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Summary of previous lecture

Variation of Linearity of Expectation method: Deletion Method

Method’s basic idea: prove existence of a structure
“similar” to the desired one and modify it accordingly.

Examples

(1) An improved lower bound for Ramsey numbers.
(2) Independent sets (Turán’s Theorem, 1941).
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Summary of this lecture

The Second Moment

i. The Variance of a random variable

ii. The Chebyshev Inequality

iii. The Second Moment method

iv. Covariance

v. Alternative techniques of estimation of the variance of a
sum of indicator variables.

vi. Example - Cliques of size 4 in random graphs.

Sotiris Nikoletseas, Professor The Probabilistic Method 3 / 24



Variance

Variance:

is the most vital statistic of a r.v. beyond expectation.

is defined as V ar[X] = E
[
(X − E[X])2

]
properties:

V ar(X) = E[X2]− E2[X]
V ar(cX) = c2V ar(X), c constant
X,Y independent ⇒ V ar[X + Y ] = V ar[X] + V ar[Y ]

Standard deviation:

σ =
√
V ar[X]⇒ V ar[X] = σ2
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Chebyshev Inequality

Theorem 1 (Chebyshev Inequality)

Let X be a random variable with expected value µ. Then for any
t > 0:

Pr [|X − µ| ≥ t] ≤ V ar[X]

t2

Proof:
Pr[|X − µ| ≥ t] = Pr

[
(X − µ)2 ≥ t2

]
≤

Markov

E
[
(X − µ)2

]
t2

=
V ar[X]

t2

�
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Chebyshev Inequality

Alternative Proof:

V ar[X] = E
[
(X − µ)2

]
=
∑
x

(x− µ)2 Pr{X = x}

≥
∑
|x−µ|≥t

(x− µ)2 Pr{X = x}

≥
∑
|x−µ|≥t

t2 Pr{X = x}

= t2
∑
|x−µ|≥t

Pr{X = x} = t2 Pr{|X − µ| ≥ t}

⇒ Pr{|X − µ| ≥ t} ≤ V ar[X]

t2

�
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Chebyshev Inequality - application

if t = σ then Pr[|X − µ| ≥ σ] ≤ σ2

σ2 = 1 (trivial bound)

if t = 2σ then Pr[|X − µ| ≥ 2σ] ≤ σ2

(2σ)2
= 1

4

...
if t = kσ then Pr[|X − µ| ≥ kσ] ≤ σ2

(kσ)2
= 1

k2

In other words, this inequality bounds the concentration of a
random variable around its mean.
A small variance implies high concentration.
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The Second Moment Method

Theorem 2

For any random variable X it holds that:

if E[X]→∞ and V ar[X] = o(E2[X]) then Pr{X = 0} → 0

Proof : Since

|X − E[X]| ≥ E[X]⇒
{
X ≥ 2E[X] or
X ≤ 0

Pr{X = 0} ≤ Pr{|X − E[X]| ≥ E[X]} ≤
t=E[X]

V ar[X]

E2[X]

if
V ar[X]

E2[X]
→ 0⇔ V ar[X] = o(E2[X]) then Pr{X = 0} → 0 �

So, we need to estimate the variance. Actually, we need to
properly bound it in terms of the mean.
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Covariance

Covariance

Let X and Y be random variables. Then

Cov(X,Y ) = E[XY ]− E[X] · E[Y ]

Remark:

Covariance is a measure of association between two random
variables.

Cov(X,X) = V ar[X]

if X,Y are independent r.v. then Cov(X,Y ) = 0

|Cov(X,Y )| ↑ ⇒ stochastic dependence of X,Y ↑
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Covariance
Variance - Covariance

Theorem 3

Consider a sum of n random variables
X = X1 +X2 + · · ·+Xn. It holds that:

V ar[X] =
∑

1≤i,j≤n
Cov(Xi, Xj)

Remark: The sum is over ordered pairs, i.e. we take both
Cov(Xi, Xj) and Cov(Xj , Xi).
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Proof of theorem 3

The proof is by induction on n.
We show the case n = 2:∑

1≤i,j≤2
Cov(Xi, Xj) = Cov(X1, X1) + Cov(X1, X2)+

+Cov(X2, X1) + Cov(X2, X2) =

E[X2
1 ]−E2[X1]+E[X1X2]−E[X1]E[X2]+E[X2X1]−E[X2]E[X1]+

+E[X2
2 ]− E2[X2] =

= E[X2
1 ]+E[X2

2 ]+2E[X1X2]−(E2[X1]+E
2[X2]+2E[X1]E[X2]) =

= E
[
X2

1 +X2
2 + 2X1X2

]
− (E[X1] + E[X2])

2

= E
[
(X1 +X2)

2
]
− E2 [(X1 +X2)] =

= V ar[X1 +X2]
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Covariance
An upper bound of the sum of indicator r.v.

Theorem 4

Let Xi 1 ≤ i ≤ n be indicator random variables.

Xi =

{
1 pi
0 1− pi

Let X be their sum: X = X1 +X2 + · · ·+Xn.
It holds that:

V ar[X] ≤ E[X] +
∑

1≤i 6=j≤n
Cov(Xi, Xj)

Proof:
V ar[X] =

∑
1≤i,j≤nCov(Xi, Xj)

Cov(Xi, Xi) = E[XiXi]−E[Xi]E[Xi] = E
[
(Xi)

2
]
−E2[Xi] = V ar[Xi]
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Covariance
Proof of theorem 4

V ar[Xi] = (1−pi)2 ·pi+(0−pi)2 ·(1−pi) = pi(1−pi) ≤ pi = E[Xi]

V ar[X] =
∑

1≤i≤n
Cov(Xi, Xi) +

∑
1≤i 6=j≤n

Cov(Xi, Xj)

=
∑

1≤i≤n
V ar[Xi] +

∑
1≤i 6=j≤n

Cov(Xi, Xj)

≤
∑

1≤i≤n
E[Xi] +

∑
1≤i 6=j≤n

Cov(Xi, Xj)

= E[X] +
∑

1≤i 6=j≤n
Cov(Xi, Xj)

�
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Bounding the Variance

Suppose that X = X1 +X2 + · · ·+Xn where Xi is the
indicator r.v. for event Ai.

For indices i, j we define the operator ∼ and write i ∼ j if
i 6= j and the events Ai and Aj are not independent.
(non-trivial dependence)

We define
∆ =

∑
i∼j

Pr{Ai ∧Aj}

The sum is over ordered pairs.

Cov(Xi, Xj) = E[XiXj ]−E[Xi]E[Xj ] ≤ E[XiXj ] = Pr{Ai∧Aj}

⇒ V ar[X] ≤ E[X] + ∆
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The Basic Theorem

Theorem 5

If E[X]→∞ and ∆ = o(E2[X]) then Pr{X = 0} → 0

Proof:

Pr{X = 0} ≤ V ar[X]

E2[X]
≤ E[X] + ∆

E2[X]
=

1

E[X]
+

∆

E2[X]
→ 0

�
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A variation (I)

Symmetric events:
Events Ai and Aj are symmetric if and only if

Pr{Xi|Xj = 1} = Pr{Xj |Xi = 1}

In other words, the conditional probability of a pair of
events is independent of the “order” of conditioning.

Symmetry applies in almost all graphotheoretical
properties because of symmetry of corresponding
subgraphs which are set of vertices (i.e. the conditioning
affects the intersection and depends on its size).
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A variation (II)

We define
∆∗ =

∑
j∼i

Pr{Aj |Ai}

Lemma: ∆ = ∆∗ · E[X]
Proof:

∆ =
∑
i∼j

Pr{Ai ∧Aj} =
∑
i∼j

Pr{Ai}Pr{Aj |Ai}

=
∑
i

∑
j∼i

Pr{Ai}Pr{Aj |Ai}

=
∑
i

Pr{Ai}
∑
j∼i

Pr{Aj |Ai}

= ∆∗ ·
∑
i

Pr{Ai}

⇒ ∆ = ∆∗ · E[X]

�
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The basic theorem of the variation

Change of previous theorem’s condition:

∆ = o(E2[X])

⇔ ∆∗ · E[X] = o(E2[X])

⇔ ∆∗ = o(E[X])

Theorem 6

If E[X]→∞ and ∆∗ = o(E[X]) then Pr{X = 0} → 0
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Threshold functions in Gn,p

Definition 1

po = po(n) is a threshold of property A iff

p >> po ⇒ Pr{Gn,p has the property A } → 1

p << po ⇒ Pr{Gn,p has the property A } → 0

Typical thresholds:

giant component: c
n (c constant)

connectivity: c logn
n

hamiltonicity: c logn
n
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Example
Existence of complete subgraph of size 4 in Gn,p

Theorem 7

Let A be the property of existence of K4 cliques in Gn,p.
The threshold function for A is po(n) = n−2/3.

Proof:

Let S be any fixed set of 4 vertices.

Define r.v. X that counts the number of cliques of size 4.

X =
∑

S,|S|=4XS where XS is an indicator variable:

XS =

{
1 S is clique
0 otherwise

E[XS ] = p6
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Proof of theorem 7

By Linearity of expectation

E[X] = E

 ∑
S,|S|=4

XS

 =
∑

S,|S|=4

E[XS ] =

(
n

4

)
p6 ∼ n4p6

E[X] = n4p6 << 1⇔ p << n−2/3

If p << n−2/3 ⇒ E[X]→ 0⇒ non-existence w.h.p.
Also, clearly p >> n−2/3 ⇒ E[X]→∞.
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Proof of theorem 7

All the XS are symmetric and so, these values p >> n−2/3

must satisfy ∆∗ = o(E[X]) where ∆∗ =
∑

j∼i Pr{Aj |Ai}.
The event Ai is defined as “the set Si is a clique of size 4”

j ∼ i means that Ai, Aj are not independent and i 6= j

Here, Aj ∼ Ai if and only if Aj and Ai have common edges
(but less than four edges).

So, Aj ∼ Ai if and only if |Si ∩ Sj | = 2 or 3.
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Proof of theorem 7

1 |Si ∩ Sj | = 2

There is only 1 common edge ⇒ Pr{Aj |Ai} = p5

There are
(
4
2

)(
n−4
2

)
= O(n2) different ways to choose the set

Sj such that |Si ∩ Sj | = 2.

2 |Si ∩ Sj | = 3

There are 3 common edges so Pr{Aj |Ai} = p3

There are
(
4
3

)(
n−4
1

)
= O(n) different ways to choose the set

Sj such that |Si ∩ Sj | = 3.

∆∗ =
∑

2≤|Si∩Sj |≤3

Pr{Aj |Ai} =
∑

|Si∩Sj |=2

Pr{Aj |Ai}+
∑

|Si∩Sj |=3

Pr{Aj |Ai}

∼ n2 · p5 + n · p3
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Proof of theorem 7

When p = n−2/3 then:

∆∗

E[X]
∼ n2 · p5 + n · p3

n4 · p6
=

1

n2 · p
+

1

n3 · p3
=

1

n
4
3

+
1

n
→ 0

So, indeed, for that value of p we have

∆∗ = o(E[X])

and a K4 exists w.h.p.

This, obviously holds for larger p values too, because of
monotonicity. �
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