Randomized Algorithms

Lecture 4: "Randomized selection"

Sotiris Nikoletseas Professor

CEID - ETY Course 2017-2018

1. Preliminaries

(i) Boole's inequality (or union bound)

Let random events $\mathcal{E}_{1}, \mathcal{E}_{2}, \ldots, \mathcal{E}_{n}$. Then

$$
\operatorname{Pr}\left\{\bigcup_{i=1}^{n} \mathcal{E}_{i}\right\}=\operatorname{Pr}\left\{\mathcal{E}_{1} \cup \mathcal{E}_{2} \cup \cdots \cup \mathcal{E}_{n}\right\} \leq \sum_{i=1}^{n} \operatorname{Pr}\left\{\mathcal{E}_{i}\right\}
$$

Note: If the events are disjoint, then we get equality.

1. Preliminaries

(ii) Expectation (or Mean)

Let X a random variable with probability density function (pdf) $f(x)$. Its expectation is:

$$
\mu_{x}=E[X]=\sum_{x} x \cdot \operatorname{Pr}\{X=x\}
$$

If X is continuous, $\mu_{x}=\int_{-\infty}^{\infty} x f(x) d x$

1. Preliminaries

(ii) Expectation (or Mean)

Properties:
■ $\forall X_{i}(i=1,2, \ldots, n): E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]$ This important property is called "linearity of expectation".

- $E[c X]=c E[X]$, where c constant
- if X, Y stochastically independent, then

$$
E[X \cdot Y]=E[X] \cdot E[Y]
$$

■ Let $f(X)$ a real-valued function of X. Then

$$
E[f(x)]=\sum_{x} f(x) \operatorname{Pr}\{X=x\}
$$

1. Preliminaries

(iii) Markov's inequality

Theorem: Let X a non-negative random variable. Then, $\forall t>0$

$$
\operatorname{Pr}\{X \geq t\} \leq \frac{E[X]}{t}
$$

Proof: $E[X]=\sum_{x} x \operatorname{Pr}\{X=x\} \geq \sum_{x \geq t} x \operatorname{Pr}\{X=x\}$

$$
\geq \sum_{x \geq t} t \operatorname{Pr}\{X=x\}=t \sum_{x \geq t} \operatorname{Pr}\{X=x\}=t \operatorname{Pr}\{X \geq t\}
$$

Note: Markov is a (rather weak) concentration inequality, e.g.
$\operatorname{Pr}\{X \geq 2 E[X]\} \leq \frac{1}{2}$
$\operatorname{Pr}\{X \geq 3 E[X]\} \leq \frac{1}{3}$
etc

1. Preliminaries

(iv) Variance (or second moment)

- Definition: $\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$, where $\mu=E[X]$ i.e. it measures (statistically) deviations from mean.
- Properties:
- $\operatorname{Var}(X)=E\left[X^{2}\right]-E^{2}[X]$
- $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$, where c constant.
- if X, Y independent, it is $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Note: We call $\sigma=\sqrt{\operatorname{Var}(X)}$ the standard deviation of X.

1. Preliminaries

(v) Chebyshev's inequality

Theorem: Let X a r.v. with mean $\mu=E[X]$. It is:

$$
\operatorname{Pr}\{|X-\mu| \geq t\} \leq \frac{\operatorname{Var}(X)}{t^{2}} \quad \forall t>0
$$

Proof: $\operatorname{Pr}\{|X-\mu| \geq t\}=\operatorname{Pr}\left\{(X-\mu)^{2} \geq t^{2}\right\}$
From Markov's inequality:

$$
\operatorname{Pr}\left\{(X-\mu)^{2} \geq t^{2}\right\} \leq \frac{E\left[(X-\mu)^{2}\right]}{t^{2}}=\frac{\operatorname{Var}(X)}{t^{2}}
$$

Note: Chebyshev's inequality provides stronger (than Markov's) concentration bounds, e.g.
$\operatorname{Pr}\{|X-\mu| \geq 2 \sigma\} \leq \frac{1}{4}$
$\operatorname{Pr}\{|X-\mu| \geq 3 \sigma\} \leq \frac{1}{9}$
etc

2. The Randomized Selection Algorithm

- The problem: We are given a set S of n distinct elements $\overline{(\text { e.g. numbers) }}$) and we are asked to find the k th smallest.
- Notation:
- $r_{S}(t)$: the rank of element t (e.g. the smallest element has rank 1, the largest n and the k th smallest has rank k).
- $S_{(i)}$ denotes the i th smallest element of S (clearly, we seek $S_{(k)}$ and $\left.r_{S}\left(S_{(k)}\right)=k\right)$.
- Remark: the fastest known deterministic algorithm needs $3 n$ time and is quite complex. Also, any deterministic algorithm requires $2 n$ time (a tight lower bound).

2. The basic idea: random sampling

■ we will randomly sample a subnet of elements from S, trying to optimize the following trade-off:

- the sample should be small enough to be processed (e.g. ordered) in small time
- the sample should be large enough to contain the k th smallest element, with high probability

2. The Lazy Select Algorithm

1 Pick randomly uniformly, with replacement, a subset R of $n^{\frac{3}{4}}$ elements from S.

2 Sort R using an optimal deterministic sorting algorithm.
3 Let $x=k \cdot n^{-\frac{1}{4}}$.
$l=\max \{\lfloor x-\sqrt{n}\rfloor, 1\}$ and $h=\min \left\{\lceil x+\sqrt{n}\rceil, n^{\frac{3}{4}}\right\}$. $a=R_{(l)}$ and $b=R_{(h)}$
By comparing a and b to every element of S, determine $r_{S}(a), r_{S}(b)$.
4 If $k \in\left[n^{\frac{1}{4}}, n-n^{\frac{1}{4}}\right]$, let $P=\{y \in S: a \leq y \leq b\}$. Check whether $S_{(k)} \in P$ and $|P| \leq 4 n^{\frac{3}{4}}+2$. If not, repeat steps 1-3 until such a P is found.
5 By sorting P, identify $P_{\left(k-r_{S}(a)+1\right)}=S_{(k)}$.

2. Remarks on the Lazy Select Algorithm

- In Step 1, sampling is done with replacement to simplify the analysis. Sampling without replacement is marginally faster but more complex to implement.
- Step 2 takes $O\left(n^{\frac{3}{4}} \log n\right)$ time (which is $\left.o(n)\right)$.

■ Step 3 clearly takes $2 n$ time ($2 n$ comparisons). Graphically,

An example: assume $r_{S}(a)=3$ and we want $S_{(7)}$. In the sorted list of P elements, $S_{(7)}=P_{\left(k-r_{S}(a)+1\right)}=$ $=P_{(7-3+1)}=P_{5}$, i.e. the 5th element indeed.

2. Remarks on the Lazy Select Algorithm

■ In Step 4, it is easy to check (in constant time) whether $S_{(k)} \in P$ by comparing k to (the now known) $r_{S}(a), r_{S}(b)$.

■ In Step 5 , sorting P takes $O\left(n^{\frac{3}{4}} \log n\right)=o(n)$ time.

Note: we skip in Step 4 the (less interesting) cases where $k<n^{\frac{1}{4}}$ and $k>n-n^{\frac{1}{4}}$. Their analysis is similar.

2. When Lazy Select fails?

The algorithm may fail in Step 4, either because $S_{(k)} \notin P$ because $\underline{|P| \text { is large. We will show that the probability of failure }}$ is very small.
Lemma 1. The probability that $S_{(k)} \notin P$ is $O\left(n^{-\frac{1}{4}}\right)$.
Proof: This happens if i) $S_{(k)}<a$ or ii) $S_{(k)}>b$.
i) $S_{(k)}<a \Leftrightarrow$ fewer than $l\left(l=k \cdot n^{-\frac{1}{4}}-\sqrt{n}\right)$ of the samples in R are less than or equal to $S_{(k)}$. Let:
$X_{i}= \begin{cases}1, & \text { the } i \text { th random sample is at most } S_{(k)} \\ 0, & \text { otherwise }\end{cases}$
Clearly, $E\left(X_{i}\right)=\operatorname{Pr}\left\{X_{i}\right\}=\frac{k}{n}$ and $\operatorname{Var}\left(X_{i}\right)=\frac{k}{n}\left(1-\frac{k}{n}\right)$
Let $X=\sum_{i=1}^{|R|} X_{i}=\#$ samples in R that are at most $S_{(k)}$. Then

2. When Lazy Select fails?

$\mu_{X}=E[X]=|R| \cdot E\left[X_{i}\right]=n^{\frac{3}{4}} \frac{k}{n}=k n^{-\frac{1}{4}}$ and
$\sigma_{X}^{2}=\operatorname{Var}[X]=\sum_{i=1}^{|R|} \operatorname{Var}\left(X_{i}\right)=n^{\frac{3}{4}} \frac{k}{n}\left(1-\frac{k}{n}\right) \leq \frac{n^{\frac{3}{4}}}{4}$ (since the
samples are independent)
Thus, $\operatorname{Pr}\left\{\left|X-\mu_{X}\right| \geq \sqrt{n}\right\} \leq \frac{\sigma_{X}^{2}}{n} \leq \frac{n^{\frac{3}{4}}}{4 n}=O\left(n^{-\frac{1}{4}}\right)$
$\Rightarrow \operatorname{Pr}\left\{X-\mu_{X}<-\sqrt{n}\right\} \leq O\left(n^{-\frac{1}{4}}\right)$
$\Rightarrow \operatorname{Pr}\left\{X<\mu_{X}-\sqrt{n}\right\}=\operatorname{Pr}\{X<\underbrace{k n^{-\frac{1}{4}}-\sqrt{n}}_{l}\} \leq O\left(n^{-\frac{1}{4}}\right)$

2. When Lazy Select fails?

ii) The case $S_{(k)}>b$ is essentially symmetric (at least h of the random samples should be smaller than $S_{(k)}$), so
$\operatorname{Pr}\left\{S_{(k)}>b\right\}=O\left(n^{-\frac{1}{4}}\right)$
Overall $\operatorname{Pr}\left\{S_{(k)} \notin P\right\}=\operatorname{Pr}\left\{S_{(k)}<a \cup S_{(k)}>b\right\}=$ $O\left(n^{-\frac{1}{4}}\right)+O\left(n^{-\frac{1}{4}}\right)=O\left(n^{-\frac{1}{4}}\right)$

2. The Lazy Select Algorithm

Lemma 2 The probability that P contains more than $4 n^{\frac{3}{4}}+2$ elements is $O\left(n^{-\frac{1}{4}}\right)$

Proof: Very similar to the proof of Lemma 1: Let

$$
\begin{aligned}
& k_{e}=\max \left\{1, k-2 n^{\frac{3}{4}}\right\} \text { and } \\
& k_{n}=\min \left\{k+2 n^{\frac{3}{4}}, n\right\}
\end{aligned}
$$

If $S_{\left(k_{l}\right)}<a$ or $S_{\left(k_{h}\right)}>b$ then P contains more than $4 n^{\frac{3}{4}}+2$
elements. For simplicity, let $k_{l}=k-2 n^{\frac{3}{4}}, k_{h}=k+2 n^{\frac{3}{4}}$ Then, it suffices to "simulate" the proof of Lemma 1 for $k=k_{l}$ and then for $k=k_{h}$.

2. The Lazy Select Algorithm

Theorem The Algorithm Lazy Select finds the correct solution with probability $1-O\left(n^{-\frac{1}{4}}\right)$ performing $2 n+o(n)$ comparisons.

Proof: Due to Lemmata 1, 2 the Algorithm finds $S_{(k)}$ on the first pass through steps $1-5$ with probability $1-O\left(n^{-\frac{1}{4}}\right)$ (i.e., it does not fail in Step 4 avoiding a loop to Step 1). Step 1 obviously takes $o(n)$ time. Step 2 requires $O\left(n^{\frac{3}{4}} \log n\right)=o(n)$ time, and Step 3 clearly needs $2 n$ comparisons (comparing each of the n elements of S to a and b). Overall the time needed is thus $2 n+o(n)$.

