Randomized Algorithms

Lecture 4: "Randomized selection"

Sotiris Nikoletseas Professor

CEID - ETY Course 2017 - 2018

Sotiris Nikoletseas, Professor

(i) Boole's inequality (or union bound)

Let random events $\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_n$. Then

$$Pr\left\{\bigcup_{i=1}^{n} \mathcal{E}_{i}\right\} = Pr\{\mathcal{E}_{1} \cup \mathcal{E}_{2} \cup \cdots \cup \mathcal{E}_{n}\} \leq \sum_{i=1}^{n} Pr\{\mathcal{E}_{i}\}$$

Note: If the events are disjoint, then we get equality.

(ii) Expectation (or Mean)

Let X a random variable with probability density function (pdf) f(x). Its expectation is:

$$\mu_x = E[X] = \sum_x x \cdot \Pr\{X = x\}$$

If X is continuous, $\mu_x = \int_{-\infty}^{\infty} xf(x) dx$

1. Preliminaries

(ii) Expectation (or Mean)

Properties:

$$\forall X_i \ (i=1,2,\ldots,n) : E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i]$$

This important property is called "linearity of expectation".

•
$$E[cX] = cE[X]$$
, where c constant

- if X, Y stochastically independent, then $E[X \cdot Y] = E[X] \cdot E[Y]$
- Let f(X) a real-valued function of X. Then $E[f(x)] = \sum_{x} f(x) Pr\{X = x\}$

(iii) Markov's inequality

<u>Theorem:</u> Let X a non-negative random variable. Then, $\forall t > 0$ $Pr\{X \ge t\} \le \frac{E[X]}{t}$

$$\underline{\operatorname{Proof:}} E[X] = \sum_{x} x \operatorname{Pr}\{X = x\} \ge \sum_{x \ge t} x \operatorname{Pr}\{X = x\}$$
$$\ge \sum_{x \ge t} t \operatorname{Pr}\{X = x\} = t \sum_{x \ge t} \operatorname{Pr}\{X = x\} = t \operatorname{Pr}\{X \ge t\}$$

<u>Note:</u> Markov is a (rather weak) concentration inequality, e.g. $\begin{array}{l} Pr\{X \geq 2E[X]\} \leq \frac{1}{2} \\ Pr\{X \geq 3E[X]\} \leq \frac{1}{3} \\ \text{etc} \end{array}$ (iv) Variance (or second moment)

- Definition: Var(X) = E[(X μ)²], where μ = E[X]
 i.e. it measures (statistically) deviations from mean.
- Properties:

Note: We call $\sigma = \sqrt{Var(X)}$ the standard deviation of X.

(v) Chebyshev's inequality

Theorem: Let X a r.v. with mean
$$\mu = E[X]$$
. It is:
 $Pr\{|X - \mu| \ge t\} \le \frac{Var(X)}{t^2} \quad \forall t > 0$

Proof:
$$Pr\{|X - \mu| \ge t\} = Pr\{(X - \mu)^2 \ge t^2\}$$

From Markov's inequality:
 $Pr\{(X - \mu)^2 \ge t^2\} \le \frac{E[(X - \mu)^2]}{t^2} = \frac{Var(X)}{t^2}$

<u>Note</u>: Chebyshev's inequality provides stronger (than Markov's) concentration bounds, e.g. $Pr\{|X - \mu| \ge 2\sigma\} \le \frac{1}{4}$ $Pr\{|X - \mu| \ge 3\sigma\} \le \frac{1}{9}$ etc

2. The Randomized Selection Algorithm

- The problem: We are given a set S of n distinct elements (e.g. numbers) and we are asked to find the kth smallest.
- Notation:
 - $r_S(t)$: the rank of element t (e.g. the smallest element has rank 1, the largest n and the kth smallest has rank k).
 - $S_{(i)}$ denotes the *i*th smallest element of S (clearly, we seek $S_{(k)}$ and $r_S(S_{(k)}) = k$).
- Remark: the fastest known deterministic algorithm needs 3n time and is quite complex. Also, any deterministic algorithm requires 2n time (a tight lower bound).

- we will randomly sample a subnet of elements from S, trying to optimize the following trade-off:
 - the sample should be <u>small enough</u> to be processed (e.g. ordered) in small time
 - the sample should be large enough to contain the kth smallest element, with high probability

2. The Lazy Select Algorithm

- I Pick randomly uniformly, with replacement, a subset R of $n^{\frac{3}{4}}$ elements from S.
- **2** Sort R using an optimal deterministic sorting algorithm.
- 3 Let $x = k \cdot n^{-\frac{1}{4}}$. $l = max\{\lfloor x - \sqrt{n} \rfloor, 1\}$ and $h = min\{\lceil x + \sqrt{n} \rceil, n^{\frac{3}{4}}\}$. $a = R_{(l)}$ and $b = R_{(h)}$ By comparing a and b to every element of S, determine $r_S(a), r_S(b)$.
- 4 If $k \in [n^{\frac{1}{4}}, n n^{\frac{1}{4}}]$, let $P = \{y \in S : a \leq y \leq b\}$. Check whether $S_{(k)} \in P$ and $|P| \leq 4n^{\frac{3}{4}} + 2$. If not, repeat steps 1-3 until such a P is found.
- **5** By sorting P, identify $P_{(k-r_S(a)+1)} = S_{(k)}$.

2. Remarks on the Lazy Select Algorithm

- In Step 1, sampling is done with replacement to simplify the analysis. Sampling without replacement is marginally faster but more complex to implement.
- Step 2 takes $O(n^{\frac{3}{4}} \log n)$ time (which is o(n)).
- Step 3 clearly takes 2n time (2n comparisons). Graphically,

An example: assume $r_S(a) = 3$ and we want $S_{(7)}$. In the sorted list of P elements, $S_{(7)} = P_{(k-r_S(a)+1)} = P_{(7-3+1)} = P_5$, i.e. the 5th element indeed.

In Step 4, it is easy to check (in constant time) whether $S_{(k)} \in P$ by comparing k to (the now known) $r_S(a), r_S(b)$.

In Step 5, sorting P takes
$$O(n^{\frac{3}{4}} \log n) = o(n)$$
 time.

Note: we skip in Step 4 the (less interesting) cases where $k < n^{\frac{1}{4}}$ and $k > n - n^{\frac{1}{4}}$. Their analysis is similar.

The algorithm may fail in Step 4, either because $S_{(k)} \notin P$ because |P| is large. We will show that the probability of failure is very small.

<u>Lemma 1.</u> The probability that $S_{(k)} \notin P$ is $O(n^{-\frac{1}{4}})$.

<u>Proof:</u> This happens if $i S_{(k)} < a \text{ or } ii S_{(k)} > b$.

i) $S_{(k)} < a \Leftrightarrow$ fewer than $l \ (l = k \cdot n^{-\frac{1}{4}} - \sqrt{n})$ of the samples in R are less than or equal to $S_{(k)}$. Let:

$$X_{i} = \begin{cases} 1, & \text{the ith random sample is at most } S_{(k)} \\ 0, & \text{otherwise} \end{cases}$$

Clearly, $E(X_{i}) = Pr\{X_{i}\} = \frac{k}{n} \text{ and } Var(X_{i}) = \frac{k}{n}(1 - \frac{k}{n})$
Let $X = \sum_{i=1}^{|R|} X_{i} = \#$ samples in R that are at most $S_{(k)}$. Then

2. When Lazy Select fails?

$$\mu_X = E[X] = |R| \cdot E[X_i] = n^{\frac{3}{4}} \frac{k}{n} = kn^{-\frac{1}{4}} \text{ and}$$

$$\sigma_X^2 = Var[X] = \sum_{i=1}^{|R|} Var(X_i) = n^{\frac{3}{4}} \frac{k}{n} (1 - \frac{k}{n}) \le \frac{n^{\frac{3}{4}}}{4} \text{ (since the samples are independent)}}$$

Thus,
$$Pr\{|X - \mu_X| \ge \sqrt{n}\} \le \frac{\sigma_X^2}{n} \le \frac{n^{\frac{3}{4}}}{4n} = O(n^{-\frac{1}{4}})$$

 $\Rightarrow Pr\{X - \mu_X < -\sqrt{n}\} \le O(n^{-\frac{1}{4}})$
 $\Rightarrow Pr\{X < \mu_X - \sqrt{n}\} = Pr\{X < \underbrace{kn^{-\frac{1}{4}} - \sqrt{n}}_{l}\} \le O(n^{-\frac{1}{4}})$

ii) The case $S_{(k)} > b$ is essentially symmetric (at least h of the random samples should be smaller than $S_{(k)}$), so

$$Pr\{S_{(k)} > b\} = O(n^{-\frac{1}{4}})$$

Overall $Pr\{S_{(k)} \notin P\} = Pr\{S_{(k)} < a \cup S_{(k)} > b\} = O(n^{-\frac{1}{4}}) + O(n^{-\frac{1}{4}}) = O(n^{-\frac{1}{4}})$

Lemma 2 The probability that P contains more than $4n^{\frac{3}{4}}+2$ elements is $O(n^{-\frac{1}{4}})$

<u>Proof:</u> Very similar to the proof of Lemma 1: Let $k_e = max\{1, k - 2n^{\frac{3}{4}}\}$ and $k_n = min\{k + 2n^{\frac{3}{4}}, n\}$ If $S_{(k_l)} < a$ or $S_{(k_h)} > b$ then P contains more than $4n^{\frac{3}{4}} + 2$ elements. For simplicity, let $k_l = k - 2n^{\frac{3}{4}}, k_h = k + 2n^{\frac{3}{4}}$ Then, it suffices to "simulate" the proof of Lemma 1 for $k = k_l$ and then for $k = k_h$. <u>Theorem</u> The Algorithm Lazy Select finds the correct solution with probability $1 - O(n^{-\frac{1}{4}})$ performing 2n + o(n) comparisons.

<u>Proof:</u> Due to Lemmata 1, 2 the Algorithm finds $S_{(k)}$ on the first pass through steps 1-5 with probability $1 - O(n^{-\frac{1}{4}})$ (i.e., it does not fail in Step 4 avoiding a loop to Step 1). Step 1 obviously takes o(n) time. Step 2 requires $O(n^{\frac{3}{4}} \log n) = o(n)$ time, and Step 3 clearly needs 2n comparisons (comparing each of the *n* elements of *S* to *a* and *b*). Overall the time needed is thus 2n + o(n).