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Universal Quantum Gates 
The Deutsch gate is universal for quantum logic in the sense that any unitary transform on 
an arbitrary number of qubits can be simulated by repeated applications of D(θ) on three 
qubits at a time. 

 Circuits for an arbitrary 2n×2n unitary matrix built from this gate are very inefficient in gate count. 

 Deutsch gate is not elementary and can be decomposed into two-qubit gates, whereas classical 

reversible logic required three-bit gates for universality.  

θ is any constant 
angle such that 
2θ/π is an irrational 
number.  

A special case of the Deutsch gate for  θ=π/2 is the 3-qubit Toffoli gate, that is simulated using 2-qubit gates. 

• • • 
• • 

• • 
• 

phase rotation 
transforms inputs  
to superpositions 
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the BARENCO universal gate 
The set of BARENCO gates is universal for quantum logic in the sense that any unitary 
transform, on any number of qubits, can be simulated by these gates acting on only two 
qubits at a time. 

 In practice, it is quite hard to use the Barenco gate as a primitive gate as it requires a 2-qubit Hamiltonian 

having three “tunable” parameters, φ, α and θ.  

 Since the BARENCO gate is a controlled-U gate can be further decomposed into a sequence of 1-qubit 

gates and a single (fixed) 2-qubit gate such as CNOT. 

φ, α and θ are fixed 
irrational multiples of 
π, and of each other.  

Thus, the set {RX(α),RY(β),RZ(γ),Ph(δ),CNOT} forms a universal set of gates used in constructing practical 
quantum circuits: 
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All 2-dimensional unitary matrices are universal? 

Even though BARENCO is a 2-qubit gate we see that the unitary matrix in it is effectively two-

dimensional, not four-dimensional, because of the identity matrix acting on the first two 

states, |00〉 and |01〉.  

 Since any unitary transform can be built from this gate, this may imply that 2-dimensional unitary 

matrices are universal.  

 However, it does not follow from this that one-qubit gates are universal, as indeed they are not. 

 There is a distinction between the number of qubits and the number of dimensions affected by a gate 

transformation. 

In general, a one-qubit operation need not be two-dimensional, and similarly, a two-

qubit operation need not be four-dimensional. 

For example, a CNOT operation acts on the second qubit of a 2-

qubit system with a four-dimensional unitary matrix, in the sense 

that all four states are affected by the transformation, even though 

the operation represented is a single-qubit (2-dimensional) NOT . 

However, NOT gate is not universal for quantum computing! 
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Sets of universal gates with fixed-angle 
Families of gates that are universal for quantum computing but do not lead to efficient 
quantum circuits due to the need to repeat fixed angle rotations many times to approximate 
a desired 1-qubit gate to adequate precision. 

. 

             . 
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Special 2-Qubit Gates 
The physical interactions available within different types of quantum computer hardware 
can give rise to different 2-qubit gates that are more “natural”, than CNOT, since they are 
associated with different Hamiltonians. The four most common alternatives to CNOT are: 

CSIGN arises naturally in Linear Optical quantum 
computing. 

iSWAP arises naturally in superconducting quantum 
computing via Hamiltonians implementing the XY model. 

SWAPα arises naturally in spintronic quantum computing. 
The duration of the exchange operation determines the 
exponent achieved in SWAPα. 

The Berkeley B Gate:  
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Special quantum gates: SWAP, iSWAP, and SWAPα 

Unlike CNOT, these gates do not have a preferred “control” qubit and can be inserted “right 
way up” or “upside down” without affecting the operation the gate performs. 

SWAP is  
inverse 

iSWAP is not  
inverse 

SWAPα is not  
inverse 
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Interrelationships Between Types of 2-Qubit Gates 

The Hamiltonians in different types of physical systems arise from physical interactions 
Nature provides.  From these Hamiltonians one can always find 2-qubit gates from which we 
can, in conjunction with 1-qubit gates, build CNOT gates. 

Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates and CSIGN 

CNOT from CSIGN 

Note that the order is reversed with respect to the left to right sequence in the circuit diagram 
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CNOT from iSWAP and one SWAP 

Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates, iSWAP, and SWAP 

Note that the order is reversed with respect to the left to right sequence in the circuit diagram 
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CNOT from Two iSWAPs 

  Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates and iSWAP 

Note that the order is reversed with respect to the left to right sequence in the circuit diagram 
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Entangled States from Quantum Gates 

 A circuit that applies a Hadamard gate on the 
control input-bit of CNOT creates the four basic 
entangled states (depicted up to the normalization 
factor) which are called the Bell or EPR states. 

A quantum network is a device consisting of a number of quantum logic gates whose 
computational steps are synchronized in time, and a quantum computer is a family of quantum 
networks. A quantum computation is a unitary evolution of the network which process 
entangled input qubits and send them into some output qubits. 

Four Bell states 

|0> 
|1>  

|0> 
|1>  

Input Bits         →                      Input qubits        →                                      Entangled input qubits                          
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Pure vs Mixed entangled states 

 Definition: A state of a bipartite system (composed of two distinct subsystems) is 
called entangled if it cannot be written as a direct product of two states from the two 
subsystem Hilbert spaces                         . 

that yield correlated measurement results. These correlations can be described in terms of 

the classical probabilities pi, and are therefore considered classical. 

Pure States: If there are no local states                                             , such that the state of 

the system      can be written as a product thereof:  

Reduced density matrix: For each state       , there are local bases          and           where:                     

The reduced density matrix of the first subsystem is:                                     , and can define:   
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Distinction of cases for the characterization of the states of bipartite systems  

A pure overall state is either not correlated or it is entangled.  

LOCC=“local operations and classical communication”. The composite system SAB is prepared 
from product states by means of local operations (LO) on the subsystems SA and SB, that 
exchange information via classical communication (CC)  to coordinate their local operations. 
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Entropy of entanglement 

Pure States: A measure that fulfills these requirements is the entropy of entanglement. It 

uses the von Neumann entropy of a density operator:  

The entropy of entanglement for  

a single partite state                     :                     

Von Neumann entropy gives the minimum of bits required to store the result of a random variable 

General requirements for measures C of 
entanglement: 

Separability criterion for pure states: 

0,  for a pure state the information gain from such a 

      measurement vanishes.  

is maximum for a completely mixed state.  

N is the dimension of the Hilbert space. 

The entropy of entanglement for bipartite pure states is the von Neumann entropy of one of 

the reduced states:                                    , where                       and vice versa.  

• If ρ is a product state         , ρA and ρB are pure states and the entropy vanishes: Ε(ρ)=0. 

• If the state is maximally entangled:                                    , the subsystems become completely 

mixed: ρA=ρB=     , and the maximally entanglement entropy is   
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Concurrence 

Entanglement measure is a way to quantify the degree of entanglement within a state, 

using an ensemble of input states over which to average this entanglement measure. 

 There is some variability in the potential for 2-qubit gates to generate entanglement.  
 Two-qubit gates built as the direct product of two 1-qubit gates cannot generate any 

entanglement.  
 Other gates, such as CNOT, map unentangled inputs into maximally entangled outputs. 

The “entangling power” of a quantum gate characterizes the degree, on average, of 

entanglement of its outputs over received unentangled states as inputs. The more the output 

is entangled, the greater the entangling power of the gate.  

Tangle provides a quantitative measure of the degree of entanglement within a quantum state 
and is the square of the concurrence, which for a 2-qubit pure state,       , is:  

                                                                  : 
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Tangle within a pure 2-qubit state 

Tangle is a quantitative measure for the degree of entanglement within a pure 2-qubit state. 

For density matrices, the concurrence is defined as:                                                             where λi 

are the eigenvalues, in decreasing order, of the Hermitian operator:                            , with σy=Y 

in the spin-flipped density matrix: 

                                  

 Concurrence defines a “spin-flip” transformation, which is a mathematical specification of a 

transformation that maps the state of each component qubit into its orthogonal state.  

 There is no perfect spin-flip “gate” because the spin-flip transformation is not unitary (If 

there were it would be a universal NOT gate). 

 If a 2-qubit state         is a direct product state (an unentangled state) its spin-flipped version, 

               will be orthogonal to       and the overlap             will be zero (zero concurrence).  

 A spin-flip transformation over maximally entangled states, such as Bell states, is invariant up 

to an unimportant overall phase: 

Bell states Spin-flip transformation 

The overlap between a maximally 
entangled state and its spin-flipped 
counterpart is unity (concurrence is 
one). 
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Examples 

Problem 1:   
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Examples 

Problem 2:  

Problem 3:  We now consider the effect of an “entangling gate”: 
which is close to the CNOT gate if ϕ = π, but is experimentally  
realizable.  
Find: i)                              ,  ii)             , iii) the entanglement entropy for this state, iv) plot the 
entanglement entropy S and concurrence C of ρ3 as a function of the rotation angle ϕ.      

i) 

This corresponds to the ’pre-measurement’ in theory of quantum measurement process, which entangles 
the system with the apparatus. 
 

ii) For this state, the concurrence is                                 This state is entangled for any finite angle ϕ.  
 

The entanglement reaches its maximum of  ½ for ϕ = π, where CN ≈ CNOT, apart from the − sign, and 
returns to 0 for ϕ = 2π.  
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Examples 

Problem 3: 
     iii) To calculate the entanglement entropy for this state we need the full density operator: 
 
 
 
 
 
 
 
 
 

where we used the trigonometric identity: 1+cos(ϕ/4) = cos2 (ϕ/2). The difference between ρΑ and ρΒ 

reflects the asymmetric role that control and target bit play in the CNOT gate.  

iv)   
 This figure shows the resulting entanglement entropy 

E(ρ3)=S(ρA)=S(ρB) as a function of the rotation angle ϕ.  

 Clearly, the dependence is different from that of the 

concurrence C(Ψ3) for the same state, which starts 

linearly with ϕ and reaches a maximum value of 0.5. 

  However, both entanglement measures reach 

maxima for the same state and vanish when the state 

is separable. 


