
1

Παράλληλη Επεξεργασία

Εαρινό Εξάμηνο 2022-23
«Memory and Performance

- Roofline Model»

Παναγιώτης Χατζηδούκας, Ευστράτιος Γαλλόπουλος

Outline
• Memory
• Performance

• Amdalh’s law
• Strong and weak scaling

• Roofline Model

2

Memory

Locality
• Idea: have near you only what you need
• Temporal locality: if an item is referenced, it will need to be

referenced again soon
• Loops: instructions and data accessed repeatedly

• Spatial locality: if an item is referenced, items whose
addresses are close by, will tend to be referenced soon
• Data access: sequential access to elements of array

4

Register and Caches

What really happens

What a memory access looks like

5

Spatial Locality

Better spatial locality!

6

Memory Hierarchy

Memory Access time (ns) $ per GB (2008)

SRAM 0.5 - 2.5 2000 - 5000

DRAM 50 - 70 20 - 75

Magnetic Disk 5x106 - 20x106 0.2 - 2

• Multiple levels of memory with different speeds and sizes.

7

Latency and Bandwidth

μs

GB/s

ms

ns

8

Characterization of Memory Hierarchies
• Peak Performance for 1 core of Intel Core2 Q6850 (DP):

• 3 GHz * (2 Flops (DP-Add) + 2 Flops (DP-Mult)) = 12 GFlops/s

-xT : Enables vectorization & improves in-
cache performance: Packed SSE

instructions

Performance decreases if
data set exceeds cache size

9

Cache: Terminology
• Block/Line: minimum unit of information that can be

present or not present in a cache
• Hit: data request by the processor, encountered in some

block in the upper (closer to processor) level of memory
hierarchy. If the data is not found, it is a miss. Then a lower
(further from processor) level is accessed to retrieve the
data.

• Hit rate: fraction of memory accesses found in the upper
level.

• Hit time: time to access upper level including time to
determine if it is a hit or a miss.

• Miss penalty: time to replace a block in the upper level with
the corresponding block from the lower level.

10

Effective Access Time (EAT)
• Suppose that

• cache access time = 10ns
• main memory access time = 200ns
• cache hit rate = 99%

• What is the EAT for non-overlapped access?

EAT = 0.99(10ns) + 0.01(10ns + 200s) = 9.9ns + 2.1ns = 12ns

11

Caches and Multiprocessors
• BUS: a shared communication link, which uses

one set of wires to connect multiple subsystems.
• Used for communication between memory, I/O

and processors.
• versatility: since we have a single connection

scheme, new devices can be added
• simplicity: single set of wires is shared in

multiple ways
• communication bottleneck: limiting the I/O

throughput as all information passes a single
wire

BUS

BUS

Processor-Memory Bus: bus that connects processor
and memory, and that is short, high speed and matched
to the memory system so as to maximize memory-
processor bandwidth.

12

Portable Hardware Locality (hwloc)

http://www.open-mpi.org/projects/hwloc/ 13

Euler Compute Node (text format)

1st NUMA NODE

2nd NUMA NODE

• Compute node:
• 256 GB RAM
• 2 NUMA Nodes

• NUMA Node
• 128GB RAM
• 1 Socket

• 30MB L3 Cache
• 12 Cores

• Core
• 256KB L2 Cache
• 32KB L1 Data Cache
• 32KB L1 Instruction Cache

14

• Multicore multiprocessor:
• Processors (most likely) share a common physical address space

• Caching shared data: view of memory for each processor through their
individual caches so it differs if changes are made.

• CAREFUL: 2 different processors can have 2 different values for the
same location -> cache coherence problem

Parallelism and Memory Hierarchies

CPU 1 2

cache

main memory p

pp
p’

(not p’)p’

15

Cache Coherency
• A memory system is coherent if:

• A read by processor P to location X, that follows a write by P to X,
with no writes to X by another processor occurring between the
write and read by P, always returns the value written by P.

• A read by a processor to location X that follows a write by another
processor to X returns the written value if the read and write are
sufficiently separated in time and no other writes to X occurs
between the 2 accesses. ⇒ needs controller

• Writes to the same location are serialized: that is 2 writes to the
same location by any 2 processors are seen in the same order by all
processors.

16

Enforcing Coherence
• Protocols are maintained for cache coherence by tracking

the state of any sharing of a data block.
• Example -> Snooping protocols: every cache with a copy of the

data from a block of physical memory, also has a copy of the
sharing status of the block, but no centralized state is kept.

• The caches are all accessible via some broadcast medium (bus or
network) and all cache controllers monitor (snoop) on the medium to
determine whether they have a copy of a block that is requested on
a bus or switch access.

17

Memory Usage: Remarks
• Software for improved memory usage, assisted by

compilers to transform programs.
• reorganize program to enhance its spatial and temporal locality

(loop-oriented programs, using large arrays as the major data
structure; e.g. large linear algebra problems) by restructuring the
loops (to improve locality and obtain) better cache performance

• prefetching: a block of data is brought to cache before it is
referenced. Hardware to predict accesses that may not be detected
by software.

• cache-aware instructions to optimize memory transfer.

18

Effect of Data prefetching on BG/Q
• Single BG/Q node, 64 threads

Time-to-Solution

0

3

6

9

12

15

18

21

24

27

co
n,

1
co

n,
2

co
n,

3
co

n,
8

op
t, 1

op
t, 2

op
t, 3

op
t, 8 dis

Ti
m

e
/ s

te
p

(s
)

Policy

30%

40%

50%

60%

70%

co
n,

1
co

n,
2

co
n,

3
co

n,
8

op
t, 1

op
t, 2

op
t, 3

op
t, 8 dis

%
 P

ea
k

Pe
rf

or
m

an
ce

Policy

Peak Performance

con: L1P_stream_confirmed
opt: L1P_stream_optimistic
dis: L1P_stream_disable 19

Performance

• We must get efficiency - else use single processor
• Instruction level parallelism done by the compiler can help

(out of order execution, etc)

• Challenges
• scheduling
• load balancing
• time for synchronization
• overhead for communication between parts

The Difficulty of Parallel Processing Programs

21

Processors

Assumption of perfect load balancing

Amdahl’s Law
• How much can a problem be improved?

• e.g.: We want a speed up of 90x faster with 100 processors

22

• We want a speed up of 90x faster with 100 processors

• So to get a speed-up of 90 from 100 processors the
sequential part can only be 0.1%

Amdahl’s Law : Example 1

23

• Suppose we want to perform two sums:
• sum of 10 scalar variables
• matrix sum of pairs of 2D arrays with dimension 10x10

• What speedup you get with 10 and 100 processors?
• Calculate the speedups assuming matrices grow to

100x100.
• Assume time t for the performance of an addition.

Then there are (for 100 processors) 100 additions that scale
and 10 that do not.

Amdahl’s Law : Example 2

24

Amdahl’s Law : Example 2
• For 110 numbers we get 55% of the potential speedup with

10 processors but only 10% of 100 processors.

25

• What happens when we increase the matrix order?

• For larger problem size we get 99% with 10 processors and
91% with 100 processors

26

Amdahl’s Law : Example 2
10

 p
ro

ce
ss

or
s

10
0

pr
oc

es
so

rs

26

Scaling
• Strong scaling:

speed-up on multiprocessors without increase on problem
size
• Amdahl’s law considers the strong scaling

• Weak scaling:
speed-up on multiprocessors, while increasing the size of
the problem proportionally to the increase in the number of
processors

27

28

Strong Scaling
• Strong scaling: defines how the solution time varies with increasing

number of processors p for a fixed total problem size (i.e. fix workload is
split among cores):

‣ Speedup for strong scaling:

T(1) = time of one thread to process the data
T(p) = time of p threads to process the same data

Split of the fixed problem size over a) 1 core, b) 2 cores, c) 4 cores

‣Efficiency for strong scaling:

Example:
System with fix problem size N (e.g. # particles)

Execution time:
T(1) = 12.0 s
T(2) = 6.0 s
T(4) = 4.0 s
T(8) = 3.0 s

S(1) = 1.0
S(2) = 2.0
S(4) = 3.0
S(8) = 4.0

Speedup:
N = 100
N = 100
N = 100
N = 100

Problem size:

(a) (b) (c)

28

Weak Scaling
• Weak scaling: defines how the solution time varies with the number of

processors p for a fixed problem size per processor

Problem size with a) 1 core, b) 2 cores, c) 4 cores

‣ Speedup for weak scaling doesn’t make sense

T(1) = time of one thread to process the data
T(p) = time of p threads to process p times the data

‣Efficiency for weak scaling:

Example:

T(1) = 12 s
T(2) = 15 s
T(4) = 20 s
T(8) = 24 s

E(1) = 1.0
E(2) = 0.8
E(4) = 0.6
E(8) = 0.5

N = 100
N = 200
N = 400
N = 800

Problem size: Execution time: Efficiency:

(a) (b) (c)

29

• Load balancing
• In the previous example, in order to achieve the speed-up of

91 (for the larger problem) with 100 processors, we
assumed that the load was perfectly balanced.
• Perfect balance: each of the 100 processors has 1% of the work to

do
• What if: 1 of the 100 processors load is higher than all the

other 99?
Calculate for increased loads of 2% and 5%

Amdahl’s Law: Example 3

30

• If one has 2% of the parallel load then it must do
2% x 10000 (larger problem) = 200 additions
• The other 99 will share 9800

• Since they operate simultaneously:

• The speedup drops to

• If one processor has 5% of the load, then it must perform
5% x 10000 = 500 additions

31

Amdahl’s Law: Example 3

31

The roofline model

The Roofline Model

[1] Roofline: an insightful visual performance model for multicore architectures, Williams and Waterman and Patterson, Communication to ACM, 2009

• Proposed by Williams, Waterman and Patterson [1]:
• Crucial in performance predictions
• Helpful for software optimization

• “Bound-and-bottleneck” analysis:
• Provides valuable performance insight
• Focuses on the primary performance factors
• Main system bottleneck is highlighted and quantified

33

Computation-Transfer overlap

• On CPUs:
• Superscalar execution (multiple instructions per cycle)
• In principle: automatic overlap (balanced instructions)
• In practice: enforced through software prefetching

34

• Main assumptions/issues:
• The memory bandwidth is the constraining resource

(Off-chip system memory)
• Transfer-computation overlap
• Memory footprint does not fit in the cache

• We want a model that relates:
• Computing performance [GFLOP/s]
• Off-chip memory traffic [GB/s]

• New concept: the operational intensity [FLOP/Byte]

The Roofline Model

35

• Operations per byte of DRAM traffic
• It measures the traffic between the DRAM and the Last

Level Cache (further away from processor)
• It excludes the bytes filtered by the cache hierarchy

Operational Intensity

Off-chip
memory

Cache
hierarchy

Processing
element

36

• Not equivalent to arithmetic intensity [1], machine balance[2]
• which refer to traffic between the processor and the cache

• Not forcedly bound to FLOP/Bytes (e.g. Comparison/Byte)

Operational Intensity

Off-chip
memory

Cache
hierarchy

Processing
element

[1] Harris, M. Mapping Computational Concepts To Gpus. In ACM SIGGRAPH Courses, 2005.
[2] Callahan, D., Cocke, J., Kennedy, K. Estimating Interlock and Improving Balance For Pipelined Machines (1988)

37

Abstraction

GFLOP/s
GB/s

FLOP/B
Operational Intensity:

FLOP-to-byte of off-chip memory transfers
38

• The roofline is a log-log plot
• It relates:

• Performance [FLOP/s] with
• Operational intensity [FLOP/Byte]

• Two theoretical regimes for a kernel k:
• Performance of k is limited by the DRAM bandwidth:

• Performance of k is limited by the compute power:

The Roofline Model

39

The Roofline Model

0.1

1.0

10.0

100.0

0.010 0.100 1.000 10.000 100.000

G
FL

O
P/

s

Operational Intensity

4x Quad-Core AMD Opteron 8380 @ 2.5GHz - 1 Thread - C++

3 GFLOP/s
C++ microbenchmark

STREAM benchmark

4.7 GB/s

x

Maximum achievable
performance!

40

• How to estimate nominal and ?
• From the hardware specifications of the platform
• Examples

PP: 2.5 [Ghz] * 4 [SIMD-width] * 2 [issued FLOP/clock] * 16 [cores] = 320 [GFLOP/s]

PB: 1.3 [Ghz] * 64 [bits] * 2 [channels] / 8 [bits/Byte] = 21.3 [GB/s]

Performance=min(OI*PB,PP)

Nominal Performance

Processor
Clock/sec

Vector size
((SSE, AVX,..)

instructions per clock,
FMAs No. of cores

Memory
Clock/sec Channel size No. channels bits/Byte

41

Measured Performance
• Microbenchmarks:

• STREAM benchmark or similar
• Nominal peak or vectorized

• https://github.com/Mysticial/Flops

• Expected discrepancy from nominal quantities:
• FLOP/s: 90-100% of nominal performance
• GByte/s : 50-70% of nominal performance

• Discrepancies reveal:
• Programming skills in extracting system performance
• Best case scenario for more complex kernels

42

https://github.com/Mysticial/Flops

• Run once per platform, not once per kernel
• Estimation of operational intensities (Flops/byte) can be

tricky
• What happens if you compute them wrong?

The Roofline Model

NOTE:
Cache Dependent

Numbers

2 read (x,y)
1 write (z)

1 read (x)
1 write (z)

2 read (x)
1 write (z)

3 read (x,y,z)
1 write (z)

2 read (x,z)
1 write (z)

3 read (x,y,z)
1 write (z)

43

• Given

• where in and out are float arrays of size N

1. What is the number of floating-point operations?

2. What is the number of memory accesses from main memory
if:

a) there is no caching
b) there is a perfect cache of infinite size

Operational Intensity: Example

for (int ix=1; ix<N-1; ix++)
out[ix] = in[ix-1]-2*in[ix]+in[ix+1]

44

Operational Intensity: Example

• Floating point operations: 3*(N-2) FLOP
• Memory accesses (no caching): 4*(N-2) floats accessed

• every data accessed is counted
• Memory accesses (perfect caching): 2*N-2 floats accessed

• data is read only once and written only once

for (int ix=1; ix<N-1; ix++)
out[ix] = in[ix-1]-2.*in[ix]+in[ix+1]

45

• 2D heat equation:

• q: singe precision (4 Bytes)

• Algorithm
• 1. Laplace Operator

• 2. Forward Euler Operator:

Example: 2D Heat Equation

5 point stencil

46

47

A-Priori Performance Analysis

• Floating point operations per point: 4 ADD + 2 MUL

• Memory accesses per point:
• Worst case: 5 read + 1 write
• Best case: 1 read + 1 write

• Operational Intensity:
• Worst case: 6 FLOP / (6*4 B) = 0.25 FLOP/B
• Best case: 6 FLOP / (2*4 B) = 0.75 FLOP/B

47

48

A-Priori Performance Analysis

• Floating point operations per point: 1 ADD + 1 MUL

• Memory accesses per point:
• Worst case: 2 read + 1 write
• Best case: 2 read + 1 write

• Operational Intensity:
• Worst case: 2 FLOP / (3*4 B) = 0.17 FLOP/B
• Best case: 2 FLOP / (3*4 B) = 0.17 FLOP/B

48

Roofline

0.1

1.0

10.0

100.0

1000.0

0.01 0.10 1.00 10.00 100.00

G
FL

O
P/

s

FLOP/B

16 GFLOP/s
24 GFLOP/s

72 GFLOP/s

49

A More Accurate Analysis
• We have locality!
• Memory accesses per point:

• 3 read + 1 write
• Operational Intensity:

• 6 FLOP / (4*4 B) = 0.375 FLOP/B

50

0.1

1.0

10.0

100.0

1000.0

0.01 0.10 1.00 10.00 100.00

G
FL

O
P/

s

FLOP/B

Roofline

24 GFLOP/s

72 GFLOP/s
36 GFLOP/s

51

Optimization
1. Locality
2. Communication
3. Computation

52

0.1

1.0

10.0

100.0

1000.0

0.01 0.10 1.00 10.00 100.00

Pe
rfo

rm
an

ce
 [G

FL
O

P/
s]

Operational Intensity [FLOP/B]

Ceilings on Brutus (single precision)

Plain serial C++

53

0.1

1.0

10.0

100.0

1000.0

0.01 0.10 1.00 10.00 100.00

Pe
rfo

rm
an

ce
 [G

FL
O

P/
s]

Operational Intensity [FLOP/B]

Ceilings on Brutus (single precision)

Plain serial C++

Multithreading

54

0.1

1.0

10.0

100.0

1000.0

0.01 0.10 1.00 10.00 100.00

Pe
rfo

rm
an

ce
 [G

FL
O

P/
s]

Operational Intensity [FLOP/B]

Ceilings on Brutus (single precision)

Plain serial C++

Multithreading

SIMD

55

0.1

1.0

10.0

100.0

1000.0

0.01 0.10 1.00 10.00 100.00

Pe
rfo

rm
an

ce
 [G

FL
O

P/
s]

Operational Intensity [FLOP/B]

Ceilings on Brutus (single precision)

Plain serial C++

Multithreading

SIMD

Balanced MUL-ADD

56

0.1

1.0

10.0

100.0

1000.0

0.01 0.10 1.00 10.00 100.00

Pe
rfo

rm
an

ce
 [G

FL
O

P/
s]

Operational Intensity [FLOP/B]

Plain serial C++

Multithreading

SIMD

Balanced MUL-ADD

8 NUMA nodes

1 NUMA node

Ceilings on Brutus (single precision)

57

Improving Locality

Morton or Z-Order Peano Hilbert

Linear Blocked Blocking Hierarchy

58

The Ridge Point

0.1

1.0

10.0

100.0

0.010 0.100 1.000 10.000 100.000

G
FL

O
P/

s

Operational Intensity
What does it mean “a ridge point to the right” anyway?

• Ridge point characterizes the overall machine performance
• Ridge point “to the left”: it is relatively easy to get peak

performance
• Ridge point “to the right”: it is difficult to get peak performance

59

• Assumption: production-ready software
• Limited set of algorithms
• Fixed set of kernels
• Fixed operational intensities

Production Software

0.1

1.0

10.0

100.0

0.010 0.100 1.000 10.000 100.000

G
FL

O
P/

s

FLOP/Byte
x

Best platform

Best hardware solution?}

60

• It depends:
• On the ridge point
• On the operational intensity of the considered kernels

Is Moore worth?

61

The Roofline Model: Summary
• It visually relates hardware with software
• Performance = min(PB x OI, PP)
• Ridge point characterizes the model

62

Conclusions
• When is the roofline model useless?

• When you discuss performance in terms to time-to-solution.
• When is the roofline model crucial?

• When you want to optimize your code (data reuse, ceilings)
• To predict maximum achievable performance (roofline, ridge point)
• To systematically assess your performance (roofline, op. int.)

• What do you do if all your kernels have a bad op. int.?
• Either live with it
• Go back to equations, pick better discretization schemes/algorithms

(leading to a higher op. int.)
• Wanted: less simulation steps, but more costly (high order schemes)

63

