NMavemioTnuio MNarpwv

Functional Programming yia
Katavepnueva Zovotnuata

MapReduce / Hadoop
[.TapopaAlakng. 2.2100tag

MapReduce

Big Data Processing

O Crawled web documents (at Google, Bing, Yahoo!)
B inverted indices (which pages contain each word)
®m graph representation of the links between pages

O Monitoring

B Web requests logs:
what were the most popular queries today?

m How did users click on ads in the last month?
(who should pay for adwords traffic?)

O Information retrieval, machine learning, Al.

O Numerical mathematics

O Bioinformatics...

Big Data processing: characteristics

O Most of these computations are conceptually straightforward on a single machine

O Butthe volume of data is HUGE

® Need to use many (1.000s) of computers together to get results in a
reasonable amount of time

B Management of parallelization, data distribution, failures handling, etc.
=> much more complex than the computation itself

8/5/2023

MapReduce

O Simplifying model for large-scale data processing
®m Inspired by functional programming paradigm
O LISP (LISt Processing)
B Adapted to embarrassingly parallel workloads

O Lots of concurrent operations on separate parts of the data with little or
no synchronization

B Runtime support for parallelization, data distribution, failures handling, etc.

O Implementations
B Google’s own C++ implementation
B Hadoop Java open-source implementation

B Many more in commercial and open-source products

8/5/2023

Outline

Some background on functional programming
MapReduce as seen by the programmer
Execution and runtime support

Examples

Some optimizations/extensions

O O0O0o0oan

Hadoop

Functional Programming

O FP = computation as application of functions

B Theoretical ground = lambda calculus

O How is it different from imperative programming?
B Traditional notions of ‘data’ and ‘instructions’ are not applicable

O Execution = evaluation of functions

m Functions in the sense of mathematical functions

O Referential transparency: no side effects in the function (such as
updating shared state) -- unlike Java or C

O Calling a function twice with the same arguments always returns the
same value

m Data flows are implicit in the program
O Different orders of execution are possible

Mpoxwpnuéva ©¢pata oe Katavepnuéva ZuoThpara 8/5/2023

Referential Transparency in Programming

public static void main(String... args) {
printFibs(10); 0,1,1,2,3,5,813,21,34,......
)

Here, the next method can’t be
replaced with anything having the
for (int i = 0; i < limit; i++) | same value, since the method is

System.out.printIn(fibs.next()); 3:15111?1?::::;2;? a different
} .

public static void printFibs(int limit) {
Fibs fibs = new Fibs();

}

Using such non referentially
transparent methods requires a
strong discipline in order not to
share the mutable state involved in
the computation.

static class Fibs {
private int previous = -1;
private int last = 1;

ublic Integer next : .
P _ 5¢ 01 L Functional style avoids such
last = previous + (previous = last); : .
. methods in favor of referentially
return previous + last;

| transparent versions.

i

>1Upog BoUuAyapng — MavetmoTruio MNatpwv

Mpoxwpnuéva ©¢pata oe Katavepnuéva ZuoThpara 8/5/2023

State and Mutable Data

mutable suggest anything that can change, i.e. an int

inta=0;

System.out.prtinln(a); //prints 0

a=2

System.out.prtinln(a); / /now prints 2, so its mutable

In java a string is immutable. you cannot change the string value only its reference.

String s1 = "Hello";

System.out.println(sl); / /prints Hello

String s2 = s1;

s] = ”Hi",‘

System.out.println(s2); / /prints "Hello" and not "Hi”

State is something which an instance of a class will have (an Object).

If an Object has certain values for its attributes then it is in a diffrent state than
another Object of the same class with different attribute values......

>1Upog BoUuAyapng — MavetmoTruio MNatpwv

Some functional languages

O OCaml, Scala, ML, Haskell, Scheme, F# (in MS .NET), etc.

Haskell), EScala

A Purely Functional Language

O Some languages are hybrids between imperative and functional styles
m JavaScript, Lua, etc.

O In some aspects, a subset of SQL and Spreadsheets (Excel without VB macro) are
forms of functional programming languages

O Let’s take the example of LISP

8/5/2023

The example of LISP

O Lisp # Lost In Silly Parentheses

B Lists are a primitive data type

B Functions written in prefix notation
+ 1 2) - 3

(
(* 3 4) - 12

(sgrt (+ (* 3 3) (* 4 4))) - 5
(

(

define x 3) - x
* x 5) -5 15

Functions

O Functions = lambda expression bound to variables
(define foo

(lambda (x vy)
(sgqrt (+ (* x x) (* vy v)))))

O Syntactic sugar for defining functions
B The expression above is equivalent to:

(define (foo x V)
(sqrt (+ (* x x) (* v v))))

O Once defined, functions can be applied:

(foo 3 4) - 5

Other features

O In Lisp/Scheme, everything is an s-expression
® No distinction between ‘data’ and ‘code’
B Easy to write self-modifying code

O Higher-order functions
® Functions that take other functions as arguments

(define (bar £ x) (£ (f x)))

Doesn’t matter what f is, just apply it twice.

(define (baz x) (* x x))
(bar baz 2) - 1o

Recursion is your friend

O Simple factorial example

(define (factorial n)
(if (= n 1)
1
(* n (factorial (- n 1)))))
(factorial ©6) —» 720

O Even iteration is written with recursive calls!

(define (factorial-iter n)
(define (aux n top product)
(1f (= n top)
(* n product)
(aux (+ n 1) top (* n product))))
(aux 1 n 1))
(factorial-iter 6) — 720

8/5/2023

Lisp — MapReduce

O But what does this have to do with MapReduce?
m After all, Lisp is about processing lists

O Two important concepts (first class higher order functions) in functional
programming

B Map: do something to everything in a list

B Fold: combine results of a list in some way

Map

O Map is a higher-order function

O How map works:
B Function is applied to every element in a list

m Resultis a new list

O Note that each operation is independent and, due to referential transparency (no
side effects of functions evaluation), applying f on one element and re-applying it
again will always give the same result

8/5/2023

Fold

O Foldis also a higher-order function

O How fold works:
® Accumulator set to initial value
Function applied to list element and the accumulator
Result stored in the accumulator
Repeated for every item in the list

Result is the final value in the accumulator

FRYYYY
S B0 S,

Map/Fold in action

O Simple map example:

(map (lambda (x) (* x x))
'(1 2 3 4 5))
- '"(1 4 9 1lo6 25)

O Fold examples:

(fold + 0 ' (
(fold * 1 ' (

O Sum of squares:
(define (sum-of-squares V)
(fold + 0 (map (lambda (x) (* x x)) Vv)))

(sum-of-squares '"(1 2 3 4 5)) - 55

8/5/2023

Lisp — MapReduce

O Let’s assume a long list of records: imagine if...
B We can parallelize map operations

B We have a mechanism for bringing map results back together in the fold
operation

O That’'s MapReduce!

O Observations:
B No limit to map parallelization since maps are independent

B We can reorder folding if the fold function is commutative and associative

MapReduce: Programmers’ View

O Programmers specify two functions:
® map (k, v) 2 <k’, v'>*
® reduce (k’, V') &> <k”, v/’>*

O All v/ with the same k’ are reduced together

O Usually, programmers also specify a partition function:
B partition (k’, number of partitions n) = partition for k’
m Often a simple hash of the key, e.g., hash(k’) mod n
m Allows reduce operations for different keys in parallel

O MapReduce jobs are submitted to a scheduler that allocates the machines and
deals with scheduling, fault tolerance, etc.

MapReduce Programming Model

O Data type: key-value records

O Map function:
(K, Vi) =Plist(K o, V

in’ inter)

O Reduce function:

(K list(V, o) =P list(K, e Vout)

inter? inter

>1Upog BoUuAyapng — MavetmoTruio MNatpwv

8/5/2023

A divide and conquer approach

Data Store

initial (k, a-']- pairs

initial tk: V) pairs

initial [k V) pairs initial (k, v] pairs
WGHKEHS ---------- - - - -
k1, values... k1, values... k1, values... k1, values...
k2 wvalues... k2 wvalues... k2 values... k2 wvalues...
k3, values... k3, values... k3, values... k3, values...

i ’ . v

Barrier: aggregate values by keys

k1. values... k2, values... k3, values...

' ' '

WORKERS------------------ =| REDUCE REDUCE REDUCE

final kK1 value(s) final k2 value(s) final k3 value(s)

MapReduce Examples

8/5/2023

Example 1: word count

O Count how many times each word appears in a text corpus

Map (String input key, String input value) :
// input key: document name
// input value: document contents
for each word w in input values:
EmitIntermediate(w, "1");

Reduce (String key, Iterator intermediate values):
// key: a word, same for input and output
// intermediate values: a list of counts
int result = 0;
for each v in intermediate values:
result += ParselInt (v);
Emit (AsString (result));

(complete C code in the OSDI MapReduce paper)

Mpoxwpnuéva Ofuata oe Katavepnuéva ZuoTtruarta

Example: Word Count

def mapper(line):
foreach word in line.split():
output(word, 1)

def reducer(key, values):
output(key, sum(values))

>1Upog BoUuAyapng — MavetmoTruio MNatpwv

An Optimization: The Combiner

O

Local reduce function for repeated keys produced by same map

O

For associative ops. like sum, count, max
O Decreases amount of intermediate data

O Example: local counting for Word Count:

def combiner(key, values):
output(key, sum(values))

>1Upog BoUuAyapng — MavetmoTruio MNatpwv

Mpoxwpnuéva Ofuata oe Katavepnuéva ZuoTtruarta

Word Count with Combiner

Input

A
the

guick
brown
fox

the fox
ate the
mouse

how

now
brown

COW

Map

Shuffle & Sort Reduce

the, 1
brown, 1
fox, 1

how, 1
now, 1
brown, 1

>1Upog BoUuAyapng — MavetmoTruio MNatpwv

8/5/2023

Output

W
brown,
2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse,
1
quick, 1

8/5/2023

Example 2: distributed grep

O Grep reads a file line by line, and if a line matches a pattern (e.g., regular
expression), it outputs the line

O Map function
®m read a file or set of files
B emit a line if it matches the pattern
O key = original file (or unique key if origin file does not matter)
O (file_id, line_number)

O Reduce function
®m identity (use intermediate results as final results)

m (file_id, list (line_number))

8/5/2023

Example 3: URL access frequency

O Input: log of web page requests (after a query)

O Output: how many times each URL is accessed
B Variant: what are the top-k most-accessed URLs?

O Map function
B Parse the log, output a <URL, 1> pair for each access

O Reduce function
m For each key URL, a list of n “1” is associated (i.e., added)

® Emit a final pair <URL, n>

Example 4: Reverse Web-link graph

O Get all the links pointing to some page
B This is the basis for the PageRank algorithm!

O Map function

B output a <target,source> pair for each link to target URL in a page named
source

O Reduce function

B Concatenate the list of all source URLs associated with a given target URL and
emits the pair:
<target,list(sources)>

Example 5: Inverted index

O Get all documents containing some particular keyword
B Used by the search mechanisms of Google, Yahoo!, etc.
m Second input for PageRank

O Map function

®m Parse each document and emit a set of pairs
<word, documentID>

O Reduce function
m Take all pairs for a given word
m Sort the document IDs

B Emit a final <word,list(document IDs)> pair

Example 5: Inverted index

To be, or not to be To beisto do

<to,a>,<be,a>,<or,a>, <to,b>,<be,b>,<is,b>,
<not,a>,<to,a>,<be,a> <to,b>,<do,b>

<be,<a,a,b>>,<do,>, <not,<a>>,<or,<a>>,
<is,> <to,<a,a,b,b>>

-

reduce

<be,<a,b>>,<do,>,<is,>,<not,<a>>,<or,<a>>,<to,<a,b>>

reduce

Ex. 6: Avg. max temp per calendar day

<200001011200,10> <200101011500,21>
<200001011230,12>... <200101011530,21>...
<20000101,10> <20010101,21>
<20000101,12>... <20010101,21>
<20000101,<10,12,...>>... <20010101,<21,21,...>>...

reduce reduce

<20000101,15>,<20010101,23>...

Ex. 6: Avg. max temp per calendar day

<20000101,15> <20000201,21>
<20010101,23>... <20010201,22>...
<0101,15> <0201,21>
<0101,23>... <0201,22>
<0101,<15,23,...>>... <0201,<21,22,...>>...

reduce

- L

<0101,17>,<0201,23>...

8/5/2023

Hadoop

O Hadoop is the most known open-source MapReduce implementation
B Lots of contributions by Yahoo!, now an Apache foundation project
m Written in Java
B Uses the HDFS file system (amongst others)
B Many extensions and optimizations over the original Google paper

O A MapReduce implementation of choice when using Amazon’s cloud services
B EC2: rent computing power and temporary space

m S3:rentlong term storage space

8/5/2023

Use cases 1/3

O NY Times
@ljgNgmﬁnrk@imgg m Large Scale Image Conversions
®m 100 Amazon EC2 Instances, 4TB raw TIFF
data

m 11 Million PDF in 24 hours and 240S

O Facebook
B Internal log processing
B Reporting, analytics and machine learning

m Cluster of 1110 machines, 8800 cores and
12PB raw storage

® Open source contributors (Hive)

facebook.

O Twitter
®m Store and process tweets, logs, etc
® Open source contributors (Hadoop-Izo)

Use cases 2/3

O Yahoo
® 100.000 CPUs in 25.000 computers
YAHOO-’® m Content/Ads Optimization, Search index
B Machine learning (e.g. spam filtering)
® Open source contributors (Pig)

O Microsoft
- n ® Natural language search (through Powerset)
M’croSOft ® 400 nodes in EC2, storage in S3

® Open source contributors (!) to HBase

O Amazon
amazon m ElasticMapReduce service
web services” B On demand elastic Hadoop clusters for the
Cloud

8/5/2023

Use cases 3/3

O AOL
B ETL processing, statistics generation

’ ® Advanced algorithms for behavioral
Ao'l analysis and targeting

O Linkedln

®m Used for discovering People you May
Know, and for other apps

m 3x30 node cluster, 16GB RAM and 8TB

Linked [T}

storage
00 O Baidu
00 m Leading Chinese language search engine
BaichBE

m Search log analysis, data mining
m 300TB per week
® 10 to 500 node clusters

Conclusion

	Slide 1: Functional Programming για Κατανεμημένα Συστήματα
	Slide 2: MapReduce
	Slide 3: Big Data Processing
	Slide 4: Big Data processing: characteristics
	Slide 5: MapReduce
	Slide 6: Outline
	Slide 7: Functional Programming
	Slide 8: Referential Transparency in Programming
	Slide 9: State and Mutable Data
	Slide 10: Some functional languages
	Slide 11: The example of LISP
	Slide 12: Functions
	Slide 13: Other features
	Slide 14: Recursion is your friend
	Slide 15: Lisp → MapReduce
	Slide 16: Map
	Slide 17: Fold
	Slide 18: Map/Fold in action
	Slide 19: Lisp → MapReduce
	Slide 20: MapReduce: Programmers’ View
	Slide 21: MapReduce Programming Model
	Slide 22: A divide and conquer approach
	Slide 23: MapReduce Examples
	Slide 24: Example 1: word count
	Slide 25: Example: Word Count
	Slide 26: An Optimization: The Combiner
	Slide 27: Word Count with Combiner
	Slide 29: Example 2: distributed grep
	Slide 30: Example 3: URL access frequency
	Slide 31: Example 4: Reverse Web-link graph
	Slide 32: Example 5: Inverted index
	Slide 33: Example 5: Inverted index
	Slide 34: Ex. 6: Avg. max temp per calendar day
	Slide 35: Ex. 6: Avg. max temp per calendar day
	Slide 36: Hadoop
	Slide 37: Use cases 1/3
	Slide 38: Use cases 2/3
	Slide 39: Use cases 3/3
	Slide 40: Conclusion

