The Probabilistic Method - Probabilistic Techniques

Lecture 7: "The Janson Inequality"

Sotiris Nikoletseas
 Professor

Computer Engineering and Informatics Department

$$
2017-2018
$$

Summary of previous lecture

1. The Lovász Local Lemma
2. Example - Diagonal Ramsey Numbers

Summary of this lecture

1) On the importance of stochastic independence
2) The Janson Inequality
3) Example - Triangle-free sparse Random Graphs
4) Example - Paths of length 3 in $G_{n, p}$

1) On the importance of stochastic independence

- The local Lemma demonstrates that rare dependencies yield results similar to the case of stochastic independence.
- The Janson inequality actually does the same, but for the case when the total amount of dependencies is rather small.

Intuition

1 Let B_{i} be the undesired events.
2 non-trivial dependence \sim :

$$
i \sim j \Leftrightarrow i \neq j \text { and } B_{i}, B_{j} \text { dependent }
$$

$3 \Delta=\sum_{i \sim j} \operatorname{Pr}\left\{B_{i} \wedge B_{j}\right\}$: measure of dependencies.
4 If the events were independent then the probability of the desired property is defined as follows:

$$
\operatorname{Pr}\left\{\wedge \overline{B_{i}}\right\}=\prod_{i} \operatorname{Pr}\left\{\overline{B_{i}}\right\}=M
$$

5 The Janson inequality shows that $\operatorname{Pr}\left\{\wedge \overline{B_{i}}\right\}$ remains very close to M if the dependencies are small.

2) The Janson Inequality

Theorem 1

Let B_{i} be undesired events. Define

1) $\Delta=\sum_{i \sim j} \operatorname{Pr}\left\{B_{i} \wedge B_{j}\right\}$ and
2) $M=\prod_{i} \operatorname{Pr}\left\{\overline{B_{i}}\right\}$

$$
\text { If } \operatorname{Pr}\left\{B_{i}\right\} \leq \epsilon \text { then } M \leq \operatorname{Pr}\left\{\bigwedge_{i} \overline{B_{i}}\right\} \leq M \cdot \exp \left(\frac{1}{1-\epsilon} \cdot \frac{\Delta}{2}\right)
$$

Remark: If
a. ϵ is small (e.g. ϵ is constant or smaller i.e. undesired events are not very probable) and
b. Δ is small e.g. $\mathbf{o (1)}$ (i.e. there are small dependencies)

Then,

$$
e^{\left(\frac{1}{1-\epsilon} \cdot \frac{\Delta}{2}\right)} \rightarrow 1 \Rightarrow \operatorname{Pr}\left\{\bigwedge_{i} \overline{B_{i}}\right\} \simeq M=\prod_{i} \operatorname{Pr}\left\{\overline{B_{i}}\right\}
$$

3) Example - Triangle-free sparse Random Graphs

Theorem 2
Consider the $G_{n, p}$ graph space. For every constant c,

$$
\text { If } p=\frac{c}{n} \Rightarrow \operatorname{Pr}\left\{\nexists K_{3}\right\} \rightarrow e^{-c^{3} / 6}
$$

($G_{n, p}$ with $p=\frac{c}{n}$ is sparse because the connectivity threshold is $p=\frac{c \log n}{n}$.)
Proof:
■ Let S be any fixed set of 3 vertices $(|S|=3)$.
■ We define the event $B_{S}=\left\{\mathrm{S}\right.$ is K_{3} (triangle) $\}$.
■ $\operatorname{Pr}\left\{B_{S}\right\}=p^{3}=\frac{c^{3}}{n^{3}}$
We want to prove that

$$
\operatorname{Pr}\left\{\bigwedge_{S,|S|=3} \overline{B_{S}}\right\} \rightarrow e^{-c^{3} / 6}
$$

Proof of theorem 2

Intuition: If events B_{S} were independent, then:

$$
\begin{aligned}
M & =\operatorname{Pr}\left\{\bigwedge_{S,|S|=3} \overline{B_{S}}\right\}=\prod_{S} \operatorname{Pr}\left\{\overline{B_{S}}\right\} \\
& =\left(1-p^{3}\right)^{\binom{n}{3}} \sim e^{-\frac{c^{3}}{n^{3} \cdot \frac{n}{3}} 3!}=e^{-c^{3} / 6}
\end{aligned}
$$

Since events are dependent, we will show that dependencies in this sparse graph are small, to get a very similar result, via applying the Janson inequality:

$$
\begin{gathered}
\epsilon=\operatorname{Pr}\left\{B_{S}\right\}=\frac{c^{3}}{n^{3}} \rightarrow 0 \\
M=\prod_{S,|S|=3} \operatorname{Pr}\left\{\overline{B_{S}}\right\}=\left(1-p^{3}\right)^{\binom{n}{3}} \sim e^{-c^{3} / 6} \\
\Delta=\sum_{S \sim T} \operatorname{Pr}\left\{B_{S} \wedge B_{T}\right\}
\end{gathered}
$$

Proof of theorem 2

- Non-trivial dependence:

$$
S \sim T \Leftrightarrow\left\{\begin{array}{l}
S \neq T \\
|S \wedge T| \geq 2
\end{array}\right\} \Leftrightarrow|S \wedge T|=2
$$

- $\operatorname{Pr}\left\{B_{S} \wedge B_{T}\right\}=p^{5}$

$$
\begin{aligned}
\Delta & =\binom{n}{3}\binom{3}{2}\binom{n-3}{1} p^{5} \\
& =O\left(n^{4} p^{5}\right)=O\left(n^{4} \cdot \frac{c^{5}}{n^{5}}\right)=\Theta\left(\frac{1}{n}\right)=o(1)
\end{aligned}
$$

Since $\epsilon=o(1)$ and $\Delta=o(1)$ we apply the basic case of Janson inequality that gives us:

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\bigwedge_{S} \overline{B_{s}}\right\}=\lim _{n \rightarrow \infty} M=e^{-c^{3} / 6}
$$

4) Example - Paths of length 3 in $G_{n, p}$

Theorem 3

Define the event $B=\{\exists$ a path of length 3 between any pair of vertices in $\left.G_{n, p}\right\}$. For every constant $c \geq 2$:

$$
\text { If } p=\left(\frac{c \cdot \ln n}{n^{2}}\right)^{1 / 3} \Rightarrow \operatorname{Pr}\{B\} \rightarrow 1
$$

Proof:

We define the event:

- $B_{u, v}=\{\nexists$ a path of length 3 between vertices u and $v\}$.

$$
\begin{aligned}
\operatorname{Pr}\{\bar{B}\} & =\operatorname{Pr}\left\{\bigcup_{u, v} B_{u, v}\right\} \\
& \leq \sum_{u, v} \operatorname{Pr}\left\{B_{u, v}\right\}=O\left(n^{2}\right) \operatorname{Pr}\left\{B_{u, v}\right\}
\end{aligned}
$$

Proof of theorem 3

In order to prove that $\operatorname{Pr}\{\bar{B}\} \rightarrow 0$ or, equivalently $\operatorname{Pr}\{B\} \rightarrow 1$, we must prove that

$$
\operatorname{Pr}\left\{B_{u, v}\right\}=o\left(n^{-2}\right)
$$

We apply Janson Inequality to prove that $\operatorname{Pr}\left\{B_{u, v}\right\}=o\left(n^{-2}\right)$.
We define the undesired event:
■ $A_{w_{1}, w_{2}}=\left\{\right.$ the edges $\left(u, w_{1}\right),\left(w_{1}, w_{2}\right),\left(w_{2}, v\right)$ exist $\}$ and express the event $B_{u, v}$ as follows:

$$
\Rightarrow B_{u, v}=\left\{\bigwedge_{w_{1}, w_{2}} \overline{A_{w_{1}, w_{2}}}\right\}
$$

Proof of theorem 3

$$
\begin{aligned}
& \epsilon=\operatorname{Pr}\left\{A_{w_{1}, w_{2}}\right\}=p^{3}=\left(\left(\frac{c \cdot \ln n}{n^{2}}\right)^{1 / 3}\right)^{3} \rightarrow 0 \\
& M=\prod_{w_{1}, w_{2}} \operatorname{Pr}\left\{\overline{A_{w_{1}, w_{2}}}\right\}=\left(1-p^{3}\right)^{(n-2)(n-3)} \\
& \quad \leq e^{-p^{3} n^{2}}=e^{-\frac{c \cdot \ln n}{n^{2} \cdot n^{2}}}=n^{-c}=o\left(n^{-2}\right)
\end{aligned}
$$

So, the result would hold if there were no dependencies.

$$
\Delta=\sum_{\left(w_{1}, w_{2}\right) \sim\left(w_{1}^{\prime}, w_{2}^{\prime}\right)} \operatorname{Pr}\left\{A_{w_{1}, w_{2}} \wedge A_{w_{1}^{\prime}, w_{2}^{\prime}}\right\}
$$

Proof of theorem 3

case 1:

Contribution to Δ :

- case 1 :

$$
\binom{n-2}{3} \cdot p^{5}
$$

- case 2 :

$$
\binom{n-2}{3} \cdot p^{5}
$$

- case 3:

$$
\binom{n-2}{2} \cdot p^{5}
$$

Proof of theorem 3

$$
\begin{aligned}
\Rightarrow \Delta & =O\left(n^{3}\right) p^{5}+O\left(n^{3}\right) p^{5}+O\left(n^{2}\right) p^{5} \\
& =O\left(n^{3}\right) p^{5}=O\left(n^{3}\right)\left(\frac{c \cdot \ln n}{n^{2}}\right)^{5 / 3} \\
& =O\left(\frac{(c \cdot \ln n)^{5 / 3}}{n^{1 / 3}}\right) \\
& =o(1)
\end{aligned}
$$

Since $\epsilon=o(1)$ and $\Delta=o(1)$ we apply the basic case of Janson inequality that gives us:

$$
\Rightarrow \lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\bigwedge_{w_{1}, w_{2}} \overline{A_{w_{1}, w_{2}}}\right\}=\lim _{n \rightarrow \infty} M=o\left(n^{-2}\right)
$$

