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Summary of previous lecture

1. The Variance of a random variable:
Var[X] = E [(X — B[X])?
2. The Chebyshev Inequality:

Var[X]
t2

Pr{|X —pu| > t} <
3. A direct consequence:
Var[X]
12

Pr{X = 0} <Pr{|X — | > u} <

4. The Second Moment method:

if F[X] — oo and

Var[X] = o( E2[X)) } = Pr{X =0} =0

Thus, Pr{X > 1} — 1 = existence w.h.p.
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Summary of previous lecture

5. Covariance of two random variables:
Cov(X,Y) = E[XY] - E[X]- E[Y]

stochastic dependence of X, Y 1 = |Cov(X,Y)| T

X,Y independent = Cov(X,Y) =0
6. Variance of a sum of rv. X = X7+ Xo + -+ + X,

Var(X] = Z Cov(X;, X;)
1<i,j<n

The sum is over ordered pairs.
7. An upper bound for the variance of a sum of indicator r.v.

X=X1+Xo+ -+ Xp:

Var[X] < E[X]+ Y Cov(X;, X))
1<i#j<n
Hint:Cov(X;, X;) = Var(X;) < E[X;] (since X; ~ Bernoulli).
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Summary of previous lecture

8. Non-trivial dependence: ~
. A; # Aj and
I = { A;, Aj dependent

9. A approach:
A=) Pr{4; A Aj}

10. The upper bound using A: ]
Since Cov(X;, X;) < Pr{A; A A;}
we have: Var[X] < E[X]+ A
11. The Second Moment method (variation with A):

if E[X] — oo and

A = o E2[X]) }:>Pr{X:O}—>O
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Summary of previous lecture

12. Symmetric events:
A;, Aj symmetric = Pr{X;|X;} = Pr{X;|X;}
13. A* approach:
A" =" Pr{A;|A;}
jevi

14. The Second Moment method (variation with A*):

if F[X] — oo and

A* = o(E[X])
15. Threshold functions in G, ), po = po(n) is a threshold of

property A iff

}:>Pr{X:O}—>0

p >> p, = Pr{G),, has the property A } — 1
p << po = Pr{G,,, has the property A } — 0

16. Example - K in random graphs (threshold: p, = n=2/3)
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Importance of Stochastic Independence

1) Chebyshev inequality:
m is more powerful than Markov’s inequality
® however provides only a polynomially small upper bound on
deviations: 1
Pr{{X —ul > X} < 55 = A2

2) Exponentially small deviation probability:
m Normal Distribution: accurate estimation of probability of large
deviations using pdf:
22
2 ez
Pe(IX — > Ao} = Pe{|Z] 2 A} ~ 4/ 2 &
T
m Central Limit Theorem: Any r.v. X that is a sum of many
independent and identically distributed (i.i.d.) random variables
with same mean y and variance o2 has the above deviation

probability:
_az
ovn Vo A
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Importance of Stochastic Independence (II)

3) Method of positive probability when events Aj,--- , A, are
“bad” and stochastically independent:

Vi,Pr{4;} <p <1 :>Pr{/\Ai} >(1=—p)"~e >0

Remark: This is an exponentially small positive probability but it is
enough for this method (to prove that the desired property holds).

4) THE IMPORTANCE OF SMALL DEPENDENCE:
When the dependencies are small and/or rare then similar (to
independence) results hold!
m rare dependencies = The Lovész Local Lemma
m small dependencies = Janson Inequality
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Importance of Stochastic Independence (I11)

The Local Lemma:

m Provides a more general way of proving that rarely
dependent events hold with positive, though
exponentially small, probability.
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Summary of this lecture

1) Dependency Graph
2) The Lovész Local Lemma

3) Example - Diagonal Ramsey Numbers

Sotiris Nikoletseas, Professor The Probabilistic Method 9 / 18



Dependency Graph

Definition 1

Let Ay, ..., A, be events in a probability space. An undirected
graph G = (V, E) with |V| = n is called a dependency graph
for the events Ay, ..., Ay, if for all vertices i,j such that

(1,7) € E, the corresponding events A;, Aj are stochastically
dependent.

Note: The degree d(i) of vertex i (corresponding to the event
A;) in this graph captures the “level” of dependence of this
event (actually, the number of dependent events).
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The Lovasz Local Lemma

Theorem 1 (Symmetric Lovasz Local Lemma)

Let Aq,..., A, be a set of events with dependency graph G = (V, E).
We denote d(i) the degree of vertex i € V. Suppose that:

a. Pr{4;} <p, 1<i<nand
b. d(i)<d, 1<i<n
Then: .
If 4dp < 1 :Pr{/\E}>O
=1

Intuition: Rare dependencies of (“bad” for a property) events
of small probability lead to a positive probability existence proof.
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Proof of theorem 1

Step 1:
We will first show that:

VSCV :Prc A

/\ Aj o <2p
JES,IS|=5

Proof (by induction on the size of S):
m Base Case: |[S|=0: Pr{4;} <p<2p
m Induction Hypothesis: The condition holds for all S: |S] < s.

m Induction Step: We must prove that the condition holds for all
S such that |S| = s.
Consider Pr{4;|A; AN Ay A--- A Ag} and (w.lo.g.) reorder the s
events such that the ones that A; may be dependent on are in
the beginning.
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Proof of theorem 1

By definition of conditional probability we have that:

Pr{A; NA A~ NAS}

Pr{A; A NAS}
CPr{ANAT A NAG|Ag A NAY A
C Pr{A A AAY A A NA) B

Pr{A;[A; NAy A+ NA} =

Bound of A:
Since A; is independent of the events Agy1 to Ag (by the reordering
we have done), we can bound the enumerator as follows:

A=Pr{A; NAT A NAg|Agii A NAS}
< Pr{Ai[Ag1 A NAY
= Pr{4;}
<p
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Proof of theorem 1

Bound of B:
B=Pr{Ai A NAg|Agi1 A--- NAS}
:1—P1"{A1\/---\/Ad‘Ad_;,_l/\"-/\Ais}

d
Z lszI‘{Ai|Ad+1/\"'/\Ais}

i=1
d
>1- Z 2p (by the induction hypothesis)
i=1
=1-2pd
1
2
Thus,
. _ A p
PI‘{AZ|A1/\A2/\/\AS} = E < 1/72 :2p
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Proof of theorem 1

Step 2:
Pr{/\Al} =Pr{A;} -Pr{A;|A1} - -Pr{A,|A1A---ANAu_1}
=1

=[[Pr{AiAiAn - AA )

=1
= H (1 —PI‘ {A |A1 A - /\Aifl})
=1
> [ —2p)
i=1
=(1-2p)" >0
Since fidffl }:»p<41d<}1:>2p<;:>1—2p>§>0 O
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Example - Diagonal Ramsey Numbers

Definition 2

The diagonal Ramsey number R(k, k) is the smallest integer n
such that in any two-coloring of the edges of the complete graph
on n vertices K, there is a monochromatic Kj,.

Previous bounds:
m Method of positive probability: R(k, k) > ek .25

S

m Deletion method: R(k,k) > % .95

Theorem 2
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Proof of theorem 2

m Construct a probability sample space by two-coloring at random,
equiprobably (for the two colors) and independently (for the various
edges) every edge of K.

m Let S be any fixed set of k vertices.

m Define the event Ag = {S is monochromatic}.

Pr{As) = <;>(’5) . (;)(’5) G,

m Define a dependency graph G with vertices corresponding to k-sets
such that for two sets S and T', the edge (S,T) € G iff |[SNT| > 2 (i.e.
S, T are dependent)

m Upper bound on degree d:

o= fisorraf- () (223 < () ()

Remark: We need at least 2 common vertices. The rest (k — 2) may be common or
not so we have to choose them from a (n — 2)-set and not from a (n — k)-set.
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Proof of theorem 2

Since we want to prove that there exists a 2-coloring in which
there is no monochromatic K; we want to show that

Pr{|g|/>kAS}>0

So, to employ the Local Lemma we have to have 4dp < 1 =

TORNER

Working out the asymptotics we get:

V2 04

(1+0(1))
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