/\ELTOUPYLKA ZuoTHpOTO
Xelpepwvo E€apnvo 2023-24

«Metaylattion ko Makefiles»

Xpnoto¢ Makphc

2. TUpo¢ Z10UTdC
TTavayiwtng Xat{ndoukacg

Apiateidng HAiag

Compilation

It is important to understand how programs are compiled to have
a better understanding of how different parts of a computer
interact with each other.

Fundamental aspect of how computers run code.

Levels of abstraction

C [and other high-level
languages] are easy for
programmers to understand,
but computers require lots of
software to process them

Machine code is just the
opposite: easy for the computer
to process, but humans need
lots of help to understand it

Assembly language is a
compromise between the two:
readable by humans (barely),
close correspondence to
machine code

#include <stdioc.h>
int main() {
int i, n =10, t1 =0, t2 = 1, nxt;
for (1 =1; 1 <= n; ++i){
printf({"sd, ", tl1);
nxt = £1 + t2;
t1 = t2;
t2 = nxt; }
retorn 0; }

C programmer

Assembly programmer

CPU Memo
Addresses Y

Registers
gl Code

. Data . Data

Condition Instructions Stack
Codes +

Computer designer
—— Gates, clocks, circuit layout, ...

A -0 G
Q |[D

Code compilation

o The computer only
understands machine code
directly

o All other languages must be
either

interpreted: executed by
software

compiled: translated to machine
code by software

Source Code (.c, .cpp, .h) file

Pre-Processor

Include Header, Expand

Macro (i, .ii)

Assembly Code (.s)

h.

Machine Code (.0, .obj)

Executable Machine
Code (.exe)

Assembler

Y

Code compilation

o Computer follows steps to
translate your code into

something the computer can
understand

Source Code (.c, .cpp, .h) file

Pre-Processor
oy

» This is the process of compiling

code [a compiler completes
these actions]

o Four steps for C:
preprocessing, compiling,
assembling, linking

£,

© Most other compiled languages
don’t have the preprocessing
step, but do have the other three .

Include Header, Expand
Macro (i, .ii)

Assembler Assembly Code (.s)

Machine Code (.0, .obj)

Compiler

ﬁ]

Executable Machine
Code (.exe)

Compilation stages

P re- P rocessor Source Code (.c, .cpp, .h) file
S gcc -E [flags] [filenames]

Compiler

S gcc -S [flags] [filenames]
Include Header, Expand
Assembler l—

S gcc -c [flags] [filenames] m

objdump -d [filenames ”
S objdump -d [] l .

Assembly Code (.s)

Linker
S gcc -o [exename] [flags] [filenames‘ .

Executable Machine
Code (.exe)

Pre-Processor

Unique to the C family; other languages
don’t have this

Processes #include, #define, #if, macros
o Combines main source file with headers
(textually)
o Defines and expands macros (token-based
shorthand) Pre-Processor

o Conditionally removes parts of the code >
. . Include Header, Expand
(e.g. specialize for Linux, Mac, ...) 1 Macro (, i

Removes all comments
Output looks like C m
d
|

Source Code (.c, .cpp, .h) file

Before and after preprocessing

1 "test.c"
1 "/usr/lib/gcc/x86_64-1inux-gnu/10/include/limits.h" 1 3 4

#include <limits.h>

#include <stdio.hs # 1 "/usr/include/stdio.h" 1 3 4

extern int fprintf (FILE *_ restrict _ stream,
const char *__restrict _ format, ...);
extern int printf (const char * _restrict _ format, ...);

int main(void) {

printf("CHAR_MIN = %d\n"
"CHAR_MAX = %d\n",
CHAR_MIN, CHAR_MAX);

return 9;

874 "/usr/include/stdio.h" 3 4
3 "test.c" 2

int main(void) {
printf("CHAR_MIN
"CHAR_MAX
6 "test.c" 3 4
(-ex7f - 1)
6 "test.c"

%d\n"
%d\n",

, Ox7f);
return 0;

« Contents of header files inserted inline

« Comments removed

« Macros expanded

« “Directive” lines (beginning with #)
communicate things like original line numbers

Compiler

o The compiler translates the
preprocessed code into assembly
code

o This changes the format and |
structure of the code but . >

preserves the semantics Macro (., i)
(what it does) o
o Can change lots of details for

>
optimization, as long as the | .
overall effect is the same } Assembly Code ()

Libraries I .

Source Code (.c, .cpp, .h) file

Include Header, Expand

Before and after compilation

extern int printf (const char *__restrict .file "test.c"
__format, ...); .section .rodata.strl.1,"aMS",@progbits,1
int main(void) { .LCe:
printf("CHAR_MIN = %d\n" .string "CHAR_MIN = %d\nCHAR_MAX = %d\n"
"CHAR_MAX = %d\n", .text
(-ex7f - 1), ox7f); .globl main
return 0; main:
} subqg $8, %rsp

mov1l $127, %edx
mov1l $-128, %esi

leaq .LCo(%rip), %rdi
xorl %eax, %eax

call printf@PLT

xorl %»eax, %eax

addq $8, %rsp

ret

.size main, .-main

» Csource code converted to assembly language
o Textual, but 1:1 correspondence to machine language
» printf just referred to, not declared

Assembler

o Parses assembly code and
mainly translates into bits

o There is some flexibility to Macro (i, i)
generate the most efficient
version of machine code, but

mostly responsible for just .
translating to bits. e Assermbly Code (.

Machine Code (.0, .obj)

Pre-Processor

Include Header, Expand

%ﬁﬁi

Before and after assembling

.file
.section
.LCo:
.string
.text
.globl
main:
subq
mov1l
mov1l
leaq
xorl
call
xorl
addq
ret
.size

e Ever

"test.c"
.rodata.strl.1,"aMS",@progbits,1
"CHAR_MIN = %d\nCHAR_MAX = %d\n"
main
$8, %rsp

$127, %edx
$-128, %esi
.Lco(%rip), %rdi
%eax, %eax
printf@PLT

%eax, %eax

$8, %rsp

main, .-main

ything is now binary

$ objdump -s -r test.o
test.o: file format elf64-x86-64

RELOCATION RECORDS FOR [.text]:

OFFSET TYPE VALUE

0000000000000011 R_X86_64 PC32 . LCO-0x0000000000000004
0000000000000018 R_X86_64_PLT32 printf-0x0000000000000004

Contents of section .rodata.strl.1:
0000 43484152 5f4d494e 203d2025 640a4348 CHAR_MIN = %d.CH
0010 41525f4d 4158203d 2025640a 00 AR_MAX = %d..

Contents of section .text:

0000 4883ec08 ba7f0000 00be8Off ffff488d H............. H.
0010 3d000000 ©O31cPe8 00DV 31cO4883 =....1...... 1.H.
0020 c408c3

12

Before and after assembling

.file "test.c" $ objdump -d -r test.o
.section .rodata.strl.1,"aMS",@progbits,1 test.o: file format elf64-x86-64
.LCO: Disassembly of section .text.startup:
.string "CHAR_MIN = %d\nCHAR_MAX = %d\n"
.text 0000000000000000 <main>:
.globl main 0: 48 83 ec 08 sub $0x8,%rsp
main: 4: ba 7f 00 00 00 mov $0x7f, %edx
subq $8, %rsp 9: be 80 ff ff ff mov $Oxffffff80,%esi
movl $127, %edx e: 48 8d 3d 00 00 00 PO lea OxO(%rip),%rdi
mov1l $-128, %esi 11: R_X86_64 PC32 .LCO-0x4
leaq .Lco(%rip), %rdi 15: 31 co XOr %eax, %eax
xorl %eax, %eax 17: €8 00 00 00 00 call 1c <main+@xlc>
call printf@PLT 18: R_X86_64 PLT32 printf-ox4
xorl %eax, %eax 1c: 31 co XOor %eax, %eax
addq $8, %rsp le: 48 83 c4 08 add $0x8,%rsp
ret 22: c3 ret
.size main, .-main

» Just to emphasize that 1:1 correspondence
between assembly and machine instructions

13

Linker

For static libraries

v

Aggregates multiple Compiler

independently compiled files — .
containing machine code m”m pssembly Code (5)
Fills in those unknown addresses .

The goal is to create 1 file with all TS il J

Machine Code (.0, .obj)

of the needed code to run the

program
e Thisis the file you run to check
your COde Executable Machine

Code (.exe)

14

GCC

GNU Compiler Collection
o GCC is a set of compilers for various languages. It provides all of

the infrastructure for building software in those languages from
source code to assembly.
The compiler can handle compiling everything on its own, but you

can use various flags to breakdown the compilation steps
Example:

gcc [flags] [infile(s)]

15

GCC Common Flags

-0 [EXECUTABLE NAME] : names executable file
-Ox : Code optimization
-00 : Compile as fast as possible, don’t optimize [this is the default]
-01, -02, -03: Optimize for reduced execution time [higher numbers are more
optimized]
-Os : Optimize for code size instead of execution time.
-Og : Optimize for execution time but try to avoid making interactive
debugging harder.
-g : produce “debug info”: annotate assembly so gdb can find variables and source
code
-Wall : enable many “warning” messages that should be on by default, but aren’t
- Does not turn on all of the warning messages GCC can produce.
- See https://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/Warning-Options.html
-Werror : turns all warnings into errors
-std=c99 : use the 1999 version of the C standard and disable some (not all!)
extensions

16

https://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/Warning-Options.html

Makefile

Automates the process of creating files (using a compiler)
For example, create bomb from bomb.c, phases.c, and util.c
Running make bomb will update bomb
o Only if any of the source files have changed;
avoids unnecessary work
o Remembers complicated compiler commands for you

Can also store recipes for automating development tasks
o make format to reformat source files
Makefile

17

Makefiles are lists of rules

There are two kinds of rules: normal and phony
o Normal rules create files
o Phony rules don’t directly create files
Each rule has a target.
o For normal rules, the target is the name of the file that the rule will create
o For phony rules, the target is an arbitrary name for what the rule does
Rules may have prerequisites (also known as dependencies)
o Prerequisites are the files that are needed to create the target
o If any of the prerequisites doesn’t exist, it must be created first
o If any of the prerequisites is newer than the target, the target is “out of
date” and must be re-created
Rules may have commands.
o One or more shell commands that create the target from its prerequisites
o For phony rules, just some commands to be run

18

Normal rule example

bomb: bomb.o phases.o util.o
$(CC) -o bomb bomb.o phases.o util.o

19

Normal rule example

If this file doesn’t
exist... ... orif it is older than any of these files...

bomb: bomb.o phases.o util.o
$(CC) -o bomb bomb.o phases.o util.o

S

... then run this command.

20

Normal rule example

If this file doesn’t
exist... ... orif it is older than any of these files...

bomb: bomb.o phases.o util.o
$(CC) -o bomb bomb.o phases.o util.o

/ N

This refers to the value of a ... then run this command.
variable, named CC, that holds the
name of a C compiler.

21

Normal rule without prerequisites

output _dir:
mkdir output dir

e Run mkdir output_dir if output_dir does not exist
e |[f it does exist, no action

22

Normal rule without commands

bomb.o: bomb.c support.h phases.h

e Re-create bomb.o if any of bomb.c, support.h, phases.h is newer
e The commands to do this are given somewhere else

o A pattern rule elsewhere in the Makefile

o Animplicit rule built into Make

23

Pattern and implicit rules

%.0: %.cC

$(CC) $(CFLAGS) -c -0 $@ $<

To create an .o file from a .c file with the same base name, use this command
Special variables S@ and S< give the name of the .0 and .c files respectively
Variables CC and CFLAGS can be set to customize behavior

e This rule is implicit — built into Make — you don’t have to write it yourself

24

Phony rule example

all: bomb bomb-solve
.PHONY: all

e When asked to create “all”, create bomb and bomb-solve
e Does not create a file named “all”
e The .PHONY annotation can be anywhere in the makefile

25

Phony rule example 2

clean:
rm -f bomb bomb-solve *.o
.PHONY: clean

e When asked to create “clean”, run this command
o Which deletes bomb, bomb-solve, and all object files
e Does not create a file named “clean”

26

The make command

Running make in the shell will cause the shell to look for a Makefile
in the current directory. If it finds one, it will attempt to create the
first target listed in the Makefile.

You can also run make <target _name> to indicate exactly which
target you want to create.

By convention, the first target is a phony target named all
o so make and make all do the same thing
o as the name implies, this is to create everything that the makefile knows
how to create
Phony rules serve as entry points into the Makefile
o make all creates everything, make clean deletes all generated files, make

check runs tests, ...
o But you can also make bomb.o if that’s the only thing you want

27

Makefile

CC = gcc
CFLAGS = -std=c99 -g -02 -Wall -Werror

all: bomb bomb-solve
bomb: bomb.o phases.o util.o
$(CC) $(LDFLAGS) -0 $@ $~ $(LIBS)

bomb-solve: bomb.o phases-solve.o util.o
$(CC) $(LDFLAGS) -o $@ $~ $(LIBS)

bomb.o: bomb.c phases.h support.h

phases.o: phases.c phases.h support.h
phases-solve.o: phases-solve.c phases.h support.h
util.o: util.c support.h

clean:
rm -f bomb bomb-solve *.o

.PHONY: all clean

OK to use undefined variables

- LDFLAGS, LIBS
- Found in environment or treated as empty

Don’t need to give commands to create

object files from C source
- But do need to list header file dependencies
for each object file

Do need to give commands to create
executables (missing feature)

all rule at the top, clean rule at the bottom
One .PHONY annotation for all phony rules

28

Rules form a graph

CC = gcc
CFLAGS = -std=c99 -g -02 -Wall -Werror

all: bomb bomb-solve
bomb: bomb.o phases.o util.o
$(CC) $(LDFLAGS) -0 $@ $~ $(LIBS)

bomb-solve: bomb.o phases-solve.o util.o
$(CC) $(LDFLAGS) -o $@ $~ $(LIBS)

bomb.o: bomb.c phases.h support.h

phases.o: phases.c phases.h support.h
phases-solve.o: phases-solve.c phases.h support.h
util.o: util.c support.h

clean:

rm -f bomb bomb-solve *.o Make avoids unnecessary work

* If bomb.c changes, make all will re-create
bomb.o, bomb, bomb-solve

* If phases.c changes, make all will only re-
create phases.o and bomb

Make can see through missing targets

* If bomb.o does not exist, make bomb creates
it from bomb.c

.PHONY: all clean

29

	Slide 1: Λειτουργικά Συστήματα Χειμερινό Εξάμηνο 2023-24
	Slide 2: Compilation
	Slide 3: Levels of abstraction
	Slide 4: Code compilation
	Slide 5: Code compilation
	Slide 6: Compilation stages
	Slide 7: Pre-Processor
	Slide 8: Before and after preprocessing
	Slide 9: Compiler
	Slide 10: Before and after compilation
	Slide 11: Assembler
	Slide 12: Before and after assembling
	Slide 13: Before and after assembling
	Slide 14: Linker
	Slide 15: GCC
	Slide 16: GCC Common Flags
	Slide 17: Makefile
	Slide 18: Makefiles are lists of rules
	Slide 19: Normal rule example
	Slide 20: Normal rule example
	Slide 21: Normal rule example
	Slide 22: Normal rule without prerequisites
	Slide 23: Normal rule without commands
	Slide 24: Pattern and implicit rules
	Slide 25: Phony rule example
	Slide 26: Phony rule example 2
	Slide 27: The make command
	Slide 28: Makefile
	Slide 29: Rules form a graph

