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Completely Mixed States 

A completely mixed state can be thought of as the opposite end along a continuum of density 

operators, with a pure state on the other side. In a completely mixed state the probability for 

the system to be in each given state is identical. In that case the density operator is a constant 

multiple of the identity matrix.  

                  If the state space has n dimensions, then 

Since I2 =I, we have                   Furthermore, in n dimensions, Tr(I )=n.  So for a completely 

mixed state we have: 

 In most if not all cases of interest to us, n =2.  

 For n =2 the lower bound, given by a completely mixed state, is   

 while the upper bound for a pure state is given by  
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THE PARTIAL TRACE AND THE REDUCED DENSITY OPERATOR 
A very important application of the density operator is in the characterization of composite 
systems—systems that are made up of two or more individual subsystems. Think entanglement. 

In particular, we consider a composite system where Alice (A) has one part of the system 
and Bob (B) has another part of the system and they fly off in opposite directions.  
 
Suppose that the system is in one of the Bell states: 
 
The density operator for this particular state is:  
 
 
 
 
 
Basically with ρ as we have written it here, we have a description of the complete system. 
 
Because the idea behind the partial trace is to obtain the density operator for one of the 
composite systems alone, we compute the trace by summing over the basis states of one 
party alone. For example, we consider what Bob alone sees. Then we need to trace over 
Alice’s basis states: 
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THE PARTIAL TRACE AND THE REDUCED DENSITY OPERATOR 
Using our expression for ρ, we have: 

and 

So the density operator for Bob is (we dropped the subscripts because this is Bob’s state alone): 

The matrix representation with respect to Bob’s                 basis is: 

(note that the trace of a density matrix is always 1) 

Then we have: 
That is, Bob has a completely 
mixed state. Alice has the 
same completely mixed state. 
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THE PARTIAL TRACE AND THE REDUCED DENSITY OPERATOR 
What about the state of the joint system? The matrix representation of ρ is: 

It can be easily verified that: 

That is, the joint system described by the state   is a pure state, 

while Alice and Bob alone see completely mixed states. 
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WHEN IS A STATE ENTANGLED 
One simple test that can be applied to states in       is the following: Let 

The Bell states are clearly entangled, but let’s apply this criterion to show they are not 
separable.  Writing each state as a column vector, we have: 

This state is separable if and only if 
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ENTANGLEMENT   FIDELITY 

Consider a density operator for a single qubit that is diagonal with 

respect to the computational basis: 
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Entangling power of a 2-qubit gate U 

The entangling power of a 2-qubit gate U, EP(U), is the mean tangle that U generates 

averaged over all input product states sampled uniformly on the Bloch sphere. 
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Entangling power of a 2-qubit gate U 

An equivalent way to compute EP(U) is from the formula: 
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Entangling Power as the Mean Tangle Generated by a Gate 
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The Magic Basis and Its Effect on Entangling Power 

The “magic basis” is a set of 2-qubit states that are phase shifted versions of the Bell 
states: 
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Arbitrary 2-Qubit Gates: The Krauss-Cirac Decomposition 
An arbitrary 2-qubit gate U can be factored according to the Krauss-Cirac 
decomposition as: 

where the Aj are 1-qubit gates, 

is the core entangling operation. 

The 2-qubit gate N(a,b,c) is equivalent to the following unitary matrix: 



13 

Entangling Power of an Arbitrary 2-Qubit Gate 
As the entangling power of any gate is not affected by 1-qubit operations, the 
entangling power of an arbitrary 2-qubit gate must be determined entirely by the 
entangling power of its core factor N(a,b, c): 

We classify four possibilities for the determinant of U 
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Therefore, every 2-qubit quantum gate in SO(4) can be realized in a 

circuit consisting of 12 elementary 1-qubit gates and two CNOT 

gates. 
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 Those gates having a determinant of +1 can be implemented using at 

most two CNOT gates. 
 An arbitrary 2-qubit gate U ∈ O(4) requires at most three CNOT 

gates. 

Every 2-qubit quantum gate in O(4) with det(U)=−1 can be realized in a circuit 
consisting of 12 elementary gates, two CNOT gates, and one SWAP gate: 

SWAP 
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 Quantum gates are, like classical reversible gates, logically reversible, but they 

differ markedly on their universality properties. 

 Whereas the smallest universal classical reversible gates have to use three bits, the 

smallest universal quantum gates need only use two bits. 

 Controlled gates are key to achieving non-trivial computations, and universal 

gates are key to achieving practical hardware.  

 The controlled quantum gates apply all the control actions consistent with the 

quantum state of the control qubits. 

 There are several 2-qubit gates that are as powerful as the CNOT gate when used 

in conjunction with 1-qubit gates, and gave explicit intercoversions between these 

types of gates. For example, iSWAP, SWAPα, and CSIGN are more naturally 

suited to superconducting, spintronic, and optical quantum computers than CNOT. 

 The “tangle” is a way of quantifying the entanglement within a quantum state and 

defines the “entangling power” of a quantum gate.  

Summary 


