
1

Παράλληλη Επεξεργασία

Εαρινό Εξάμηνο 2023-24

«OpenMP - I»

Παναγιώτης Χατζηδούκας, Ευστράτιος Γαλλόπουλος

Sequential Version

long num_steps = 100000;

double step;

int main()

{

 double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (int i=0; i <num_steps; i++){

 x = (i-0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

 return 0;

}

POSIX Threads Version
#include <pthread.h>

#define NUM_THREADS 2

pthread_t thread[NUM_THREADS];

pthread_mutex_t Mutex;

long num_steps = 100000;

double step;

double global_sum = 0.0;

void *Pi (void *arg)

{

 int i, start;

 double x, sum = 0.0;

 start = *(int *) arg;

 step = 1.0/(double) num_steps;

 for(i=start; i<num_steps; i+=NUM_THREADS)

 {

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pthread_mutex_lock (&Mutex);

 global_sum += sum;

 pthread_mutex_unlock(&Mutex);

 return 0;

}

int main ()

{

 double pi;

 int Arg[NUM_THREADS];

 for(int i=0; i<NUM_THREADS; i++)

 threadArg[i] = i;

 pthread_mutex_init(&Mutex, NULL);

 for (int i=0; i<NUM_THREADS; i++)

 pthread_create(&thread[i], NULL,

 Pi, &Arg[i]);

 for (int i=0; i<NUM_THREADS; i++)

 pthread_join(thread[i], NULL);

 pi = global_sum * step;

 return 0;

}

OpenMP version

#include <omp.h>

long num_steps = 100000;

double step;

#define NUM_THREADS 2

int main ()

{

 double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for reduction(+:sum) private(x)

 for (int i=0; i<num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

 return 0;

}

5

Schedule and Goals

• OpenMP - part 1

• study the basic features of OpenMP

• able to understand and write OpenMP programs

• OpenMP - part 2

• how OpenMP works

• how to optimize OpenMP / parallel code

• study and discuss more examples

• OpenMP – part 3

– tasking model

Mark Guzdial, Communications of the ACM, Vol. 60 No. 6, Pages 10-11

doi:10.1145/3077227

"We need to create learning situations where we ask students to practice program

reading, to predict program execution, and to understand program idioms."

6

Example 1

• Identify and fix any issues in the following OpenMP

codes

7

Example 2

• Implement an equivalent version of the following

code without using OpenMP worksharing

8

Example 3

• Parallelize the following code using OpenMP

9

Outline

• Introduction to OpenMP

• Parallel regions

• Worksharing constructs

• loops, sections. single

• Combined parallel worksharing

• Data environment

• Synchronization

• critical, atomic, barrier, master

• Library routines

• Environment variables

• Examples

10

OpenMP

• OpenMP: An Application Program Interface (API)

for writing multithreaded applications

- simple, portable, widely supported standard

- facilitates the development of multithreaded code in

Fortran, C and C++

- suitable for shared memory platforms

• Three primary components

- compiler directives - instruct the compiler to generate

multithreaded code

- library calls

- environment variables

11

Evolution of OpenMP

http://computing.llnl.gov/tutorials/openMP/

• OpenMP specifications at www.openmp.org

- OpenMP 3.1 (2011): C/C++, Fortran and Examples

- OpenMP 4.0 (2013): Examples in a separate PDF file

http://www.openmp.org

12

Syntax Format

• Compiler directives

• C/C++
• #pragma omp construct [clause [clause] …]

• Fortran
• C$OMP construct [clause [clause] …]

• !$OMP construct [clause [clause] …]

• *$OMP construct [clause [clause] …]

• Since we use directives, no changes need to be
made to a program for a compiler that does not
support OpenMP

13

OpenMP Directive

• Program executes serially until it encounters a

parallel directive
#pragma omp parallel [clause list]

/* structured block of code */

• Clause list is used to specify conditions

- Conditional parallelism: if (cond)

- Degree of concurrency: num_threads(int)

- Data handling: private(vlist),

firstprivate(vlist), shared(vlist)

14

Programming Model

• Fork-join type of parallelism:

– The master thread spawns teams of threads according to

the user / application requirements

– Parallelism is added incrementally

• the sequential code is transformed to parallel

http://computing.llnl.gov/tutorials/openMP/

15

Typical Usage

void main()

{

 double Res[1000];

 for (int i=0;i<1000;i++) {

 do_huge_comp(Res[i]);

 }

}

Sequential code

void main()

{

 double Res[1000];

 #pragma omp parallel for

 for (int i=0;i<1000;i++) {

 do_huge_comp(Res[i]);

 }

}

Parallel code

• OpenMP is generally used for loop parallelization

– Find the most time-consuming loops

– Distribute the loop iterations to the threads

Assign this loop to different threads

But OpenMP is not just that!

16

Using OpenMP

• Some compilers can automatically place directives with
option
- -qsmp=auto (IBM xlc)

- some loops may speed up, some may slow down

• Compiler option required when you use directives
- -fopenmp (GNU compilers)

- -openmp (Intel compilers)

- -qsmp=omp (IBM)

• Scoping variables can be sometimes the hard part!

- shared variables, thread private variables

17

Hello World!
#include <omp.h>

#include <stdio.h>

int main() {

 #pragma omp parallel

 {

int me = omp_get_thread_num();

int nthr = omp_get_num_threads();

 printf("Hello world from thread %d of %d\n", me, nthr);

 }

return 0;

}

• Compilation with the GNU GCC and Intel compilers
$ gcc -fopenmp -o hello hello.c

$ icc -openmp -o hello hello.c

OpenMP include file

Parallel region with default

number of threads

End of parallel region

Library calls

MacOS: brew install gcc

18

• Execution
$ export OMP_NUM_THREADS=4

$./hello

Hello world from thread 0 of 4

Hello world from thread 2 of 4

Hello world from thread 1 of 4

Hello world from thread 3 of 4

$ export OMP_NUM_THREADS=1

$./hello

Hello world from thread 0 of 1

Usage

Environment variable

19

Thread Interaction

• OpenMP is a shared-memory programming model

– Threads communicate through shared variables

• Data sharing can lead to race conditions

– the output of some code can change due to thread

scheduling, e.g. their order of execution

• Synchronization at the right places can eliminate

race conditions

• However, synchronization is expensive

• the way data is stored might need to change to minimize

the need for synchronization

20

OpenMP Directives

• 5 categories

• Parallel Regions

• Worksharing

• Data Environment

• Synchronization

• Runtime functions & environment variables

• Basically the same between C/C++ and Fortran

21

Parallel Regions

• Create threads with omp parallel

• The following code will create a parallel region of 4 threads:

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

 int ID = omp_get_thread_num();

 pooh(ID,A);

}

• Threads share A (default behavior)

• Master thread creates the threads

• Threads all start at same time then synchronize at a barrier at

the end to continue with code

• Each threads calls pooh for its own ID (0 to 3)

22

Parallel Regions

•Each threads runs the same code

•All threads share A

•Execution continues when all

threads have finished their work

(barrier)

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

 int ID = omp_get_thread_num();

 pooh(ID,A);

}

printf("all done\n");

23

Parallel Regions - Syntax

#pragma omp parallel [clause ...] newline

 structured_block

if (scalar_expression)

num_threads (integer-expression)

private (list)

shared (list)

firstprivate (list)

default (shared | none)

reduction (operator: list)

copyin (list)

Clauses

24

Structured Blocks

• Most OpenMP directives are applied to structured

blocks of code

– Structured block: piece of code with a single entry point at

the beginning and a single exit point at the end.

#pragma omp parallel

{

 int id =omp_get_thread_num();

 res[id] = work(id);

}

printf("after parallel\n");

Structured block

#pragma omp parallel

{

 int id = omp_get_thread_num();

 res[id] = work(id);

 if (res[id] == 0) goto out;

}

out: printf("after parallel\n");

Unstructured block

25

Clauses for omp parallel

if (scalar_expression)
Only parallelize if the expression is true. Can be

used to stop parallelization if the work is too little

num_threads (integer-expression) Set the number of threads

private (list) The specified variables are thread-private

shared (list)
The specified variables are shared among all

threads

firstprivate (list)
The specified variables are thread-private and

initialized from the master thread

reduction (operator: list)
Perform a reduction on the thread-local variables

and assign it to the master thread

default (shared | none) Unspecified variables are shared or not

#pragma omp parallel private(i) shared(n) if(n > 10)

{

//…

}

26

Actual Number of Threads

• The number of threads in a parallel region is

determined by the following factors, in order of

precedence:

1. Evaluation of the if clause

2. Setting of the num_threads clause

3. Use of the omp_set_num_threads() library function

4. Setting of the OMP_NUM_THREADS environment variable

5. Implementation default - usually the number of CPUs on

a node, though it could be dynamic.

• Reminder: threads are numbered from 0 (master

thread) to N-1

27

Static and Dynamic modes

• Dynamic mode (default):

– The number of threads can differ between parallel

regions of the same program

– The specified number of threads actually defines the

maximum number - the actual number of threads can be

smaller

• Static mode:

– The number of threads is fixed and exactly equal to the

number specified by the programmer

• OpenMP supports nested parallel regions but…

– The compiler is allowed to serialize all the inner levels

– This means that it uses a single OpenMP thread for those

parallel regions

28

Worksharing Constructs

• the for construct splits up loop iterations

#pragma omp parallel

{

#pragma omp for

for (i=0; i<N; ++i){

 do_work(i);

}

}

• By default, there is a barrier at the end of the omp
for.

• Use the nowait clause to turn off the barrier.

parallel region

worksharing

end of omp for
can be

omitted

29

Rule

• In order to be made parallel, a loop must have

canonical “shape”

for (index=start; index end;)

<

<=

>=

>

index++;

++index;

index--;

--index;

index += inc;

index -= inc;

index = index + inc;

index = inc + index;

index = index – inc;

30

Sections construct

• The sections construct gives a different structured block to

each thread
#pragma omp parallel

#pragma omp sections

{

#pragma omp section

x_calculation();

#pragma omp section

y_calculation();

#pragma omp section

z_calculation();

}

• By default there is a barrier at the end. The nowait

clause turns it off

parallel region

worksharing

end of omp sections

each section gets assigned

to a different thread

31

Single construct

• The structured block is executed only by one of the threads

• An implicit barrier exists at the end of single

• Can be considered as a synchronization construct

#pragma omp parallel

{

 do_many_things();

 #pragma omp single

 {

 exchange_boundaries();

 }

 do_many_other_things();

}

implicit barrier here

and here, end of parallel region

32

Combined Directives

• Parallel regions can be combined with the for and

sections worksharing constructs

• omp parallel + omp for → omp parallel for

#pragma omp parallel for

for (i=0; i<N; i++){

 do_work(i);

}

33

Combined Directives

• omp parallel + omp sections →

omp parallel sections

#pragma omp parallel sections

{

#pragma omp section

x_calculation();

#pragma omp section

y_calculation();

#pragma omp section

z_calculation();

}

34

Directive Scoping

• OpenMP directives can be extended in multiple files

• Orphan directives: appear outside a parallel region

//foo.c

#pragma omp parallel

{

 whoami();

}

//bar.c

void whoami()

{

 int iam = omp_get_thread_num();

 #pragma omp critical

 {

 printf("Hello from %d"\n, iam);

 }

 return;

}

• foo.c: Static (lexical) extent of parallel region

• bar.c: Dynamic extent of parallel region

synchronization

35

Data Scoping

• OpenMP is a shared memory programming model

• most variables are shared by default

• Global variables are shared

• But not everything is shared

• loop index variables

• stack variables in called functions from parallel region

36

Storage Attributes

• The programmer can change the storage attributes of variables

with the following clauses
– shared

– private

– firstprivate

– threadprivate

• The value of a private variable used in a parallel loop can be

exported as global value with the clause:
– lastprivate

• The default behavior can be changed using:
– default(private | shared | none)

• The data clauses are applied to the parallel region and

worksharing constructs - however, shared is only valid for

parallel regions

• Data scoping clauses are valid only in the lexical extent of the

OpenMP directive

37

Data Environment

• Example of private and firstprivate

int A, B, C;

A = B = C = 1;

#pragma omp parallel private(B) firstprivate(C)

{

 // ...

}

• Within the parallel region :

– “A” is shared between threads and equal to 1

– Both “B” and “C” are private for each thread

• B has undefined initial value

• C has initial value equal to 1

• After the parallel region:

– Both B and C have the same value as before the parallel region

38

private

• private(var) creates a private copy of var in each

thread

– The value of the copy is not initialized

– The private copy is not related to the original variable with

respect to the memory location

int is = 0;

#pragma omp parallel for private(is)

for (int j=1; j<=1000; j++)

is = is + j;

printf("%d\n", is);

• IS has not been initialized inside the loop

39

firstprivate

• firstprivate: special case of private

– The private copy of each thread is initialized with the

value of the original variable, which belongs to the master

thread

int is = 0;

#pragma omp parallel for firstprivate(is)

for (int j=1; j<=1000; j++)

is = is + j;

printf("%d\n", is);

• Each thread has a private copy of IS with initial value 0

40

lastprivate

• Copies the value of the private variable, as
assigned by the last loop iteration, to the original
(global) variable

int is = 0;

#pragma omp parallel for firstprivate(is) \

lastprivate(is)

for (int j=1; j<=1000; j++)

is = is + j;

printf("%d\n", is);

• Each thread has a private copy of IS with initial value 0

• IS has the value it was assigned by the last loop iteration
(i.e. for j=1000)

continue to

 the next line

41

Synchronization

• OpenMP supports several synchronization

constructs:

– critical section

– atomic

– barrier

– master (in fact, not a synchronization construction)

– ordered

– flush

not studied

not studied

42

Synchronization – critical

• No two threads will simultaneously be in the critical

section

• Critical sections can be named

• omp critical (name)

#pragma omp parallel for private(b) shared(res)

for (i=0; i<niters; i++) {

 b = doit(i);

 #pragma omp critical

 {

 update(b, &res);

 }

}

lock mutex

unlock mutex

res: initialized before the parallel region

43

Synchronization – atomic

• Special case of critical section that can be used

only for simple instructions.

• Can be applied only when a single memory location

(variable) is updated

#pragma omp parallel private(b)

{

int i = omp_get_thread_num();

b = doit(i);

#pragma omp atomic

res = res + b;

}

use of some

hardware-supported

atomic operation

res: initialized before the parallel region

44

Synchronization – barrier

• Barrier: all threads wait until each thread has reached the

barrier

#pragma omp parallel shared (A, B) private(id)

{

 id=omp_get_thread_num();

 A[id] = big_calc1(id);

 #pragma omp barrier

 #pragma omp for

 for(int i=0; i<N; i++){

 B[i]=big_calc2(i,A);

 }

}

initialization of A

these computations

depend on A

necessary synchronization

45

Synchronization – master

• The structured block is executed only by the master thread
- the other threads of the team ignore it

• There is no barrier at the end of master

#pragma omp parallel

{

 do_many_things();

 #pragma omp master

 {

 exchange_boundaries();

 }

 #pragma barrier

 do_many_other_things();

}

nothing more than

if (omp_get_thread_num()==0)

47

Synchronization - Implicit Barriers

• A barrier is implicitly called at the end of the

following constructs:

– parallel

– for (except when nowait is used)

– sections (except when nowait is used)

– single (except when nowait is used)

– for, sections and single accept the nowait clause

int nthreads;

#pragma omp parallel

#pragma omp single nowait

nthreads = omp_get_num_threads();

48

Reductions

• The reduction clause modifies the way variables are

“shared”:

– reduction (op : list)

• Variables included in list must be shared in the

parallel region where the reduction clause exists

• Allowed reduction operations: +,-,*,&,^,|,&&,||,min, max

• Within a parallel region or a worksharing construct:

– A local copy for each variable in the list is created and

initialized accordingly to the reduction operation

– 0 for “+”

– The values of the local copies are combined (reduced) to a

single value that is stored to the original variable after the end

of the construct

49

Reduction - Example

#include <omp.h>

#define NUM_THREADS 2

double func(int i);

void main ()

{

 int i;

 double ZZ, res=0.0;

 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for reduction(+:res) private(ZZ)

 for (i=0; i< 1000; i++){

 ZZ = func(i);

 res = res + ZZ;

 }

}

• Usage: #pragma omp parallel for <schedule clause>
– schedule (static | dynamic | guided [, chunk])

– schedule (runtime)

• static [,chunk]

– Loop iterations are divided into segments of size chunk and distributed
cyclically to the threads of the parallel region

– If chunk is not specified, it is equal to N/P and each thread executes a
single chunk of iterations

• dynamic [,chunk]

– Loop iterations are divided into segments of size chunk
– An idle thread gets dynamically the next available chunk of iterations

• guided [,chunk]

– Similar to dynamic but the chunk size decreases exponentially.
– chunk specifies the minimum segment size

• runtime

– decide at runtime depending on the OMP_SCHEDULE environment
variable

• auto

– decided by the compiler and/or the underlying OpenMP runtime library

50

Loop Scheduling

#pragma omp parallel for num_threads(4) schedule(*)

for (int i = 0; i < 500; i++) do_work(i);

Example

Multiple chunks
*=

*=

*=

51
More details in the next lecture and the exercises

52

Library Calls

• OpenMP locks
– omp_init_lock(), omp_set_lock(), omp_unset_lock(),

omp_test_lock()

• Functions that control the runtime environment:

– Number of threads

• omp_set_num_threads(), omp_get_num_threads(),

omp_get_thread_num(), omp_get_max_threads()

– Dynamic mode and nested parallelism

• omp_set_dynamic(), omp_set_nested(),

• omp_get_dynamic(), omp_get_nested()

– Check if code is in a parallel region

• omp_in_parallel()

– Number of processors / cores

• omp_get_num_procs()

• Wall-clock time measurement (in seconds)
– omp_get_wtime()

ex01: get_wtime()

53

OpenMP Locks

omp_lock_t lck;

omp_init_lock(&lck);

#pragma omp parallel

{

int id = omp_get_thread_num();

int tmp = do_lots_of_work(id);

omp_set_lock(&lck);

printf(＂%d %d\n＂, id, tmp);

omp_unset_lock(&lck);

}

omp_destroy_lock(&lck);

lock variable
initialization

destruction

54

Libraries Calls

• Dynamic mode is disabled and then the number of threads is

specified. This ensures that the parallel region will have 4

threads.

 #include <omp.h>

 void main()

 {

 omp_set_dynamic(0);

 omp_set_num_threads(4);

 #pragma omp parallel

 {

 int id=omp_get_thread_num();

 do_lots_of_stuff(id);

 }

 }

55

• Default number of threads
– OMP_NUM_THREADS int_literal

• Control of dynamic mode
– OMP_DYNAMIC TRUE || FALSE

• Control of nested parallelism
– OMP_NESTED TRUE || FALSE

• Control of loop scheduling if the programmer has
used omp for schedule(RUNTIME)
– OMP_SCHEDULE “schedule[, chunk_size]”

• Control of threads binding
– OMP_PROC_BIND TRUE || FALSE

Environment Variables

«Use Cases»

56

57

Case 1: Loop & Parallel Region

• Parallelize the following sequential code with
• parallel regions

• worksharing

#define N 1024

for(int i=0; i<N; i++) { a[i] = a[i] + b[i];}

• OpenMP parallel region

#pragma omp parallel

{

 int id = omp_get_thread_num();

 int Nthrds = omp_get_num_threads();

 int istart = id * N / Nthrds;

 int iend = (id+1) * N / Nthrds;

 if (id == omp_get_num_threads()-1) iend = N;

 for(int i=istart; i<iend; i++) {a[i] = a[i] + b[i];}

}

adjustment for

the last thread

58

Loop & Worksharing

• Sequential code

#define N 1024

for(int i=0; i<N; i++) { a[i] = a[i] + b[i];}

• OpenMP parallel region with worksharing

#pragma omp parallel

{

 #pragma omp for schedule(static)

 for(int i=0; i<N; i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel for

for(int i=0; i<N; i++) { a[i] = a[i] + b[i];}

or simply:

default scheduling

59

Case 2: Functional parallelism

V = alpha();

W = beta();

X = gamma(V, W);

Y = delta();

printf(“%f\n”, epsilon(X,Y));

• Parallelize the following sequential code
• what is the total execution time if each function takes one

second?

total time = 5s

60

Functional parallelism - Solution 1
#pragma omp parallel num_threads(3)

#pragma omg sections

{

#pragma omp section

V = alpha();

#pragma omp section

W = beta();

#pragma omp section

Y = delta();

}

X = gamma(V, W);

printf(“%f\n”, epsilon(X,Y));

no sense to use more threads

total time = 3s

61

Functional parallelism - Solution 2
#pragma omp parallel num_threads(2)

{

 #pragma omp sections

 {

 #pragma omp section

 V = alpha();

 #pragma omp section

 W = beta();

 }

 #pragma omp sections

 {

 #pragma omp section

 X = gamma(V, W);

 #pragma omp section

 Y = delta();

 }

}

printf(“%f\n”, epsilon(X,Y));

no sense to use more threads

implicit barrier

total time = 3s

but with fewer threads

62

Case 3 - Reductions

long num_steps = 100000;

double step;

void main ()

{

double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (int i=0; i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

printf("Pi is %lf\n", pi);

}

• Parallelize the following sequential code

63

Using the reduction clause

long num_steps = 100000;

double step;

void main ()

{

double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

#pragma omp parallel for reduction(+:sum) private(x)

for (long i=0; i<num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

printf("Pi is %lf\n", pi);

}

64

References

• OpenMP Specifications & Quick Reference Card

• www.openmp.org

• OpenMP tutorial at LLNL, Blaise Barney

• https://computing.llnl.gov/tutorials/openMP/

• An Overview of OpenMP, Ruud van der Pas – Sun

Microsystems

• http://www.openmp.org/wp-content/uploads/ntu-

vanderpas.pdf

http://www.openmp.org
https://computing.llnl.gov/tutorials/openMP/
http://www.openmp.org/wp-content/uploads/ntu-vanderpas.pdf
http://www.openmp.org/wp-content/uploads/ntu-vanderpas.pdf

	Slide 1: Παράλληλη Επεξεργασία
	Slide 2: Sequential Version
	Slide 3: POSIX Threads Version
	Slide 4: OpenMP version
	Slide 5: Schedule and Goals
	Slide 6: Example 1
	Slide 7: Example 2
	Slide 8: Example 3
	Slide 9: Outline
	Slide 10: OpenMP
	Slide 11: Evolution of OpenMP
	Slide 12: Syntax Format
	Slide 13: OpenMP Directive
	Slide 14: Programming Model
	Slide 15: Typical Usage
	Slide 16: Using OpenMP
	Slide 17: Hello World!
	Slide 18: Usage
	Slide 19: Thread Interaction
	Slide 20: OpenMP Directives
	Slide 21: Parallel Regions
	Slide 22: Parallel Regions
	Slide 23: Parallel Regions - Syntax
	Slide 24: Structured Blocks
	Slide 25: Clauses for omp parallel
	Slide 26: Actual Number of Threads
	Slide 27: Static and Dynamic modes
	Slide 28: Worksharing Constructs
	Slide 29: Rule
	Slide 30: Sections construct
	Slide 31: Single construct
	Slide 32: Combined Directives
	Slide 33: Combined Directives
	Slide 34: Directive Scoping
	Slide 35: Data Scoping
	Slide 36: Storage Attributes
	Slide 37: Data Environment
	Slide 38: private
	Slide 39: firstprivate
	Slide 40: lastprivate
	Slide 41: Synchronization
	Slide 42: Synchronization – critical
	Slide 43: Synchronization – atomic
	Slide 44: Synchronization – barrier
	Slide 45: Synchronization – master
	Slide 47: Synchronization - Implicit Barriers
	Slide 48: Reductions
	Slide 49: Reduction - Example
	Slide 50: Loop Scheduling
	Slide 51: Example
	Slide 52: Library Calls
	Slide 53: OpenMP Locks
	Slide 54: Libraries Calls
	Slide 55: Environment Variables
	Slide 56
	Slide 57: Case 1: Loop & Parallel Region
	Slide 58: Loop & Worksharing
	Slide 59: Case 2: Functional parallelism
	Slide 60: Functional parallelism - Solution 1
	Slide 61: Functional parallelism - Solution 2
	Slide 62: Case 3 - Reductions
	Slide 63: Using the reduction clause
	Slide 64: References

