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Summary of previous lecture

1. The Lovász Local Lemma

2. Example - Diagonal Ramsey Numbers
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Summary of this lecture

1) On the importance of stochastic independence

2) The Janson Inequality

3) Example - Triangle-free sparse Random Graphs

4) Example - Paths of length 3 in Gn,p
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1) On the importance of stochastic independence

The local Lemma demonstrates that rare dependencies
yield results similar to the case of stochastic independence.

The Janson inequality actually does the same, but for the
case when the total amount of dependencies is
rather small.
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Intuition

1 Let Bi be the undesired events.

2 non-trivial dependence ∼:

i ∼ j ⇔ i ̸= j and Bi, Bj dependent

3 ∆ =
∑

i∼j Pr{Bi ∧Bj}: measure of dependencies.

4 If the events were independent then the probability of the
desired property is defined as follows:

Pr{∧Bi} =
∏
i

Pr{Bi} = M

5 The Janson inequality shows that Pr{∧Bi} remains very
close to M if the dependencies are small.
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2) The Janson Inequality

Theorem 1

Let Bi be undesired events. Define

1) ∆ =
∑

i∼j Pr{Bi ∧Bj} and

2) M =
∏

i Pr{Bi}

If Pr{Bi} ≤ ϵ then M ≤ Pr

{∧
i

Bi

}
≤ M · exp

(
1

1− ϵ
· ∆
2

)

Remark: If

a. ϵ is small (e.g. ϵ is constant or smaller i.e. undesired events are not
very probable) and

b. ∆ is small e.g. o(1) (i.e. there are small dependencies)

Then,

e(
1

1−ϵ
·∆
2 ) → 1 ⇒ Pr

{∧
i

Bi

}
≃ M =

∏
i

Pr{Bi}
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3) Example - Triangle-free sparse Random Graphs

Theorem 2

Consider the Gn,p graph space. For every constant c,

If p =
c

n
⇒ Pr{̸ ∃ K3} → e−c3/6

(Gn,p with p = c
n
is sparse because the connectivity threshold is p = clogn

n
.)

Proof:

Let S be any fixed set of 3 vertices (|S| = 3).

We define the event BS = {S is K3 (triangle)}.

Pr{BS} = p3 = c3

n3

We want to prove that

Pr

{ ∧
S,|S|=3

BS

}
→ e−c3/6
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Proof of theorem 2

Intuition: If events BS were independent, then:

M = Pr

{ ∧
S,|S|=3

BS

}
=
∏
S

Pr
{
BS

}
= (1− p3)(

n
3) ∼ e−

c3

n3 ·n3

3! = e−c3/6

Since events are dependent, we will show that dependencies in this
sparse graph are small, to get a very similar result, via applying the
Janson inequality:

ϵ = Pr{BS} =
c3

n3
→ 0

M =
∏

S,|S|=3

Pr{BS} = (1− p3)(
n
3) ∼ e−c3/6

∆ =
∑
S∼T

Pr{BS ∧BT }

Sotiris Nikoletseas, Professor The Probabilistic Method 8 / 14



Proof of theorem 2

Non-trivial dependence:

S ∼ T ⇔
{

S ̸= T
|S ∧ T | ≥ 2

}
⇔ |S ∧ T | = 2

Pr{BS ∧BT } = p5

∆ =

(
n

3

)(
3

2

)(
n− 3

1

)
p5

= O(n4p5) = O

(
n4 · c

5

n5

)
= Θ

(
1

n

)
= o(1)

Since ϵ = o(1) and ∆ = o(1) we apply the basic case of Janson
inequality that gives us:

lim
n→∞

Pr

{∧
S

Bs

}
= lim

n→∞
M = e−c3/6

□Sotiris Nikoletseas, Professor The Probabilistic Method 9 / 14



4) Example - Paths of length 3 in Gn,p

Theorem 3

Define the event B={∃ a path of length 3 between any pair of vertices
in Gn,p}. For every constant c ≥ 2:

If p =

(
c · lnn
n2

)1/3

⇒ Pr{B} → 1

Proof:
We define the event:

Bu,v = {̸ ∃ a path of length 3 between vertices u and v}.

Pr{B} = Pr

{∪
u,v

Bu,v

}
≤
∑
u,v

Pr{Bu,v} = O(n2) Pr{Bu,v}
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Proof of theorem 3

In order to prove that Pr{B} → 0 or, equivalently Pr{B} → 1,
we must prove that

Pr{Bu,v} = o(n−2)

We apply Janson Inequality to prove that Pr{Bu,v} = o(n−2).

We define the undesired event:

Aw1,w2 = {the edges (u,w1), (w1, w2), (w2, v) exist}

and express the event Bu,v as follows:

⇒ Bu,v =

{ ∧
w1,w2

Aw1,w2

}
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Proof of theorem 3

ϵ = Pr

{
Aw1,w2

}
= p3 =

((
c · lnn
n2

)1/3
)3

→ 0

M =
∏

w1,w2

Pr

{
Aw1,w2

}
=
(
1− p3

)(n−2)(n−3)

≤ e−p3n2
= e−

c·lnn
n2 ·n2

= n−c = o
(
n−2

)
So, the result would hold if there were no dependencies.

∆ =
∑

(w1,w2)∼(w′
1,w

′
2)

Pr
{
Aw1,w2 ∧Aw′

1,w
′
2

}
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Proof of theorem 3

u

w1 w2 = w
′

2

v

w
′

1

case 1:

u

w1 = w
′

1
w2

v

w
′

2

case 2:

u

w1 = w
′

2 w2 = w
′

1

v

case 3:

Contribution to ∆:

case 1:(
n− 2

3

)
· p5

case 2:(
n− 2

3

)
· p5

case 3:(
n− 2

2

)
· p5
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Proof of theorem 3

⇒ ∆ = O(n3)p5 +O(n3)p5 +O(n2)p5

= O(n3)p5 = O(n3)

(
c · lnn
n2

)5/3

= O

(
(c · lnn)5/3

n1/3

)
= o(1)

Since ϵ = o(1) and ∆ = o(1) we apply the basic case of Janson
inequality that gives us:

⇒ lim
n→∞

Pr

{ ∧
w1,w2

Aw1,w2

}
= lim

n→∞
M = o(n−2)
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