
Nanoelectronics & Quantum Gates

Projects about QUIPPER

Final examination – June 2017

INTRODUCTION

Quipper programs contain three main stages during operation: compile time, circuit generation time

and circuit execution time. It is possible to run the compile time phase and circuit generation time phase on a

classical computer. The circuit execution time phase can only occur on a physical quantum computer.

Quipper uses three data types: Bit, Bool, and Qubit. Bit and Bool are for classical data, and Qubit is for

quantum data. Quipper is an indentation and case sensitive language. Use Qubit to build the quantum

circuits.

A. Quntaum Circuit Design

 We import the Quipper library to use quantum built-in functions. The feynman keyword refers to

CNOT gate, which is a function that takes 2-qubits and returns the same number of qubits. The Circ

keyword is a type operator that indicates the side effects during evaluation of the function. We declare the

variables of each input after constructing the function type. The body of this program starts with do operator

and ends with return operator. The qnot at and the controlled operators will apply CNOT gate to the qubits.

Quipper has some predefined quantum gates which we may use including gate V at, gate V inv at,

hadamard at, swap qubit at and so on. The program in Fig.2 will start running from the main function,

which will call the feynman gate function to print the quantum circuit in PDF format of feynman gate shown

in Fig. 1.

Fig. 1. Quantum circuit model of the Feynman (CNOT) gate.

Fig. 2. Quantum circuit program for Feynman (CNOT) gate.

The Quipper library has another printing function to use instead of PDF namely GateCount, which

prints the counts for each gate that has been used in the circuit as shown in Fig. 3.

Fig. 3. Circuit cost on the Feynman gate

Nanoelectronics & Quantum Gates

B. Quipper Simulator

Quipper provides three different simulators, each one used differently, depending on the gates used

in a circuit. Classical simulation is used to simulate classical circuits. Stabilizer simulation is used to

simulate Clifford group circuits. Quantum simulation can simulate any circuit. All these simulators are

generic, meaning that they take a circuit that produce a function and convert it into another function. Use run

generic function, which will initialize the inputs of the quantum circuit to the corresponding given boolean

arguments. The outputs of the quantum circuit are measured, and then the Boolean measurement results are

returned. To use the circuit simulation functions, we need to import the QuipperLib.Simulation. The

program starts in the main function:

Each variable: first, second, third and fourth, is a constructor name that is declared to run the boolean

arguments of the circuit function, which is the feynman gate function. The keyword putStrLn prints the

boolean results from the keyword show, followed by the constructor name. The boolean results are shown as

Simulation results for the Feynman gate.

Nanoelectronics & Quantum Gates

IMPLEMENTATION OF REVERSIBLE GATES

This section presents an example that implements the circuit design and run the Quipper circuit

simulation of one reversible quantum gate, called ALG. The ALG gate is a 4-bit full adder gate:

Quantum circuit model of the ALG gate.

This gate has the least number of quantum cost which is eleven, and a total of seven gates required to build

the circuit of the ALG gate. In this simulation, we will use only four states out of the possible sixteen states

for testing purposes. The steps to design and simulate the ALG gate are given below:

Using the printing function GateCount, instead of PDF, will print the counts for each gate that has

been used in the circuit:

Circuit cost on the ALG gate.

To use the circuit simulation functions, we need to import the QuipperLib.Simulation. The program

starts in the main function:

Nanoelectronics & Quantum Gates

Simulation results for the ALG gate.

PROBLEMS TO SOLVE

1. The HNG gate is a 4-bit reversible gate, which is a full adder. A total of four gates are required to build

the quantum circuit of the HNG gate:

The quantum cost is twelve. In this simulation, use only four states out of the possible sixteen states.

Write the Quipper code for implementing and simulating the HNG gate, and provide the results in the

form of the solved example on the ALG gate.

2. The MKG gate is a 4-bit gate that is used to implement all boolean functions and design efficient adders.

This gate can also work independently as a reversible full adder:

Nanoelectronics & Quantum Gates

In this simulation, use only four states out of the possible sixteen states. Write the Quipper code for

implementing and simulating the MKG gate, and provide the results in the form of the solved example

on the ALG gate.

3. The Peres Full Adder Gate (PFAG) is designed by adding two 3-bit Peres gates. This gate needs only

one clock cycle and has no more garbage outputs. The total number of gates required to build the

quantum circuit of PFAG gate is eight gates:

Use the command label to indicate the label of each input wire, as shown in figure above:

l a b e l (a , b , c , d) (”A” , ”B” , ”C” , ”D”)

Write the Quipper code for implementing and simulating the PFAG gate, and provide the results in the

form of the solved example on the ALG gate.

4. The TSG gate is a 4-bit full adder gate. The total number of gates needed to implement the TSG full

adder circuit is nine gates:

In this simulation, use only four states out of the possible sixteen states. The quantum cost is seventeen.

Write the Quipper code for implementing and simulating the TSG gate, and provide the results in the

form of the solved example on the ALG gate.

