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PROBLEM TO SOLVE 

1. The HNG gate is described in reference: Haghparast M. and K. Navi, 2008. A Novel reversible BCD 

adder for nanotechnology based systems. Am. J. Applied Sci., 5 (3): 282-288. 

http://thescipub.com/pdf/10.3844/ajassp.2008.282.288 

 

2. The operation of the HNG gate is shown in Figure 1, where each output is annotated with the 

corresponding logic expression. Observe that two input variables are also outputs. HNG gate can be used 

for implementing all Boolean functions. 

 

 
Fig. 1. Quantum circuit model of the HNG gate. 

 

The corresponding truth table of the HNG gate is depicted in Table 1. 

 

Table 1. The truth table of HNG gate 

 
 

A total of four reversible gates are required to build the quantum circuit of the HNG gate, as depicted in 

Fig.2:  

http://algassert.com/2016/05/22/quirk.html
http://thescipub.com/pdf/10.3844/ajassp.2008.282.288
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Fig. 2. Quantum circuit model of the HNG gate. 

 

The OR and the X-NOR functions can be simultaneously implemented on HNG (Fig. 3). 

 

 
Fig.3 XNOR and OR. 

 

The XOR function and the NAND function can be implemented as depicted in Fig.4.  

 

 
Fig.4 XOR and NAND gates. 

 

The NOR function can be obtained as shown in Fig. 5. 

 

 
Fig.5 XOR gate. 

 

The implementation of the HNG gate as NOT function is shown in Fig.6. 

 

 
Fig.6 NOT gate. 

 

The AND function can be implemented as depicted in Fig.7. 
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Fig.7 AND gate. 

 

Full adder circuit is a versatile and widely used element in digital arithmetic processing. One of the 

prominent functionalities of the HNG gate is that it can work singly as a reversible full adder unit. The 

implementation of HNG gate as the reversible full adder is depicted in Fig.8.  

 

 
Fig.8 The HNG gate is a 4-bit reversible gate, which is a full adder. 

 

In Quirk simulation, create a circuit with the minimum cost (number of gates from Clifford-T 

library), including Bloch spheres as well. Use all the possible eight input states to prove that works as a 

full adder. Save your circuit simulation in a video mp4 file that implements all eight input states, and 

write a report. Draw a circuit indicating the implementation of each CCNOT and CNOT gate in Fig.2 by 

placing in boxes the equivalent combination of Quirk gates. Explain the operations of your circuit in 

each case. Include the corresponding truth tables. 

 

Supplementary Information 

The fault tolerant Clifford+T gate set is used in fault tolerant quantum circuit design. Table 1 shows 

the gates that make up the Clifford+T gate set. 
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The Clifford+T implementation of the inverted control CNOT gate, SWAP gate and Toffoli gate are 

shown in figure A. 

 

(c) Toffoli gate 
 

Fig.A The fault tolerant Clifford + T implementations of quantum logic gates. 

 

Fault tolerant quantum circuit performance is evaluated in terms of T-count because the 

implementation costs of the T gate is significantly greater than the implementation costs of the other 

Clifford+T gates.  

T-count is the total number of T gates or Hermitian transposes of the T gate in a quantum circuit. As 

illustrated in figure A, the inverted control CNOT gate and the SWAP gate both have a T-count of 0 

while the Toffoli gate has a T-count of 7. 

Figure B shows the exact Clifford+T decomposition of the Toffoli gate using 7 T gates. Note that we 

have used the identity HZH=X to rewrite the Toffoli as a double-controlled-Z gate, which is diagonal 

and hence has an exact decomposition in the Clifford+T basis. 

 

 
 

Fig.B An exact decomposition of the Toffoli gate on the Clifford+T basis. We use the fact that  

HZH=X, where H is the Hadamard gate and Z, X are the standard Pauli gates. 

 

Figure C shows an exact decomposition of two paired Toffoli gates with a phase gate on the target 

qubit. We use the Clifford+T decomposition of the Toffoli shown in Figure B. The first two qubits in 

this example have a sequence of gates which are adjoints of one another, thus if we carry through all 

commutations to move the gates on the top two qubits towards the center, we find that not only do they 

mutually cancel one another, but all commutations in between different CNOT operators will also 

mutually cancel. Independently they would cost 7 T gates each for a total of 14 per pair, however in this 

paired configuration a pair of matched Toffoli entanglers costs only 8 T gates. 
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Fig.C An exact decomposition of two paired Toffoli gates with a phase gate on the target qubit. 

 

As another example consider the reversible full adder circuit below, where each Toffoli-CNOT pair is in 

fact a Peres gate:  

                
 

                                                     
T gate parallelization means moving T and T

†
 gates, each on a unique circuit line, to the same circuit 

level so that they can operate in parallel. 

 

Appendix A 

Optimizations in the Clifford+T library. 

B.1 Moving rules for the Clifford+T gates 

 

B.2 Reduction rules for the H gates 

 

= 

= 
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B.3 Reduction rules for the remaining gates 

 

Appendix B 

Quantum gate properties: 

 

 
 

Property 5: Note that the three gates in the structure have a common target and the two CNOTs have a 

common control. 

Property 6 provides considerable flexibility in moving gates. It is a direct consequence of Properties 4 

and 5. 

Property 7 gives two important identities for reducing the number of CNOT gates in a circuit. 

Property 7(a) describes the interchanging of 2 CNOTs which share a qubit as target for one and control 

for the other. This introduces a third CNOT with control and target from the unshared lines of the initial 

pair of gates. 

 

 

 


