
Randomized Algorithms

Lecture 1: “A Monte Carlo Minimum
Cut Algorithm”

Sotiris Nikoletseas
Professor

CEID - ETY Course
2017 - 2018

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 1 / 32

1. Randomized Algorithms - Introduction

Randomized is an algorithm whose evolution depends on
random choices, in contrast to deterministic algorithms
which decide how to evolve based on their input only.

Two types of randomized algorithms:

Las Vegas: always correct output, running time is a random
variable.
Monte Carlo: they may produce wrong output (but the
error probability can be made appropriately small, actually
negligible).

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 2 / 32

Advantages of randomized algorithms

Because they decide randomly, they are simple, much
simpler than corresponding deterministic algorithms which
have to evaluate some (potentially complex) function of the
input and accordingly evolve.

They are usually very fast, much faster than their
deterministic counterparts, since they actually introduce a
trade-off between efficiency and correctness; this trade-off
can be appropriately adjusted and yield a small error
probability (even zero in the limit)

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 3 / 32

Basic paradigms for randomized algorithms (I)

Despite their rich diversity and wide applicability, their success
is actually based on the use of some key underlying paradigms,
techniques and principles, such as:

a. Foiling an adversary:

lower bounds for deterministic algorithms (d.a.) are
actually derived by adversarial selection of hard input on
which they behave poorly.
for each d.a. such adversarial inputs differ.
a randomized algorithm (r.a.) can be viewed as probability
distribution on deterministic algorithms
thus, an adversary may pick hard input that foils one (or
few) deterministic algorithms, but it is highly improbable to
foil all (or most) of then; so, it can not “trap” a randomized
algorithm into bad performance.

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 4 / 32

Basic paradigms for randomized algorithms (II)

b. Random sampling:

the r.a. performs random choices
this correspond to “randomly sampling” the input
a random sample quite often is representative of the entire
(potentially very large) input space
thus, the simplicity of the random choice does not hurt
correctness much

c. Random re-ordering:

A deterministic algorithm usually behaves poorly on few
pathological inputs.
A recurrent idea (mainly in data structures): first randomly
re-order the input (this is unlikely to produce the bad
input); then apply a standard algorithm.

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 5 / 32

Basic paradigms for randomized algorithms (III)

d. Load balancing.
Especially in problems of antagonistic sharing of limited
resources (such as communication links), a random
“spreading” of the global work load tends to produce more
or less even load distribution to the resources avoiding
bottleneck effects as well as under-utilization of some
resources

e. Symmetry breaking.
In distributed computing in particular, randomization can
be used to distributively, locally make a collection of
autonomous processors reach a global consensus (e.g. select
a leader, break a deadlock etc.)

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 6 / 32

Basic paradigms for randomized algorithms (IV)

f. Probabilistic existence proofs.
The probabilistic method proves in a non-constructive way
(i.e. without finding them) the existence of combinatorial
structures with some desired property, by showing positive
(i.e. non-zero) probability of the property in an
appropriate probability space. Similarly, we can prove
(without finding one) existence of an efficient algorithm for
solving some problem.

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 7 / 32

2. The Min Cut Monte Carlo Algorithm - cut definition

Let G = (V,E) an undirected graph with n = |V | vertices and
m = |E| edges.

Definition. A cut in G is a partition of the vertices of V
into two (disjoint) sets S and V \S where the edges of the
cut are:

(S, V \S) = {uv|u ∈ S, v ∈ V \S, uv ∈ E}
where S 6= ∅ and V \S 6= ∅. We call the number of edges
in the (S, V \S) cut the size of the cut.

Example. A cut of size 3, |S| = 5, |V \S| = 4:

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 8 / 32

The minimum cut problem

We are interesting in the problem of computing the
minimum cut, that is the cut in the graph whose
cardinality (number of edges) is minimum. In other words,
find S ⊆ V such that the cut (S, V \S) is as small as
possible, and neither S nor V \S are empty.

Complexity. The fastest known deterministic algorithm

takes O
(
n2 ·m · log n2

m

)
time which for dense graphs is

O(n3).

We will here present the fastest known minimum cut
algorithm (by Karger) which is randomized (Monte Carlo)

and takes O(m log3 n) time, i.e. O(n2 log3 n) time, with
high probability (i.e. with probability tending to 1 as some
independent parameter tends to ∞).

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 9 / 32

Probability preliminaries

Let X,Y random variables.

Definition. The conditional probability of X given Y is:

Pr{X = x|Y = y} = Pr{X=x∩Y=y}
Pr{Y=y}

Important equivalent.
Pr{X = x ∩ Y = y} = Pr{X = x|Y = y} · Pr{Y = y}
Definition. We call r.v. X,Y stochastically independent iff
∀x, y Pr{X = x|Y = y} = Pr{X = x}

Equivalently, Pr{X = x ∩ Y = y} = Pr{X = x} · Pr{Y = y}
Similarly, two events E1, E2 are independent iff

Pr{E1 ∩ E2} = Pr{E1} · Pr{E2}
In general, Pr{E1 ∩ E2} = Pr{E1} · Pr{E2|E1} and,
by induction, Pr{∩ni=1Ei} =
Pr{E1} · Pr{E2|E1} · Pr{E3|E1E2} · · ·Pr{En|E1E2 · · ·En−1}

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 10 / 32

Karger’s Algorithm - edge contraction

The basic operation of the algorithm is called edge contraction,
i.e. we take an edge e = xy and merge its two vertices into a
single vertex. The resulting graph is called G/xy.

Note 1: We remove any resulting self-loops.

Note 2: The resulting graph is no longer a “simple” graph since
it has “parallel” edges (i.e. more than one edges joining two
vertices). In other words, edge contractions lead to
multi-graphs.

Note 3: We present multi-graphs as simple graphs with
multiplicities on the edges.

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 11 / 32

Example of edge contractions

Note: In the initial graph G: deg(x) = 3, deg(y) = 5
In the contracted graph G/xy :deg{x, y} = deg(x) + deg(y),
where self-loops contribute 2 in the degree. If we do not count
self-loops: deg{x, y} = deg(x) + deg(y)− 2

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 12 / 32

Features of the edge contraction operation

The edge contraction operation obviously takes O(n) time,
where n is the number of vertices. It is actually done by
merging the adjacency lists of the two contracted vertices,
and then fixing the adjacency list of the vertices connected
to the contracted vertices.

Note: The cut is now computed counting multiplicities, i.e.,
if an edge is in the cut, and it has weight (multiplicity) w,
then we add w to the total weight of the cut.

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 13 / 32

Edge contraction - important property

Note: The size of the minimum cut in G/xy is at least as large
as the minimum cut in G.
This is so because any cut in G/xy has a corresponding cut
of same cardinality in G.

but, as said, deg{x, y} = deg{x}+ deg{y}. Note: the opposite
is not necessarily true because of cuts like this one, for which
the degrees do not add.

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 14 / 32

Main idea of Karger’s algorithm

Remark: Because of the property in the previous slide the
minimum cut can not decrease with the edge contractions!

Basic idea: Repeatedly, pick an edge and contract it, shrinking
the graph all the time until only 2 vertices remain. The
multiplicity of the edge joining these last 2 vertices is an upper
bound on the minimum cut in the original graph.

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 15 / 32

Example of repetitive edge contractions

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 16 / 32

When the final cut is not minimum

we showed that
min cut original ≤ min cut contracted

if we do not contract any edge of the minimum cut then
equality holds and the output is correct.

the output may be wrong when we contract an edge of the
minimum cut.

it may be correct if we contact an edge of a minimum cut
but there are more than one minimum cuts and at least
one survives contractions.

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 17 / 32

Cutting the Gordian Knot with randomness

we showed that if we do not contract a minimum cut edge
then the output is correct

but, from an algorithmic design point of view, this
argument is circular, since we do not know yet the
minimum cut.

we solve the Gordian Knot via randomness, picking the
next edge for contraction randomly, and hoping to,
appropriately, bound the error probability.

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 18 / 32

The pseudo code of the algorithm

Algorithm MINCUT (G)
G0 ← G
i = 0
while Gi has more than two vertices do

Pick randomly an edge ei from Gi

Gi+1 ← Gi/ei
i← i + 1

Let (S, V/S) the cut in the original graph
corresponding to the single edge in Gi

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 19 / 32

Estimating the error probability

− Lemma 1: If a graph of n vertices has a minimum cut of size
K, then |E(G)| ≥ Kn

2
Proof: Obviously each vertex has degree at least K (otherwise

the vertex itself would lead to a cut smaller than K)
⇒

∑
v∈V (G)

deg(v) ≥ nK

But
∑

v∈V (G)

deg(v) = 2 · |E(G)|, thus |E(G)| ≥ nK
2 �

− Lemma 2: If we pick a random edge then the probability that
it belongs to the minimum cut is at most 2

n .
Proof: Let e the random edge picked. Then

Pr{e in the minimum cut} = K
|E(G)| ≤

K
Kn
2

= 2
n �

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 20 / 32

Time complexity and correctness

Remark: MINCUT runs in O(n2) time, since it performs n− 2
contractions taking time O(n) each.

Lemma 3: MINCUT outputs correctly the minimum cut with
probability at least 2

n(n−1) .

Proof: Before the i−th contraction (1 ≤ i ≤ n− 2) the graph
has n− i + 1 vertices. Let Ei the probability that the edge
contracted at the i−th repetition is not in the minimum cut.
Then Pr{Ei|E1, . . . , Ei−1} ≥ 1− 2

n−i+1

Thus Pr{correct output} = Pr{
⋂n−2

i=1 Ei} =
= Pr{E1}Pr{E2|E1} · · ·Pr{En−2|E1 · · · En−3} ≥
≥ (1− 2

n)(1− 2
n−1)(1− 2

n−2) · · · (1− 2
3) =

= n−2
n

n−3
n−1

n−4
n−2 · · ·

2
4
1
3 = 2

n(n−1) �

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 21 / 32

Probability amplification

Informal concept: Amplification is the process of running a
random experiment again and again until the property we want
happens with appropriately good probability.

A repetitive algorithm. Let MINCUTREP the algorithm that
runs MINCUT n(n− 1) times and returns the minimum of all
cuts computed in all those (independent) executions of
MINCUT.

Lemma 4: The probability of MINCUTREP failing to return a
minimum cut is less than 0.14.

Proof: The probability of failure is less than(
1− 2

n(n−1)

)n(n−1)
≤ e−2 < 0.14

(since all n(n− 1) repetitions of MINCUT must fail) �

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 22 / 32

More amplification

Theorem 1: The minimum cut can be computed in O(n4 log n)
time, with high probability of correct output.

Proof: Similarly to Lemma 4, the error probability after
n(n− 1) log n repetitions of MINCUT is less than(

1− 2
n(n−1)

)n(n−1) logn
≤ e−2 logn = n−2

⇒ Pr{correct output} ≥ 1− n−2 → 1 as n→∞

The complexity is O(n2 log n) times O(n2) i.e. O(n4 log n)

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 23 / 32

Towards a faster algorithm

Questions: − Can we design a more complicated yet faster
algorithm?

− Why MINCUTREP needs many repetitions?

Remark: The probability of success in the first l iterations is

Pr{E1 · · · El} ≥ (1− 2
n)(1− 2

n−1)(1− 2
n−2) · · · (1− 2

n−l+1) =

= n−2
n ·

n−3
n−1 ·

n−4
n−2 · · ·

n−l−1
n−l+1 = (n−l)(n−l−1)

n(n−1)
At the start (when l is small) this probability is large but it
deteriorates very quickly when l gets larger and the graph
smaller.

Idea: As the graph sets smaller, the error probability (of
contracting a minimum cut edge) increases. So, we will run the
algorithm more times when the graph is smaller.

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 24 / 32

A size-dependent contraction process

We will thus use the following new version of repetitive
contraction operations which depend on the graph size.

CONTRACT (G, t)
begin

while |V (G)| > t do
Pick a random edge e of the graph
G← G/e

return G
end

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 25 / 32

The new (recursive) algorithm FASTCUT

FASTCUT (G = (V,E))
G a multi graph

begin
n← |V (G)|
if n ≤ 6 then

compute minimum cut of G
via brute force and return it

t←
⌈
1 + n√

2

⌉
H1 ← CONTRACT (G, t)
H2 ← CONTRACT (G, t)
X1 ← FASTCUT (H1)
X2 ← FASTCUT (H2)
return minimum cut of X1 and X2

end

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 26 / 32

Intuitive explanation of how FASTCUT works

H1 (and H2) repetitively contract the graph as long as it is
still quite large

Since CONTRACT (G, t) is randomized, H1 and H2 may
lead to different results and we want two independent
execution series for redundance.

When the graph becomes small, we recursively run the
FASTCUT algorithm, to ensure an appropriately large
number of contractions.

When the graph has less than 6 vertices we calculate the
minimum cut by brute force.

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 27 / 32

Time complexity of FASTCUT

Lemma 5: FASTCUT takes O(n2 log n) time, where n = |V (G)|

Proof: The CONTRACT operation obviously takes O(n2) time
and FASTCUT calls CONTRACT twice, needing O(n2) time.
Then, two recursive calls follow, on the resulting H1, H2 graphs.
Let T (n) the running time of FASTCUT. Then

T (n) = O(n2) + 2T
(

n√
2

)
The solution of this recurrency is T (n) = O(n2 log n) �

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 28 / 32

Correctness (I)

Lemma 6: The probability that CONTRACT (G, n√
2
) had not

contracted cut a minimum cut edge is at least 1
2 .

Proof: CONTRACT (G, t) performs n− t contractions. As in
the remark of slide 24, the probability of not contracting a min
cut edge is

(n−l)(n−l−1)
n(n−1) where l = n− t

i.e., t(t−1)
n(n−1) =

⌈
1+ n√

2

⌉(⌈
1+ n√

2

⌉
−1
)

n(n−1) ≥ 1
2 �

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 29 / 32

Correctness (II)

Theorem 2: FASTCUT finds the minimum cut with probability
larger than c

logn , where c constant large enough.

Proof: Let P (n) the probability that FASTCUT finds the
correct cut size on a graph with n vertices. The probability that
the algorithm succeeds in the first call on H1 is the probability
that CONTRACT does not hit a min cut edge (by Lemma 6,
this is ≥ 1

2) times the success probability of the recursive call;

thus, it is 1
2P
(

n√
2

)
. The failure probability that both H1 and

H2 fail is ≤
[
1− 1

2P (n√
2
)
]2

. Thus the algorithm succeeds with

probability at least

P (n) ≥ 1−
[
1− 1

2P (n√
2
)
]2

whose solution is P (n) ≥ c
logn where c is constant. �

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 30 / 32

Conclusions for FASTCUT

Theorem 3: Running FASTCUT c log2 n times guarantees
finding the minimum cut correctly with probability at least
1− 1

n2 (c a constant large enough).

Proof:

Pr{FASTCUTfails} ≤
(

1− c
logn

)c log2 n
≤ e−c

2logn = n−c
2

⇒ Pr{FASTCUT succeeds} ≥ 1− n−2

(via choosing c appropriately). �

Note: The total time FASTCUT takes is O(n2 log n) times
c · log2 n, i.e. O(n2 log3 n).

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 31 / 32

Comparison of MINCUTREP, FASTCUT

MINCUTREP takes O(n2) time to succeed with
probability ≥ 2

n2 and its amplification needs O(n4 log n)
time to succeed with probability → 1.

FASTCUT takes more time [O(n2 log n), i.e. more
repetitions] but succeeds with larger probability ≥ 1

logn and

its amplification needs O(n2 log3 n) time to succeed with
probability → 1.

In particular, FASTCUT takes O(n2) time at the start (via
CONTRACT, when the graph is large) and O(n2 log n)
time later on at the recursive calls when the graph is
smaller.

Sotiris Nikoletseas, Professor A Monte Carlo Minimum Cut Algorithm 32 / 32

