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Lecture No. 12

Analysis and Efficiency of Functional 

Programs

◼ Reduction strategies and lazy evaluation



1. Reduction strategies and lazy evaluation

◼ Programming is not only about writing 

correct programs but also about writing fast 

ones that require little memory

◼ Aim: how Haskell programs are commonly 

executed on a real computer      a foundation 

for analyzing time and space usage

◼ Every implementation of Haskell more or 

less closely follows the execution model of 

lazy evaluation



1.1 Reduction

◼ Executing a functional program, i.e. 

evaluating an expression means to 

repeatedly apply function definitions until all 

function applications have been expanded

◼ Implementations of modern Functional 

Programming languages are based on a 

simplification technique called reduction.
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◼ The evaluation of an expression passes through three stages

◼ Only those expression which are syntactically correct and 

well typed are submitted for reduction



What is reduction?

◼ Given a set of rules R1, R2, …, Rn (called reduction rules)

◼ and an expression e

◼ Reduction is the process of repeatedly simplifying e using 

the given reduction rules

e  e1 Ri1

 e2 Ri2

….

 ek Rik, Rij{R1, R2, …, Rn}

until no rule is applicable

◼ ek is called the normal form of e

◼ It is the simplest form of e

Expression

Reduction

Normal form



2 types of reduction rules

◼ Built-in rules:

addition, substraction, multiplication, division

◼ User supplied rules:

square x = x * x

double x = x + x

sum [ ] = 0

sum (x:xs) = x + sum [x+1:xs]

f x y = square x + square y



1.2 Reduction at work

◼ Each reduction step replaces a subexpression by an 

equivalent expression by applying one of the 2 

types of rules

f x y = square x + square y

f 3 4  (square 3) + (square 4)  (f)

 (3*3) + (square 4) (square)

 9 + (square 4) (*)

 9 + (4*4) (square)

 9 + 16 (*)

 25 (+)



Reduction rules

◼ Every reduction replaces a subexpression, called reducible 

expression or redex for short, with an equivalent one, either 

by appealing to a function definition (like for square) or by 

using a built-in function like (+).

◼ An expression without redexes is said to be in normal form.

◼ The fewer reductions that have to be performed, the faster 

the program runs.

◼ We cannot expect each reduction step to take the same 

amount of time because its implementation on real hardware 

looks very different, but in terms of asymptotic complexity, 

this number of reductions is an accurate measure.



Alternate reductions



Possible ways of evaluating square



Comments

◼ There are usually several ways for reducing a given 

expression to normal form

◼ Each way corresponds to a route in the evaluation tree: from 

the root (original expression) to a leaf (reduced expression)

◼ There are three different ways for reducing square (3+7)

◼ Questions:

◼ Are all the answers obtained by following distinct routes 

identical?

◼ Which is the best route?

◼ Can we find an algorithm which always follows the best 

route?



Q&A

◼ Q: Are all the values obtained by following 

distinct routes identical?

◼ A: If two values are obtained by following two 

different routes, then these values must be identical

◼ Q: Which is the best route?

◼ Ideally, we are looking for the shortest route. 

Because this will take the least number of reduction 

steps and, therefore, is the most efficient.



Q&A

◼ Q: Can we find an algorithm which always 

follows the best route?

◼ In any tree of possible evaluations, there are 

usually two extremely interesting routes 

based on:

◼ An Eager Evaluation Strategy

◼ A Lazy Evaluation Strategy



1.3 Eager evaluation

◼ Given an expression such as:

f a

where f is a function and a is an argument.

◼ The Lazy Evaluation strategy reduces such an 

expression by attempting to apply the definition of 

f first.

◼ The Eager Evaluation Strategy reduces this 

expression by attempting to simplify the 

argument a first.



Example of Eager Evaluation



Example of Lazy Evaluation



1.4 A&D of reduction strategies

◼ LAZY EVALUATION = Outer-most Reduction 

Strategy

◼ Reduces outermost redexes = redexes that are 

not inside another redex.

◼ EAGER EVALUATION = Inner-most Reduction 

Strategy

◼ Reduces innermost redexes

◼ An innermost redex is a redex that has no other 

redex as subexpression inside.

◼ Advantages and drawbacks



Repeated Reductions of Subexpressions

◼ Eager Evaluation is better because it did not repeat the 

reduction of the subexpression (3+7)!



Repeated Reductions of Subexpressions

◼ Eager Evaluation requires 102 reductions

◼ Lazy Evaluation requires 202 reductions

◼ The Eager Strategy did not repeat the reduction of the 

subexpression sum [1..100])!



Performing Redundant Computations

◼ first (2+2, square 15)

◼ Lazy Evaluation

 2 + 2 (first)

 4 (+)

◼ Eager Evaluation

 first (4, square 15) (+)

 first(4, 15*15) (square)

 first(4, 225) (*)

 4 (first)

▪ Lazy evaluation is better

as it avoids performing redundant

computations



Termination
◼ For some expressions like loop = 1 + loop

no reduction sequence may terminate; they do not have a 

normal form.

◼ But there are also expressions where some reduction 

sequences terminate and some do not

◼ first (5, 1 / 0)

◼ Lazy Evaluation

 5 (first)

◼ Eager Evaluation

 first(5, bottom) (/)

 bottom (Attempts to compute 1/0)

▪ Lazy evaluation is better

as it avoids infinite loops

in some cases



Eager evaluation

◼ Advantages:

◼ Repeated reductions of sub-expressions is 

avoided.

◼ Drawbacks:

◼ Have to evaluate all the parameters in a function 

call, whether or not they are required to produce 

the final result.

◼ It may not terminate.



Lazy evaluation

◼ Advantages:

◼ A sub-expression is not reduced unless it is 

absolutely essential for producing the final result.

◼ If there is any reduction order that terminates, 

then Lazy Evaluation will terminate.

◼ Drawbacks:

◼ The reductions of some sub-expressions may be 

unnecessarily repeated.



Duplicated Reduction of Subexpressions

◼ The reduction of the expression (3+4) is duplicated 

when we attempt to use lazy evaluation to reduce

square (3+4)

◼ This problem arises for any definition where a 

variable on the left-hand side appears more than 

once on the right-hand side.

square x = x * x

cube x = x * x * x



1.5 Graph Reduction

◼ Aim: Keep All good features of Lazy 

Evaluation and at the same time avoiding 

duplicated reductions of sub-expressions.

◼ Method: By representing expressions as 

graphs so that all occurrences of a variable 

are pointing to the same value.



Graph Reduction

Graph Reduction Strategy combines all the benefits of
both Eager and Lazy evaluations with none of
their drawbacks.

*



Graph Reduction

◼ The outermost graph reduction of

square (3 + 4)

now reduces every argument at most once.

◼ For this reason, it always takes fewer 

reduction steps than the innermost reduction

◼ Sharing of expressions is also introduced 

with let and where constructs.



Graph Reduction for let

Heron's formula for the area of a triangle with sides a, b and c:

◼ Let-bindings simply give names to nodes in the graph



Graph Reduction

◼ Any implementation of Haskell is in some form 

based on outermost graph reduction which thus 

provides a good model for reasoning about the 

asymptotic complexity of time and memory 

allocation

◼ The number of reduction steps to reach normal form 

corresponds to the execution time and the size of the 

terms in the graph corresponds to the memory used.



Reduction of higher order functions and currying

id x = x

a = id (+1) 41

twice f = f . f

b = twice (+1) (13*3)

where both id and twice are only defined 

with one argument.

◼ The solution is to see multiple arguments as 

subsequent applications to one argument -

currying

(.)   :: (b->c)->(a->b)->(a->c)
f . g = \x -> f (g x)



Reduction of higher order functions and currying

◼ Currying

a = (id (+1)) 41

b = (twice (+1)) (13*3)

◼ To reduce an arbitrary application expression1 

expression2, call-by-need first reduce expression1 

until this becomes a function whose definition can 

be unfolded with the argument expression2.

id x = x

a = id (+1) 41

twice f = f . f

b = twice (+1) (13*3)



Reduction of higher order functions and currying

a = (id (+1)) 41

a

 (id (+1)) 41 (a)

 (+1) 41 (id)

 42 (+)



Reduction of higher order functions and currying

b = (twice (+1)) (13*3)

b

 (twice (+1)) (13*3) (b)

 ((+1).(+1) ) (13*3) (twice)

 (+1) ((+1) (13*3)) (.)

 (+1) ((+1) 39) (*)

 (+1) 40 (+)

 41 (+)



Reduction of higher order functions and currying

◼ Functions are useful as data structures.

◼ In fact, all data structures are represented as 

functions in the pure lambda calculus, the 

root of all functional programming 

languages.


