The Probabilistic Method - Probabilistic Techniques

Lecture 1: "Introduction - The Method of Positive Probability"

Sotiris Nikoletseas Professor

Computer Engineering and Informatics Department 2017-2018

The Probabilistic Method - major applications (I)

A powerful tool used in many applications in different topics:
I) Study of random graph models ($G_{n, p}, G_{n, R}, G_{n, k}$ etc) which are:

- typical instances for average case analysis of graph algorithms and
■ abstract models of modern networks (sensor networks, social networks etc.)

The Probabilistic Method - major applications (II)

II) Design and analysis of randomized algorithms:

■ evolution based on random choices

- solutions provided a) either are always correct but their running time is a random variable (Las Vegas algorithms) b) or may be erroneous but are correct w.h.p. (Monte Carlo algorithms)
- trade-off performance (faster, simpler) with very small, controlled error probability.

The core of the method

The Probabilistic Method
■ uses simple techniques

- the Basic Method
- Linearity of Expectation
- as well as complex ones
- the Local Lemma
- Martingales
- Markov Chains
but there is a common, underlying concept:
The core of the method
Non-constructive ($\mu \eta$-к $\alpha \tau \alpha \sigma \kappa \varepsilon v \alpha \sigma \tau \iota \kappa \eta$) proof of existence of combinatorial structures that have certain desired properties.

The Basic Method (method of "positive probability")

■ Construct (by using abstract random experiments) an appropriate probability sample space of combinatorial structures (thus, the sample points correspond to the combinatorial structures whose existence we try to prove).

- Prove that the probability of the desired property in this space is positive (i.e. non-zero).
\Downarrow
There is at least one point in the space with the desired property.
\Downarrow
There is at least one combinatorial structure with the desired property.

Characteristics of the P.M.

- comprehensible, pretty short proofs

■ simple (basic knowledge of Probabilistic Theory, Graph Theory, Combinatorics suffices)
■ elegant

- qualitative ideas, subtle notions
- not lengthy, mechanical operations

■ still very powerful (use to resolve extremely difficult problems)

Examples in this lecture

(i) Monochromatic arithmetic progressions (Van der Waerden property)
(ii) Ramsey Numbers

(I) Van der Waerden property

Definition 1

$W(k)$ is the smallest natural number n, such that for any two-coloring of the numbers $1,2, \ldots, n$ there is a monochromatic arithmetic progression of k terms.

Theorem 1

$$
W(k)>2^{\frac{k}{2}}
$$

Proof of Theorem 1 (1/3)

■ We construct a probability space by two-coloring the numbers $1,2, \ldots, n$ at random, equiprobably for the two colors and independently for every number. Clearly, the sample points of this space are random two-colorings of the n numbers.
■ Let S be any fixed arithmetic progression of k terms.
■ Define the event $M_{S}:=\{S$ is monochromatic $\}$.
■ i.e, all terms of S must have the same color.
■ Compute the probability $\operatorname{Pr}\left[M_{S}\right]$.
■ every term is colored red (or blue) with probability $1 / 2$
■ all k terms are red-colored (or blue-colored) with probability $\left(\frac{1}{2}\right)^{k}$

$$
\operatorname{Pr}\left[M_{S}\right]=\left(\frac{1}{2}\right)^{k}+\left(\frac{1}{2}\right)^{k}=2^{1-k}
$$

Proof of Theorem $1(2 / 3)$

■ Define the event $M:=\{\exists$ at least one monochromatic arithmetic progression of k terms $\} \Rightarrow M=\bigcup_{|S|=k} M_{S}$.
■ An arithmetic progression of k terms is defined uniquely by its two first terms \Rightarrow There are at most $\binom{n}{2}$ arithmetic progressions $\Rightarrow \#(S:|S|=k) \leq\binom{ n}{2}$
■ Using Boole's inequality we can compute $\operatorname{Pr}[M]$

$$
\operatorname{Pr}[M]=\operatorname{Pr}\left\{\bigcup_{|S|=k} M_{S}\right\} \leq \sum_{|S|=k} \operatorname{Pr}\left[M_{S}\right] \leq\binom{ n}{2} 2^{1-k}
$$

Proof of Theorem $1(3 / 3)$

■ We easily get:

$$
\operatorname{Pr}[M]<\frac{n^{2}}{2} 2^{1-k}=\frac{n^{2}}{2^{k}}
$$

- If $n<2^{\frac{k}{2}}$ then $\operatorname{Pr}[M]<1 \Rightarrow \operatorname{Pr}[\bar{M}]>0$.
- Hence, there is a two-coloring without a monochromatic arithmetic progression of k terms when $n<2^{\frac{k}{2}}$.
- Thus, $W(k)>2^{\frac{k}{2}}$.

(II) Ramsey Numbers

Definition 2

The Ramsey number $R(k, l)$ is the smallest integer n such that in any two-coloring of the edges of the complete graph on n vertices K_{n} by red and blue colors, either there is a red K_{k} or there is a blue K_{l}.

Difficulty of computation:
■ Ramsey (1930) proved that $R(k, l)$ is finite
■ Greenwood and Gleason (1955) computed $R(3,3)=6$ and $R(4,4)=18$
■ since then there is no notable progress - $R(4,5)$ is still unknown

- Erdös suggested that $R(6,6)$ is too difficult to be computed

Ramsey Numbers

$R(k, k)$: diagonal Ramsey number (a monochromatic K_{k} is required).

Theorem 2 (Erdös, 1947)

$$
\text { If }\binom{n}{k} 2^{1-\binom{k}{2}}<1 \text { then } R(k, k)>n .
$$

Proof of Theorem 2 (1/3)

■ Construct a probability sample space by two-coloring at random, equiprobably (for the two colors) and independently (for the edges) every edge of K_{n}.
■ Let S be any fixed set of k vertices and consider the edges induced.
■ Define the event $M_{S}:=\{S$ is monochromatic $\}$.

- i.e. all $\binom{k}{2}$ edges in S have the same color.

■ Compute the probability $\operatorname{Pr}\left[M_{S}\right]$.

- every edge is colored red (or blue) with $1 / 2$ probability

$$
\operatorname{Pr}\left[M_{S}\right]=\left(\frac{1}{2}\right)^{\binom{k}{2}}+\left(\frac{1}{2}\right)^{\binom{k}{2}}=2^{1-\binom{k}{2}}
$$

Proof of Theorem $2(2 / 3)$

■ Define the event $M:=\{\exists$ at least one monochromatic set of k vertices $\}$.

- Hence, $M=\bigcup_{|S|=k} M_{S}$.

■ Using Boole's inequality we can compute the $\operatorname{Pr}[M]$

$$
\operatorname{Pr}[M] \leq \sum_{|S|=k} \operatorname{Pr}\left[M_{S}\right]=\binom{n}{k} 2^{1-\binom{k}{2}}
$$

Proof of Theorem 2 (3/3)

- If $\operatorname{Pr}[M]<1 \Rightarrow \operatorname{Pr}[\bar{M}]>0$
\Rightarrow if $\binom{n}{k} 2^{1-\binom{k}{2}}<1$ then there is a point in the sample space without $M \Rightarrow$ there is a monochromatic K_{k}.
■ Hence, it must be $R(k, k)>n$.

Lower Bound of Ramsey Numbers

- We proved that if $\binom{n}{k} 2^{1-\binom{k}{2}}<1$ then $R(k, k)>n$
- If $\binom{n}{k} 2^{1-\binom{k}{2}} \sim 1$ then we can find the best possible lower bound for $R(k, k)$ (with this derivation).
■ By using Stirling's formula and binomial approximation we obtain:

$$
\begin{gathered}
\frac{n^{\underline{k}}}{k!} \cdot 2^{1-\binom{k}{2}} \sim \frac{n^{k}}{\sqrt{2 \pi k}\left(\frac{k}{e}\right)^{k}} \cdot 2^{-\frac{k^{2}}{2}} \sim 1 \\
\quad \Rightarrow n^{k} \sim \sqrt{2 \pi k} \cdot\left(\frac{k}{e}\right)^{k} \cdot 2^{\frac{k^{2}}{2}} \\
\Rightarrow R(k, k)>n \sim \frac{k}{e \sqrt{2}} 2^{\frac{k}{2}}
\end{gathered}
$$

Bibliography

 MeӨóסou", Gutenberg, 1996.
(N. Alon and J. Spencer, "The Probabilistic Method", John Wiley \& Sons, 1992.
R. Bollobás, "Random Graphs", Academic Press, 1985.
R. Motwani and P. Raghavan, "Randomized Algorithms", Cambridge University Press, 1995.

Relevant postgraduate course

ETY course

"Randomized Algorithms"

www.ceid.upatras.gr/webpages/courses/randalgs/index.html

