
Functional Programming

Slides taken from

http://turing.cs.pub.ro/fp_08

Lecture No. 12

Analysis and Efficiency of Functional

Programs

◼ Reduction strategies and lazy evaluation

1. Reduction strategies and lazy evaluation

◼ Programming is not only about writing

correct programs but also about writing fast

ones that require little memory

◼ Aim: how Haskell programs are commonly

executed on a real computer a foundation

for analyzing time and space usage

◼ Every implementation of Haskell more or

less closely follows the execution model of

lazy evaluation

1.1 Reduction

◼ Executing a functional program, i.e.

evaluating an expression means to

repeatedly apply function definitions until all

function applications have been expanded

◼ Implementations of modern Functional

Programming languages are based on a

simplification technique called reduction.

Expression

Syntax analysis

Type analysis

Reduction

Value

Syntactic error

Type error

Evaluation error

Evaluation in a strongly typed language

E
V
A
L
U
A
T
I
O
N

◼ The evaluation of an expression passes through three stages

◼ Only those expression which are syntactically correct and

well typed are submitted for reduction

What is reduction?

◼ Given a set of rules R1, R2, …, Rn (called reduction rules)

◼ and an expression e

◼ Reduction is the process of repeatedly simplifying e using

the given reduction rules

e e1 Ri1

 e2 Ri2

….

 ek Rik, Rij{R1, R2, …, Rn}

until no rule is applicable

◼ ek is called the normal form of e

◼ It is the simplest form of e

Expression

Reduction

Normal form

2 types of reduction rules

◼ Built-in rules:

addition, substraction, multiplication, division

◼ User supplied rules:

square x = x * x

double x = x + x

sum [] = 0

sum (x:xs) = x + sum [x+1:xs]

f x y = square x + square y

1.2 Reduction at work

◼ Each reduction step replaces a subexpression by an

equivalent expression by applying one of the 2

types of rules

f x y = square x + square y

f 3 4 (square 3) + (square 4) (f)

 (3*3) + (square 4) (square)

 9 + (square 4) (*)

 9 + (4*4) (square)

 9 + 16 (*)

 25 (+)

Reduction rules

◼ Every reduction replaces a subexpression, called reducible

expression or redex for short, with an equivalent one, either

by appealing to a function definition (like for square) or by

using a built-in function like (+).

◼ An expression without redexes is said to be in normal form.

◼ The fewer reductions that have to be performed, the faster

the program runs.

◼ We cannot expect each reduction step to take the same

amount of time because its implementation on real hardware

looks very different, but in terms of asymptotic complexity,

this number of reductions is an accurate measure.

Alternate reductions

Possible ways of evaluating square

Comments

◼ There are usually several ways for reducing a given

expression to normal form

◼ Each way corresponds to a route in the evaluation tree: from

the root (original expression) to a leaf (reduced expression)

◼ There are three different ways for reducing square (3+7)

◼ Questions:

◼ Are all the answers obtained by following distinct routes

identical?

◼ Which is the best route?

◼ Can we find an algorithm which always follows the best

route?

Q&A

◼ Q: Are all the values obtained by following

distinct routes identical?

◼ A: If two values are obtained by following two

different routes, then these values must be identical

◼ Q: Which is the best route?

◼ Ideally, we are looking for the shortest route.

Because this will take the least number of reduction

steps and, therefore, is the most efficient.

Q&A

◼ Q: Can we find an algorithm which always

follows the best route?

◼ In any tree of possible evaluations, there are

usually two extremely interesting routes

based on:

◼ An Eager Evaluation Strategy

◼ A Lazy Evaluation Strategy

1.3 Eager evaluation

◼ Given an expression such as:

f a

where f is a function and a is an argument.

◼ The Lazy Evaluation strategy reduces such an

expression by attempting to apply the definition of

f first.

◼ The Eager Evaluation Strategy reduces this

expression by attempting to simplify the

argument a first.

Example of Eager Evaluation

Example of Lazy Evaluation

1.4 A&D of reduction strategies

◼ LAZY EVALUATION = Outer-most Reduction

Strategy

◼ Reduces outermost redexes = redexes that are

not inside another redex.

◼ EAGER EVALUATION = Inner-most Reduction

Strategy

◼ Reduces innermost redexes

◼ An innermost redex is a redex that has no other

redex as subexpression inside.

◼ Advantages and drawbacks

Repeated Reductions of Subexpressions

◼ Eager Evaluation is better because it did not repeat the

reduction of the subexpression (3+7)!

Repeated Reductions of Subexpressions

◼ Eager Evaluation requires 102 reductions

◼ Lazy Evaluation requires 202 reductions

◼ The Eager Strategy did not repeat the reduction of the

subexpression sum [1..100])!

Performing Redundant Computations

◼ first (2+2, square 15)

◼ Lazy Evaluation

 2 + 2 (first)

 4 (+)

◼ Eager Evaluation

 first (4, square 15) (+)

 first(4, 15*15) (square)

 first(4, 225) (*)

 4 (first)

▪ Lazy evaluation is better

as it avoids performing redundant

computations

Termination
◼ For some expressions like loop = 1 + loop

no reduction sequence may terminate; they do not have a

normal form.

◼ But there are also expressions where some reduction

sequences terminate and some do not

◼ first (5, 1 / 0)

◼ Lazy Evaluation

 5 (first)

◼ Eager Evaluation

 first(5, bottom) (/)

 bottom (Attempts to compute 1/0)

▪ Lazy evaluation is better

as it avoids infinite loops

in some cases

Eager evaluation

◼ Advantages:

◼ Repeated reductions of sub-expressions is

avoided.

◼ Drawbacks:

◼ Have to evaluate all the parameters in a function

call, whether or not they are required to produce

the final result.

◼ It may not terminate.

Lazy evaluation

◼ Advantages:

◼ A sub-expression is not reduced unless it is

absolutely essential for producing the final result.

◼ If there is any reduction order that terminates,

then Lazy Evaluation will terminate.

◼ Drawbacks:

◼ The reductions of some sub-expressions may be

unnecessarily repeated.

Duplicated Reduction of Subexpressions

◼ The reduction of the expression (3+4) is duplicated

when we attempt to use lazy evaluation to reduce

square (3+4)

◼ This problem arises for any definition where a

variable on the left-hand side appears more than

once on the right-hand side.

square x = x * x

cube x = x * x * x

1.5 Graph Reduction

◼ Aim: Keep All good features of Lazy

Evaluation and at the same time avoiding

duplicated reductions of sub-expressions.

◼ Method: By representing expressions as

graphs so that all occurrences of a variable

are pointing to the same value.

Graph Reduction

Graph Reduction Strategy combines all the benefits of
both Eager and Lazy evaluations with none of
their drawbacks.

*

Graph Reduction

◼ The outermost graph reduction of

square (3 + 4)

now reduces every argument at most once.

◼ For this reason, it always takes fewer

reduction steps than the innermost reduction

◼ Sharing of expressions is also introduced

with let and where constructs.

Graph Reduction for let

Heron's formula for the area of a triangle with sides a, b and c:

◼ Let-bindings simply give names to nodes in the graph

Graph Reduction

◼ Any implementation of Haskell is in some form

based on outermost graph reduction which thus

provides a good model for reasoning about the

asymptotic complexity of time and memory

allocation

◼ The number of reduction steps to reach normal form

corresponds to the execution time and the size of the

terms in the graph corresponds to the memory used.

Reduction of higher order functions and currying

id x = x

a = id (+1) 41

twice f = f . f

b = twice (+1) (13*3)

where both id and twice are only defined

with one argument.

◼ The solution is to see multiple arguments as

subsequent applications to one argument -

currying

(.) :: (b->c)->(a->b)->(a->c)
f . g = \x -> f (g x)

Reduction of higher order functions and currying

◼ Currying

a = (id (+1)) 41

b = (twice (+1)) (13*3)

◼ To reduce an arbitrary application expression1

expression2, call-by-need first reduce expression1

until this becomes a function whose definition can

be unfolded with the argument expression2.

id x = x

a = id (+1) 41

twice f = f . f

b = twice (+1) (13*3)

Reduction of higher order functions and currying

a = (id (+1)) 41

a

 (id (+1)) 41 (a)

 (+1) 41 (id)

 42 (+)

Reduction of higher order functions and currying

b = (twice (+1)) (13*3)

b

 (twice (+1)) (13*3) (b)

 ((+1).(+1)) (13*3) (twice)

 (+1) ((+1) (13*3)) (.)

 (+1) ((+1) 39) (*)

 (+1) 40 (+)

 41 (+)

Reduction of higher order functions and currying

◼ Functions are useful as data structures.

◼ In fact, all data structures are represented as

functions in the pure lambda calculus, the

root of all functional programming

languages.

