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Markov Chains - Stochastic Processes

Stochastic Process: A set of random variables {Xt, t ∈ T}
defined on a set D, where:

- T : a set of indices representing time

- Xt: the state of the process at time t

- D: the set of states

The process is discrete/continuous when D is
discrete/continuous. It is a discrete/continuous time
process depending on whether T is discrete or continuous.

In other words, a stochastic process abstracts a random
phenomenon (or experiment) evolving with time, such as:

- the number of certain events that have occurred (discrete)

- the temperature in some place (continuous)
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Markov Chains - transition matrix

Let S a state space (finite or countable). A Markov Chain
(MC) is at any given time at one of the states. Say it is
currently at state i; with probability Pij it moves to the
state j. So:

0 ≤ Pij ≤ 1 and∑
j

Pij = 1

The matrix P = {Pij}ij is the transition probabilities
matrix.

The MC starts at an initial state X0, and at each point in
time it moves to a new state (including the current one)
according to the transition matrix P . The resulting
sequence of states {Xt} is called the history of the MC.
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The memorylessness property

Clearly, the MC is a stochastic process, i.e. a random
process in time.

the defining property of a MC is its memorylessness, i.e.
the random process “forgets” its past (or “history”), while
its “future” (next state) only depends on the “present” (its
current state). Formally:

Pr{Xt+1 = j|X0 = i0, X1 = i1, . . . , Xt−1 = it−1, Xt = i} =
Pr{Xt+1 = j|Xt = i} = Pij

The initial state of the MC can be arbitrary.
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t-step transitions

For states i, j ∈ S, the t-step transition probability from i
to j is:

P
(t)
ij = Pr{Xt = j|X0 = i}

i.e. we compute the (i, j)-entry of the t-th power of
transition matrix P .

Chapman - Kolmogorov equations:

P
(t)
ij =

∑
i1,i2,...,it−1∈S

Pr{Xt = j,

t−1⋂
k=1

Xk = ik|X0 = i}

=
∑

i1,i2,...,it−1∈S
Pii1Pi1i2 · · ·Pit−1j
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First visits

The probability of first visit at state j after t steps,
starting from state i, is:

r
(t)
ij = Pr{Xt = j,X1 6= j,X2 6= j, . . . , Xt−1 6= j|X0 = i}

The expected number of steps to arrive for the first time at
state j starting from i is:

hij =
∑
t>0

t · r(t)ij
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Visits/State categories

The probability of a visit (not necessarily for the first time)
at state j, starting from state i, is:

fij =
∑
t>0

r
(t)
ij

Clearly, if fij < 1 then there is a positive probability that
the MC never arrives at state j, so in this case hij =∞.

A state i for which fii < 1 (i.e. the chain has positive
probability of never visiting state i again) is a
transient state. If fii = 1 then the state is persistent (also
called recurrent).

If state i is persistent but hii =∞ it is null persistent. If it
is persistent and hii 6=∞ it is non null persistent.

Note. In finite Markov Chains, there are no null persistent
states.
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Example (I)

A Markov Chain

The transition matrix P :

P =


1
3

2
3 0 0

1
2

1
8

1
4

1
8

0 0 1 0
0 0 0 1


The probability of starting from v1, moving to v2, staying
there for 1 time step and then moving back to v1 is:
Pr{X3 = v1, X2 = v2, X1 = v2|X0 = v1} =
= Pv1v2Pv2v2Pv2v1 = 2

3 ·
1
8 ·

1
2 = 1

24
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Example (II)

The probability of moving from v1 to v1 in 2 steps is:

P
(2)
v1v1 = Pv1v1 · Pv1v1 + Pv1v2 · Pv2v1 = 1

3 ·
1
3 + 2

3 ·
1
2 = 4

9

Alternatively, we calculate P 2 and get the (1,1) entry.

The first visit probability from v1 to v2 in 2 steps is:

r
(2)
v1v2 = Pv1v1Pv1v2 = 1

3 ·
2
3 = 2

9

while r
(7)
v1v2 = (Pv1v1)6Pv1v2 =

(
1
3

)6 · 23 = 2
37

and r
(t)
v2v1 = (Pv2v2)t−1Pv2v1 =

(
1
8

)t−1 · 12 = 1
23t−2

for t ≥ 1 (since r
(0)
v2v1 = 0)
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Example (III)

The probability of (eventually) visiting state v1 starting
from v2 is:

fv2v1 =
∑
t≥1

1

23t−2
=

4

7

The expected number of steps to move from v1 to v2 is:

hv1v2 =
∑
t≥1

t · r(t)v1v2 =
∑
t≥1

t · (Pv1v1)(t−1)Pv1v2 =
3

2

(actually, we have the mean of a geometric distribution
with parameter 2

3)
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Irreducibility

Note: A MC can naturally be represented via a directed,
weighted graph whose vertices correspond to states and the
transition probability Pij is the weight assigned to the edge
(i, j). We include only edges (i, j) with Pij > 0.

A state u is reachable from a state v (we write v → u) iff
there is a path P of states from v to u with Pr{P} > 0.

A state u communicates with state v iff u→ v and v → u
(we write u↔ v)

A MC is called irreducible iff every state can be reached
from any other state (equivalently, the directed graph of
the MC is strongly connected).
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Irreducibility (II)

In our example, v1 can be reached only from v2 (and the
directed graph is not strongly connected) so the MC is not
irreducible.

Note: In a finite MC, either all states are transient or all
states are (non null) persistent.

Note: In a finite MC which is irreducible, all states are
persistent.

Sotiris Nikoletseas, Professor The Probabilistic Method 12 / 27



Absorbing states

Another type of states: A state i is absorbing iff Pii = 1

(e.g. in our example, the states v3 and v4 are absorbing)

Another example:

The states v0, vn are absorbing
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State probability vector

Definition. Let q(t) = (q
(t)
1 , q

(t)
2 , ..., q

(t)
n ) be the row vector

whose i-th component q
(t)
i is the probability that the MC is

in state i at time t. We call this vector the state
probability vector (alternatively, we call it the distribution
of the MC at time t).

Main property. Clearly

q(t) = q(t−1) · P = q(0) · P t

where P is the transition probability matrix

Importance: rather than focusing on the probabilities of
transitions between the states, this vector focuses on the
probability of being in a state.
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Periodicity

Definition. A state i called periodic iff the largest integer T
satisfying the property

q
(t)
i > 0⇒ t ∈ {a+ kT |k ≥ 0}

is largest than 1 (a > 0 a positive integer); otherwise it is
called aperiodic. We call T the periodicity of the state.

In other words, the MC visits a periodic state only at times
which are terms of an arithmetic progress of rate T .
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Periodicity (II)

Example: a random walk on a bipartite graph clearly
represents a MC with all states having periodicity 2.
Actually, a random walk on a graph is aperiodic iff the
graph is not bipartite.

Definition: We call aperiodic a MC whose states are all
aperiodic. Equivalently, the chain is aperiodic iff (gcd:
greatest common divisor):

∀x, y : gcd{t : P
(t)
xy > 0} = 1
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Ergodicity

Note: the existence of periodic states introduces significant
complications since the MC “oscillates” and does not
“converge”. The state of the chain at any time clearly
depends on the initial state; it belongs to the same “part”
of the graph at even times and the other part at odd times.

Similar complications arise from null persistent states.

Definition. A state which is non null persistent and
aperiodic is called ergodic. A MC whose states are all
ergodic is called ergodic.

Note: As we have seen, a finite, irreducible MC has only
non-null persistent states.
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Stationarity

Definition: A state probability vector (or distribution) π
for which

π(t) = π(t) · P
is called stationary distribution

Clearly, for the stationary distribution we have

π(t) = π(t+1)

In other words, when a chain arrives at a stationary
distribution it “stays” at that distribution for ever, so this
the “final” behaviour of the chain (i.e. the probability of
being at any vertex tends to a well-defined limit,
independent of the initial vertex). This is why we also call
it equilibrium distribution or steady state distribution. We
also say that the chain converges to stationarity.
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The Fundamental Theorem of Markov Chains

In general, a stationary distribution may not exist so we
focus on Markov Chains with stationarity.

Theorem. For every irreducible, finite, aperiodic MC it is:

1 The MC is ergodic.

2 There is a unique stationary distribution π, with πi > 0 for
all states i ∈ S

3 For all states i ∈ S, it is fii = 1 and hii = 1
πi

4 Let N(i, t) the number of times the MC visits state i in t
steps. Then

lim
t←∞

N(i, t)

t
= πi

Namely, independently of the starting distribution, the MC
converges to the stationary distribution.
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Stationarity in doubly stochastic matrices

Definition: A nxn matrix M is stochastic if all its entries
are non-negative and for each row i, it is:∑

j

Mij = 1

(i.e. the entries of any row add to 1). If in addition the
entries of any column add to 1, i.e. for all j it is:∑

i

Mij = 1

then the matrix is called doubly stochastic.
Lemma: The stationary distribution of a Markov Chain
whose transition probability matrix P is doubly stochastic
is the uniform distribution.
Proof: The distribution πv = 1

n for all v is stationary, since
it satisfies:

[π ·P ]v =
∑
u

πuPuv =
∑
u

1

n
Puv =

1

n

∑
u

Puv =
1

n
1 = πv �
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Stationarity in symmetric chains

Definition: A chain is called symmetric iff:

∀u, v : Puv = Pvu

Lemma: If a chain is symmetric its stationary distribution
is uniform.

Proof: Let N be the number of states. From Fundamental
Theorem, it suffices to check that πu = 1

N , ∀u, satisfies
π · P = π. Indeed:

(πP )u =
∑
v

πv · Pvu =
1

N

∑
v

Puv =
1

N
· 1 = πu �
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Examples - Card shuffling

Given a set of n cards, let a Markov Chain whose states are
all possible permutations of the cards (n!) and one step
transition between states defined by some
card shuffling rule. For the shuffling to be effective the
stationarity distribution must be the uniform one. We
provide two such effective shufflings:

(1) Random transpositions: “choose” any two cards at
random and swap them e.g.

· · · a · · · b · · · ⇒ · · · b · · · a · · ·

Note: Indeed the transition probabilities in both directions

are the same

(
each one is 1

(n2)

)
so the chain is symmetric

and its stationary distribution uniform.
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Examples - Card shuffling (II)

(2) Top-in-at-Random: “place the top card to a random new
position of the n possible ones”

Note: There are n potential new states. Also, each state can be
reached from n other states with probability 1

n from each. So
the chain is doubly stochastic and its stationary distribution
uniform.
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On the mixing time

Although the Fundamental Theorem guarantees that an
aperiodic, irreducible finite chain converges to a stationary
distribution, it does not tell us how fast convergence
happens.

The convergence rate appropriately close to stationarity is
captured by an important measure (the “mixing time”).
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On the mixing time (II)

As an example, the number of shufflings needed by
“Top-in-at-Random” to produce an almost uniform
permutation of cards is O(n log n). Other methods are
faster e.g. their mixing time is O(log n), such as in
Riffle-Shuffle where the deck of cards is randomly split into
two sets (left, right) which are then “interleaved”.

This convergence rate is very important in algorithmic
applications, where we want to ensure that a proper sample
can be obtained in fairly small time, even when the state
space is very large!
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Random walks on graphs

Let G = (V,E) a connected, non-bipartite, undirected
graph with n vertices. We define a Markov Chain MCG

corresponding to a random walk on the vertices of G, with
transition probability:

Puv =

{
1

d(u) , if uv ∈ E(G)

0, otherwise

where d(u) is the degree of vertex u.

Since the graph is connected and undirected, MCG is
clearly irreducible. Also, since the graph is non-bipartite,
MCG is aperiodic.
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The stationary distribution

So (from fundamental theorem of Markov Chains) MG has
a unique stationary distribution π.

Lemma 1: For all vertices v ∈ V it is πv = d(v)
2m , where m is

the number of edges of G.

Proof: From the definition of stationarity, it must be:

πv = [π · P ]v =
∑
u

πuPuv , ∀v ∈ V

Because of uniqueness, it suffices to verify the claimed
solution. Indeed, for all v ∈ V we have (for the claimed
solution value):∑
u

πuPuv =
∑

u:uv∈E

d(u)

2m

1

d(u)
=

1

2m

∑
u:uv∈E

1 =
1

2m
d(v) = πv

�
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