[TapA&AANAN ETrecepyaaoia

Eapivé Ecaunvo 2023-24
«OpenMP - |»

IHavayimtne Xatlnoovkac, Evetpdtiog I'aAAdomovAog

Sequential Version

long num steps = 100000;
double step;

int main ()
{
double x, pi, sum = 0.0;
step = 1.0/ (double) num steps;
for (int 1=0; 1 <num steps; 1++) {
x = (1-0.5) *step;
sum = sum + 4.0/ (1.0+x*x);
}

pli = step * sum;

return 0;

POSIX Threads Version

#include <pthread.h>

#define NUM THREADS 2
pthread t thread[NUM THREADS];
pthread mutex t Mutex;

long num steps = 100000;
double step;

double global sum = 0.0;

void *Pi
{

int i, start;

double x, sum = 0.0;

(void *arqg)

start =
step =

*(int *) arg;
1.0/ (double) num steps;

for (i=start; i<num steps; 1+=NUM THREADS)
{
x = (1+0.5) *step;
sum = sum + 4.0/ (1.04+x*x) ;
}
pthread mutex lock (&Mutex);
global sum += sum;
pthread mutex unlock (&Mutex) ;

return 0O;

int main ()

{

double pi;
int Arg[NUM_THREADS];

for (int 1=0; 1<NUM THREADS; i++)

threadArg[i] = 1;

pthread mutex init (&Mutex, NULL);

for (int 1i=0; i<NUM_THREADS; i++)
pthread create (&thread[i], NULL,
Pi, &Argli]);

for (int 1i=0; i<NUM_THREADS; i++)
pthread join(thread[1], NULL);

pi = global sum * step;

return 0O;

OpenMP version

#include <omp.h>

long num steps = 100000;
double step;

#define NUM THREADS 2
int main ()

{

double x, pi, sum = 0.0;

step = 1.0/ (double) num steps;
omp set num threads (NUM THREADS) ;
fpragma omp parallel for reduction (+:sum)
for (int 1=0; i<num steps; 1i++) {
x = (14+0.5) *step;
sum = sum + 4.0/ (1.0+x*x);

pi = step * sum;

return 0;

private (x)

Schedule and Goals

* OpenMP - part 1
* study the basic features of OpenMP
 able to understand and write OpenMP programs
* OpenMP - part 2
* how OpenMP works
* how to optimize OpenMP / parallel code
 study and discuss more examples
* OpenMP — part 3
— tasking model

"We need to create learning situations where we ask students to practice program
reading, to predict program execution, and to understand program idioms."

Mark Guzdial, Communications of the ACM, Vol. 60 No. 6, Pages 10-11

doi:10.1145/3077227

o o N O v = L

el o e
L N = O

Example 1

* |dentify and fix any issues in the following OpenMP
codes

int auxdot = 0, dot = 0;

#pragma omp parallel

#pragma omp parallel {

{ if(omp_get_thread num() % 2) {

#pragma omp for #pragma omp barrier

for (int i=0 ; i< N; i++){
auxdot += A[i]*B[i];

VA
}

o =1 =8 ¢ & L kI

#pragma omp critical
dot += auxdot ;

Example 2

* Implement an equivalent version of the following
code without using OpenMP worksharing

// double A[N];
S/ int i;

#pragma omp parallel for schedule (dynamic, 1)
for (1 = 0; 1 < N; i++)

{

T A[l] = work(1i);

8}

o = L b2 -

o]

Example 3

» Parallelize the following code using OpenMP

=l = ;oo & Wk

10
11
12
13
14
15
16
17
15
19
20
21

void compute_max_density ()

{

// This routine finds the value of max density (max rho) and
// its location (max i, max j) — there are no duplicate values
double max rho;

int max i, max_7j;

max_rho = rho [0];
max_1i = 0;
max_7j = 0;

for (int 1 = 0; i < N_; ++1i)
for (int j = 0; J < N_; ++1)
{
if (rho [i+*N_ + j] > max_rho)
{
max_rho = rho_[i+«N_ + 7J];
max i = i;
max_j = Ji

Outline

Introduction to OpenMP
Parallel regions

Worksharing constructs

* loops, sections. single
Combined parallel worksharing
Data environment
Synchronization

* critical, atomic, barrier, master
Library routines

Environment variables
Examples

OpenMP

* OpenMP: An Application Program Interface (API)
for writing multithreaded applications
- simple, portable, widely supported standard

- faclilitates the development of multithreaded code in
Fortran, C and C++

- suitable for shared memory platforms

* Three primary components

- compiler directives - instruct the compiler to generate
multithreaded code

- library calls
- environment variables

10

Evolution of OpenMP

Date Version

Oct 1997 Fortran 1.0
Oct 1998 C/IC++1.0
Nov 1999 Fortran 1.1
Nov 2000 Fortran 2.0
Mar 2002 C/IC++ 2.0
May 2005 OpenMP 2.5
May 2008 OpenMP 3.0
Jul 2011 OpenMP 3.1
Jul 2013 OpenMP 4.0
Nov 2015 OpenMP 4.5

http://computing.linl.gov/tutorials/openMP/

* OpenMP specifications at www.openmp.org
- OpenMP 3.1 (2011): C/C++, Fortran and Examples
- OpenMP 4.0 (2013): Examples in a separate PDF file

11

http://www.openmp.org

Syntax Format

« Compiler directives
* C/C++

e #pragma omp construct [clause [clause] ..]

 Fortran

e CSOMP construct [clause [clause] ..]
e ISOMP construct [clause [clause] ..]
e *SOMP construct [clause [clause] ..]

» Since we use directives, no changes need to be
made to a program for a compiler that does not
support OpenMP

12

OpenMP Directive

* Program executes serially until it encounters a
parallel directive

#pragma omp parallel [clause list]
/* structured block of code */

* Clause list is used to specify conditions
- Conditional parallelism: 1f (cond)
- Degree of concurrency: num_threads (int)

- Data handling: private (vlist),
firstprivate (vlist), shared(vlist)

13

Programming Model

* Fork-join type of parallelism:

— The master thread spawns teams of threads according to
the user / application requirements

— Parallelism is added incrementally
* the sequential code is transformed to parallel

master thread - U .
e P e threads T,
threads .
. threads .
parallel region parallel region parallel region

http://computing.linl.gov/tutorials/openMP/

14

Typical Usage

* OpenMP is generally used for loop parallelization
— Find the most time-consuming loops
— Distribute the loop iterations to the threads

Assign this loop to different threads

vold main () vold main ()
{ {
double Res[1000]; double Res[1000];
#pragma omp parallel for
for (int i=0;1i<1000;i++) { for (int 1=0;1i<1000;1i++) {
do huge comp (Res[i]); do _huge comp (Res[1]);
} }
} }
Sequential code Parallel code

But OpenMP is not just that! 15

Using OpenMP

« Some compilers can automatically place directives with
option
- —gsmp=auto (IBM xlc)
- some loops may speed up, some may slow down

« Compiler option required when you use directives
- —fopenmp (GNU compilers)
- —openmp (Intel compilers)
- —gsmp=omp (IBM)

e Scoping variables can be sometimes the hard part!
- shared variables, thread private variables

16

Hello World!

#include <omp.h>

OpenMP include file
#include <stdio.h>

int main() {
#$pragma omp parallel Parallel region with default
{ number of threads
int me = omp get thread num(); _
int nthr = omp get num threads(); Library calls

printf ("Hello world from thread %d of %$d\n", me, nthr);

}
return O; End of parallel region

}

« Compilation with the GNU GCC and Intel compilers
$ gcc —-fopenmp -o hello hello.c
$ icc —openmp -o hello hello.c

MacOS: brew install gcc 17

Execution

Usage

$ export OMP NUM THREADS=4

S ./hello

Hello world from
Hello world from
Hello world from
Hello world from
$ export OMP NUM
$./hello

Hello world from

thread 0 of
thread 2 of
thread 1 of
thread 3 of
THREADS=1

thread 0 of

b B D

Environment variable

18

Thread Interaction

* OpenMP is a shared-memory programming model
— Threads communicate through shared variables
- Data sharing can lead to race conditions

— the output of some code can change due to thread
scheduling, e.qg. their order of execution

« Synchronization at the right places can eliminate
race conditions
 However, synchronization is expensive

 the way data is stored might need to change to minimize
the need for synchronization

19

OpenMP Directives

» 5 categories
- Parallel Regions
* Worksharing
- Data Environment
e Synchronization
* Runtime functions & environment variables

- Basically the same between C/C++ and Fortran

20

Parallel Regions

« Create threads with omp parallel
« The following code will create a parallel region of 4 threads:

double A[1000];

omp set num threads (4);
#pragma omp parallel

{

int ID = omp get thread num();
pooh (ID,A) ;

« Threads share A (default behavior)
 Master thread creates the threads

« Threads all start at same time then synchronize at a barrier at
the end to continue with code

- Each threads calls pooh for its own ID (0 to 3) :
1

Parallel Regions

*Each threads runs the same code double A[1000];

. omp set num threads(4);
All threads share A ¥pragma omp parallel

*Execution continues when all {
threads have finished their work int ID = omp get thread num();
(barrier) pooh (1D, A) ;

}
printf ("all done\n");

double A[1000];

omp_set_num_threads(4)

pooh(0.A) pooh(1,A) pooh(2,A) pooh(3,A)

| |

-

printf(“all done\n”); 22

Parallel Regions - Syntax

#pragma omp parallel [clause ...] newline

structured block

Clauses

1f (scalar expression)

num threads (integer-expression)
private (list)

shared (list)

firstprivate (list)

default (shared | none)
reduction (operator: list)
copyin (1list)

23

Structured Blocks

* Most OpenMP directives are applied to structured
blocks of code

— Structured block: piece of code with a single entry point at
the beginning and a single exit point at the end.

#pragma omp parallel #pragma omp parallel
{ {
int id =omp get thread num(); int id = omp_get thread num();
res[id] = work (id); res[1d] = work(1id);
if (res[id] == 0) goto out;
} }
printf ("after parallel\n"); out: printf ("after parallel\n");

Structured block Unstructured block

24

Clauses for omp parallel

1f (scalar expression)

Only parallelize if the expression is true. Can be
used to stop parallelization if the work is too little

num threads (integer-expression)

Set the number of threads

private

(list)

The specified variables are thread-private

shared

(list)

The specified variables are shared among all
threads

firstprivate (list)

The specified variables are thread-private and
initialized from the master thread

reduction (operator: list)

Perform a reduction on the thread-local variables
and assign it to the master thread

default

(shared | none)

Unspecified variables are shared or not

#pragma omp parallel private (i) shared(n) if(n > 10)

{

// ..

25

Actual Number of Threads

* The number of threads in a parallel region is
determined by the following factors, in order of
precedence:

1. Evaluation of the if clause

2. Setting of the num_threads clause

3. Use of the omp set num threads () library function
4. Setting of the OMP_NUM THREADS environment variable

5. Implementation default - usually the number of CPUs on
a node, though it could be dynamic.

 Reminder: threads are numbered from 0 (master
thread) to N-1

26

Static and Dynamic modes

* Dynamic mode (default):

— The number of threads can differ between parallel
regions of the same program

— The specified number of threads actually defines the
maximum number - the actual number of threads can be
smaller

e Static mode:

— The number of threads is fixed and exactly equal to the
number specified by the programmer

* OpenMP supports nested parallel regions but...
— The compiler is allowed to serialize all the inner levels

— This means that it uses a single OpenMP thread for those
parallel regions

27

Worksharing Constructs

the for construct splits up loop iterations

#pragma omp parallel parallel region
{
#pragma omp for worksharing
b for (i1=0; 1i<N; ++1i) {
can be do work (1) ; end of omp for
omitted

}
}

By default, there is a barrier at the end of the omp
for.

 Use the nowait clause to turn off the barrier.

28

Rule

* In order to be made parallel, a loop must have

for

canonical “shape”

(index=start;

index

end;

index++;
++index;
index--;
-—index;

index
index
index
index
index

+= 1nc;
-= inc;
index + inc;
inc + index;
index - inc;

29

Sections construct

* The sections construct gives a different structured block to

each thread
#pragma omp parallel parallel region
##fpragma omp sections worksharing
{
#pragma omp section

x_calculation(); each section gets assigned

#pragma omp section to a different thread
y calculation();

#pragma omp section

z calculation();

} end of omp sections

- By default there is a barrier at the end. The nowait
clause turns it off

30

Single construct

« The structured block is executed only by one of the threads
* An implicit barrier exists at the end of single

« Can be considered as a synchronization construct

#pragma omp parallel

{
do many things();
#pragma omp single
{

exchange boundaries();

} implicit barrier here
do many other things();

and here, end of parallel region

31

Combined Directives

- Parallel regions can be combined with the for and
sections worksharing constructs

- omp parallel + omp for — omp parallel for

#pragma omp parallel for
for (i=0; 1i<N; 1i++){

do work (i) ;

32

Combined Directives

e omp parallel + omp sections —
omp parallel sections

#pragma omp parallel sections
{
#pragma omp section
x calculation();
#pragma omp section
y calculation();
#pragma omp section
z calculation();

33

Directive Scoping

* OpenMP directives can be extended in multiple files
* Orphan directives: appear outside a parallel region

//foo.c //bar.c
volid whoami ()
#pragma omp parallel {
{ int lam = omp get thread num();
| whoami () ; #pragma omp critical g, chronization
{

printf ("Hello from %d"\n, iam);
}

return;

« foo.c: Static (lexical) extent of parallel region
* bar.c: Dynamic extent of parallel region

34

Data Scoping

* OpenMP is a shared memory programming model
* most variables are shared by default

 Global variables are shared

* But not everything is shared
 |oop index variables
 stack variables in called functions from parallel region

35

Storage Attributes

The programmer can change the storage attributes of variables
with the following clauses

— shared

— private

— firstprivate

— threadprivate

The value of a private variable used in a parallel loop can be
exported as global value with the clause:

— lastprivate

The default behavior can be changed using:

— default (private | shared | none)
The data clauses are applied to the parallel region and
worksharing constructs - however, shared is only valid for
parallel regions

Data scoping clauses are valid only in the lexical extent of the
OpenMP directive

36

Data Environment

 Example of private and firstprivate

int A, B, C;
A =B =C=1;

#pragma omp parallel private(B) firstprivate (C)
{
//

}

« Within the parallel region :
— “A” is shared between threads and equal to 1
— Both “B” and “C” are private for each thread
* B has undefined initial value
« C has initial value equal to 1

 After the parallel region:

— Both B and C have the same value as before the parallel region
37

private

- private(var) creates a private copy of var in each

thread
— The value of the copy Is not initialized

— The private copy is not related to the original variable with
respect to the memory location

int 1s = 0;
#pragma omp parallel for private(is)
for (int 73=1; j<=1000; J++)

is = 1s + 73

printf ("$d\n", is);

IS has not been initialized inside the loop

38

firstprivate

« firstprivate: special case of private

— The private copy of each thread is initialized with the
value of the original variable, which belongs to the master
thread

int 1s = 0;
#pragma omp parallel for firstprivate (is)
for (int 3=1; j<=1000; J++)

is = is + 7;

printf ("%d\n", is);

« Each thread has a private copy of IS with initial value 0

39

lastprivate

* Copies the value of the private variable, as
assigned by the last loop iteration, to the original
(global) variable
| | continue to
int 1is = 0; the next line
#pragma omp parallel for firstprivate(is) \
lastprivate (is)
for (int 3=1; j<=1000; Jj++)

is = is + 7;
printf ("%d\n", is);

« Each thread has a private copy of IS with initial value 0

* 1S has the value it was assigned by the last loop iteration
(i.e. for j=1000)

40

Synchronization

* OpenMP supports several synchronization
constructs:
- critical section

— atomic

— barrier

- master (In fact, not a synchronization construction)
- ordered not studied

— flush

not studied

Synchronization — critical

* No two threads will simultaneously be in the critical
section

* Critical sections can be named

e omp critical (name)

#pragma omp parallel for private(b) shared(res)
for (1=0; i<niters; 1i++) {
b = doit (1)
#pragma omp critical
{ lock mutex
update (b, &res);

} unlock mutex

res: initialized before the parallel region »

Synchronization — atomic

» Special case of critical section that can be used
only for simple instructions.

« Can be applied only when a single memory location
(variable) is updated

#pragma omp parallel private (b)
{

int 1 = omp get thread num();
b = doit (1) ;
#pragma omp atomic use of some
res = res + b; hardware-supported
} atomic operation

res: initialized before the parallel region .

Synchronization — barrier

Barrier: all threads wait until each thread has reached the
barrier

#pragma omp parallel shared (A, B) private(id)
{
id=omp get thread num();

A[id] = big calcl (id); initialization of A

#pragma omp barrier necessary synchronization

#pragma omp for _
these computations

for (int 1=0; 1i<N; i++) { depend on A

B[i]=big calc2(1,A7);

44

Synchronization — master

« The structured block is executed only by the master thread
- the other threads of the team ignore it

 There Is no barrier at the end of master

#pragma omp parallel

{
do many things();
#pragma omp master

{

nothing more than
If (omp_get_thread num()==0)

exchange boundaries();

}

#pragma barrier
do many other things();

45

Synchronization - Implicit Barriers

* A barrier is implicitly called at the end of the
following constructs:

— parallel

- for (except when nowait is used)

- sections (except when nowait is used)
- single (except when nowait is used)

- for, sections and single accept the nowait clause

int nthreads;

#pragma omp parallel
#pragma omp single nowait
nthreads = omp get num threads();

47

Reductions

The reduction clause modifies the way variables are
“shared”

— reduction (op : 1list)

Variables included in 1ist must be shared in the
parallel region where the reduction clause exists

Allowed reduction operations: +,-,*,&,”,|,&&,| | ,min, max

Within a parallel region or a worksharing construct:
— A local copy for each variable in the list is created and
Initialized accordingly to the reduction operation
— 0 for “+”

— The values of the local copies are combined (reduced) to a
single value that is stored to the original variable after the end
of the construct

48

Reduction - Example

#include <omp.h>
#define NUM THREADS 2

double func (int 1);

volid main ()
{
int 1;
double ZZ, res=0.0;
omp set num threads (NUM THREADS) ;
#pragma omp parallel for reduction(+:res) private(2Z)
for (i=0; i< 1000; i++) {
272 = func (1) ;

res = res + 2%7;

49

Loop Scheduling

 Usage: #pragma omp parallel for <schedule clause>
— schedule (static | dynamic | guided [, chunk])
— schedule (runtime)

e static [,chunk]
— Loop iterations are divided into segments of size chunk and distributed
cyclically to the threads of the parallel region
— If chunk is not specified, it is equal to N/P and each thread executes a
single chunk of iterations
e dynamic [,chunk]
— Loop iterations are divided into segments of size chunk
— An idle thread gets dynamically the next available chunk of iterations
e guided [, chunk]
— Similar to dynamic but the chunk size decreases exponentially.
— chunk specifies the minimum segment size
e runtime
— decide at runtime depending on the OMP_SCHEDULE environment
variable
e auto
— decided by the compiler and/or the underlying OpenMP runtime library

50

Example

#pragma omp parallel for num threads(4) schedule(*)
for (int 1 = 0; 1 < 500; 1i++) do work(1i);

500 iterations on 4 threads

3 T _ Muttipte chunks
, ~=guided, 5 (N W 0
1 (D B
+ NN
- 3 —HHHHHHHHHHH—HHH-HHHHHH
= 2 -
% 1 —HHH—H—H—IHHH—HHHH-HH-HHHH-
NI NI N I R N NN
F 3 %= dynamic, 5 T
2 I,
A, —static

EII]I ‘I'CIIS 1 é{I E'EIC Eéﬂ E-IEI{I 35I'CI 4'CIIS 4éﬂ EISS
Iteration Number
More detalls in the next lecture and the exercises

Library Calls

* OpenMP locks

— omp init lock(), omp set lock(), omp unset lock(),
omp test lock()

* Functions that control the runtime environment:

— Number of threads

e omp set num threads (), omp get num threads(),
omp get thread num(), omp get max threads()

— Dynamic mode and nested parallelism
e omp set dynamic(), omp set nested(),
e omp get dynamic(), omp get nested()
— Check if code is in a parallel region
eomp 1in parallel ()

— Number of processors / cores
e omp get num procs()

« Wall-clock time measurement (in seconds)

- omp get wtime () ex01: get_wtime() £

OpenMP Locks

omp_lock t lck; lock variable
omp_init_ lock (&lck); initialization
#pragma omp parallel
{

int 1d = omp get thread num();

int tmp = do lots of work(id);
omp set lock(&lck);

printf (" %d %d\n , id, tmp);
omp unset lock(&lck);

omp destroy lock(&lck); destruction

53

Libraries Calls

- Dynamic mode is disabled and then the number of threads is
specified. This ensures that the parallel region will have 4
threads.

#include <omp.h>

vold main ()

{
omp set dynamic (0);
omp set num threads (4);

#pragma omp parallel
{

int id=omp get thread num();
do lots of stuff (id);

54

Environment Variables

Default number of threads
-~ OMP_NUM THREADS int literal

Control of dynamic mode
~ OMP_DYNAMIC TRUE || FALSE

Control of nested parallelism
—~ OMP_NESTED TRUE || FALSE

Control of loop scheduling if the programmer has
used omp for schedule (RUNTIME)
— OMP_SCHEDULE “schedule[, chunk size]”

Control of threads binding
—~ OMP_PROC_BIND TRUE || FALSE

55

«Use Cases»

56

Case 1: Loop & Parallel Region

- Parallelize the following sequential code with
« parallel regions
« worksharing

#define N 1024
for (int i=0; i<N; i++) { al[i] = a[i] + b[i];}

* OpenMP parallel region

#pragma omp parallel

{
int 1d = omp get thread num();
int Nthrds = omp get num threads();
int istart = id * N / Nthrds;

int iend = (id+l) * N / Nthrds; adjustment for
if (id == omp get num threads()-1) iend = N; the last thread
for (int i=istart; i<iend; i++) {af[i] = al[i] + b[i];}

Loop & Worksharing

« Sequential code

#fdefine N 1024
for (int i1i=0; i<N; 1i++) { a[i] = a[i] + bl[i]l;}

* OpenMP parallel region with worksharing

#pragma omp parallel
{

#pragma omp for schedule(static) default scheduling
for(int i=0; i<N; i++) { al[i] = al[i] + bli];}

}

or simply:

#pragma omp parallel for
for (int 1=0; i<N; 1++) { af[i] = al[i] + b[i];}

58

Case 2: Functional parallelism

- Parallelize the following sequential code

 what Is the total execution time If each function takes one
second?

= alpha();

= betal();

= gamma (V, W);

= deltal();

printf (“$f\n”, epsilon(X,Y)); total time = 5s

KX =2 S

59

Functional parallelism - Solution 1

#ipragma omp parallel num threads(3)

#pragma omg sections

{

}

X

#pragma omp section
V = alphal();

#pragma omp section
W = betal();

#pragma omp section
Y = delta();

gamma (V, W) ;
printf (“$f\n”,

epsilon (X,Y))

Nno sense to use more threads

total time = 3s

60

#pragma omp parallel num threads(2)

{

Functional parallelism - Solution 2

#pragma omp sections

{

}

#pragma omp section
V = alphal();

#pragma omp section
W = betal();

#pragma omp sections

{

}
}

printf (“$f\n”,

#pragma omp section
X = gamma (V, W);

#pragma omp section
Y = delta();

epsilon (X,Y))

Nno sense to use more threads

Implicit barrier

total time = 3s
but with fewer threadss:

Case 3 - Reductions

- Parallelize the following sequential code

long num steps = 100000;
double step;

void main ()

{

double x, pi, sum = 0.0;
step = 1.0/ (double) num steps;

for (int i=0; i< num steps; 1i++) {

x = (1+0.5) *step;

sum = sum + 4.0/ (1.0+x*x) ;
}
pl = step * sum;

printf ("Pi is %1f\n", pi);

62

Using the reduction clause

long num steps = 100000;
double step;

vold main ()

{
double x, pi, sum = 0.0;
step = 1.0/ (double) num steps;

#pragma omp parallel for reduction(+:sum) private (x)
for (long 1=0; i<num steps; 1i++) {

x = (1t0.5) *step;

sum = sum + 4.0/ (1.0+x*x);
}
pi = step * sum;

printf ("Pi is %1f\n", pi);

63

References

* OpenMP Specifications & Quick Reference Card
°* Www.openmp.org

* OpenMP tutorial at LLNL, Blaise Barney
 https://computing.linl.gov/tutorials/openMP/

* An Overview of OpenMP, Ruud van der Pas — Sun
Microsystems

* http://www.openmp.org/wp-content/uploads/ntu-
vanderpas.pdf

64

http://www.openmp.org
https://computing.llnl.gov/tutorials/openMP/
http://www.openmp.org/wp-content/uploads/ntu-vanderpas.pdf
http://www.openmp.org/wp-content/uploads/ntu-vanderpas.pdf

	Slide 1: Παράλληλη Επεξεργασία
	Slide 2: Sequential Version
	Slide 3: POSIX Threads Version
	Slide 4: OpenMP version
	Slide 5: Schedule and Goals
	Slide 6: Example 1
	Slide 7: Example 2
	Slide 8: Example 3
	Slide 9: Outline
	Slide 10: OpenMP
	Slide 11: Evolution of OpenMP
	Slide 12: Syntax Format
	Slide 13: OpenMP Directive
	Slide 14: Programming Model
	Slide 15: Typical Usage
	Slide 16: Using OpenMP
	Slide 17: Hello World!
	Slide 18: Usage
	Slide 19: Thread Interaction
	Slide 20: OpenMP Directives
	Slide 21: Parallel Regions
	Slide 22: Parallel Regions
	Slide 23: Parallel Regions - Syntax
	Slide 24: Structured Blocks
	Slide 25: Clauses for omp parallel
	Slide 26: Actual Number of Threads
	Slide 27: Static and Dynamic modes
	Slide 28: Worksharing Constructs
	Slide 29: Rule
	Slide 30: Sections construct
	Slide 31: Single construct
	Slide 32: Combined Directives
	Slide 33: Combined Directives
	Slide 34: Directive Scoping
	Slide 35: Data Scoping
	Slide 36: Storage Attributes
	Slide 37: Data Environment
	Slide 38: private
	Slide 39: firstprivate
	Slide 40: lastprivate
	Slide 41: Synchronization
	Slide 42: Synchronization – critical
	Slide 43: Synchronization – atomic
	Slide 44: Synchronization – barrier
	Slide 45: Synchronization – master
	Slide 47: Synchronization - Implicit Barriers
	Slide 48: Reductions
	Slide 49: Reduction - Example
	Slide 50: Loop Scheduling
	Slide 51: Example
	Slide 52: Library Calls
	Slide 53: OpenMP Locks
	Slide 54: Libraries Calls
	Slide 55: Environment Variables
	Slide 56
	Slide 57: Case 1: Loop & Parallel Region
	Slide 58: Loop & Worksharing
	Slide 59: Case 2: Functional parallelism
	Slide 60: Functional parallelism - Solution 1
	Slide 61: Functional parallelism - Solution 2
	Slide 62: Case 3 - Reductions
	Slide 63: Using the reduction clause
	Slide 64: References

