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Summary of previous lecture

1. The Variance of a random variable:

V ar[X] = E
[
(X − E[X])2

]
2. The Chebyshev Inequality:

Pr{|X − µ| ≥ t} ≤ V ar[X]

t2

3. A direct consequence:

Pr{X = 0} ≤ Pr{|X − µ| ≥ µ} ≤ V ar[X]

µ2

4. The Second Moment method:

if E[X]→∞ and
V ar[X] = o(E2[X])

}
⇒ Pr{X = 0} → 0

Thus, Pr{X ≥ 1} → 1⇒ existence w.h.p.
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Summary of previous lecture

5. Covariance of two random variables:

Cov(X,Y ) = E[XY ]− E[X] · E[Y ]

stochastic dependence of X,Y ↑ ⇒ |Cov(X,Y )| ↑
X,Y independent ⇒ Cov(X,Y ) = 0

6. Variance of a sum of r.v. X = X1 +X2 + · · ·+Xn:

V ar[X] =
∑

1≤i,j≤n
Cov(Xi, Xj)

The sum is over ordered pairs.

7. An upper bound for the variance of a sum of indicator r.v.
X = X1 +X2 + · · ·+Xn:

V ar[X] ≤ E[X] +
∑

1≤i 6=j≤n
Cov(Xi, Xj)

Hint:Cov(Xi, Xi) = V ar(Xi) ≤ E[Xi] (since Xi ∼ Bernoulli).
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Summary of previous lecture

8. Non-trivial dependence: ∼

i ∼ j ⇒
{
Ai 6= Aj and
Ai, Aj dependent

9. ∆ approach:

∆ =
∑
i∼j

Pr{Ai ∧Aj}

10. The upper bound using ∆:

Since Cov(Xi, Xj) ≤ Pr{Ai ∧Aj}

we have: V ar[X] ≤ E[X] + ∆

11. The Second Moment method (variation with ∆):

if E[X]→∞ and
∆ = o(E2[X])

}
⇒ Pr{X = 0} → 0
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Summary of previous lecture

12. Symmetric events:

Ai, Aj symmetric ⇒ Pr{Xi|Xj} = Pr{Xj |Xi}
13. ∆∗ approach:

∆∗ =
∑
j∼i

Pr{Aj |Ai}

14. The Second Moment method (variation with ∆∗):

if E[X]→∞ and
∆∗ = o(E[X])

}
⇒ Pr{X = 0} → 0

15. Threshold functions in Gn,p po = po(n) is a threshold of
property A iff

p >> po ⇒ Pr{Gn,p has the property A } → 1
p << po ⇒ Pr{Gn,p has the property A } → 0

16. Example - K4 in random graphs (threshold: po = n−2/3)
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Importance of Stochastic Independence

1) Chebyshev inequality:

is more powerful than Markov’s inequality
however provides only a polynomially small upper bound on
deviations:

Pr{|X − µ| ≥ λσ} ≤ 1

λ2
= λ−2

2) Exponentially small deviation probability:

Normal Distribution: accurate estimation of probability of large
deviations using pdf:

Pr{|X − µ| ≥ λσ} = Pr{|Z| ≥ λ} ∼
√

2

π

e−
λ2

2

λ

Central Limit Theorem: Any r.v. X that is a sum of many
independent and identically distributed (i.i.d.) random variables
with same mean µ and variance σ2 has the above deviation
probability:

Pr

{∣∣∣∣X − nµσ
√
n

∣∣∣∣ ≥ λ} ∼
√

2

π

e−
λ2

2

λ
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Importance of Stochastic Independence (II)

3) Method of positive probability when events A1, · · · , An are
“bad” and stochastically independent:

∀i,Pr{Ai} ≤ p < 1⇒ Pr

{∧
i

Ai

}
≥ (1− p)n ∼ e−pn > 0

Remark: This is an exponentially small positive probability but it is
enough for this method (to prove that the desired property holds).

4) THE IMPORTANCE OF SMALL DEPENDENCE:

When the dependencies are small and/or rare then similar (to
independence) results hold!

rare dependencies ⇒ The Lovász Local Lemma
small dependencies ⇒ Janson Inequality
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Importance of Stochastic Independence (III)

The Local Lemma:

Provides a more general way of proving that rarely
dependent events hold with positive, though
exponentially small, probability.
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Summary of this lecture

1) Dependency Graph

2) The Lovász Local Lemma

3) Example - Diagonal Ramsey Numbers
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Dependency Graph

Definition 1

Let A1, . . . , An be events in a probability space. An undirected
graph G = (V,E) with |V | = n is called a dependency graph
for the events A1, . . . , An if for all vertices i, j such that
(i, j) ∈ E, the corresponding events Ai, Aj are stochastically
dependent.

Note: The degree d(i) of vertex i (corresponding to the event
Ai) in this graph captures the “level” of dependence of this
event (actually, the number of dependent events).
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The Lovász Local Lemma

Theorem 1 (Symmetric Lovász Local Lemma)

Let A1, . . . , An be a set of events with dependency graph G = (V,E).
We denote d(i) the degree of vertex i ∈ V . Suppose that:

a. Pr{Ai} ≤ p, 1 ≤ i ≤ n and

b. d(i) ≤ d, 1 ≤ i ≤ n

Then:

If 4dp < 1 ⇒ Pr

{
n∧

i=1

Ai

}
> 0

Intuition: Rare dependencies of (“bad” for a property) events
of small probability lead to a positive probability existence proof.
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Proof of theorem 1

Step 1:
We will first show that:

∀S ⊆ V : Pr

Ai

∣∣∣∣ ∧
j∈S,|S|=s

Aj

 ≤ 2p

Proof (by induction on the size of S):

Base Case: |S| = 0: Pr{Ai} ≤ p < 2p

Induction Hypothesis: The condition holds for all S : |S| < s.

Induction Step: We must prove that the condition holds for all
S such that |S| = s.
Consider Pr

{
Ai

∣∣A1 ∧A2 ∧ · · · ∧As

}
and (w.l.o.g.) reorder the s

events such that the ones that Ai may be dependent on are in
the beginning.
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Proof of theorem 1

By definition of conditional probability we have that:

Pr
{
Ai

∣∣A1 ∧A2 ∧ · · · ∧As

}
=

Pr
{
Ai ∧A1 ∧ · · · ∧As

}
Pr
{
A1 ∧ · · · ∧As

}
=

Pr
{
Ai ∧A1 ∧ · · · ∧Ad

∣∣Ad+1 ∧ · · · ∧As

}
Pr
{
A1 ∧ · · · ∧Ad

∣∣Ad+1 ∧ · · · ∧As

} =
A
B

Bound of A:
Since Ai is independent of the events Ad+1 to As (by the reordering
we have done), we can bound the enumerator as follows:

A = Pr
{
Ai ∧A1 ∧ · · · ∧Ad

∣∣Ad+1 ∧ · · · ∧As

}
≤ Pr

{
Ai

∣∣Ad+1 ∧ · · · ∧As

}
= Pr{Ai}
≤ p
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Proof of theorem 1

Bound of B:

B = Pr
{
A1 ∧ · · · ∧Ad

∣∣Ad+1 ∧ · · · ∧As

}
= 1− Pr

{
A1 ∨ · · · ∨Ad

∣∣Ad+1 ∧ · · · ∧As

}
≥ 1−

d∑
i=1

Pr
{
Ai

∣∣Ad+1 ∧ · · · ∧As

}
≥ 1−

d∑
i=1

2p (by the induction hypothesis)

= 1− 2pd

>
1

2

Thus,

Pr
{
Ai

∣∣A1 ∧A2 ∧ · · · ∧As

}
=
A
B
<

p

1/2
= 2p

�
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Proof of theorem 1

Step 2:

Pr

{
n∧

i=1

Ai

}
= Pr

{
A1

}
· Pr

{
A2

∣∣A1

}
· · ·Pr

{
An

∣∣A1 ∧ · · · ∧An−1
}

=

n∏
i=1

Pr
{
Ai

∣∣A1 ∧ · · · ∧Ai−1
}

=

n∏
i=1

(
1− Pr

{
Ai

∣∣A1 ∧ · · · ∧Ai−1
})

≥
n∏

i=1

(1− 2p)

= (1− 2p)n > 0

Since
4dp < 1
d ≥ 1

}
⇒ p < 1

4d <
1
4 ⇒ 2p < 1

2 ⇒ 1− 2p > 1
2 > 0 �
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Example - Diagonal Ramsey Numbers

Definition 2

The diagonal Ramsey number R(k, k) is the smallest integer n
such that in any two-coloring of the edges of the complete graph
on n vertices Kn there is a monochromatic Kk.

Previous bounds:

Method of positive probability: R(k, k) ≥ k
e
√
2
· 2

k
2

Deletion method: R(k, k) ≥ k
e · 2

k
2

Theorem 2

R(k, k) ≥ k
√

2

e
· 2

k
2
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Proof of theorem 2

Construct a probability sample space by two-coloring at random,
equiprobably (for the two colors) and independently (for the various
edges) every edge of Kn.

Let S be any fixed set of k vertices.

Define the event AS = {S is monochromatic}.

Pr{AS} =

(
1

2

)(k2)
+

(
1

2

)(k2)
= 21−(k2) = p

Define a dependency graph G with vertices corresponding to k-sets
such that for two sets S and T , the edge (S, T ) ∈ G iff |S ∩ T | ≥ 2 (i.e.
S, T are dependent)

Upper bound on degree d:

d =

∣∣∣∣{T : |S ∩ T | ≥ 2}
∣∣∣∣ =

(
k

2

)
·

(
n− 2

k − 2

)
<

(
k

2

)(
n

k − 2

)
Remark: We need at least 2 common vertices. The rest (k− 2) may be common or
not so we have to choose them from a (n− 2)-set and not from a (n− k)-set.
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Proof of theorem 2

Since we want to prove that there exists a 2-coloring in which
there is no monochromatic Kk we want to show that

Pr

{ ∧
|S|=k

AS

}
> 0

So, to employ the Local Lemma we have to have 4dp < 1⇒

4

(
n

2

)(
n

k − 2

)
21−(k2) < 1

Working out the asymptotics we get:

R(k, k) ≥ k
√

2

e
· 2

k
2 (1 + o(1))

�
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