
Randomized Algorithms

Lecture 4: “Randomized selection”

Sotiris Nikoletseas
Professor

CEID - ETY Course
2017 - 2018

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 1 / 17

1. Preliminaries

(i) Boole’s inequality (or union bound)

Let random events E1, E2, . . . , En. Then

Pr

{
n⋃
i=1

Ei

}
= Pr{E1 ∪ E2 ∪ · · · ∪ En} ≤

n∑
i=1

Pr{Ei}

Note: If the events are disjoint, then we get equality.

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 2 / 17

1. Preliminaries

(ii) Expectation (or Mean)

Let X a random variable with probability density function
(pdf) f(x). Its expectation is:

µx = E[X] =
∑
x

x · Pr{X = x}

If X is continuous, µx =

∞∫
−∞

xf(x) dx

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 3 / 17

1. Preliminaries

(ii) Expectation (or Mean)

Properties:

∀Xi (i = 1, 2, . . . , n) : E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi]

This important property is called “linearity of
expectation”.
E[cX] = cE[X], where c constant
if X,Y stochastically independent, then
E[X · Y] = E[X] · E[Y]
Let f(X) a real-valued function of X. Then

E[f(x)] =
∑
x

f(x)Pr{X = x}

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 4 / 17

1. Preliminaries

(iii) Markov’s inequality

Theorem: Let X a non-negative random variable. Then, ∀t > 0
Pr{X ≥ t} ≤ E[X]

t

Proof: E[X] =
∑
x

xPr{X = x} ≥
∑
x≥t

xPr{X = x}

≥
∑
x≥t

tPr{X = x} = t
∑
x≥t

Pr{X = x} = t Pr{X ≥ t}

Note: Markov is a (rather weak) concentration inequality, e.g.
Pr{X ≥ 2E[X]} ≤ 1

2
Pr{X ≥ 3E[X]} ≤ 1

3
etc

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 5 / 17

1. Preliminaries

(iv) Variance (or second moment)

Definition: V ar(X) = E[(X − µ)2], where µ = E[X]
i.e. it measures (statistically) deviations from mean.

Properties:

V ar(X) = E[X2]− E2[X]
V ar(cX) = c2V ar(X), where c constant.
if X,Y independent, it is V ar(X + Y) = V ar(X) + V ar(Y)

Note: We call σ =
√
V ar(X) the standard deviation of X.

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 6 / 17

1. Preliminaries

(v) Chebyshev’s inequality

Theorem: Let X a r.v. with mean µ = E[X]. It is:

Pr{|X − µ| ≥ t} ≤ V ar(X)
t2

∀t > 0

Proof: Pr{|X − µ| ≥ t} = Pr{(X − µ)2 ≥ t2}
From Markov’s inequality:

Pr{(X − µ)2 ≥ t2} ≤ E[(X−µ)2]
t2

= V ar(X)
t2

Note: Chebyshev’s inequality provides stronger (than Markov’s)
concentration bounds, e.g.
Pr{|X − µ| ≥ 2σ} ≤ 1

4
Pr{|X − µ| ≥ 3σ} ≤ 1

9
etc

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 7 / 17

2. The Randomized Selection Algorithm

The problem: We are given a set S of n distinct elements
(e.g. numbers) and we are asked to find the kth smallest.

Notation:

rS(t): the rank of element t (e.g. the smallest element has
rank 1, the largest n and the kth smallest has rank k).
S(i) denotes the ith smallest element of S (clearly, we seek
S(k) and rS(S(k)) = k).

Remark: the fastest known deterministic algorithm needs
3n time and is quite complex. Also, any deterministic
algorithm requires 2n time (a tight lower bound).

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 8 / 17

2. The basic idea: random sampling

we will randomly sample a subnet of elements from S,
trying to optimize the following trade-off:

- the sample should be small enough to be processed (e.g.
ordered) in small time

- the sample should be large enough to contain the kth
smallest element, with high probability

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 9 / 17

2. The Lazy Select Algorithm

1 Pick randomly uniformly, with replacement, a subset R of
n

3
4 elements from S.

2 Sort R using an optimal deterministic sorting algorithm.

3 Let x = k · n−
1
4 .

l = max{bx−
√
nc, 1} and h = min{dx+

√
n e, n

3
4 } .

a = R(l) and b = R(h)

By comparing a and b to every element of S, determine
rS(a), rS(b).

4 If k ∈ [n
1
4 , n− n

1
4], let P = {y ∈ S : a ≤ y ≤ b}.

Check whether S(k) ∈ P and |P | ≤ 4n
3
4 + 2. If not, repeat

steps 1-3 until such a P is found.

5 By sorting P , identify P(k−rS(a)+1) = S(k).

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 10 / 17

2. Remarks on the Lazy Select Algorithm

In Step 1, sampling is done with replacement to simplify
the analysis. Sampling without replacement is marginally
faster but more complex to implement.

Step 2 takes O(n
3
4 log n) time (which is o(n)).

Step 3 clearly takes 2n time (2n comparisons). Graphically,

An example: assume rS(a) = 3 and we want S(7). In the
sorted list of P elements, S(7) = P(k−rS(a)+1) =
= P(7−3+1) = P5, i.e. the 5th element indeed.

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 11 / 17

2. Remarks on the Lazy Select Algorithm

In Step 4, it is easy to check (in constant time) whether
S(k) ∈ P by comparing k to (the now known) rS(a), rS(b).

In Step 5, sorting P takes O(n
3
4 log n) = o(n) time.

Note: we skip in Step 4 the (less interesting) cases where

k < n
1
4 and k > n− n

1
4 . Their analysis is similar.

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 12 / 17

2. When Lazy Select fails?

The algorithm may fail in Step 4, either because S(k) /∈ P
because |P | is large. We will show that the probability of failure
is very small.

Lemma 1. The probability that S(k) /∈ P is O(n−
1
4).

Proof: This happens if i)S(k) < a or ii)S(k) > b.

i) S(k) < a⇔ fewer than l (l = k · n−
1
4 −
√
n) of the samples in

R are less than or equal to S(k). Let:

Xi =

{
1, the ith random sample is at most S(k)

0, otherwise

Clearly, E(Xi) = Pr{Xi} = k
n and V ar(Xi) = k

n(1− k
n)

Let X =

|R|∑
i=1

Xi = # samples in R that are at most S(k). Then

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 13 / 17

2. When Lazy Select fails?

µX = E[X] = |R| · E[Xi] = n
3
4
k
n = kn−

1
4 and

σ2X = V ar[X] =

|R|∑
i=1

V ar(Xi) = n
3
4
k

n
(1− k

n
) ≤ n

3
4

4
(since the

samples are independent)

Thus, Pr{|X − µX | ≥
√
n} ≤ σ2

X
n ≤

n
3
4

4n = O(n−
1
4)

⇒ Pr{X − µX < −
√
n} ≤ O(n−

1
4)

⇒ Pr{X < µX −
√
n} = Pr{X < kn−

1
4 −
√
n︸ ︷︷ ︸

l

} ≤ O(n−
1
4)

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 14 / 17

2. When Lazy Select fails?

ii) The case S(k) > b is essentially symmetric (at least h of the
random samples should be smaller than S(k)), so

Pr{S(k) > b} = O(n−
1
4)

Overall Pr{S(k) /∈ P} = Pr{S(k) < a ∪ S(k) > b} =

O(n−
1
4) +O(n−

1
4) = O(n−

1
4) �

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 15 / 17

2. The Lazy Select Algorithm

Lemma 2 The probability that P contains more than 4n
3
4 + 2

elements is O(n−
1
4)

Proof: Very similar to the proof of Lemma 1: Let

ke = max{1, k − 2n
3
4 } and

kn = min{k + 2n
3
4 , n}

If S(kl) < a or S(kh) > b then P contains more than 4n
3
4 + 2

elements. For simplicity, let kl = k − 2n
3
4 , kh = k + 2n

3
4

Then, it suffices to “simulate” the proof of Lemma 1 for k = kl
and then for k = kh.

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 16 / 17

2. The Lazy Select Algorithm

Theorem The Algorithm Lazy Select finds the correct solution

with probability 1−O(n−
1
4) performing 2n+ o(n) comparisons.

Proof: Due to Lemmata 1, 2 the Algorithm finds S(k) on the

first pass through steps 1-5 with probability 1−O(n−
1
4) (i.e., it

does not fail in Step 4 avoiding a loop to Step 1). Step 1

obviously takes o(n) time. Step 2 requires O(n
3
4 log n) = o(n)

time, and Step 3 clearly needs 2n comparisons (comparing each
of the n elements of S to a and b). Overall the time needed is
thus 2n+ o(n).

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 4 17 / 17

