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Completely Mixed States

A completely mixed state can be thought of as the opposite end along a continuum of density
operators, with a pure state on the other side. In a completely mixed state the probability for
the system to be in each given state is identical. In that case the density operator is a constant
multiple of the identity matrix.

. . 1
If the state space has n dimensions, then £ = 51

2 — L ]. Furthermore, in n dimensions, Tr(l )=n. So for a completely

Since 1% =I, we have p p:

mixed state we have:
- 1 1 1
T'r(p°)=Tr (—,,1) =—=Tr(l)=—

n= n= n
v" In most if not all cases of interest to us, n =2.

v' For n =2 the lower bound, given by a completely mixed state, is Tr(p?) —

| —

v" while the upper bound for a pure state is given by 7r(p?) = 1.



THE PARTIAL TRACE AND THE REDUCED DENSITY OPERATOR

A very important application of the density operator is in the characterization of composite
systems—systems that are made up of two or more individual subsystems. Think entanglement.

In particular, we consider a composite system where Alice (A) has one part of the system
and Bob (B) has another part of the system and they fly off in opposite directions.

| 104)10p) — [14)|1p)
Suppose that the system is in one of the Bell states: [f10) = - NG

The density operator for this particular state is:
| 04)108) — 114)[18)  ( 0al(05] — (Lal(Lg]
p = |B10){Brol = (
V2 V2
_104)[0B){(04[(0g] —104)[0p) (Ta|(1p] — [14)[18)(0al(OB] + [14)[15)(1a|({15]
B 2
Basically with p as we have written it here, we have a description of the complete system.

Because the idea behind the partial trace is to obtain the density operator for one of the
composite systems alone, we compute the trace by summing over the basis states of one
party alone. For example, we consider what Bob alone sees. Then we need to trace over

Alice’s basis states:

pB = I'ra(p) = Tra([f10)(P1ol) = (0al(1f10){P10D)]04) + (14[(|B10){P10D[14)



THE PARTIAL TRACE AND THE REDUCED DENSITY OPERATOR

Using our expression for p, we have:

(041(1B10) (B1o]04) = (04] (|0A 10£){041{0p|—104}10p)(14|(0p|—[14)|15) {0410 |+][1a)[1p){1al( 13|) 104)

2
(04104)105)(051(04104) — (04104)[08) (1£1{04[14) — (04]14)|15)(08]{04]04)
1 +(0A114)|1)(15](14]04) _ 10){0g]
=5 L -
and
(14110} (BroD|1a) = (14] (m 105){04](05]— |0A>|03><1A|<13|;|1A>|13><0A|<03|+|1A}|13><1A| 1g|) 14)
(14104)108)(051(04114) — (14104)108) (151(04114) — (14114)112){05{0A]1,) |
_ ! + (L4l L)1 1g) (L (141 14) _ 15) (18
=5 . :

So the density operator for Bob is (we dropped the subscripts because this is Bob’s state alone):

pp = Tra(p) = Tra(lBio) (Brol) = 0a1(1B10) (BroD10a) + (Lal(1B10) (Bro)|1.4)= 2L+

The matrix representation with respect to Bob’s {|0).|1)}basis is:

1 / |
PR = = (l 0)= 3 = Ir(pp)=1/2+4+1/2=1 (note that the trace of a density matrix is always 1)

2\0 1
L, 12 11 0 , 1 1 1 That is, Bob has a completely
Then we have: pj = — = 7\0 = I'rlpp) =7+ 7 =75 <1 mixed state. Alice has the

same completely mixed s4tate.



THE PARTIAL TRACE AND THE REDUCED DENSITY OPERATOR

What about the state of the joint system? The matrix representation of p is:

1 —1
(0010100)  (00[p01) (00]p[10) (0OlpI1LY (5 © 0 5
[ ©110100) 0110101) (01110} (O1p111) | |0 0 0 o
P = 1P/ Bol=1I= 1 oj0100) (10j0101) (10]0[10) (10Jp[1ny |7 0 0 0 0
(11pl00) (11lplo1) (1lol10) (1tlolin) \ZL o o L)
It can be easily verified that:
| — 1 —1 —
(L 00 Z2\N/(= 00 ==\ (L1 o o 2L
2 2 2 2 9 B
i 0 00 0 0 00 0 0 00 0 >
2 _ _ = Tp(p2) =
P =10 0 0 0 0 00 Ol 1o owo0 o lr(p7)=1.
—1 0 0 1 —1 1 —1 0 0 1
\ 7 2/ \7 Y0 3 \T 3 )

That is, the joint system described by the state |B10) is a pure state,

while Alice and Bob alone see completely mixed states.



WHEN IS A STATE ENTANGLED

One simple test that can be applied to states in C*is the following: Let
a
b : : . .
|[V) = . This state is separable if and only if d = bc
d

The Bell states are clearly entangled, but let’s apply this criterion to show they are not
separable. Writing each state as a column vector, we have:

! 0
PRSCUEIT RS ) IR CVETU N o
00/ — \/E — \/E ol 01/ — \/z — \5 1
1 0
1 0
Cjooy—p11) 1 fo Cjoy—j10) 1|1
pol=——Z=—=—%| | b=—F—=7%|_
-1 0

For |Boo). we have a =d = 'l/\/i b=c=0, so ad=1/2%# bc. So |Boo) 1s not a product
state and must be entangled. For |Bo1),a =d =0,b =c¢ = 1/\/5, = ad =0#bc=1/2. We

conclude that |So1) 1s also entangled. For |B10), we find that ad = — 1/2 # bc =0, and for |B11),
we have ad =07# be = — 1/2, so these states are also entangled



ENTANGLEMENT FIDELITY

Consider a density operator for a single qubit that is diagonal with

respect to the computational basis:

p = f10)0] + (1 — FHL){1]

The parameter f1s known as the entanglement fidelity. For example, 1f

—300 1ll
p = Z10)(0] + Z11)(1

-
3

the entanglement fidelity is 3.



Entangling power of a 2-qubit gate U

The entangling power of a 2-qubit gate U, EP(U), is the mean tangle that U generates

averaged over all input product states sampled uniformly on the Bloch sphere.

EP(U) = (EU Y1) @ [V2)))1y1).1v2)
where E(-) 1s the tangle of any other 2-qubit entanglement measure such as the
linear entropy (as all the 2-qubit entanglement measures are equivalent to one an-
other), and [Yr1) and |¥rp) are single qubit states sampled uniformly on the Bloch

sphere. (6,
Y1) = cos| =

\ 2

(6

|¥2) = cos( =

\ 2

) 10) 4 €1 sin

)|[}) + €' sin

(91
t

\
2 )

65\

=/

1)

1)

For state |1/1), 61 1s the angle between the z-axis and the state vector, and ¢ 1s the
angle around the z-axis in the x—y plane. Hence, as we desire to compute an average
over the product of such states sampled uniformly over the Bloch sphere, we need
to weight the contributions depending on the values of #; and 6;.

EP(U) =(EWU Y1) @ |¥2)))jyy),1vn) = 2tr((U QU)-2,- U aU)- %(ﬂlﬁ — SWAP,M))

where 16 1s the 16 x 16 identity matrix, and SWAP; ;.; 1s the operator that swaps

the i-th and j-th of k qubits.



Entangling power of a 2-qubit gate U

(6 0 0 0 0 0 0 0 0 0 0 0 0
0 5 0 0 x 0 0 0 0 0 O 0 O
00 &£ 0 0 0 0 0 & 0 0 0 0
1 1 1 1

00 0 3 0 0 3 0 0 % 0 0 =
0 £ 0 0 £ 0 0 0 0 0 0 0 O
o0 0 0 0 5 0 0 0 0 0 0 0
1 1 1 1

000 0 5 0 0 5 0 0 5 0 0 5
00 0 0 0 0 0 & 0 0 0 0 0

aluates atrix 2, = 18

§2) evaluates to the matrix $2,=1| 10 000 0 £ 00 0 0
1 1 1 1

000 0 &£ 0 0 & 0 0 &£ 0 0 &
o0 0 0 0 0 0 0 0 0 5 0 0
00 0 0 00 0 0 0 0 0 & 0
1 1 1 1

000 0 &£ 0 0 & 0 0 &£ 0 0 &
o0 0 0 0 0 0 &£ 0 0 0 0 0
00 0 0 0 0 0 0 0 0 0 & 0
\0 0 0 0 0 0 0 0 0 0 0 0 0

O Cxl~roocoococoox~ococo oo o

o ox~ro oo cooc oo ococ O

S

o
—

-0 O O O O o o O o o o o o O

An equivalent way to compute EP(U) is from the formula:

1 l L
EP(U) = 9 ?ﬁ[tr{(U ®@U)" -SWAP1 3.4 - (U@ U) - SWAP1 3:4)

+r(((SWAP; 2,5 - U @ SWAP; 5,5 - U))" - SWAP, 34
-(SWAP; 2.2 - U @ SWAP| 5.0 - U) - SWAP 3.4)]

The entangling power of a gate ranges from 0 for non-entangling gates (such as
SWAP), to % for maximally entangling gates (such as CNOT, iSWAP, and Berkeley B).



Entangling Power as the Mean Tangle Generated by a Gate
Entangling power of some common 2-qubit gates. Here 12 @& U 1s a controlled gate
with U defined as U' = Ry(a) - Ry(b) - R:(c) - Ph(d), and 12 5 V is a controlled gate with V
defined as V = R;(a) - Ry(b) - R;(c) - Ph(d). Notice that there can be no angle « that would make
the SWAP* a maximally entangling gate

U EP(U)
Uev 0
CNOT z
iISWAP z
B :
SWAP 0
SWAP :
SWAP” Lsin®(re)

Re(@) @ Re(b) (1 —cos(a—b))
Ry(a) & Ry (b) L (—cos(b) — cos(a) (cos(b) + 1)+ 3)

R.(a)&® R.(b) Tls{_ cos(b) — cos(a)(cos(b) + 1)+ 3)

Ry(a) & Ry (b) &= (—cos(b) — cos(a) (cos(b) + 1) +3)

Ry(a) & R, (b) $(1 —cos(a — b))

Ry(a) @ R:(b) ﬁ{— cos(b) — cos(a)(cos(b) + 1)+ 3)

R.(a) & R, (b) L (—cos(b) — cos(a) (cos(b) + 1) + 3)

R:(a) & Ry(b) ﬁ{— cos(b) — cos(a)(cos(b) + 1)+ 3)

R:(a)® R:(b) (1 —cos(a—b))

1, U ?'; + ]lg(siﬂ(a] sin(b) sin(c) — cos{a) cos(b) — cos(c) cos(b) — cos(a) cos(c))

1
1,6V ?'; — ]lg(cm{a + ) cos(b) + cos(b) + cos(a + ¢)) 0




The Magic Basis and Its Effect on Entangling Power

The “magic basis” is a set of 2-qubit states that are phase shifted versions of the Bell
states:

Mo Quantum circuit that implements the magic
00) = M) = |foo) basis transformation. Here
M , — Ty, LS
01) = |M2) =ilB1o) 1S P— S=P(T)- R:(7) and
M = H=Z7Z Ry(—%)

JM
[0) — |IM3) =i
[10) = [ M) =il for) Irnip”

JM
[11) —> [Ma4) = |B11)
where |Boo). |fo1). |B1o). and |B11) are the Bell states
Thus, the matrix, M. which maps the computational basis into the “magic” basis is:

| [ 0O 0

M = [M1){00] 4+ |Ma) (O1] 4 M) (10] + M (1= — |0 07
J = |Vl JVILD JVIL3 JVILA4 _\/j 0 0 i —l
1l —i 0 0

The reason this basis is called the “magic basis™ is because it turns out that any
partially or maximally entangling 2-qubit gate. described by a purely real unitary
matrix, U. becomes an non-entangling gate in the “magic” basis. In other words. no
matter how entangling U may be, M - U - M" is always a non-entangling gate. and
hence EP(M - U - M") =0.
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Arbitrary 2-Qubit Gates: The Krauss-Cirac Decomposition

An arbitrary 2-qubit gate U can be factored according to the Krauss-Cirac
decomposition as:

= (A1 ®A2)-N(a,b,c)- (A3 ® Ay)

N(a,b,c)=exp(i(aX QX +bY QY +cZR®Z))

where the A; are 1-qubit gates,
X, Y. and Z are the three Pauli matrices

is the core entangling operation.
A quantum circuit for N(a. b. c¢)

4R B

4R E L
N(a,b,c) = T i T
—H A C D F

\L/

N(a,b,c) =(EQ® F)-CNOT21.2- (1® D) -CNOT 1 22-(B®C) -CNOT7 1.2 -
(1®A) where A =R;(=%). B=R;(5 —2¢),C=Ry(2a—%). D =Ry (5 —2b),
E = Rz(%). and F = Ph(%).

The 2-qubit gate N(a,b,c) is equivalent to the following unitary matrix:

el cos(a — b) 0 0 ieCsin(a — b)
N(a.b. c)= 0 e_"'j: cos(a + b) r'e“_“""? sin(a + b) 0
I 0 e '“sin(a+b) e '“cos(a+b) 0
ie'“sin(a — b) 0 0 ¢ cos(a — b)
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Entangling Power of an Arbitrary 2-Qubit Gate

As the entangling power of any gate is not affected by 1-qubit operations, the
entangling power of an arbitrary 2-qubit gate must be determined entirely by the
entangling power of its core factor N(a,b, c):

EP(N(a.b,c)) = _1_18 cos(4da) cos(4b) — 11_8 cos(4c) cos(4db) — % cos(4a) cos(4c) + é
Notice that this immediately gives us a way of proving that the greatest entan-
gling power of any 2-qubit gate is the largest value that EP(N (a, b, ¢)) can assume,
namely, 5. The CNOT, iISWAP, and Berkeley B gates introduced earlier are all max-
imally entanglmg cates in this sense. However, the SWAP® gate is not a maximally
entangling gate.

The matrix, U, corresponding to any 2-qubit quantum gate is always unitary.
and the magnitude of its determinant is always unity, 1.e.. |det(U)| = 1. However,
the ease with which we can implement U depends upon whether its elements are

real or complex and whether its determinant 1s +1 or one of the other possibilities,
consistent with |det(U)| = 1. namely —1, 4i, or —i.

We classify four possibilities for the determinant of U

13



Case of U € SO(4)
[f U € SO(4) then the elements of U are purely real numbers and det(U) = +1.

Theorem 2.1 In the magic basis, M. any purely real special unitary matrix U €
SO4). can be factored as the tensor product of two special unitary matrices. i.e.,

we always have M - U - M "=AQ® B where A, B eSU(2).

uantum circuit sufficient to implement any 2-qubit gate U € SO(4).
P Yy <-q g

e

_ R 1y + L
S L/ A L/ S

.

— S H o B ® H' st

Therefore, every 2-qubit quantum gate in SO(4) can be realized in a

circuit consisting of 12 elementary 1-qubit gates and two CNOT

gates.

14



Caseof U € O(4)

[f U € O(4) then the elements of U are purely real numbers and det(U) = =£1.

Theorem 2.2 [n the magic basis, M, any purely real unitary matrix U € O(4) with
det(U) = —1. can be factored as the tensor product of two special unitary matrices,
i.e., we always have M - U M =(A® B)-SWAP. (1 ® Z) where A, B € U(2)
and Z is the Pauli-Z matrix.

Every 2-qubit quantum gate in O(4) with det(U)=-1 can be realized in a circuit
consisting of 12 elementary gates, two CNOT gates, and one SWAP gate:

4R AR +

I =R E) e
EReE (S BB

SWAP

v' Those gates having a determinant of +1 can be implemented using at
most two CNOT gates.

v' An arbitrary 2-qubit gate U € 0O(4) requires at most three CNOT
gates.
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Summary

Quantum gates are, like classical reversible gates, logically reversible, but they
differ markedly on their universality properties.

Whereas the smallest universal classical reversible gates have to use three bits, the
smallest universal guantum gates need only use two bits.

Controlled gates are key to achieving non-trivial computations, and universal
gates are key to achieving practical hardware.

The controlled quantum gates apply all the control actions consistent with the
quantum state of the control qubits.

There are several 2-qubit gates that are as powerful as the CNOT gate when used
In conjunction with 1-qubit gates, and gave explicit intercoversions between these
types of gates. For example, ISWAP, SWAPa, and CSIGN are more naturally
suited to superconducting, spintronic, and optical quantum computers than CNOT.

The “tangle” Is a way of quantifying the entanglement within a quantum state and
defines the “entangling power” of a quantum gate.



