set of terms of L(R, F, C). All our definitions are relative to this
language. Also, substitutions are functions; we use algebraic notation,
writing to instead of o(t) to denote the result of applying the function
o tot.

A substitution is a mapping o : V — T from the set of variables V to
the set of terms T.

Although substitutions are maps on variables, their actions are easily
extended to all terms.

Let o be a substitution. Then we set:

1. co = c for a constant symbol c.

2. [f(t1,...,tn)]o = f(t10,...,t,0) for an n-place function symbol f.

Suppose zo = f(z,y), yo = h(a), and 20 = g(c, h(z)). Then j(k(z),y)o
= j(k(f(z,y)), h(a))-

The result of applying a substitution to a term always produces another
term. Also, if two substitutions agree on the variables of a term t, they
will produce the same results when applied to t. We leave the verification
of these items as exercises, and assume them in what follows:

Let o and 7 be substitutions. By the composition of o and 7, we mean
that substitution, which we denote by o7, such that for each variable z,
z(oT) = (zo)T.
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Proposition 5.2.4

Proposition 5.2.5

Definition 5.2.6

Proposition 5.2.7

Definition 5.2.8

Proposition 5.2.9

Example

The definition of composition concerns behavior on variables. In fact,
using structural induction, one can prove that this extends to all terms.

For every term t, t(o1) = (to)T.
Composition of substitutions is associative, that is, (0102)03 = 01(0203).

Proof Let v be any variable. We must show v(c102)05 = vo1(0203).
But, v(0102)03 = [v(0102)]os = [(vo1)o2]os. Likewise voy(oe03) =
(vo1)(o203) = [(vo1)oz]os. O

The support of a substitution o is the set of variables z for which zo # z.
A substitution has finite support if its support set is finite.

The composition of two substitutions having finite support is a substitu-
tion having finite support.

We leave the proof of this to you. The identity substitution has finite
support, and so the set of substitutions having finite support constitutes
a semigroup under composition. Frequently we will only be interested in
substitutions that have finite support. For such cases we have a conve-
nient special notation.

Suppose o is a substitution having finite support; say {zi,...,z,} is
the support, and for each i = 1,...,n, ;0 = t;. Our notation for o is:
{z1/t1,...,2n/tn}. In particular, our notation for the identity substitu-
tion is { }.

Suppose a1 and oy are two substitutions having finite support. Say o1 =
{Z1/t1, ..., zn/tn} and 02 = {y1/u,...,yx/ur}. Then the composition
o102 has notation

{:1:1/(t10’2), .. .,xn/(tnaz),zl/(zlaz), . ,zm/(zmag)}

where 21,...,2m are those variables in the list yi,...,y, that are not
also in the list x1,...,z,. (We assume that if any item degenerates into
x/x, it is dropped from the substitution notation.)

Suppose 01 = {.’L‘/f(.’l?, v), y/h(a)a z/g(c, h(:l,‘))} and o3 = {x/b’ y/9(a, z),
w/z} Then o107 = {.’L‘/f(b, 9(a,x)), y/h(a)7 z/g(c, h(b)), w/z}

Next, the action of substitution is extended to arbitrary formulas. Here
things are more complicated, because variables in formulas can have
both free and bound occurrences, and substitutions should not affect
bound variable occurrences.
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Definition 5.2.10

Definition 5.2.11

Example

Definition 5.2.12

Let o be a substitution. By o, we mean the substitution that is like o
except that it does not change the variable . More precisely, for any
variable y:

_Jyo ify#z
yoz—{l_ ify=z.

Substitution is extended to formulas as follows. Let o be a substitution.
Then:

1. For the atomic case:

[A(t1, ..., tn)]o = A(t10,...,th0)
To=T
lo=1.

. [ X]o = -[Xo].

. [(Vz)®@)o = (Vo) [Poy].

2
3. (XoY)o=(XooYo) for a binary symbol o.
4
5. [(Fz)®lo = (Fz)[Poy].

Suppose o = {z/a,y/b}. Then

[(Vz)R(z,y) D (Jy)R(z,y)] o

[(Vz)R(z,y)] o O [(3y)R(z,y)] o
(Vz) [R(z,y)] 0z D (3y) [R(z,y)] oy
(Vz)R(z,b) O (3y)R(a,y).

One of the key facts about substitution in terms follows: For any term ¢,
(to)T = t(oT). This result does not carry over to formulas. For example,
let 0 = {z/y} and 7 = {y/c} (here z and y are variables and c is
a constant symbol). Then o7 = {z/c,y/c}. If & = (Vy)R(z,y), then
®o = (Vy)R(y,y), so (®o)r = (Vy)R(y,y). But ®(o7) = (Vy)R(c,y),
which is different. What is needed is some restriction that will ensure
composition of substitutions behaves well.

A substitution being free for a formula is characterized as follows:

1. If A is atomic, o is free for A.
2. o Is free for =X if o is free for X.

3. o Is free for (X oY) if ¢ is free for X and o is free for Y.
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4. o Is free for (Vz)® and (3z)® provided: o is free for ®, and if y is
a free variable of ® other than x, yo does not contain z.

Theorem 5.2.13  Suppose the substitution o is free for the formula X, and the substitution

Exercises

T is free for Xo. Then (Xo)r = X(oT).

Proof By structural induction on X. The atomic case is immediate,
and is omitted.

We give the binary operation symbol case; negation is similar. Suppose
the result is known for X and for Y, o is free for (X oY), and 7 is free
for (X oY)o. We show ((X oY)o)r = (X oY) (07).

Since o is free for (X oY), o is free for X, and o is free for Y. Since 7
is free for (X oY)o = (XooYo0), 7 is free for Xo and 7 is free for Yo.
Then by the induction hypothesis, (Xo)r = X(o7) and (Yo)r = Y (o7).
Hence (X oY)o)r = (XooYo)r = (Xo)ro(Yo)r = X(o7) oY (0T) =
(X oY)(oT).

Finally, we give one quantifier case; the other is similar. Suppose the
result is known for ®, o is free for (Vz)®, and 7 is free for [(Vz)®]o. We
show that ([(Vz)®]o)T = [(Vz)®](o7T).

Since o is free for (Vz)®, o, is free for ®. And since 7 is free for
[(Vz)®lo = (Vz)[®0,], 7 is free for ®o,. Then by the induction hy-
pothesis, (Po;)1, = ®(0,7z).

Next we show that ®(0,7;) = ®(07),. To do this it is enough to show
that if y is any free variable of ®, then y(o,7,) = y(o7),. This is trivial
if y = z, so now suppose y # z. Since y # z, yo = yo, and y(oT) =
y(0T)z. Also since o is free for (Vz)®, yo does not contain z, hence
(yo)T = (yo)7.. Then, putting all this together, y(o,7;) = (yo, )7 =
(yo)7e = (yo)7 = y(o1) = y(o7)s.

Finally, ([(V2)®]o)T = ((V2)[®0,])T = (V2)[(P02)Ts] = (V2)[@(0,70)] =
(Vz)[®(0T)s) = [(Vz)®](o7). This concludes the proof. O

5.2.1. Prove that if ¢ is a term and o is a substitution, then to is a
term. Use structural induction on ¢.

5.2.2. Prove that if o and 7 are two substitutions that agree on the
variables of the term ¢, then to = t7. Use structural induction on t.

5.2.3. Prove Proposition 5.2.4 by structural induction on t.

5.2.4. Prove Proposition 5.2.7.
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5.3
First-Order
Semantics

Definition 5.3.1

Definition 5.3.2

5.2.5. Prove Proposition 5.2.9 by showing the substitutions ;02 and
{z1/(t102),...,2n/(tno2),21/(2102), ..., 2m/(2m0o2)} have the same ac-
tion on each variable.

5.2.6. Prove that if ® is a formula and o is a substitution, then ®o is
a formula. Use structural induction on ®.

5.2.7. Prove that if ¢ and 7 are two substitutions that agree on the
free variables of the formula ®, then ®c = ®7. Use structural induction
on &.

5.2.8. Prove that a formula ® is a sentence if and only if ®c = ® for
every substitution o.

It is more complicated to give meaning to a formula of first-order logic
than it was in the propositional case. We must say what we are talking
about, what domain is involved for the quantifiers to quantify over. We
must say how we are interpreting the constant, function, and relation
symbols with respect to that domain, an interpretation. These two items
specify a model. (Models are also called structures.) In fact, the notion
of a model is relative to a first-order language, since that determines
what symbols we have to interpret. And finally, since formulas may con-
tain free variables, we must say what they stand for, that is, give an
assignment of values to them.

A model for the first-order language L(R,F,C) is a pair M = (D,I)
where:

D is a nonempty set, called the domain of M.
I is a mapping, called an interpretation that associates:

To every constant symbol ¢ € C, some member c! € D.

To every n-place function symbol f € F, some n-ary function
fl:D" - D.

To every n-place relation symbol P € R, some n-ary relation
P C D™

An assignment in a model M = (D, I) is a mapping A from the set of
variables to the set D. We denote the image of the variable v under an
assignment A by vA.

Suppose we have an interpretation, which gives meanings to the constant
and function symbols of the language, and we have an assignment, which
gives values to variables. We have enough information to calculate values
for arbitrary terms.
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Definition 5.3.3

Example

Definition 5.3.4

Let M = (D, I) be a model for the language L(R,F, C), and let A be
an assignment in this model. To each term ¢ of L(R, F, C), we associate
a value t14 in D as follows:

1. For a constant symbol ¢, cl'A = ¢l

LA A

2. For a variable v, v = v,

3. For a function symbol f, [f(t1,...,t,)]0" = fI(0™, ... tLA).

This definition (which is by structural recursion) associates a value in D
with each term of the language. If the term is closed (has no variables),
its value does not depend on the assignment A. For closed terms we
often write t! instead of "2 to emphasize this point.

Suppose the language L has a constant symbol 0, a one-place function
symbol s, and a two-place function symbol +. We will write + in infix
position, z+y instead of +(z, y). Now s(s(0)+s(z)) and s(z+s(z+s(0)))
are terms of L. We consider several choices of model M = (D,I) and
assignment A.

1. D={0,1,2,...}, 0 = 0, s! is the successor function, and +! is the
addition operation. Then, if A is an assignment such that z® = 3,
(s(s(0) + s(z)))"* = 6 and (s(z + s(z + s(0))))"A = 9. More
generally, (s(s(0)+s(z)))"A = 2 +3 and (s(z+s(z+5(0))))0A =
224 + 3.

2. D is the collection of all words over the alphabet {a,b}, 0! = a,
s' is the operation that appends a to the end of a word, and +!
is concatenation. Then, if A is an assignment such that z® =
aba, (s(s(0) + s(z)))"* = aaabaaa and (s(z + s(z + 5(0))))LA =
abaabaaaaa.

3. D={...,-2,-1,0,1,2,...}, 0T = 1, s is the predecessor function,
and +! is the subtraction operation. Then (s(s(0) + s(z)))bA =
—z® and (s(z + s(z + s(0))))bA = 0.

Next, we associate a truth value with each formula of the language,
relative to a model and an assignment. For this we need a preliminary
piece of terminology.

Let = be a variable. The assignment B in the model M is an z-variant
of the assignment A, provided A and B assign the same values to every
variable except possibly .
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Definition 5.3.5

Definition 5.3.6

Example

Let M = (D, I) be a model for the language L(R,F, C), and let A be an
assignment in this model. To each formula ® of L(R, F, C), we associate
a truth value ®%4 (t or f) as follows:

1. For the atomic cases,

[P(t1,...,tn)]0A =t = (14, ... LA € PT,
ThA = ¢,
1A =

2. [—\X]I’A = —l[XI’A].
3. [X o Y]I,A — XI,A ° YI’A.

4. [(Vz)®)HA =t —= ®LB =t for every assignment B in M that is
an z-variant of A.

5. [(3z)®@"A =t & ®"B =t for some assignment B in M that is
an z-variant of A.

Just as with terms, if the formula ® contains no free variables, its truth
value will not depend on the particular assignment used, so we generally
write ®! instead of ®4, to emphasize this.

A formula ® of L(R, F, C) is true in the model M = (D, I) for L(R, F, C)
provided, ®1A = t for all assignments A. A formula & is valid if ® is
true in all models for the language. A set S of formulas is satisfiable in
M = (D,I), provided there is some assignment A (called a satisfying
assignment) such that ®14 = t for all ® € S. S is satisfiable if it is
satisfiable in some model.

For the following, suppose we have a language L with a two-place relation
symbol R and a two-place function symbol @; also suppose we have a
model M = (D, I).

1. Consider the sentence (3y)R(x,y ® y). Suppose D = {1,2,3,...},
@' is the addition operation, and R! is the equality relation. Then
(3y)R(z,y ® y)b» is true if and only if z# is an even number.

2. This time consider the sentence (Vz)(Vy)(3z)R(x & y,z), where
again D = {1,2,3,...} and @' is the addition operation, but R
is the greater-than relation. It is easy to see that the sentence is
true in M if, for every counting number z and every counting num-
ber y, there is a counting number z such that z +y > z. Since this
is in fact the case, the sentence is true in M.
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Proposition 5.3.7

Proposition 5.3.8

3. Use the same sentence as in item 2, but this time use the model
where D = {1,2,3,...} , ®! is addition, but R! is the greater-than-
by-4-or-more relation. In this model the sentence is not true. Since
there is a model in which it is not true, the sentence is not valid.
Likewise, item 2 shows the negation of the sentence is not valid
either.

4. The sentence is (Vz)(Vy){R(z,y) D (32)[R(z,2) A R(z,¥)]}, D is
the set of real numbers, and R! is the greater-than relation. The
sentence is true in this model (it expresses the denseness of the
reals). If we change D to the counting numbers, the sentence will
be false in the model.

5. (Vz)(Yy)[R(z,y) D R(y,z)]. Nothing requires domains to be infi-
nite. Consider the model where D = {7,8} and R! is the relation
that holds of (7,8) but not of (7,7), (8,8), or (8,7). In this model
the sentence is not true.

In formal theorem proving, we (generally) are interested in establishing
that some formula is valid. We can turn arbitrary formulas into sen-
tences by universally quantifying away any free variables. Exercise 5.3.2
says this preserves truth in models. Consequently, we need only concern
ourselves with establishing the validity of sentences.

The definition of model, and hence of satisfiability, depends on the lan-
guage used, but Exercise 5.3.5 shows this dependence is not really criti-
cal.

The following proposition will play a role in proving the soundness of
proof procedures in the next chapter. Since its verification is not difficult,
we leave it as an exercise.

Suppose t is a closed term, ® is a formula of the first-order language
L, and M = (D,I) is a model for L. Let x be a variable, and let A
be any assignment such that z® = t'. Then [®{z/t}]"2 = ®LA. More
generally, if B is any z-variant of A then [®{x/t}|LB = dLA,

Finally, we have the following important result, relating substitutions
and models.

Suppose M = (D, 1) is a model for the language L, ® is a formula in
this language, A is an assignment in M, and o is a substitution that is
free for ®. Define a new assignment B by setting, for each variable v,
vB = (vo)lA. Then ®1B = (&0)lA.
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Proof We first need to know that, for any term ¢, t*"B = (to)"4. This
is a simple structural induction on ¢, which we omit.

Now, the result is shown by structural induction on ®. The atomic case
follows immediately from the result just cited concerning substitution in
terms. The various propositional cases are straightforward. The quanti-
fier cases are the significant ones.

Suppose the result is known for formulas simpler than ®, and ® = (3z)e.
Further, suppose [®o]"4 = t. We show ®1'B = t.

By our assumption, [[(3w)¢]U]I’A = [(3z)[po:]]"A = t. Then for some
z-variant A’ of A, [po;|"A = t. Now, define a new assignment B’ by
setting, for each variable v, vB = (vop)PA'. Since o is free for (E!m)<p,

oz is free for . Then by the induction hypothe31s [poz] A= b
hence, "B’ = t. It will follow from this that [(3z)¢]"® = @B =t once
we show that B’ is an z-variant of B.

Since o is free for (3z)yp, if v is any variable except x, vo does not
contain z. Now, if v # z, vB' = (vo,)IA" = (since v # z) (vo)bA" =
(since vo cannot contain z, and A and A’ agree on all variables except
z) (vo)bA = vB (by definition). Thus B’ is an z-variant of B.

We have now showed that, given the induction hypothesis, if [®o]"4 =t
then ®1'B = t. The argument in the converse direction is similar, as is
the universal quantifier case. O

5.3.1. Prove Proposition 5.3.7.
5.3.2. Show & is true in a model M if and only if (Vz)® is true in M.
5.3.3. Show X is valid if and only if {—X} is not satisfiable.

5.3.4. Show X =Y is true in M = (D, I) if and only if X"4 = yh4
for all assignments A.

5.3.5. Let L and L’ be first-order languages, with every constant, func-
tion and relation symbol of L also a symbol of L’. Let S be a set of
formulas of L. Show S is satisfiable in some model for the language L if
and only if S is satisfiable in some model for the language L’.

5.3.6. Write a sentence ® involving the two-place relation symbol R
such that:

1. & Is true in (D, ) if and only if R' is a reflexive relation on D.
2. ® Is true in (D,I) if and only if R' is a symmetric relation on D.

3. ® Is true in (D, I) if and only if R' is a transitive relation on D.
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4. @ Is true in (D, I) if and only if R! is an equivalence relation on D.
5.3.7. Write a sentence ® involving the two-place relation symbol R
having both the following properties:

1. @ Is not true in any model (D, I) with a one element domain.

2. if D has two or more elements, there is some interpretation I such
that ® is true in (D, I).

5.3.8. Write a sentence ® involving the two-place relation symbol R
having both the following properties:

1. @ Is not true in any model (D,I) with a one- or a two-element
domain.

2. If D has three or more elements, there is some interpretation I such
that ® is true in (D, I).

5.3.9. Write a sentence ® involving the two-place relation symbol R
having the following properties:

1. @ Is not true in any model (D, ) with a finite domain.

2. If D is infinite, there is some interpretation I such that & is true in
(D, I).

5.3.10. In the following P and R are relation symbols and c is a con-
stant symbol. Demonstrate the validity of the following:

-

. (Vz)P(z) D P(c).

2. (3x)[P(z) D (Vz)P(z)).

3. (Fy)(vz)R(z,y) > (Vz)(3y)R(z,y).

4. (V2)® = —(3z)-5.

5. Determine the status of (Vx)(3y)R(z,y) D (3y)(Vz)R(z, y).
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5.4
Herbrand
Models

Definition 5.4.1

Proposition 5.4.2

Proposition 5.4.3

Assignments are almost substitutions, but not quite. The problem is as
follows: An assignment maps variables to members of a domain D, and
the members of D probably will not be terms of the formal language we
are using, so if we replace a variable in a formula by what an assignment
maps it to, we will not get a formula as a result. Still, it is convenient to
think of assignments and substitutions together, and in certain cases we
can. The domain of a model can be anything we like; in particular its
members could be terms of the language L. If we are in such a fortunate
situation, assignments are substitutions.

A model M = (D, I) for the language L is a Herbrand model if:

1. D is exactly the set of closed terms of L.

2. For each closed term ¢, t! = t¢.

It may seem that Herbrand models are Tather special. In fact, they do
play a special role in our completeness proofs. By design, an assignment
A in a Herbrand model M is also a substitution for the language L, and
conversely, and so for a formula ® of L, both ®14 (where A is used as an
assignment) and ® A (where A is used as a substitution) are meaningful.
The connection between these two roles of A is a simple one and is given
in the following two propositions. Before stating them, we note that for
any formula ® of L, and for any assignment A in a Herbrand model,
thought of as a substitution, ®A has no free variables. Then a truth
value for ® A depends only on the interpretation of the model. Similar
observations apply to terms.

Suppose M = (D, 1) is a Herbrand model for the language L. For any
term t of L, not necessarily closed, tv» = (tA)L.

Proof By structural induction on . We begin with the ground cases.
Suppose t is a variable, v. Then ttA = v1A = vA and (tA)! = (vA)! =
vA, since I is the identity on closed terms. And finally, v» = vA. This
completes the argument if ¢ is a variable Next suppose t is a constant
symbol, ¢, of L. Then t"4 = ¢4 = ¢! and (tA)! = (cA)! = .

Suppose the result is known for the terms t1,...,t,, and we have the
term ¢t = f(t1,...,tn). Then t9A = [f(t1,...,tn)]PA = fIE0A,
ty A) Also (tA)! = [f(t1,...,tn) Al = [f(t1A, ..., 1, A)]T = fI((tlA)I

, (tnA)Y). Now we are done, by the 1nduct10n hypothes1s o

Suppose M = (D,I) is a Herbrand model for the language L. For a
formula ® of L, L4 = (®A)L.
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5.5
First-Order
Uniform
Notation

Proposition 5.5.1

A nice feature of working with Herbrand models is that quantifier truth
conditions become much simplified. The following states this formally,
using our notation for substitutions having finite support.

Suppose ® is a formula of L and M = (D,I) is a Herbrand model for
L. Then:

1. (Vz)® is true in M < ®{z/d} is true in M for every d € D.
2. (3z)® is true in M < ®{z/d} is true in M for some d € D.

5.4.1. Prove Proposition 5.4.3.
5.4.2. Prove Proposition 5.4.4.

Earlier we introduced a system of uniform notation for propositional
logic. Here, again following Smullyan [48], we extend it to include quan-
tifiers. All quantified formulas and their negations are grouped into two
categories, those that act universally, which are called +-formulas, and
those that act ezistentially, which are called é-formulas. For each variety
and for each term ¢, an instance is defined. The groups and the notions
of instance are given in Table 5.1.

Universal Existential
Y 7(®) 6 8(t)
(Vz)® o{z/t} (Fz)® d{z/t}
—(F2)® | ~®{z/t} || ~(V2)® | ~®{z/t}

TABLE 5.1. - and §-Formulas and Instances

Essentially, all y-formulas act universally and all §-formulas act existen-
tially. More precisely, both v = (Vy)y(y) and § = (Jy)é(y) are valid,
provided y is a variable that is new to vy and é.

When we come to prove tableau and resolution soundness, the following
will play a central role:

Let S be a set of sentences, and v and § be sentences.

1. If SU {v} is satisfiable, so is S U {v,~(t)} for any closed term t.

2. If SU {6} is satisfiable, so is S U {6,6(p)} for any constant symbol
p that is new to S and §.
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Proposition 5.5.2

Theorem 5.5.3

Proof We are working with sentences, which makes things slightly eas-
ier for us.

Part 1 Suppose S U {7} is satisfiable in the model M = (D,I).
We show S U {v,~(t)} is satisfiable in the same model. Since 7 is
true in this model, so is (Vz)y(z) (where z is a variable new to 7).
Then for every assignment A, [y(z)]'# is true. Now, let A be an
assignment such that z® = t!. By Proposition 5.3.7, [y(t)]'4 =
{=z/t}]MA = [y(@)]A = t.

Part 2 Suppose S U {6} is satisfiable in M = (D,I), and p is a
constant symbol new to S and §. We will show S U {6,6(p)} is
satisfiable, though not necessarily in the model M.

Since 6 is true in M, so is (32)8(z) (x new to 8), and hence [§(z)]b4
is true for some assignment A. If we had 2 = p!, we could complete
the argument just as we did in part 1, but there is no reason to
suppose this happens. So, we construct a new model M* = (D, J),
having the same domain, with an interpretation J that is exactly
the same as I on everything except p, and for that case we set
p? = 2. Now, since the two models differ only with respect to the
constant symbol p, sentences not containing p will behave the same
in the two models. Then S U {6} is satisfiable in M*, and [6(z)]"#
is true as well. Since z® = pJ, we have [6(p)]"* = [6{z/p}]T4 =
[6(x)]"A = t. Then S U {6,6(p)} is satisfiable, but in M*. O

When Herbrand models are involved, things become especially simple.

Suppose L is a first-order language and M = (D, I) is a Herbrand model
for L.

1.

If v is a formula of L, «y is true in M if and only if v(d) is true in
M for every d € D.

If 6 is a formula of L, & is true in M if and only if 6(d) is true in
M for some d € D.

We can also extend the notion of structural induction to make use of
first-order uniform notation. We omit the proof, which is similar to that
of the corresponding propositional version.

(First-Order Structural Induction)
Every formula of a first-order language L has property Q, provided:

Basis step Fach atomic formula and its negation has property Q.
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Induction steps

If X has property Q so does ——X

If a; and oz have property Q so does a.

If B1 and B2 have property Q so does (3.

If v(t) has property Q for each term t, v has property Q.
If 6(t) has property Q for each term t, 8 has property Q.

There is a similar extension of structural recursion.

(First-Order Structural Recursion)
There is one, and only one, function f defined on the set of formulas of
L such that:

Basis step The value of f is specified explicitly on atomic formulas
and their negations.

Recursion steps
The value of f on ==X is specified in terms of the value of f
on X.

The value of f on « is specified in terms of the values of f on
a1 and as.

The value of f on B is specified in terms of the values of f on

B1 and Bs.
The value of f on ~y is specified in terms of the values of f on
v(2).

The value of f on & is specified in terms of the values of f on
6(t).

5.5.1. Prove that if the variable = does not occur in the sentence v, and
if ¢ is a closed term, then v(¢) = v(z){x/t}. (Similarly for § sentences
too, of course.)

5.5.2. Prove Proposition 5.5.2.
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5.6
Hintikka's
Lemma

Definition 5.6.1

Proposition 5.6.2

In the propositional case, we were able to obtain many fundamental
results as direct corollaries of a single theorem, the Model Existence
Theorem. This happy state of affairs continues. And just as before, it is
convenient to separate out part of the work by first proving a result that
is due to Hintikka. Of course, our task is considerably more difficult now
than it was earlier, since the notion of first-order model is more complex
than that of Boolean valuation.

Let L be some first-order language. A set H of sentences of L is called a
first-order Hintikka set (with respect to L), provided H is a propositional
Hintikka set (Definition 3.5.1), and in addition:

6. v € H = v(t) € H for every closed term ¢ of L.

7. 6 € H = 6(t) € H for some closed term ¢t of L.

Just as in the propositional case, the empty set is trivially a first-order
Hintikka set. So are many finite sets; we leave it to you to produce ex-
amples. But if L is a language with an infinite set of closed terms (which
will be the case if L has a function symbol and a constant symbol), then
any Hintikka set containing a 7y-sentence must be infinite. The following
essentially says that if L is a nontrivial first-order language, then every
Hintikka set with respect to L is satisfiable:

(Hintikka’s Lemma) Suppose L is a language with a nonempty set
of closed terms. If H is a first-order Hintikka set with respect to L, then
H is satisfiable in a Herbrand model.

Proof Let H be a first-order Hintikka set with respect to L. We begin
by constructing a model M = (D, I), then we verify that H is satisfiable
in it.

Let D be the collection of closed terms of L, which is a nonempty set
by the conditions of the Proposition.

We specify I on constant and function symbols. For a constant symbol
cof L, ¢! = c. If fis an n-place function symbol of L, and t1,..., tn
are members of D (hence closed terms of L), f!(t1,...,ts) is the closed
term f(t1,...,ts). It can now be verified that, for each closed term t of
L, t* =t (Exercise 5.6.2).

Next we define I on relation symbols. Suppose R is an n-place relation
symbol of L and ti,..., t, are members of D (hence closed terms of
L). The relation R! holds of (t1,...,tn) if the sentence R(t1,...,tn) is
a member of H. This completes the definition of the model M = (D, I).
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Finally we show, by structural induction, that for each sentence X of L,
X € H implies X is true in M. Once this is shown, we are done. We
begin with the atomic cases.

Suppose the atomic sentence R(t1,...,t,) is in H. We must show, for
each assignment A, [R(t4,...,t,)]"* = t, which will be the case pro-
vided (t{’A, ..., tEAY € RY. But since R(t1,...,t,) is a sentence, each ¢;

is a closed term, so tg’A =t = t;. Thus, what we need to show reduces
to (t1,...,tn) € RY, and we have this, since R(t1,...,t,) is in H. The
other atomic cases concerning T and L are trivial, and the negation of
atomic case is straightforward.

The propositional cases are essentially as they were earlier and are left to
you. We consider one quantifier case and leave the other as an exercise.

Suppose v is a sentence of L, the result is known for simpler sentences of
L, and vy € H; we show + is true in M. Since v € H, we have v(t) e H
for every closed term ¢, since H is a Hintikka set. By the induction
hypothesis, and the fact that D is exactly the set of closed terms, v(t) is
true in M for every ¢t € D. Then 7 is true in M by Proposition 5.5.2. O

5.6.1. Prove that if H is a first-order Hintikka set with respect to L
and if X is any sentence of L, then not both X € H and -X  H.

5.6.2. Prove that, in the model M = (D, I) constructed in the proof
of Hintikka’s Lemma, for each closed term ¢ of L, ¢! = ¢ and hence M is
a Herbrand model.

5.6.3. Complete the proof of Proposition 5.6.2 by doing the remaining
cases.

We have not yet presented any proof procedures for first-order logic;
indeed, we will not do so until the next chapter. But still, we have some
feeling for what formal proofs might be like, from seeing informal ones
in books and lectures. There is an important feature of both formal and
informal proofs that is easily overlooked when logic itself is not the sub-
Jject. Suppose, in the course of a proof, that we have established (3z)®.
We might want to introduce a ‘name’ for an item having the property
@, given that we have shown there is such an item. Of course we can’t
say anything like “let 3 be something for which property @ holds,” since
3 already has a standard meaning, and having property & might not fit
with that meaning. More generally, we can’t use any term that has al-
ready been assigned a role. The solution is to introduce a new collection
of terms that are ‘uncommitted,’ so that we have them available for this
purpose. In a classroom lecture you probably have heard a version of “let
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5.8

The Model
Existence
Theorem

Definition 5.8.1

¢ be something having the property ®.” The constant ¢ was something
previously unused, though this was probably taken for granted and never
mentioned explicitly. We will do the same thing here. The new constant
symbols we introduce will be called constant parameters or just parame-
ters. As it happens, the introduction of parameters plays a role not only
in proof procedures, but in the Model Existence Theorem as well.

Let L(R,F,C) be a first-order language, which we abbreviate as L. Let
par be a countable set of constant symbols that is disjoint from C. We
call the members of par parameters. And we use LP2" as shorthand for
the language L(R,F,C U par).

When we come to formal proofs, we will see that they are of sentences
of L but may use sentences of LP2". This is in keeping with informal
mathematical practice in which we may introduce new constant symbols
during the course of a proof, symbols that had no meaning when we
stated the theorem being proved.

5.7.1. Let p be a parameter. Show that ®{z/p} is valid if and only if
(Vz)®(x) is valid.

Once again we extend a result from the propositional to the first-order
setting. And once again, the extension is considerably more difficult
than the original. We begin with the definition of consistency property,
continuing the earlier propositional definition. Several different versions
of first-order consistency property are used in the literature. They are all
rather similar and are used for the same purposes, but on small details
they diverge at many points. Be warned. One minor piece of terminology
first: We call a parameter new to a set of formulas if it does not occur
in any formula of the set.

Let L be a first-order language, and let LP2" be the extension containing
an infinite set of additional constant symbols, parameters. Let C be a
collection of sets of sentences of LP2*. We call C a first-order consistency
property (with respect to L) if it is a propositional consistency property
as in Definition 3.6.1 and, in addition, for each S € C:

6. vy €S = SU{y(t)} €C for every closed term t of LP".

7.6 8= SU{é(p)} € C for some parameter p of LP?".
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Definition 5.8.4

(First-Order Model Existence) If C is a first-order consistency
property with respect to L, S is a set of sentences of L, and S € C,
then S is satisfiable; in fact S is satisfiable in a Herbrand model (but
Herbrand with respect to LP2 ).

The rest of the section will be spent in proving this theorem. The ar-
gument has several distinct parts, much as it did in the propositional
case. Recall, there we began by enlarging a consistency property to one
that was of finite character. Once we had done this, we were able to ex-
tend any member to a maximal one, which turned out to be a Hintikka
set. We follow a similar plan here, but the quantifier conditions make
life just a little more difficult. Still, the proof closely follows that of the
propositional version, and you should review the proof of Theorem 3.6.2
before going on.

Just as in the propositional setting, we call a first-order consistency prop-
erty subset closed if it contains, with each member, all subsets of that
member. We leave it to you to verify that every first-order consistency
property can be extended to one that is subset closed.

In the propositional argument, the next step was to extend to a con-
sistency property of finite character. We can not do that now, because
we can not ensure the result meets condition 7. (Try it.) So we proceed
in a more roundabout fashion. The basic intuition is that parameters,
having no preassigned roles, are essentially interchangeable. That is, if
p and q are parameters, wherever we use p, we could use q just as well.
But introducing this idea forces us to modify the notion of consistency
property somewhat.

An alternate first-order consistency property is a collection C meeting the
conditions for a first-order consistency property, except that condition
7 has been replaced by

7. 6€8=SU{6(p)} €C for every parameter p that is new
to S.

This alternate version is both weaker and stronger than the original. It
is stronger in the sense that it (generally) says lots of instances of a é-
sentence can be added to S, not just one. It is weaker in the sense that,
if all parameters already occur in formulas of S, so that none are new,
no instances at all can be added.

A parameter substitution is a mapping 7 from the set of parameters to
itself (not necessarily 1-1 or onto). If 7 is a parameter substitution, we
extend its action to formulas of LP? as follows: &7 means replace each
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Lemma 5.8.5

parameter occurring in ® by its image under . Likewise, the action of
7 is extended to sets of formulas by applying it to each member of the
set.

Suppose C is a first-order consistency property that is closed under sub-
sets. Define a collection Ct as follows: S € C*, provided Sm € C for
some parameter substitution w. Then:

1. C* extends C.
2. C* is closed under subsets.

3. C* is an alternate first-order consistency property.

‘We leave the proof of this Lemma to you and continue with the argument
for the Model Existence Theorem. As in the propositional version, we
say an alternate first-order consistency property C is of finite character,
provided S € C if and only if every finite subset of S belongs to C. Every
alternate first-order consistency property that is subset closed can be
extended to one of finite character. We leave the verification of this to
you as well.

Now we have the necessary background out of the way. Suppose C is a
first-order consistency property with respect to L, S is a set of sentences
of L, and S € C. We construct a model in which the members of S are
true. First, extend C to C*, an alternate first-order consistency property
of finite character. We work with C* (which also contains S), rather than
with C.

Since the language LP2" has a countable alphabet, it follows that there
are a countable number of sentences of the language. Let X7, X2, X3,...
be an enumeration of all sentences of LP2". Now we define a sequence
S1, Sa, Ss,...of members of C*, each of which leaves unused an infinite
set of parameters. (Note: This is true of .S, since S is a set of sentences
of L and so contains no parameters.)

S =385.

Having defined S,,, which leaves unused infinitely many parameters, we
define S, 41 as follows:

If S, U{X,} €C* let Spt1 = Sn.
If S,U{X,} € C*, and X, is not a § sentence, let S, 41 = SpU{Xn}.

If S, U{X,} € C*, and X,, = §, infinitely many parameters will be
new to S, U {X,}; choose one, say p, and let Sp4+1 = S, U{Xn}U

{6(p)}-
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5.9
Applications

Theorem 5.9.1

By construction, each S, € C*, and each S, is a subset of S,y 1. Finally,
let H=5; US> U S3U.... H extends S.

Claim 1 H € C*. The proof is exactly as it was in the propositional case
and depends on the fact that C* is of finite character.

Claim 2 H is maximal in C*. Again, the proof is exactly as in the propo-
sitional case.

Claim 3 H is a first-order Hintikka set with respect to LP2*. Here the
argument is essentially the same as in the propositional case, except for
the 6-condition. But we have taken care of that separately, during the
construction of the S,, sequence.

Now by Hintikka’s Lemma, H, and hence S, is satisfiable in a model
that is Herbrand with respect to LPa~.

5.8.1. Show that every first-order consistency property can be ex-
tended to one that is subset closed. (See Exercise 3.6.1.)

5.8.2. Prove Lemma 5.8.5.

5.8.3. Show that an alternate first-order consistency property that is
subset closed can be extended to one of finite character. (See Exer-
cise 3.6.3.)

For us, the main uses of the Model Existence Theorem will be in proving
completeness. But there are many other important applications of it.
In this section we consider some particularly fundamental ones, among
them the Compactness Theorem and the Lowenheim-Skolem Theorem.
We proved a propositional version of the Compactness Theorem earlier,
Theorem 3.6.3. The Léwenheim-Skolem Theorem has no propositional
analog.

(First-Order Compactness) Let S be a set of sentences of the
first-order language L. If every finite subset of S is satisfiable, so is S.

Proof Let C be a collection of sets of sentences of LP2", constructed
as follows. Put a set W in C, provided (1) infinitely many parameters
are new to W, and (2) every finite subset of W is satisfiable. S € C; it
meets condition 1 since its members are sentences of L, which contain
no parameters, and it meets condition 2 by assumption. C is a first-order
consistency property, hence the satisfiability of S follows immediately by
the First-Order Model Existence Theorem 5.8.2. O
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Corollary 5.9.2

Theorem 5.9.3

The Compactness Theorem is one of the most powerful tools in model
theory. We illustrate its uses by giving an easy proof of the following
remarkable result.

Let L be a first-order language. Any set S of sentences of L that is
satisfiable in arbitrarily large finite models is satisfiable in some infinite
model.

Proof Suppose S is satisfiable in arbitrarily large finite models. Let R
be a two-place relation symbol that is not part of the language L, and
enlarge L to L' by adding R. From now on we work with L’ with the
understanding that, in any model, we can modify the interpretation of
R without affecting the truth values of members of S, since R does not
occur in members of S. In Exercise 5.3.7 you were asked to write a sen-
tence involving R, call it A, such that As is not true in any one element
model, but can be made true in any domain with two or more things by
suitably interpreting R. We can think of A, as saying there are at least
2 things. Similarly, in Exercise 5.3.8 you were asked to write a sentence,
call it Ag, that informally says there are at least 3 things. The ideas
behind those exercises can be continued, and for each n we can produce
a sentence A, that asserts there are at least n things. Now consider the
set S* = SU{A,, As,...}. Since S is satisfiable in arbitrarily large finite
models, it follows easily that every finite subset of S* is satisfiable. Then
by the Compactness Theorem, the entire set S* is satisfiable. But any
model in which the entire of S* is satisfiable can not be finite, hence S
is satisfiable in some infinite model. O

In Exercise 5.3.9 you were asked to produce a sentence that was not
true in any finite model but could be made true in any infinite domain
by choosing a suitable interpretation. The corollary shows that the dual
of this is impossible: There is no sentence that can be made true in
any finite domain but is not true in any model with an infinite domain.
Thus, the notion of being finite can not be captured using the machinery
of classical first-order logic.

(Léwenheim-Skolem) Let L be a first-order language, and let S
be a set of sentences of L. If S is satisfiable, then S 1is satisfiable in a
countable model.

Proof Form a collection C of sets of sentences of LP2" as follows: Put a
set W in C, provided infinitely many parameters are new to W and W
is satisfiable. We leave it to you to check that C is a first-order consis-
tency property. If S is satisfiable, then S € C, so by the Model Existence
Theorem, S is satisfiable in a model that is Herbrand with respect to
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Exercises

LPa*, Now the language LP2" has a countable alphabet, hence a count-
able collection of closed terms. And it is the collection of closed terms
that constitutes the domain of a Herbrand model. O

Like the Compactness Theorem, the Lowenheim-Skolem Theorem also
has remarkable consequences. One example will have to suffice here.
Suppose we try to characterize the real-number system with a set of
first-order formulas S. That is, the intended model of S should have the
real numbers as its domain, and any other model should be isomorphic to
the intended one. But the Léwenheim-Skolem Theorem says that if S is
satisfiable in the intended model, it is also satisfiable in some countable
model. Since the reals are uncountable, there must be a model for S that
is not isomorphic to the intended one. The real number system has no
first-order characterization.

(Herbrand Model) A set S of sentences of L is satisfiable if and
only if it is satisfiable in a model that is Herbrand with respect to LP2T.
A sentence X of L is valid if and only if X is true in all models that are
Herbrand with respect to LP2T,

5.9.1. Complete the proof of Theorem 5.9.1 by verifying that C is a
first-order consistency property.

5.9.2. A graph is a structure G = (V, E) where E is a symmetric,
binary relation on V' (V' is meant to suggest “vertex” and E “edge”).
A subgraph of G is a structure (V*, E*) where V* is a subset of V and
E* = EN(V*xV*). A graph G is four colorable if there are subsets R, G,
B, Y (meant to suggest red, green, blue, and yellow) of V such that (Vz €
V)(R(z)VG(x)VB(z)VY (z)) and (Vz € V) (Vy € V){E(z,y) D [(R(z) D
~R(y)) A (G(z) O =G(y)) A (B(z) > ~B(y)) A (Y(2) D ~Y (y))]}. Show
that if every finite subgraph of a graph is four colorable, so is the entire
graph.

5.9.3. Prove Theorem 5.9.4.
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5.10
Logical
Consequence

Definition 5.10.1

Theorem 5.10.2

In general, knowing which first-order formulas are valid is not enough.
We also want to know which formulas follow from which formulas. Such a
notion was introduced in the propositional case in Section 3.9. Extending
it to first-order logic is straightforward.

A sentence X is a logical consequence of a set S of sentences, provided
X is true in every model in which all the members of S are true. If X is
a logical consequence of S, we symbolize this by S |=¢ X (the subscript
is to suggest first-order consequence).

Notice that we defined logical consequence only for sentences. The notion
can be extended to cover arbitrary formulas, but doing so is not quite
straightforward. If formulas other than sentences are allowed, we could
take S =5 X to mean the following: For every model M = (D, I), if the
members of S are true in M, then X is true in M (recall, a formula with
free variables is true in a model if it is true under every assignment). Or
we could take it to have a different meaning: For every model M = (D, I)
and for every assignment A, if the members of S are true in M under
the assignment A, then X is true in M under the assignment A. If only
sentences are allowed, these two notions coincide, since the truth value
of a sentence in a model does not depend on which assignment is used.
But in general, these are different. We have chosen to avoid the problem
by considering only sentences. Exercises 5.10.1 and 5.10.2 show we loose
no expressive power by doing so.

Perhaps the most important feature of logical consequence in first-order
logic is that, for each particular sentence X, to establish that it is a
consequence of a set S, only a finite amount of the information in S will
be needed. This is the content of the following theorem. Other significant
facts about consequence are contained in the exercises.

S Er X if and only if So =5 X for some finite set Sp C S.

Proof If Sy =y X for some finite Sy C S, then S =5 X using Exer-
cise 5.10.3, part 3. The converse direction is the more interesting. Sup-
pose S =5 X. Then S U {—-X} is not satisfiable. By the Compactness
Theorem 5.9.1, there must be a finite subset that is not satisfiable. We
can assume that finite subset contains =X (since adding a sentence to
an unsatisfiable set leaves it unsatisfiable). Hence, we have an unsatis-
fiable set of the form Sy U {—X}, where Sy is finite and Sy C S. Then
So =5 X, and the proof is complete. O
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5.10.1. For a formula ® with free variables x4, ..., x,, we write V® for
the sentence (Vz1) ... (Vz,)®. For a set S of formulas, we write V.S for
{V® | & € S}. Show the following are equivalent:

1. X is true in every model in which the members of S are true.
2. VS =5 VX.

5.10.2. Suppose X is a formula and S is a set of formulas of L. Let
D1, D2, ... be a list of parameters (which do not occur in formulas of L).
Let vy, va,... be the list of variables of L, and let o be the substitution
such that v;,0 = p;. Note that Xo is a sentence of LP2" as are the
members of So. Show the following are equivalent:

1. For any model M = (D, I) and for any assignment A, if the mem-
bers of S are true in M under the assignment A, then X is true in
M under the assignment A.

2. So = Xo.
5.10.3. Prove the following:

=

. X is valid if and only if S =5 X for every set S.

If Ac Sand A €S, then S =5 X for every X.

If SE=f X and S C S*, then S* ¢ X.
IfSEsX,andT ;Y forevery Y € S, then T =5 X.
SU{X1,X2} E¢Y if and only if SU{X1 A X} =5 Y.
SU{X}EfY ifandonlyif SEf X DY.

N e oo wo

AX1, .., Xn} Ef Y ifand only if (X1 A...AX,) DY is valid.
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First-Order Proof Procedures

6.1
First-Order
Semantic
Tableaux

In this chapter we show how to extend Hilbert system, natural deduc-
tion, Gentzen sequent, tableau, and resolution proof procedures from
propositional to first-order logic. We begin with tableaux and resolu-
tion, in versions that are best suited to hand work. In the next chapter,
we revise these to a form that is better for computer implementation. As
we observed in Section 5.3, we can confine ourselves to proving sentences,
since validity of arbitrary formulas can be reduced to that of sentences.
We begin with a tableau system in this section, treating resolution in
the next.

In Section 5.7 we discussed how, in informal proofs, new constant sym-
bols are routinely introduced. The formal counterpart is parameters, con-
stant symbols not part of the original language. We have already seen
them in the definition of first-order consistency property. They play a
role in our proof procedures exactly as one might expect. Proofs will be
of sentences of L but will use sentences of LP2", the extension of L by
the addition of a countable list of new parameters.

Tableau proofs are closed trees, constructed exactly as in propositional
logic (Section 3.1) but with two additional Tableau Expansion Rules,
given in Table 6.1. In the «-rule any closed term can be used, including
one involving parameters. But in the é-rule, we are required to use a
parameter that has not been previously introduced in the tree construc-
tion, called a new parameter. Informally, it must be a parameter, so that
it does not have an intended meaning in the original language L, and it
must be new to the tree so that it has not acquired a meaning earlier in
the course of the proof. (As a matter of fact, the parameter need only
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Example

be new to the branch, not to the whole tableau. Our soundness proof
for tableaux will apply to this stronger version.)

0 b
7(®) 6(p)
(for any closed (for a new

term t of LP2") parameter p)

TABLE 6.1. First-Order Tableau Expansion Rules

(Vz)[P(z) vV Q(z)] D [(3z)P(z) V (Vz)Q(z)] is given a tableau proof in
Figure 6.1. In this the propositional steps are as usual. Line 6 is from 5
by the é§-rule; the parameter c is new to the tableau at this point. Then
7 is from 4, and 8 is from 2 by the ~-rule, which allows any closed term
of LP2* in particular c.

~{(vo)[P(z) v Q(z)] > [(3z)P(z) V (VZ)Q(x)]}
(Vo) [P(w) v Q(x)]

~[(Ex) P(z) v (Vo)Q(z)]

=(3x) P(x)

~(vz)Q(z)

—Q(c)

~P(c)
P(c) vV Q(c)

N\

9. P(c) 10. Q(c)

0N O oW

FIGURE 6.1. Proof of (Vz)[P(z) V Q(z)] D [(z)P(z) V (VI)Q(z)]

If a tableau branch closes because it contains Z and —Z, we may say it
closes on Z. As in the propositional case, nothing in the tableau rules
requires closure on a formula that is atomic but in fact, if closure is
possible, closure at the atomic level can always be managed.

As usual, the tableau rules are non-deterministic. They say what may
be done, not what must be done. But unlike in the propositional case,
it is possible now to work forever, continually doing something really
new, without producing a closed tableau for a set S, even though a
closed tableau for S may exist. The «y-rule is the source of this difficulty.
As a trivial example, suppose we have a tableau branch containing both
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(3z)~P(z) and (Vy)P(y). We might apply the é-rule to the first formula,
adding —P(c), where c is a new parameter. But then using the y-rule on
the second, we might add one after the other P(t1), P(t2),...where 1,
t2,...are all distinct closed terms different from c. In this way we never
stop working, we never repeat an earlier step, and we never produce
the obvious closure. Of course, in this example what one should do is
clear, but in more complex cases things are not so easy. Indeed, unlike
in propositional logic, first-order logic has no decision procedure. There
are ways of partially coping with this, but the basic lesson remains: “life
is not impossible, but it is exponentially difficult, and sometimes worse.”

We can introduce a notion of strictness as we did with propositional tab-
leaux, so that formula reuse is forbidden. Things are more complicated
now, however. If we have a sentence  on a branch, and we add ~(t;),
and later use v again to add «(t2) where ¢; and ty are different, should
this be counted as a strictness violation or not? It turns out such things
must be allowed in order to have a complete proof procedure. Allowing
reuse of -sentences is related to the lack of a decision procedure for
first-order logic. At any rate, strictness issues become really significant
when implementation is being considered. Since that does not happen
until the next chapter, we impose no such restrictions for now.

Finally, just as in the propositional case, good heuristics are useful. The
following principles are easily seen to be helpful: When possible, apply
propositional rules before quantifier rules; among quantifier cases, apply
0-rules before -rules. Beyond this, you are on your own.

In Section 3.9 we showed how the propositional tableau system could be
extended to handle propositional consequence. The same modification
can be applied to the first-order version, to capture the notion of logical
consequence (Section 5.10). From now on we write S ¢, X (where the
subscript is meant to suggest first-order tableaux), provided there is a
closed first-order tableau for {—~X}, allowing the S-introduction rule: At
any time we can add any member of S to any unclosed branch.

6.1.1. Give, or attempt to give, tableau proofs of the following (they
are not all theorems):

=

- (3z2)(Vy)R(z,y) O (Vy)(3z)R(z,y)

- (Vz)(Jy)R(z,y) O (3y)(Vz)R(z,y)

3. (3z)[P(z) D (Vz)P(z))

- (32)[P(z) vV Q(2)] O [(3z)P(z) V (3z)Q()]
5. (3z)[P(z) A Q(z)] O [(3z) P(z) A (3r)Q(z))

[\

>
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10.

6. [Gz)P(z) A (V2)Q(z)] O (Gx)[P(z) A Q)]
7.
8
9

(Vz) (Fy) (V2) (Gw)[R(z,y) V ~R(w, )]

- (@) (V) [P(y) T (P(z) T Q2))] C (V2)Q()
. (Vz)[P(z) 2 Q] D [(3z)P(z) D Q] (where x does not occur free in
Q

(Vz)[P(z) D Q] D [(Vz)P(z) D Q] (where z does not occur free in
Q

6.1.2. For convenience, we give the following names to sentences:

2.

trans = (Vz)(Vy) (V2){[R(z,y) A R(y, 2)] D R(z,2)}
sym = (Vz)(Vy)[R(z,y) D R(y,z)]

ref = (Vo) R(z, )

nontriv = (Vz)(3y)R(z, y)

. Show {trans, sym} F=s ref by producing a model in which trans and

sym are true but ref is not.

Show {trans, sym, nontriv} s ref.

6.1.3. Prove the following:

1.
2.
3.

(Fz)(Vy) (V2) [(P(y) D Q(2)) D (P(z) > Q())]
(Fz) (YY) (V2)[(P(y) v Q(2)) D (P(z) v Q())]
(Fz) (V) (V2) (Vw)[(P(y) v Q(2) V R(w)) D (P(z) Vv Q(z) V R())]

6.1.4. Prove, by structural induction, that if there exists a closed first-
order tableau for a set S then there is a closed tableau for S in which
all closures are on atomic sentences.
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6.2
First-Order
Resolution

Example

o

700) 40
(for any closed (for a new
term ¢ of LP®F) parameter c)

TABLE 6.2. First-Order Resolution Expansion Rules

Just as we did with tableaux, we present a version of resolution that is
best suited to hand calculation, and we postpone until the next chap-
ter a variation that is better adapted to machines. Once again we are
interested only in proving sentences, and once again we do not impose
a strictness condition. The rules of this section should be thought of
as continuing those in Section 3.3. Just as in the previous section, we
prove sentences of a language L, but proofs use sentences of LP2%. In
Table 6.2, we add two new Resolution Expansion Rules, which have the
same appearance as the Tableau Rules in the previous section. As ex-
pected, in the y-rule any closed term can be used, including one involving
parameters, but in the §-rule we must use a parameter that has not been
previously introduced in the resolution construction.

We give a resolution proof of (Vz)(P(z)VQ(z)) D ((3z)P(z)V (Vz)Q(z)).

[

[F{(V2)(P(z) v Q(2)) S ((3z)P(z) V (V2)Q(x))}]
[(Vz)(P(z) v Q(x))]
[-((Bz)P(z) v (V2)Q(=))]
[~(3z)P()]

[-(v2)Q(x)]

[-Q(c)]

[=P(c)]

[P(c) v Q(0)]

[P(e), Q(c)]

[Q(c)]

11. []

© ® N o oop N

[
.

Here 6 is from 5 by a é-rule application, 7 is from 4, and 8 is from 2 by
v-rule applications.
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6.3
Soundness

Definition 6.3.1

Lemma 6.3.2

The resolution system, like tableaux, can be extended to capture the
notion of first-order logical consequence. The S-Introduction Rule for
resolution from Section 3.9 applies just as it did in the propositional
setting. We will write S ¢, X (where the subscript is meant to suggest
first-order resolution), provided there is a closed resolution expansion
for {—~X} allowing the following rule: At any time we c¢an add [Z] to a
resolution expansion for any member Z of S.

6.2.1. Give (or attempt to give) resolution proofs of the sentences in
Exercise 6.1.1.

6.2.2. Redo Exercise 6.1.2 using resolution.
6.2.3. Redo Exercise 6.1.3 using resolution.

6.2.4. Prove that an application of the Resolution Rule involving a
formula that is not atomic can be replaced by resolutions involving sim-
pler formulas. Hence, by structural induction, only atomic resolutions
need be used.

In Section 5.3 satisfiability was defined for sets of first-order formulas.
This definition is extended to the structures used in proofs, essentially
as in Section 3.4.

A tableau branch is satisfiable if the set of first-order sentences on it is
satisfiable. A tableau is satisfiable if some branch is satisfiable. Likewise,
a resolution expansion is satisfiable if there is some model in which every
disjunction in it is true.

Thinking of a tableau as a disjunction of conjunctions, this definition
amounts to saying a tableau is satisfiable if there is some model in which
it is true, and similarly for a resolution expansion, thinking of it as a
conjunction of disjunctions.

1. If any Tableau Expansion Rule is applied to a satisfiable tableau,
the result is another satisfiable tableau.

2. If any Resolution Ezpansion Rule, or the Resolution Rule is applied
to a satisfiable resolution expansion the result is again satisfiable.
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Theorem 6.3.3

Exercises

6.4
Completeness

Definition 6.4.1

Lemma 6.4.2

Proof We show only part 1. Suppose T is a satisfiable tableau and some
Tableau Expansion Rule is applied to T, producing the tableau T*. We
show T* is satisfiable. The cases where T has a satisfiable branch other
than the one on which the rule is applied, or the rule is a propositional
one, are treated just as in the propositional case, and the arguments
are not repeated here. (You probably should go back and look at the
proof of Proposition 3.4.2 again.) This leaves the two quantifier cases,
and Proposition 5.5.1 takes care of these. O

(Soundness)

1. If X has a tableau proof, then X is valid.

2. If X has a resolution proof, then X is valid.

Proof (of part 1). Suppose X has a tableau proof but is not valid; we
derive a contradiction. Since X is not valid, there is a model in which
—X is true. The construction of a tableau proof for X begins with the
one-branch, one-node tableau labeled — X, which is a satisfiable tableau.
By Lemma 6.3.2, every subsequent tableau is satisfiable, including the
final closed tableau that constitutes the proof. But a closed tableau can
not be satisfiable. O

6.3.1. Prove Part 2 of Lemma 6.3.2 and then Part 2 of Theorem 6.3.3.

6.3.2. Prove the strong soundness of the tableau system. That is, if S
is a set of sentences and X is a sentence of the language L, show that
S ts: X implies S |=¢ X.

6.3.3. Prove the strong soundness of the resolution system. That is, if
S is a set of sentences and X is a sentence of the language L, show that
S k¢ X implies S =5 X.

Just as in the propositional case, completeness results are easy to es-
tablish with the Model Existence Theorem available. We begin with
tableaux, then move on to resolution. For this section, let L be a fixed
first-order language.

A finite set S of sentences of LP2 is tableau consistent if there is no
closed tableau for S.

The collection of all tableau-consistent sets is a first-order consistency
property.
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Theorem 6.4.3

Proof Most of the proof is a straightforward extension of the cor-
responding propositional version, Lemma 3.7.2. The (3-case is slightly
tricky though, and we discuss it in some detail.

Suppose S is a finite set of sentences of LP2*, 8 € S, but neither SU{3:}
nor S U {f,} is tableau consistent; we show S is not tableau consistent.
Since SU {1} is not tableau consistent, there is a closed tableau, call it
T, for SU {B1}. Similarly, there is a closed tableau, call it T5, for S U
{B2}. The trouble is, these tableaux may be incompatible with each other
because we may have introduced a parameter via a §-rule application
in one tableau that had already been used in the other tableau. To get
around this, we need the following simple observation. Suppose T is a
correctly constructed tableau, c is a parameter used in the construction
of T, and d is a parameter that never appears in T. Let T* be like
T but with every occurrence of ¢ replaced by an occurrence of d. It is
straightforward to check that T* is still a correctly constructed tableau
and is closed provided T is closed.

So, by renaming parameters in this way, we can assume the closed tab-
leau T; for S U {3} and the closed tableau T3 for S U {82} meet the
condition that no é-rule application in either introduces a parameter
that has appeared in the other. Now T; and T> can be combined to
produce a closed tableau for S as follows. Say S = {3, X1,...,X,}. We
begin a tableau for S by using the $-rule to produce the following:

B B2

Then we simply append to the left branch the tableau T; and to the
right branch the tableau T, producing a closed tableau for S. O

(Completeness for First-Order Tableaux)
If the sentence X of L is valid, X has a tableau proof.

Proof If X does not have a tableau proof, there is no closed tableau
for {-X}. Then {-X} is tableau consistent, hence satisfiable by the
First-Order Model Existence Theorem, and so X is not valid. O
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Lemma 6.4.4

Definition 6.4.5

Lemma 6.4.6

Theorem 6.4.7

Exercises

In the propositional case, we noted that the completeness proof contin-
ued to work if we required atomic closure. This still applies. We leave it
to you to verify it.

Next we turn to resolution. We omit all details, since they are virtually
the same as in the propositional case or are similar to the first-order
treatment of tableaux. We carry over the notion of resolution derivation
from Chapter 3. The following generalizes Lemma 3.7.6.

Suppose S1 and Sa are sets of disjunctions, and Sy is an X -enlargement
of S1. If the disjunction D1 is resolution derivable from Sy, then there
is an X-enlargement Do of Di that is resolution derivable from Ss,
provided X contains no parameters occurring in the derivation of D;.

A finite set S of sentences of LP2" is resolution consistent if there is no
closed resolution expansion for S.

The collection of all resolution-consistent sets is a first-order consistency
property.

Proof Just as in the propositional setting, Section 3.7, except that in
the (-case some parameter renaming must be done, as in the tableau
argument above. O

(Completeness for First-Order Resolution)
If the sentence X of L is valid, X has a resolution proof.

Completeness can also be established under the stronger requirement
that all applications of the Resolution Rule be on atomic formulas.

6.4.1. Prove Lemma 6.4.6, and hence Theorem 6.4.7.

6.4.2. Prove the strong completeness of the tableau system. That is,
if S is a set of sentences and X is a sentence of the language L, show
that S |=¢ X implies S ¢ X.

6.4.3. Prove the strong completeness of the resolution system. That
is, if S is a set of sentences and X is a sentence of the language L, show
that S =5 X implies S k¢, X.
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6.5
Hilbert
Systems

In Chapter 4 we considered several proof procedures for propositional
logic besides tableau and resolution. Generally, these extend easily to
first-order logic. We show this for Hilbert systems now, and for natural
deduction and the Gentzen sequent calculus next.

As in the propositional case, there is considerable leeway in formulating
a Hilbert system, in the choice of axioms and rules. In addition we have
chosen to present a system in which only sentences are used, though
these may contain parameters. In other treatments free variables are
often used in a similar way instead.

We add one axiom scheme and one rule of inference to our propositional
Hilbert system. Uniform notation comes in, of course. We continue the
numbering from Section 4.1.

Axiom Scheme 10 « D «(t) for any closed term ¢ of LP2T,

The rule we add is the following, generally known as Universal General-
ization:

Universal Generalization

@ O v(p)
POy

provided p is a parameter that does not occur in the sentence ® O +.
In a derivation from a set S of sentences, p must not occur in S as
well.

We write S ¢, X if there is a derivation of X from the set S in the
first-order Hilbert system just presented. As usual, if @ ¢, X, we will
call the derivation of X a proof and say X is a theorem.

There is a weaker version of the Universal Generalization Rule that reads
as follows:

1(p)
Y

where p is a parameter that does not occur in +, or in the set of premises
of a derivation. The use of this version is easily justified. In a proof or
derivation, if we have a line (p), we can easily get T D ~(p). Then
T D « follows by the Universal Generalization Rule as we gave it, from
which we get v using Modus Ponens. From now on we will use this sim-
pler version of the Universal Generalization Rule, as convenient, without
special comment.
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Example

Theorem 6.5.1

Example

The following is a proof (sketch) of the L sentence (Vz)(P(z) A Q(z)) D
(Vz)P(z). In it p is a parameter.

L. (vz)(P(z) A Q(x)) O (P(p) A Q(P))
2. (P(p) AQ(p)) > P(p)

3. (vo)(P(z) A Q(z)) O P(p)

4. (Vz)(P(z) A Q(z)) D (Vz)P(x)

Here 1 is an instance of Axiom Scheme 10; 2 is a tautology, hence prov-
able in the propositional Hilbert system of Section 4.1; 3 follows from 1
and 2 by propositional logic. Finally 4 follows from 3 by the Universal
Generalization Rule.

The Deduction Theorem 4.1.4 is an important tool for propositional
Hilbert systems. Fortunately, it extends to the first-order setting.

(Deduction Theorem) In any first-order Hilbert system h with at
least Axiom Schemes 1 and 2, and with Modus Ponens and Universal
Generalization as the only rules of inference, SU{X} Fpp Y if and only
if Skpn (X DY).

Proof The proof is simply an extension of the proof of Theorem 4.1.4,
which you should go back and read. We continue the notation and ter-
minology from that proof, adding one more case corresponding to the
Universal Generalization Rule.

Suppose Z; comes from an earlier term Z; of Derivation One by the
Universal Generalization Rule. Say Z; is ® D «(p) and Z; is ® D 7.
The parameter p can not occur in & O ~, and since Derivation One
is a derivation from the set S U {X}, p can not occur in S or in X
either. Now, in the Derivation Two candidate, the corresponding lines
are (X D Z;)=(X D (® Dv(p)) and (X D Z;) =(X D(® D)). We
must insert extra lines justifying the presence of X D Z;, using X D Z;.
But this is easy. We have X D (® D «(p)). From it, by propositional
logic, we can get (X A ®) D v(p). By the Universal Generalization Rule
applied to this (note that p does not occur in either ® or X), we can get
(X A ®) D ~, and then by propositional manipulations again, we have
XD>(@®>9).O

Let S be the set {(Vz)(P(z) D Q(z)), (Vz)P(x)}. The following deriva-
tion shows that S k¢, (Vz)Q(x):

1. (Vz)P(x)
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Theorem 6.5.2

Theorem 6.5.3

Exercises

2. P(p)

3. (vo)(P(z) D Q())
4. P(p) > Q(p)

5. Q(p)

6. (Vz)Q(z)

Here 1 and 3 are members of S; 2 and 4 follow from 1 and 3 by Axiom
Scheme 10; 5 follows from 2 and 4 by Modus Ponens; 6 follows from 5
by Universal Generalization.

Now, two applications of the Deduction Theorem show that (Vz)(P(z) D
Q(z)) D ((Vz)P(z) D (Vz)Q(z)) is a theorem.

(Strong Hilbert Soundness)
If Stsn X, then S =5 X, where S is a set of sentences of L and X is
a sentence of L.

(Strong Hilbert Completeness)
If Sk=¢ X, then S b¢p X, where S is a set of sentences of L and X is
a sentence of L.

6.5.1. Give (or attempt to give) Hilbert-style proofs of the sentences
in Exercise 6.1.1.

6.5.2. Show that all instances of the scheme §(t) D & have Hilbert
system proofs, for any closed term t.

6.5.3. Show the following is a derived rule in the Hilbert system of this
section:

6(p) D@
6D0®

provided p is a parameter that does not occur in the sentence § O @,
and in a derivation from a set S of sentences, p does not occur in S as
well.

6.5.4. Prove Theorem 6.5.2.
6.5.5. Prove Theorem 6.5.3 (use the Model Existence Theorem).
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6.6

Natural
Deduction
and Gentzen
Sequents

A propositional natural deduction system was given in Section 4.2. The
addition of a few quantifier rules turns it into a first-order version. The
propositional rules came in pairs, rules for introducing and rules for
eliminating connectives. The quantifier rules can be given in the same
paired format, and for theoretical investigations it is important to do so
[36]. As it happens, though, the propositional system we gave becomes
a complete first-order system through the addition of elimination rules
only, so in the interests of simplicity, these are all we state.

Quantifier Rules

7E Y
v(t)

5E P
6(p)

In the 6E rule, p must be a parameter that does not occur previously in
the proof. In the vE rule, t can be any closed term of LP2". Incidentally,
the similarity of these rules and the tableau and resolution rules is no
coincidence.

Figure 6.2 displays a natural deduction proof of (Vz)[P(z) D Q(z)] D
[(Vz)P(z) D (Vx)Q(z)]. In it, 1 through 3 are assumptions; 4 is from 3
by 6E (p is a new parameter at this point); 5 is from 2 and 6 is from 1
by vE. Then 7 is from 5 and 6 by SE; 8 is from 4 and 7 by a negation
rule; 9 is likewise by a negation rule. Finally 10 and 11 are by SL.

In Section 4.3 we gave a sequent calculus formulation of propositional
logic. This too extends readily to a first-order version on the addition of
quantifier rules.

v-Rules
Ly(t) — A I — A,v(p)
Ly—A I'— Ay
6-Rules
I — A [,é6(p) = A
- A% o6 — A

As should be expected, in these rules ¢ can be any closed term, but p
must be a parameter that does not occur in any sentence below the line.
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L (Vo)[P(z) > Q()]
2. (Vz)P(z)

~(V2)Q(z)
-Q(p)
P(p)

P(p) > Q(p)

Q(p)
1

®» N> oo

9. (Vz)Q()

10. (Vz)P(z) D (Vz)Q(z)

1. (Vo)[P(z) > Q(z)] O [(V2)P(z) O (Vz)Q()]

FIGURE 6.2. A Natural Deduction Proof of (Vz)[P(z) D Q(z)] D
(Vo) P(z) 5 (Vz)Q()]

6.6.1. Give (or attempt to give) natural deduction-style proofs of the
sentences in Exercise 6.1.1.

6.6.2. Prove the soundness of the first-order natural deduction system.

6.6.3. Prove the completeness of the first-order natural deduction sys-
tem.

6.6.4. Give (or attempt to give) sequent calculus-style proofs of the
sentences in Exercise 6.1.1.

6.6.5. Prove the soundness of the first-order sequent calculus system.

6.6.6. Prove the completeness of the first-order sequent calculus sys-
tem.
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Implementing Tableaux and
Resolution

7.1
What Next

In using either the resolution or the tableau system, the basic problem
lies with the ~-rule. It allows us to introduce any closed term, but ob-
viously some choices will be better than others. How do we decide? Our
solution will be to postpone the choice, by going from v to y(z), where
z is a free variable whose value we will figure out later. But this intro-
duces problems with the é-rule, since we won’t know which parameters
are new if we haven’t yet said what terms we have used in -rule appli-
cations. Our solution for this will be to introduce a more general notion
of parameter, allowing function symbols. Then the d-rule will become:
from &6 conclude §(f(z1,...,%x,)), where f is a new function parameter
and z1,..., T, are the free variables introduced so far. Intuitively, this
forces the term to be new because we can figure out what it is only after
we have made choices for z1,. .., £,,. The details will come later, but the
basic issues confront us now. Both tableau and resolution proofs must be
allowed to contain free variables, whose values must be chosen somehow.

In earlier chapters free variables did not occur in proofs, and the ba-
sic problem for tableaux, say, was whether branches were closed. Once
free variables are allowed, the issue changes to the following: Can values
for free variables be found that will result in closed branches? For in-
stance, if a branch contains P(t;) and —P(t3), where ¢; and t2 are terms
containing free variables, we want to know whether some assignment of
values to these free variables will result in ¢; and ¢ becoming identi-
cal and so yielding a contradiction. In other words, we want to solve
the equation t; = to in the space of terms. More generally, since tab-
leaux almost always have several branches that must be closed, we will
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7.2
Unification

Definition 7.2.1

Example

have the problem of solving a system of simultaneous equations. Similar
considerations apply to resolution-style proofs. Algorithms exist for this
problem, under the general heading of Unification Algorithms. It is such
algorithms that we take up first.

Suppose we have two terms ¢ and u, each containing variables. How do we
decide whether there are any substitutions that make ¢ and u identical,
and if there are, how do we find them all? A substitution o such that
to = uo is called a unifier of t and u, so the problem is to determine
the set of unifiers for ¢ and u. Another way of expressing this sounds
more algebraic: Determine the set of solutions for the equation ¢ = w.
In fact, we will often be interested in solving a system of equations. The
relationship that this suggests with linear algebra is a real one and is
discussed by Lassez and co-workers in [29].

Many different unification algorithms for solving the unification problem
have been proposed. The earliest, by Herbrand [25], manipulated sys-
tems of equations. On the other hand, Robinson [42] worked with terms
and substitutions directly. It was Robinson’s paper [42] that introduced
the term wunification, and recognized the concept as fundamental for
automated theorem proving. More recently, unification algorithms have
been proposed that are more efficient, but they are harder to under-
stand. We present an algorithm that follows Robinson’s treatment fairly
closely, in the interests of pedagogical simplicity. The report by Lassez
and colleagues [29] provides references to other unification algorithms
and a fuller study of theoretical issues than we can present here.

For the rest of this section, let L be a fixed first-order language. All
reference to terms is to terms of L.

Let o1 and o2 be substitutions. We say o9 is more general than oy if,
for some substitution 7, o7 = oa7.

For the two substitutions o1 = {z/f(g9(a, h(2))), y/g9(h(z),b), z/h(x)}
and o2 = {z/f(9(z,y)), y/g(z,b)}, o2 is more general than o, because
01 = 02T where 7 = {z/a, y/h(z), z/h(x)}.

The idea is that o2 is more general than o, if we can get the effect of o4
by first carrying out o2 and then making some further substitutions for
variables. Every substitution is more general than itself, because o = o,
where € is the identity substitution. Thus, we are using the term more
general in a weak rather than a strict sense. The following shows the
notion is transitive as well as reflexive.
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Proposition 7.2.2

Definition 7.2.3

Example

Definition 7.2.4

Definition 7.2.5

Proposition 7.2.6

If o3 is more general than oo and o2 is more general than o1, then o3
is more general than o1.

Proof Since oy is more general than oy, there is a substitution 7 such
that o1 = 027. Since o3 is more general than o3, there is a substitution
1 such that o2 = o37n. But then 01 = 027 = (03n)7 = 03(n7), and so o3
is more general than o;. O

Let t; and > be two terms (this definition extends in the obvious way
to more than two terms). A substitution o is a wunifier, for ¢t; and ¢tz
provided ti0 = tgo. t; and t; are unifiable if they have a unifier. A
substitution o is a most general unifier if it is a unifier and is more
general than any other unifier.

The terms f(y, h(a)) and f(h(z), h(z)) are unifiable using the substitu-
tion {y/h(z), z/a}. Also, the substitution {z/k(w),y/h(k(w)),z/a} is a
unifier, but the first substitution is more general. The terms f(z,z) and
f(a,b) are not unifiable (here z is a variable, and a and b are constant
symbols).

It is possible for two terms to have several most general unifiers, but
there are close relationships between them. This will play no role in
what follows, so we consider the point only briefly and do not prove the
strongest possible results.

A substitution 7 is a variable renaming for a set V of variables if

1. For each z € V, zn is a variable;

2. For z,y € V with z # y, zn and yn are distinct.

The variable range for a substitution o is the set of variables that occur
in terms of the form zo, where x is a variable.

Suppose both o1 and o2 are most general unifiers of ty and tz. Then there
is a variable renaming n for the variable range of o1 such that o1n = o02.

Proof o, Is a unifier of ¢t; and t3, but o, is most general, hence more
general than o3. Then there is a substitution 7 such that o2 = o17.
Switching around the roles of o; and o2, there is a substitution 7 so
that 0y = o027. Then 07 = o027 = (01n)7. We show 7 is a variable
renaming for the variable range of o;.

Suppose y is in the variable range of o1; say it occurs in the term zo;.
Then yn can not be of the form f(---) where f is a function symbol, for
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if it were, (zo1)n would be longer than zo1, and since no substitution
can make a term shorter, zo1n7T would be at least as long as To1m,
longer than zoy, and hence unequal to zo;, which is impossible, since
o1 = (o1n)7. Likewise, yn can not be a constant symbol, for then there
would be no way for 7 to restore occurrences of y when applied to zo7,
and so zo1nT and zo; would again be different. It follows that yn must
be a variable, though it need not be y itself. Finally, it is easy to see
that if y1 and yo are distinct variables in the variable range of o1, y17
and y2n must be distinct variables. O

Now what we are heading for is an algorithm that can say of two terms
whether or not they are unifiable and, if they are, will produce a most
general unifier. For this purpose it is convenient to introduce some special
terminology first.

We have been writing terms in conventional, linear fashion. It is also
common to think of them as trees. For example, f(g(z,y,h(a,k(b))))
can be represented as the (labeled, ordered) tree displayed on the left-
hand side in Figure 7.1, where the arguments of a function are displayed
as the children of the node labeled with the function. In general, we will
freely interchange tree terminology with that which we have been using.
These are ordered trees, and sometimes it is useful to make explicit
whether a node in a tree is the first child of its parent (first from the
left, say), or the second, or whatever. An augmented tree representation
of a term is a tree in which the label on each node has been augmented
by an integer representing which child it is of its parent. For instance,
the augmented version of the tree for the term f(g(z,y, h(a, k(b)))) is
on the right in Figure 7.1.

f 1,0

| |

g g,1

RN 1N
z Y h z,1 y,2 h,3
SN VRN
a k a,l k,2
; b

FIGURE 7.1. Terms as Trees
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Definition 7.2.7

Example

Now, given two terms that differ, we want to locate a place where they
disagree, but we want the broadest disagreement possible. For instance,
f(g(a)) and f(h(b)) differ on a and b, but they differed on g and h before
we got inside to the level of a and b.

Let t1 and t3 be two terms. A disagreement pair for these terms is a pair,
d1, da, where d; is a subterm of ¢; and d is a subterm of ¢5 such that,
thinking of terms as augmented trees, d; and dz have distinct labels at
their roots, but the path from the root of t; down to the root of dy, and
the path from the root of t2 down to the root of dz are the same.

Figure 7.2 shows a disagreement pair. Note that in both trees the paths
from the root node down to the subterms constituting the disagreement
pair are the same, (f,0), (h,2). In this example there is only one dis-
agreement pair, though in other cases there could be more.

f(g(a,z), h(c,j(y,z))) f(g(a,z), h(c, k(2)))
f,0 5,0
/\
g’l h’72 gal ha2
a,l r,2 ¢l a,l r,2 ¢l

y, 1 xT,2 z,1

disagreement pair

iy, z) k(z)

FIGURE 7.2. A Disagreement Pair

If two terms differ, there must be one or more disagreement pairs. Also
if o unifies distinct terms ¢; and t2, it must unify each disagreement pair
of these terms.

Now we state the Unification Algorithm that is due to Robinson. We
give it in non-deterministic form, using a kind of pseudocode. The in-
struction FAIL means: terminate the algorithm and issue some kind of
failure message. At the start ¢; and ¢, are terms that have been specified
from the outside and that we wish to unify. o I<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>