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1. Preliminaries

(i) Boole’s inequality (or union bound)

Let random events £1,&s,...,&,. Then
PT{U&} =Pr{€&U&U---U&E} <Y Pri&}
i=1 i=1

Note: If the events are disjoint, then we get equality.
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1. Preliminaries

(ii) Expectation (or Mean)

Let X a random variable with probability density function
(pdf) f(x). Its expectation is:

Uy = E[X] :Zx-Pr{X:m}

oo

If X is continuous, pu, = / xf(x)dx

—0o0
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1. Preliminaries

(ii) Expectation (or Mean)

Properties:

= VX; (i=1,2,...,n)

# |y =S
=1
This important property is called “linearity of

expectation”.

m E[cX] = cE[X], where ¢ constant

m if X, Y stochastically independent, then
E[X -Y]|=E[X]-E]Y]

m Let f(X) a real-valued function of X. Then

=Y f@)Pr{X =}

i(x1) fixz) fi(xa)
11 1
] qu le x,.l

Pr{X=xi} Pr{X=xz} Pr{X=x.}
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1. Preliminaries

(iii) Markov’s inequality

Theorem: Let X a non-negative random variable. Then, V¢ > 0
Pr{x >t} < £

Proof: F[X] = ZmPr{X =z} > ZxPr{X =z}
> ZtPr{X =1z} = tZPjﬂ{X =z} =t Pr{X >t}

x>t x>t

Note: Markov is a (rather weak) concentration inequality, e.g.
Pr{X >2FE[X]} <
Pr{X >3E[X]} <

etc

OO =
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1. Preliminaries

(iv) Variance (or second moment)

m Definition: Var(X) = E[(X — u)?], where u = E[X]
i.e. it measures (statistically) deviations from mean.

m Properties:
m Var(X) = E[X?] — E?[X]
m Var(cX) = 2Var(X), where ¢ constant.
m if X,V independent, it is Var(X +Y) = Var(X) + Var(Y)

Note: We call 0 = y/Var(X) the standard deviation of X.
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1. Preliminaries

(v) Chebyshev’s inequality

Theorem: Let X a r.v. with mean p = E[X]. It is:
Var(X
t2

Pri|X — p| >t} < YerX) vt >0
Proof: Pr{|X — u| >t} = Pr{(X — u)? > t*}
From Markov’s inequality:
2
Pr{(X - ) > 12} < HIOCGHP] _ Ver(x)

Note: Chebyshev’s inequality provides stronger (than Markov’s)
concentration bounds, e.g.
Pr{|X — pi| > 20} <
Pr{|X —pu| =30} <
etc

Ol [
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2. The Randomized Selection Algorithm

m The problem: We are given a set S of n distinct elements
(e.g. numbers) and we are asked to find the kth smallest.

m Notation:

m r5(t): the rank of element ¢ (e.g. the smallest element has
rank 1, the largest n and the kth smallest has rank k).

m S(;) denotes the ith smallest element of S (clearly, we seek
S(k) and Ts(S(k)) = k)

m Remark: the fastest known deterministic algorithm needs
3n time and is quite complex. Also, any deterministic
algorithm requires 2n time (a tight lower bound).
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2. The basic idea: random sampling

m we will randomly sample a subnet of elements from S,
trying to optimize the following trade-oft:

- the sample should be small enough to be processed (e.g.
ordered) in small time

- the sample should be large enough to contain the kth
smallest element, with high probability
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2. The Lazy Select Algorithm

P%ck randomly uniformly, with replacement, a subset R of
n4 elements from S.
Sort R using an optimal deterministic sorting algorithm.
Letx:kwfi
I = mazx{|x —\/n],1} and h = min{[x + \/ﬁ],n%} :
a = R(l) and b= R(h)
By comparing a and b to every element of S, determine
rs(a),rs(b).
Ifk:e[ni,n—ni],letP:{yGS:agygb}.
Check whether Sy € P and |P| < An1 + 2. If not, repeat
steps 1-3 until such a P is found.

By sorting P, identify Pg_rg(a)+1) = S(k)-
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2. Remarks on the Lazy Select Algorithm

m In Step 1, sampling is done with replacement to simplify
the analysis. Sampling without replacement is marginally
faster but more complex to implement.

m Step 2 takes O(n% logn) time (which is o(n)).
m Step 3 clearly takes 2n time (2n comparisons). Graphically,
« S >

'\ 7 a=R() b=R(h)
elements of R rs(a) X rs(b)

An example: assume 75(a) = 3 and we want S(7). In the
sorted list of P elements, S(7) = P_rg(a)+1) =
= Pr7_341) = D5, i.e. the 5th element indeed.
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2. Remarks on the Lazy Select Algorithm

m In Step 4, it is easy to check (in constant time) whether
Sy € P by comparing k to (the now known) rg(a),rs(b).

m In Step 5, sorting P takes O(n% logn) = o(n) time.

Note: we skip in Step 4 the (less interesting) cases where
k <ni and k >n —ni. Their analysis is similar.
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2. When Lazy Select fails?

The algorithm may fail in Step 4, either because Sy ¢ P
because |P| is large. We will show that the probability of failure
is very small.
Lemma 1. The probability that Sy & P is O(nfi).
Proof: This happens if )S(;) < a or ii)S(;) > b.
i) Sty < a <« fewer than [ (I =k - noT— v/n) of the samples in
R are less than or equal to S(. Let:
X, = {1, the ith random sample is at most S
0, otherwise
Clearly, E(X;) = Pr{X;} = £ and Var(X;) = £(1 - &)
|R|
Let X = Z X; = # samples in R that are at most S(). Then
i=1
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2. When Lazy Select fails?

ok =Var[X] = ZV&T(XZ‘) =ni—(1—-)<
i=1
samples are independent)

(since the

Thus, Pr{|X — ux| > vi} < 2% < 21 = O(n~1)
= Pr{X — px < —/n} < O(n"1)
= Pr{X < py — i} = PriX < kn"1 — y/n} < O(n"1)
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2. When Lazy Select fails?

ii) The case S(j) > b is essentially symmetric (at least h of the
random samples should be smaller than S;), so

Pr{Sy > b} = O(n"4)

Overall Pr{Sgy, ¢ P} = Pr{Suy <aU Sy > b} =
O(n~1) +O0(n~1) = O(n"1) O
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2. The Lazy Select Algorithm

Lemma 2 The probability that P contains more than Ant +2
1
elements is O(n™1)

Proof: Very similar to the proof of Lemma 1: Let

ke = max{l,k — 2n%} and

kn = min{k + 2n%,n}
If Sx,) < aor Sg,) > b then P contains more than And +2
elements. For simplicity, let k; = k — 2n%, kp=k+ oni
Then, it suffices to “simulate” the proof of Lemma 1 for & = k;
and then for k = ky,.
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2. The Lazy Select Algorithm

Theorem The Algorithm Lazy Select finds the correct solution
1
with probability 1 — O(n~ 1) performing 2n + o(n) comparisons.

Proof: Due to Lemmata 1, 2 the Algorithm finds S(;) on the
first pass through steps 1-5 with probability 1 — O(n‘i) (i.e., it
does not fail in Step 4 avoiding a loop to Step 1). Step 1
obviously takes o(n) time. Step 2 requires O(n% logn) = o(n)
time, and Step 3 clearly needs 2n comparisons (comparing each
of the n elements of S to a and b). Overall the time needed is
thus 2n + o(n).
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