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BiBAwoypadia: EXPLORATIONS IN QUANTUM COMPUTING, Colin P.

Williams (2nd edition, Springer-Verlag, 2011), chapter 1.

Quantization: From Bits to Qubits

= Ket Vector Representation of a Qubit

= Superposition States of a Single Qubit

Bloch Sphere Picture of a Qubit

= Reading the Bit Value of a Qubit
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Assumptions about the properties of bit that are no longer necessarily
true at the quantum scale

Assumption Classically  Quantum mechanically

A bit always has a definite value True False. A bit need not have a definite value
until the moment after it is read

A bit can only be 0 or 1 True False. A bit can be in a superposition of 0
and 1 simultaneously

A bit can be copied without True False. A qubit in an unknown state cannot

affecting its value be copied without necessarily changing its
quantum state

A bit can be read without affecting True False. Reading a qubit that is initially in a

its value superposition will change the qubit

Reading one bit in the computer True False. If the bit being read is entangled

memory has no affect on any other with another qubit. reading one qubit will

(unread) bit in the memory affect the other

To compute the result of a True False

computation, you must run the
computer
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Quantization: From Bits to Qubits

Ket Vector Representation of a Qubit: |0) = ({'}) 1 1) = (tl})

A quantum system can be found to be in one of a discrete set of states: |0) or [1)

Superposition

If it is not observed it may also exist in a superposition of those states
simultaneously:  |¥) = a|0) + b|1) such that |a|* + |b|* = 1

Dirac Notation:

For every “ket”|¥r) (column vector), there is a corresponding “bra” (¥ | (row vector):

|w}=a|o>+b|1>=(‘;)
(W] =a*(0] + b*(1] = (@ b%)

The ket and the bra contain equivalent information about the quantum state
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Inner and Outer Products

For a pair of qubits in states: |¢) = a|0) + b|1) and |¢) = c|0) +d|I)

The inner product (V|¢)defines the overlap between (normalized) states: |yr) |¢)
c

W16) = (WD -(g) =@ b (5 ) =a’e+ba
bra {;} ket
(YY) = (@* b*)-(,)=a*a+b*b=lal* +|b)* =1

The outer product |r) (¢|is a matrix:

a . ac* ad*®
Iw}{qblz(lw})-({'?ﬁl):(b)-(c m:(bc* bd*)

The outer product describes the structure of unitary operators, which correspond to
qguantum logic gates. For example, a NOT gate:

NOT = (?é): 0Y(1] + |1)(0]
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Bloch Sphere Picture of a Qubit

A pure quantum state of a
single qubit is a unit vector in
Bloch sphere.

A pair of elevation and azimuth
angles (8,¢) in therange 0 <0 <n
and 0 £ ¢ < 2it pick out a point on
the Bloch sphere.

Orthogonal states, |0)and |1}, are
not found to be at right angles on
the Bloch sphere.

Orthogonal quantum states, i.e.
states|yr)and | x ) for which (| x)=
0, are represented by antipodal
points on the Bloch sphere (rather —1
than being drawn at right angles). _ endey

Bloch sphere showing the computational basis states |0} and |1}, and a general qubit

state: |v) = cos(#/2)|0) + ¢'? sin(#/2)|1), where 6, and ¢ are real numbers.



Pure 1-qubit states on Bloch Sphere

Bloch sphere labeled with pure 1-
gubit states at the extremes of the
X-, Y-, and z-axes:

X-axis: | /) = =5(10) + |1))
N) = —5(10) — 1))

Y-axis:
IR) = |) = ﬁ[lﬁ} i)

o

L) = |0) = -5(10) —i[1)

Z-axis: |0), and |1)

Orthogonal  quantum  states are 1) ,
located at antipodal points. ¥4
The operation that maps an unknown

state to its antipodal state cannot be
expressed as a rotation on the Bloch

sphere. 1 x

Rather it is the sum of a rotation (in longitude through 180 degrees) and a reflection (in latitude
with respect to the equatorial plane of the Bloch sphere). 6

o



Reading the Bit Value of a Qubit

Measuring the bit value of a qubit initially
in state: a|0) 4+ b|1) yields the answer:

0 with probability |a|?

Read(a|0) + b|1)) = {1 with probability |b|

and projects the qubit into either state
|0} or state |1} respectively.

A measurement of a qubit with respect
to North and South poles axis is called a
measurement “in the computational
basis” because the answer we get will
be one of the bit values |0} or |1).

Thus, for a single qubit guantum memory
register the outcome we obtain from reading
it is non-deterministic.

Quantum Zeno Effect: measuring repeatedly the

same state its evolution can be suppressed and
read read read

fixed in a quantum state, |[y/) = |0) = |0) = |0)--. 1

read read read

or ) & 1) B By -
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Problems with Solutions

Problem 1 Consider the three cases:

oo=(g). m=(})

(ii) |0} := vi’i G) y )= % (_11)
@) 0= (2m0), e (52

Find the matrix representation of A in these
bases. A :=|0){0| + [1)(1]

For all three cases:
A=1,
where 1, is the 2 x 2 unit matrix.

The third case contains the first
two as special cases.

Solution 1. We find:

: 1 0 0 0 1 0
0 4=(60)+( )= 1)
" 171 1 ILy1 -1 1 0
(i) A_§(1 1)+§(—1 1)"({1 1)
(i) A= cos’f  cosf@sind N sin? 4
~ \cosf@sinf  sin’@ — cosBsinf

1 0
01

(o 2)

—cosfsind
cos? @

)
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Problems with Solutions

Problem 2 The NOT operation (unitary operator) is defined as: |0} — |1}, 1) — |0)

(i) Find the unitary operator Unor which implements the NOT operation
with respect to the basis {|0), |1} }.

(ii) Let
02 w- ()

Find the matrix representation of Uyor for this basis.

(i) Let
0-7(1) m=7(4)

Find the matrix representation of Uyor for this basis.

Solution 2. Thus, the respective matrix
(i) Obviously, Unor = [0Y(1] + {1)(0| representat.lons for the two
bases are different.

since (0[0) = (1]1) =1 and (0]1) = (1j0) =0. |
(ii) For the standard basis we find (iii) For the Hadamard basis we find

1 O

Unor = (fl) 2«}) ' Unor = (0 1
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Problems with Solutions

Problem 3 The qubit trine is defined by the following states:

V3

Yo) =10, ) = ~310) = S°10), fa) = 3 [0) +

where {|0), [1) } is an orthonormal basis set. Find
[Wolvn)?,  [(nl2)l®,  [(walvo)]?.

Solution 3.

Using (0|0} = 1, (1|]1) = 1 and (0{1) = 0 we find

1

(olvn) = 3 Kl = 5, [(walvodl? = 5.
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