## The Probabilistic Method - Probabilistic Techniques

## Lecture 6: "The Local Lemma"

## Sotiris Nikoletseas <br> Professor

Computer Engineering and Informatics Department
2017-2018

## Summary of previous lecture

1. The Variance of a random variable:

$$
\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]
$$

2. The Chebyshev Inequality:

$$
\operatorname{Pr}\{|X-\mu| \geq t\} \leq \frac{\operatorname{Var}[X]}{t^{2}}
$$

3. A direct consequence:

$$
\operatorname{Pr}\{X=0\} \leq \operatorname{Pr}\{|X-\mu| \geq \mu\} \leq \frac{\operatorname{Var}[X]}{\mu^{2}}
$$

4. The Second Moment method:

$$
\left.\begin{array}{l}
\text { if } E[X] \rightarrow \infty \text { and } \\
\operatorname{Var}[X]=o\left(E^{2}[X]\right)
\end{array}\right\} \Rightarrow \operatorname{Pr}\{X=0\} \rightarrow 0
$$

Thus, $\operatorname{Pr}\{X \geq 1\} \rightarrow 1 \Rightarrow$ existence w.h.p.

## Summary of previous lecture

5. Covariance of two random variables:

$$
\operatorname{Cov}(X, Y)=E[X Y]-E[X] \cdot E[Y]
$$

stochastic dependence of $X, Y \uparrow \Rightarrow|\operatorname{Cov}(X, Y)| \uparrow$
$X, Y$ independent $\Rightarrow \operatorname{Cov}(X, Y)=0$
6. Variance of a sum of r.v. $X=X_{1}+X_{2}+\cdots+X_{n}$ :

$$
\operatorname{Var}[X]=\sum_{1 \leq i, j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

The sum is over ordered pairs.
7. An upper bound for the variance of a sum of indicator r.v. $X=X_{1}+X_{2}+\cdots+X_{n}:$

$$
\operatorname{Var}[X] \leq E[X]+\sum_{1 \leq i \neq j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Hint: $\operatorname{Cov}\left(X_{i}, X_{i}\right)=\operatorname{Var}\left(X_{i}\right) \leq E\left[X_{i}\right]$ (since $X_{i} \sim$ Bernoulli) .

## Summary of previous lecture

8. Non-trivial dependence: $\sim$

$$
i \sim j \Rightarrow\left\{\begin{array}{l}
A_{i} \neq A_{j} \text { and } \\
A_{i}, A_{j} \text { dependent }
\end{array}\right.
$$

9. $\Delta$ approach:

$$
\Delta=\sum_{i \sim j} \operatorname{Pr}\left\{A_{i} \wedge A_{j}\right\}
$$

10. The upper bound using $\Delta$ :

$$
\begin{gathered}
\text { Since } \operatorname{Cov}\left(X_{i}, X_{j}\right) \leq \operatorname{Pr}\left\{A_{i} \wedge A_{j}\right\} \\
\text { we have: } \operatorname{Var}[X] \leq E[X]+\Delta
\end{gathered}
$$

11. The Second Moment method (variation with $\Delta$ ):

$$
\left.\begin{array}{l}
\text { if } E[X] \rightarrow \infty \text { and } \\
\Delta=o\left(E^{2}[X]\right)
\end{array}\right\} \Rightarrow \operatorname{Pr}\{X=0\} \rightarrow 0
$$

## Summary of previous lecture

12. Symmetric events:

$$
A_{i}, A_{j} \text { symmetric } \Rightarrow \operatorname{Pr}\left\{X_{i} \mid X_{j}\right\}=\operatorname{Pr}\left\{X_{j} \mid X_{i}\right\}
$$

13. $\Delta^{*}$ approach:

$$
\Delta^{*}=\sum_{j \sim i} \operatorname{Pr}\left\{A_{j} \mid A_{i}\right\}
$$

14. The Second Moment method (variation with $\left.\Delta^{*}\right)$ :

$$
\left.\begin{array}{l}
\text { if } E[X] \rightarrow \infty \text { and } \\
\Delta^{*}=o(E[X])
\end{array}\right\} \Rightarrow \operatorname{Pr}\{X=0\} \rightarrow 0
$$

15. Threshold functions in $G_{n, p} p_{o}=p_{o}(n)$ is a threshold of property A iff

$$
\begin{aligned}
& p \gg p_{o} \Rightarrow \operatorname{Pr}\left\{G_{n, p} \text { has the property A }\right\} \rightarrow 1 \\
& p \ll p_{o} \Rightarrow \operatorname{Pr}\left\{G_{n, p} \text { has the property A }\right\} \rightarrow 0
\end{aligned}
$$

16. Example - $K_{4}$ in random graphs (threshold: $p_{o}=n^{-2 / 3}$ )

## Importance of Stochastic Independence

1) Chebyshev inequality:

■ is more powerful than Markov's inequality
■ however provides only a polynomially small upper bound on deviations:

$$
\operatorname{Pr}\{|X-\mu| \geq \lambda \sigma\} \leq \frac{1}{\lambda^{2}}=\lambda^{-2}
$$

2) Exponentially small deviation probability:

■ Normal Distribution: accurate estimation of probability of large deviations using pdf:

$$
\operatorname{Pr}\{|X-\mu| \geq \lambda \sigma\}=\operatorname{Pr}\{|Z| \geq \lambda\} \sim \sqrt{\frac{2}{\pi}} \frac{e^{-\frac{\lambda^{2}}{2}}}{\lambda}
$$

■ Central Limit Theorem: Any r.v. $X$ that is a sum of many independent and identically distributed (i.i.d.) random variables with same mean $\mu$ and variance $\sigma^{2}$ has the above deviation probability:

$$
\operatorname{Pr}\left\{\left|\frac{X-n \mu}{\sigma \sqrt{n}}\right| \geq \lambda\right\} \sim \sqrt{\frac{2}{\pi}} \frac{e^{-\frac{\lambda^{2}}{2}}}{\lambda}
$$

## Importance of Stochastic Independence (II)

3) Method of positive probability when events $A_{1}, \cdots, A_{n}$ are "bad" and stochastically independent:

$$
\forall i, \operatorname{Pr}\left\{A_{i}\right\} \leq p<1 \Rightarrow \operatorname{Pr}\left\{\bigwedge_{i} \overline{A_{i}}\right\} \geq(1-p)^{n} \sim e^{-p n}>0
$$

Remark: This is an exponentially small positive probability but it is enough for this method (to prove that the desired property holds).
4) THE IMPORTANCE OF SMALL DEPENDENCE:

When the dependencies are small and/or rare then similar (to independence) results hold!

■ rare dependencies $\Rightarrow$ The Lovász Local Lemma

- small dependencies $\Rightarrow$ Janson Inequality


## Importance of Stochastic Independence (III)

The Local Lemma:

- Provides a more general way of proving that rarely dependent events hold with positive, though exponentially small, probability.


## Summary of this lecture

1) Dependency Graph
2) The Lovász Local Lemma
3) Example - Diagonal Ramsey Numbers

## Dependency Graph

## Definition 1

Let $A_{1}, \ldots, A_{n}$ be events in a probability space. An undirected graph $G=(V, E)$ with $|V|=n$ is called a dependency graph for the events $A_{1}, \ldots, A_{n}$ if for all vertices $i, j$ such that $(i, j) \in E$, the corresponding events $A_{i}, A_{j}$ are stochastically dependent.

Note: The degree $d(i)$ of vertex $i$ (corresponding to the event $A_{i}$ ) in this graph captures the "level" of dependence of this event (actually, the number of dependent events).

## The Lovász Local Lemma

## Theorem 1 (Symmetric Lovász Local Lemma)

Let $A_{1}, \ldots, A_{n}$ be a set of events with dependency graph $G=(V, E)$. We denote $d(i)$ the degree of vertex $i \in V$. Suppose that:
a. $\operatorname{Pr}\left\{A_{i}\right\} \leq p, \quad 1 \leq i \leq n$ and
b. $d(i) \leq d, \quad 1 \leq i \leq n$

Then:

$$
\text { If } 4 d p<1 \quad \Rightarrow \operatorname{Pr}\left\{\bigwedge_{i=1}^{n} \overline{A_{i}}\right\}>0
$$

Intuition: Rare dependencies of ("bad" for a property) events of small probability lead to a positive probability existence proof.

## Proof of theorem 1

Step 1:
We will first show that:

$$
\forall S \subseteq V: \operatorname{Pr}\left\{\left.A_{i}\right|_{j \in S,|S|=s} \overline{A_{j}}\right\} \leq 2 p
$$

Proof (by induction on the size of S):

- Base Case: $|S|=0: \operatorname{Pr}\left\{A_{i}\right\} \leq p<2 p$
- Induction Hypothesis: The condition holds for all $S:|S|<s$.
- Induction Step: We must prove that the condition holds for all $S$ such that $|S|=s$. Consider $\operatorname{Pr}\left\{A_{i} \mid \overline{A_{1}} \wedge \overline{A_{2}} \wedge \cdots \wedge \overline{A_{s}}\right\}$ and (w.l.o.g.) reorder the $s$ events such that the ones that $A_{i}$ may be dependent on are in the beginning.


## Proof of theorem 1

By definition of conditional probability we have that:

$$
\begin{aligned}
\operatorname{Pr}\left\{A_{i} \mid \overline{A_{1}} \wedge \overline{A_{2}} \wedge \cdots \wedge \overline{A_{s}}\right\} & =\frac{\operatorname{Pr}\left\{A_{i} \wedge \overline{A_{1}} \wedge \cdots \wedge \overline{A_{s}}\right\}}{\operatorname{Pr}\left\{\overline{A_{1}} \wedge \cdots \wedge \overline{A_{s}}\right\}} \\
& =\frac{\operatorname{Pr}\left\{A_{i} \wedge \overline{A_{1}} \wedge \cdots \wedge \overline{A_{d}} \mid \overline{A_{d+1}} \wedge \cdots \wedge \overline{A_{s}}\right\}}{\operatorname{Pr}\left\{\overline{A_{1}} \wedge \cdots \wedge \overline{A_{d}} \mid \overline{A_{d+1}} \wedge \cdots \wedge \overline{A_{s}}\right\}}=\frac{\mathcal{A}}{\mathcal{B}}
\end{aligned}
$$

Bound of $\mathcal{A}$ :
Since $A_{i}$ is independent of the events $A_{d+1}$ to $A_{s}$ (by the reordering we have done), we can bound the enumerator as follows:

$$
\begin{aligned}
\mathcal{A} & =\operatorname{Pr}\left\{A_{i} \wedge \overline{A_{1}} \wedge \cdots \wedge \overline{A_{d}} \mid \overline{A_{d+1}} \wedge \cdots \wedge \overline{A_{s}}\right\} \\
& \leq \operatorname{Pr}\left\{A_{i} \mid \overline{A_{d+1}} \wedge \cdots \wedge \overline{A_{s}}\right\} \\
& =\operatorname{Pr}\left\{A_{i}\right\} \\
& \leq p
\end{aligned}
$$

## Proof of theorem 1

Bound of $\mathcal{B}$ :

$$
\begin{aligned}
\mathcal{B} & =\operatorname{Pr}\left\{\overline{A_{1}} \wedge \cdots \wedge \overline{A_{d}} \mid \overline{A_{d+1}} \wedge \cdots \wedge \overline{A_{s}}\right\} \\
& =1-\operatorname{Pr}\left\{A_{1} \vee \cdots \vee A_{d} \mid \overline{A_{d+1}} \wedge \cdots \wedge \overline{A_{s}}\right\} \\
& \geq 1-\sum_{i=1}^{d} \operatorname{Pr}\left\{A_{i} \mid \overline{A_{d+1}} \wedge \cdots \wedge \overline{A_{s}}\right\} \\
& \geq 1-\sum_{i=1}^{d} 2 p \quad \text { (by the induction hypothesis) } \\
& =1-2 p d \\
& >\frac{1}{2}
\end{aligned}
$$

Thus,

$$
\operatorname{Pr}\left\{A_{i} \mid \overline{A_{1}} \wedge \overline{A_{2}} \wedge \cdots \wedge \overline{A_{s}}\right\}=\frac{\mathcal{A}}{\mathcal{B}}<\frac{p}{1 / 2}=2 p
$$

## Proof of theorem 1

Step 2:

$$
\begin{aligned}
\operatorname{Pr}\left\{\bigwedge_{i=1}^{n} \overline{A_{i}}\right\} & =\operatorname{Pr}\left\{\overline{A_{1}}\right\} \cdot \operatorname{Pr}\left\{\overline{A_{2}} \mid \overline{A_{1}}\right\} \cdots \operatorname{Pr}\left\{\overline{A_{n}} \mid \overline{A_{1}} \wedge \cdots \wedge \overline{A_{n-1}}\right\} \\
& =\prod_{i=1}^{n} \operatorname{Pr}\left\{\overline{A_{i}} \mid \overline{A_{1}} \wedge \cdots \wedge \overline{A_{i-1}}\right\} \\
& =\prod_{i=1}^{n}\left(1-\operatorname{Pr}\left\{A_{i} \mid \overline{A_{1}} \wedge \cdots \wedge \overline{A_{i-1}}\right\}\right) \\
& \geq \prod_{i=1}^{n}(1-2 p) \\
& =(1-2 p)^{n}>0
\end{aligned}
$$

Since $\left.\begin{array}{l}4 d p<1 \\ d \geq 1\end{array}\right\} \Rightarrow p<\frac{1}{4 d}<\frac{1}{4} \Rightarrow 2 p<\frac{1}{2} \Rightarrow 1-2 p>\frac{1}{2}>0$

## Example - Diagonal Ramsey Numbers

## Definition 2

The diagonal Ramsey number $R(k, k)$ is the smallest integer $n$ such that in any two-coloring of the edges of the complete graph on $n$ vertices $K_{n}$ there is a monochromatic $K_{k}$.

Previous bounds:

- Method of positive probability: $R(k, k) \geq \frac{k}{e \sqrt{2}} \cdot 2^{\frac{k}{2}}$
- Deletion method: $R(k, k) \geq \frac{k}{e} \cdot 2^{\frac{k}{2}}$


## Theorem 2

$$
R(k, k) \geq \frac{k \sqrt{2}}{e} \cdot 2^{\frac{k}{2}}
$$

## Proof of theorem 2

- Construct a probability sample space by two-coloring at random, equiprobably (for the two colors) and independently (for the various edges) every edge of $K_{n}$.
- Let $S$ be any fixed set of $k$ vertices.
- Define the event $A_{S}=\{\mathrm{S}$ is monochromatic $\}$.

$$
\operatorname{Pr}\left\{A_{S}\right\}=\left(\frac{1}{2}\right)^{\binom{k}{2}}+\left(\frac{1}{2}\right)^{\binom{k}{2}}=2^{1-\binom{k}{2}}=p
$$

- Define a dependency graph $G$ with vertices corresponding to $k$-sets such that for two sets $S$ and $T$, the edge $(S, T) \in G$ iff $|S \cap T| \geq 2$ (i.e. $S, T$ are dependent)
- Upper bound on degree $d$ :

$$
d=|\{T:|S \cap T| \geq 2\}|=\binom{k}{2} \cdot\binom{n-2}{k-2}<\binom{k}{2}\binom{n}{k-2}
$$

Remark: We need at least 2 common vertices. The rest $(k-2)$ may be common or not so we have to choose them from a $(n-2)$-set and not from a $(n-k)$-set.

## Proof of theorem 2

Since we want to prove that there exists a 2 -coloring in which there is no monochromatic $K_{k}$ we want to show that

$$
\operatorname{Pr}\left\{\bigwedge_{|S|=k} \overline{A_{S}}\right\}>0
$$

So, to employ the Local Lemma we have to have $4 d p<1 \Rightarrow$

$$
4\binom{n}{2}\binom{n}{k-2} 2^{1-\binom{k}{2}}<1
$$

Working out the asymptotics we get:

$$
R(k, k) \geq \frac{k \sqrt{2}}{e} \cdot 2^{\frac{k}{2}}(1+o(1))
$$

