The Probabilistic Method - Probabilistic Techniques

Lecture 2: "The Method of Positive Probability (II)"

Sotiris Nikoletseas Professor

Computer Engineering and Informatics Department
2017-2018

The Basic Method (method of "positive probability")

■ Construct (by using abstract random experiments) an appropriate probability sample space of combinatorial structures (thus, the sample points correspond to the combinatorial structures whose existence we try to prove).

- Prove that the probability of the desired property in this space is positive (i.e. non-zero).
\Downarrow
There is at least one point in the space with the desired property.
\Downarrow
There is at least one combinatorial structure with the desired property.

Examples in this lecture

(i) Coloring Hypergraphs
(ii) Tournaments with property S_{k}

(I) Coloring Hypergraphs

Definition 1

A Hypergraph $H=(V, E)$ consists of:
V : a finite set of vertices
E : a set of subsets of V (the "edges")

Definition 2

A Hypergraph $H=(V, E)$ is called n-uniform iff all edges contain exactly n vertices.

Property B

Definition 3

A Hypergraph $H=(V, E)$ has property \boldsymbol{B} (it is two-colorable) iff \exists a two-coloring of V such that no edge is monochromatic.

Definition 4

$\boldsymbol{m}(\boldsymbol{n})$ is the minimum number of edges on a n-uniform hypergraph that does not have property B.

Theorem 1 (Erdös, 1963)

$$
m(n) \geq 2^{n-1}
$$

Proof of Theorem $1(1 / 2)$

■ Construct a probability sample space by two-coloring the vertices of H at random, equiprobably for the two colors and independently for every vertex.

- Let e be any fixed edge.

■ Define the event $M_{e}:=\{e$ is monochromatic $\}$.

- i.e. all vertices of edge e must have the same color.

■ Compute the probability $\operatorname{Pr}\left[M_{e}\right]$.

$$
\operatorname{Pr}\left[M_{e}\right]=2 \cdot \underbrace{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots \frac{1}{2}}_{n \text { times }}=2^{1-n}
$$

Proof of Theorem 1 (2/2)

■ Define the event $M:=\{\exists$ at least one monochromatic edge $\}$.

- Hence, $M=\bigcup_{e} M_{e}$

■ Using Boole's inequality we can compute $\operatorname{Pr}[M]$

$$
\operatorname{Pr}[M] \leq \sum_{e} \operatorname{Pr}\left[M_{e}\right]=|e| 2^{1-n}
$$

■ If $|e| \cdot 2^{1-n}<1$ (i.e., $|e|<2^{n-1}$) then $\operatorname{Pr}[M]<1 \Rightarrow \operatorname{Pr}[\bar{M}]>0$.

- Hence, there is a two-coloring without a monochromatic edge when $m(n)<2^{n-1} \Rightarrow$ property B.
- Hence, $m(n) \geq 2^{n-1}$ is necessary for avoiding property B .

(II) Tournaments

Definition 5

A tournament T_{n} is a complete directed graph on n vertices i.e., for every pair (i, j), there is either an edge from i to j or from j to i, but not both.

Why do we call these graphs tournaments?
■ Each vertex corresponds to a team playing at some tournament.

- The directed edge (i, j) means that team i wins team j.
- all teams play against each other.

The S_{k} Property

Definition 6

A tournament T_{n} is said to have property S_{k} if for any set of k vertices in the tournament, there is some vertex that has a directed edge to each of those k vertices.

Theorem 2 (Erdös, 1963)

$$
\forall k, \exists \text { a tournament } T_{n} \text { that has the property } S_{k} \text {. }
$$

Proof of Theorem 2 (1/2)

■ Construct a probability sample space with points random tournaments by choosing the direction of each edge at random, equiprobably for the two directions and independently for every edge.

- Let S be any fixed set of k teams and define the event $M_{S}:=\{\nexists$ a team that wins all teams in $S\}$.
■ For any team, the probability to win all teams in S is $\left(\frac{1}{2}\right)^{k}$.
- Hence, the probability of not winning at least one of them is $1-\left(\frac{1}{2}\right)^{k}$.
- The probability that this is happening for all $n-k$ teams that don't belong in S is:

$$
\operatorname{Pr}\left[M_{S}\right]=\left(1-\left(\frac{1}{2}\right)^{k}\right)^{n-k}
$$

Proof of Theorem 2 (2/2)

■ Define the event $M:=\{\exists$ a set S of k teams such that $\nexists \mathrm{a}$ team $u: u \notin S$ that wins all teams in $S\}$.

- $M=\bigcup_{S} M_{S}$

■ Using Boole's inequality we can compute $\operatorname{Pr}[M]$

$$
\operatorname{Pr}[M] \leq \sum_{S,|S|=k} \operatorname{Pr}\left[M_{S}\right]=\binom{n}{k}\left(1-\left(\frac{1}{2}\right)^{k}\right)^{n-k}
$$

- If $\binom{n}{k}\left(1-\left(\frac{1}{2}\right)^{k}\right)^{n-k}<1$ then $\operatorname{Pr}[M]<1 \Rightarrow \operatorname{Pr}[\bar{M}]>0$.
$■$ Hence, there is a tournament with property S_{k}.

