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Random walks on graphs

Let G = (V,E) a connected, non-bipartite, undirected
graph with n vertices. We define a Markov Chain MCG

corresponding to a random walk on the vertices of G, with
transition probability:

Puv =

{
1

d(u) , if uv ∈ E(G)

0, otherwise

where d(u) is the degree of vertex u.

Since the graph is connected and undirected, MCG is
clearly irreducible. Also, since the graph is non-bipartite,
MCG is aperiodic.
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The stationary distribution

So (from fundamental theorem of Markov Chains) MG has
a unique stationary distribution π.

Lemma 1: For all vertices v ∈ V it is πv = d(v)
2m , where m is

the number of edges of G.

Proof: From the definition of stationarity, it must be:

πv = [π · P ]v =
∑
u

πuPuv , ∀v ∈ V

Because of uniqueness, it suffices to verify the claimed
solution. Indeed, for all v ∈ V we have (for the claimed
solution value):∑
u

πuPuv =
∑

u:uv∈E

d(u)

2m

1

d(u)
=

1

2m

∑
u:uv∈E

1 =
1

2m
d(v) = πv

�
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Hitting times / Commute time / Cover time

Definition: The hitting time huv is the expected number of
steps for random walk starting at vertex u to first reach
vertex v.

Lemma 2: For all vertices v ∈ V , hvv = 2m
d(v)

Proof: From fundamental theorem:
hvv = 1

πv
= 2m

d(v) (from Lemma 1) �

Definition: The commute time between u and v is
CTuv = huv + hvu

Definition: Let Cu(G) the expected time the walk, starting
from u, needs to visit every vertex in G at least once. The
cover time of the graph, denoted by C(G), is:

C(G) = max
u

Cu(G)
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The commute time along an edge

Lemma: For any edge (u, v) ∈ E : huv + hvu ≤ 2m

Proof: Consider a new Markov Chain with states the edges of
the graph (every edge taken twice as two directed edges), where
the transitions occur between adjacent edges. The number of
states is clearly 2m and the current state is the last (directed)
edge visited. The transition matrix is

Q(u,v)(v,w) = 1
d(v)

This matrix is clearly doubly stochastic since not only the rows
but also the columns add to 1. Indeed:∑
x∈V,y∈Γ(x)

Q(x,y)(v,w) =
∑

u∈Γ(v)

Q(u,v)(v,w) =
∑

u∈Γ(v)

1

d(v)
= d(v)

1

d(v)
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Proof (continued)

So the stationary distribution is uniform. So if e = (u, v) any
edge, then πe = 1

2m and hee = 1
πe

= 2m. In other words, the
expected time between successive traversals of edge e is 2m.

Consider now huv + hvu. This is the expected time to go from u
to v and then return back to u. Conditioning on the event that
we initially arrived to u from v, then Q(v,u)(v,u) is the time
between two successive passages over the edge vu and is an
upper bound to the time to go from u to v and back.

But this time is at most 2m in expectation. Since the MC is
memoryless, we can remove the arrival conditioning and the
result holds independently of the vertex we initially arrive to u
from.

�
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Electrical networks and random walks

A resistive electrical network can be seen as an undirected graph.
Each edge of the graph is associated to a branch resistance. The
electrical flow in the network is governed by two laws:

- Kirchoff’s law for preservation of flow (e.g. all flow that
enters a node, leaves it).

- Ohm’s law: the voltage across a resistor equals the product
of the resistance times the current through it).

The effective resistance Ruv between nodes u and v is the
voltage difference between u and v when current of one ampere is
injected into u and removed from v (or injected at v and
removed from u).(Thus, the effective resistance is upper bound
by the branch resistance but it can be much smaller).

Given an undirected graph G, let N(G) the electrical network

defined over G, associating 1 Ohm resistance to each of the edges.
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Commute time and effective resistance

Lemma: For any two vertices u, v in G, the commute time
between them is: CTuv = 2m ·Ruv, where m is the number of
edges of the graph and Ruv the effective resistance between u
and v in the associated electrical network N(G).

Proof: Let Φuv the voltage at u in N(G) with respect to v,
where d(x) amperes (degree of x) of current are injected to each
node x ∈ V and all 2m =

∑
x d(x) amperes are removed from v.

It is:
huv = Φuv (1)
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Proof (continued)

Indeed, the voltage difference on the edge uw is
Φuw = Φuv − Φwv. Using the two laws we get, for all
u ∈ V − {u} that:

d(u)
K
=

∑
w∈Γ(u)

current(uw)
O
=

∑
w∈Γ(u)

Φuw

resistance(uw)

=
∑

w∈Γ(u)

(Φuv − Φwv) = d(u) · Φuv −
∑

w∈Γ(u)

Φwv

⇒ Φuv = 1 +
1

d(u)

∑
w∈Γ(u)

Φwv (2)
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Proof (continued)

On the other hand, from the definition of expectation we
have , for all u ∈ V − {v}, that:

huv = 1 +
1

d(u)

∑
w∈Γ(u)

hwv (3)

Equations (2) and (3) are actually linear systems, with
unique solutions (system (2) refers to voltage differences,
which are uniquely determined by the current flows).
Furthermore, if we identify Φuv in (2) with huv in (3), the
two systems are identical. This proves that huv = Φuv

indeed (as in (1).

Now note that huv is the voltage Φuv at v in N(G)
measured w.r.t. u, when currents are injected into all nodes
and removed from all other nodes.
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Proof (continued)

Let us now consider a Scenario B, which is like Scenario A
except that we remove the 2m current units from node u
instead of node v.

Denoting the voltage differences in Scenario B by Φ′, we
have (as in (1)) that

Φ′vu = hvu

Now let us consider a Scenario C, which is like B but with
all currents reversed. Denoting the voltage differences in
this scenario by Φ′′, we have:

Φ′′uv = −Φ′uv = Φ′vu = hvu
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Proof (continued)

Finally, consider a Scenario D, which is just the sum of
Scenarios A and C. Denoting Φ′′′ the voltage differences in
D and since the currents (except the 2m ones at u, v)
cancel out , we have

Φ′′′uv = Φuv + Φ′′uv = huv + hvu

But in D, Φ′′′uv is the voltage difference between u and v
when pushing 2m amperes at u and removing them at v, so
(by definition of the effective resistance and Ohm’s law) we
have

Φ′′′uv = 2m ·Ruv

�
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Examples (I)

The line graph. Consider n+ 1 points on a line:

By symmetry, it is h0n = hn0. Also (since the effective
resistance between 0 and n is clearly n), we have:

h0n + hn0 = C0n = 2m ·R0n = 2 · n · n = 2n2, thus

h0n = hn0 = n2

We see that in this case the hitting times are symmetric. This
is not the case in general.
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Examples (II)

The lollipop graph, composed of a line of n
2 + 1 vertices joined

to a Kn
2

clique, as in the following figure:

Let u and v the endpoints of the line. We have:

huv + hvu = Cuv = 2 ·mRuv = 2Θ(n2) ·Θ(n) = Θ(n3)

But from line example in the previous slide

huv = Θ(n2) thus hvu = Θ(n3)

This asymmetry is due to the fact that, when we start from u,
the walk has no option but to go towards v; but when we start
from v there is very little probability, i.e. Θ

(
1
n

)
, of proceeding

to the line.
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The cover time

We will now give bounds on the cover time. The first one is
rather loose since it is independent of the structure of the graph
and only takes into account the number of edges:

Theorem. For any connected graph G(V,E), the cover time is:
C(G) ≤ 2|E||V | = 2 ·m · n

Proof. Consider any spanning tree T of G. For any vertex u, it
is possible to traverse the entire tree and come back to u
covering each edge exactly twice:
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The cover time

Clearly, the cover time from vertex u is upper bounded by the
expected time for the walk to visit the vertices of G in this
order. Let u = v0, v1, . . . , v2n−2 = u denote the visited vertices
in such a traversal. Then

C(u) ≤
2n−2∑
i=0

hvi,vi+1 =
∑

(x,y)∈T

(hxy + hyx)

By the previous lemma on the commute time, we have

C(G) = max
u∈V

C(u) ≤
∑

(x,y)∈T

(hxy + hyx) = 2m
∑

(x,y)∈T

Rxy

≤ 2 ·m · n
since for any two adjacent vertices x, y the effective resistance is
at most Rxy ≤ 1.
(alternatively we can use a previous Lemma stating that the
commute time along an edge is at most 2m, and the tree has
n− 1 edges).
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Examples

1 The line graph. It has n+ 1 vertices and m = n edges so
C(G) ≤ 2 · n(n+ 1) ' 2n2

Also, we know that C(G) ≥ H0n = n2, thus the bound is
tight (up to constants) in this case.

2 The lollipop graph. We get C(G) ≤ 2 ·Θ(n2) · n = Θ(n3).
Again C(G) ≥ Hvu = Θ(n3) so the bound is tight.

3 The complete graph. We set C(G) ≤ 2 ·Θ(n2) · n = Θ(n3).
But from coupon collectors, the cover time is actually
C(h) = (1 + o(1))n lnn, thus it is much smaller than the
upper bound.

Comment: This shows a rather counter-intuitive property of
cover times (and hitting times): they are not monotonic w.r.t.
adding edges to the graph!
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A stronger bound

Theorem(proof in the book). Let the resistance of a graph G be
R = max

u,v∈V
Ru,v. For a connected graph G its cover time is:

m ·R ≤ C(G) ≤ c ·m ·R · log n for some constant c.

Examples:
a) In the complete graph, the probability of hitting a given

vertex v, when starting at any vertex u, is 1
n−1 so,

∀u, v ∈ V, huv = n− 1. Also, we have
huv + hvu = 2mRuv ⇒ 2(n− 1) = 2n(n−1)

2 Ruv ⇒ Ruv = 2
n

so we get C(G) ≤ cn(n−1)
2

2
n log n = O(n log n), which is tight

up to constants.
b) In the lollipop graph, R = Θ(n) and m = Θ(n2), so the

upper bound we get is C(G) ≤ O(n3 log n) which is worse
(by a logarithmic factor) from the looser bound.
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