
1

Λειτουργικά Συστήματα
Χειμερινό Εξάμηνο 2023-24

«Μεταγλώττιση και Makefiles»

Χρήστος Μακρής
Σπύρος Σιούτας

Παναγιώτης Χατζηδούκας
Αριστείδης Ηλίας

2

Compilation

It is important to understand how programs are compiled to have
a better understanding of how different parts of a computer
interact with each other.

Fundamental aspect of how computers run code.

3

C [and other high-level
languages] are easy for
programmers to understand,
but computers require lots of
software to process them

Machine code is just the
opposite: easy for the computer
to process, but humans need
lots of help to understand it

Assembly language is a
compromise between the two:
readable by humans (barely),
close correspondence to
machine code

Levels of abstraction

4

Code compilation

The computer only
understands machine code
directly

All other languages must be
either

interpreted: executed by
software

compiled: translated to machine
code by software

5

Code compilation

Computer follows steps to
translate your code into
something the computer can
understand

This is the process of compiling
code [a compiler completes
these actions]

Four steps for C:
preprocessing, compiling,
assembling, linking

Most other compiled languages
don’t have the preprocessing
step, but do have the other three

6

Compilation stages

● Pre-Processor
$ gcc -E [flags] [filenames]

● Compiler
$ gcc -S [flags] [filenames]

● Assembler
$ gcc -c [flags] [filenames]
$ objdump -d [filenames]

● Linker
$ gcc -o [exename] [flags] [filenames]

7

Pre-Processor

● Unique to the C family; other languages
don’t have this

● Processes #include, #define, #if, macros
○ Combines main source file with headers

(textually)
○ Defines and expands macros (token-based

shorthand)
○ Conditionally removes parts of the code

(e.g. specialize for Linux, Mac, …)

● Removes all comments
● Output looks like C

8

Before and after preprocessing

#include <limits.h>
#include <stdio.h>

int main(void) {
 // Report the range of `char` on this system
 printf("CHAR_MIN = %d\n"
 "CHAR_MAX = %d\n",
 CHAR_MIN, CHAR_MAX);
 return 0;
}

1 "test.c"
1 "/usr/lib/gcc/x86_64-linux-gnu/10/include/limits.h" 1 3 4
...
1 "/usr/include/stdio.h" 1 3 4
...
extern int fprintf (FILE *__restrict __stream,
 const char *__restrict __format, ...);
extern int printf (const char *__restrict __format, ...);
...
874 "/usr/include/stdio.h" 3 4
3 "test.c" 2

int main(void) {
 printf("CHAR_MIN = %d\n"
 "CHAR_MAX = %d\n",
6 "test.c" 3 4
 (-0x7f - 1)
6 "test.c"
 , 0x7f);
 return 0;
}

● Contents of header files inserted inline
● Comments removed
● Macros expanded
● “Directive” lines (beginning with #)

communicate things like original line numbers

9

Compiler

● The compiler translates the
preprocessed code into assembly
code

○ This changes the format and
structure of the code but
preserves the semantics
(what it does)

○ Can change lots of details for
optimization, as long as the
overall effect is the same

10

Before and after compilation

extern int printf (const char *__restrict
 __format, ...);
int main(void) {
 printf("CHAR_MIN = %d\n"
 "CHAR_MAX = %d\n",
 (-0x7f - 1), 0x7f);
 return 0;
}

.file "test.c"
 .section .rodata.str1.1,"aMS",@progbits,1
.LC0:
 .string "CHAR_MIN = %d\nCHAR_MAX = %d\n"
 .text
 .globl main
main:
 subq $8, %rsp
 movl $127, %edx
 movl $-128, %esi
 leaq .LC0(%rip), %rdi
 xorl %eax, %eax
 call printf@PLT
 xorl %eax, %eax
 addq $8, %rsp
 ret
 .size main, .-main

● C source code converted to assembly language

● Textual, but 1:1 correspondence to machine language

● printf just referred to, not declared

11

Assembler

● Parses assembly code and
mainly translates into bits

● There is some flexibility to
generate the most efficient
version of machine code, but
mostly responsible for just
translating to bits.

12

Before and after assembling

.file "test.c"
 .section .rodata.str1.1,"aMS",@progbits,1
.LC0:
 .string "CHAR_MIN = %d\nCHAR_MAX = %d\n"
 .text
 .globl main
main:
 subq $8, %rsp
 movl $127, %edx
 movl $-128, %esi
 leaq .LC0(%rip), %rdi
 xorl %eax, %eax
 call printf@PLT
 xorl %eax, %eax
 addq $8, %rsp
 ret
 .size main, .-main

$ objdump -s -r test.o
test.o: file format elf64-x86-64

RELOCATION RECORDS FOR [.text]:
OFFSET TYPE VALUE
0000000000000011 R_X86_64_PC32 .LC0-0x0000000000000004
0000000000000018 R_X86_64_PLT32 printf-0x0000000000000004

Contents of section .rodata.str1.1:
 0000 43484152 5f4d494e 203d2025 640a4348 CHAR_MIN = %d.CH
 0010 41525f4d 4158203d 2025640a 00 AR_MAX = %d..

Contents of section .text:
 0000 4883ec08 ba7f0000 00be80ff ffff488d H.............H.
 0010 3d000000 0031c0e8 00000000 31c04883 =....1......1.H.
 0020 c408c3 ...

● Everything is now binary

13

Before and after assembling

.file "test.c"
 .section .rodata.str1.1,"aMS",@progbits,1
.LC0:
 .string "CHAR_MIN = %d\nCHAR_MAX = %d\n"
 .text
 .globl main
main:
 subq $8, %rsp
 movl $127, %edx
 movl $-128, %esi
 leaq .LC0(%rip), %rdi
 xorl %eax, %eax
 call printf@PLT
 xorl %eax, %eax
 addq $8, %rsp
 ret
 .size main, .-main

$ objdump -d -r test.o
test.o: file format elf64-x86-64
Disassembly of section .text.startup:

0000000000000000 <main>:
 0: 48 83 ec 08 sub $0x8,%rsp
 4: ba 7f 00 00 00 mov $0x7f,%edx
 9: be 80 ff ff ff mov $0xffffff80,%esi
 e: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
 11: R_X86_64_PC32 .LC0-0x4
 15: 31 c0 xor %eax,%eax
 17: e8 00 00 00 00 call 1c <main+0x1c>
 18: R_X86_64_PLT32 printf-0x4
 1c: 31 c0 xor %eax,%eax
 1e: 48 83 c4 08 add $0x8,%rsp
 22: c3 ret

● Just to emphasize that 1:1 correspondence

between assembly and machine instructions

14

Linker

● For static libraries
● Aggregates multiple

independently compiled files
containing machine code

● Fills in those unknown addresses
● The goal is to create 1 file with all

of the needed code to run the
program
● This is the file you run to check

your code

15

GCC

● GNU Compiler Collection
○ GCC is a set of compilers for various languages. It provides all of

the infrastructure for building software in those languages from
source code to assembly.

● The compiler can handle compiling everything on its own, but you
can use various flags to breakdown the compilation steps

● Example:

 gcc [flags] [infile(s)]

16

GCC Common Flags

-o [EXECUTABLE NAME] : names executable file
-Ox : Code optimization

-O0 : Compile as fast as possible, don’t optimize [this is the default]
-O1, -O2, -O3: Optimize for reduced execution time [higher numbers are more
optimized]
-Os : Optimize for code size instead of execution time.
-Og : Optimize for execution time but try to avoid making interactive
debugging harder.

-g : produce “debug info”: annotate assembly so gdb can find variables and source
code
-Wall : enable many “warning” messages that should be on by default, but aren’t
 - Does not turn on all of the warning messages GCC can produce.
 - See https://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/Warning-Options.html
-Werror : turns all warnings into errors
-std=c99 : use the 1999 version of the C standard and disable some (not all!)
extensions

https://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/Warning-Options.html

17

Makefile

● Automates the process of creating files (using a compiler)
● For example, create bomb from bomb.c, phases.c, and util.c
● Running make bomb will update bomb

○ Only if any of the source files have changed;
avoids unnecessary work

○ Remembers complicated compiler commands for you

● Can also store recipes for automating development tasks
○ make format to reformat source files

18

Makefiles are lists of rules

● There are two kinds of rules: normal and phony
○ Normal rules create files
○ Phony rules don’t directly create files

● Each rule has a target.
○ For normal rules, the target is the name of the file that the rule will create
○ For phony rules, the target is an arbitrary name for what the rule does

● Rules may have prerequisites (also known as dependencies)
○ Prerequisites are the files that are needed to create the target
○ If any of the prerequisites doesn’t exist, it must be created first
○ If any of the prerequisites is newer than the target, the target is “out of

date” and must be re-created
● Rules may have commands.

○ One or more shell commands that create the target from its prerequisites
○ For phony rules, just some commands to be run

19

Normal rule example

bomb: bomb.o phases.o util.o
 $(CC) -o bomb bomb.o phases.o util.o

20

Normal rule example

bomb: bomb.o phases.o util.o
 $(CC) -o bomb bomb.o phases.o util.o

If this file doesn’t
exist… … or if it is older than any of these files…

… then run this command.

21

Normal rule example

bomb: bomb.o phases.o util.o
 $(CC) -o bomb bomb.o phases.o util.o

If this file doesn’t
exist… … or if it is older than any of these files…

… then run this command.This refers to the value of a
variable, named CC, that holds the

name of a C compiler.

22

Normal rule without prerequisites

output_dir:
 mkdir output_dir

● Run mkdir output_dir if output_dir does not exist
● If it does exist, no action

23

Normal rule without commands

bomb.o: bomb.c support.h phases.h

● Re-create bomb.o if any of bomb.c, support.h, phases.h is newer
● The commands to do this are given somewhere else

○ A pattern rule elsewhere in the Makefile
○ An implicit rule built into Make

24

Pattern and implicit rules

%.o: %.c
 $(CC) $(CFLAGS) -c -o $@ $<

● To create an .o file from a .c file with the same base name, use this command
● Special variables $@ and $< give the name of the .o and .c files respectively
● Variables CC and CFLAGS can be set to customize behavior

● This rule is implicit — built into Make — you don’t have to write it yourself

25

Phony rule example

all: bomb bomb-solve
.PHONY: all

● When asked to create “all”, create bomb and bomb-solve
● Does not create a file named “all”
● The .PHONY annotation can be anywhere in the makefile

26

Phony rule example 2

clean:
 rm -f bomb bomb-solve *.o
.PHONY: clean

● When asked to create “clean”, run this command
○ Which deletes bomb, bomb-solve, and all object files

● Does not create a file named “clean”

27

● Running make in the shell will cause the shell to look for a Makefile
in the current directory. If it finds one, it will attempt to create the
first target listed in the Makefile.

● You can also run make <target_name> to indicate exactly which
target you want to create.

● By convention, the first target is a phony target named all
○ so make and make all do the same thing
○ as the name implies, this is to create everything that the makefile knows

how to create

● Phony rules serve as entry points into the Makefile
○ make all creates everything, make clean deletes all generated files, make

check runs tests, …
○ But you can also make bomb.o if that’s the only thing you want

The make command

28

CC = gcc
CFLAGS = -std=c99 -g -O2 -Wall -Werror

all: bomb bomb-solve
bomb: bomb.o phases.o util.o
 $(CC) $(LDFLAGS) -o $@ $^ $(LIBS)

bomb-solve: bomb.o phases-solve.o util.o
 $(CC) $(LDFLAGS) -o $@ $^ $(LIBS)

bomb.o: bomb.c phases.h support.h
phases.o: phases.c phases.h support.h
phases-solve.o: phases-solve.c phases.h support.h
util.o: util.c support.h

clean:
 rm -f bomb bomb-solve *.o

.PHONY: all clean

• OK to use undefined variables
 - LDFLAGS, LIBS
 - Found in environment or treated as empty

• Don’t need to give commands to create
object files from C source

 - But do need to list header file dependencies
 for each object file

• Do need to give commands to create
executables (missing feature)

• all rule at the top, clean rule at the bottom
• One .PHONY annotation for all phony rules

Makefile

29

CC = gcc
CFLAGS = -std=c99 -g -O2 -Wall -Werror

all: bomb bomb-solve
bomb: bomb.o phases.o util.o
 $(CC) $(LDFLAGS) -o $@ $^ $(LIBS)

bomb-solve: bomb.o phases-solve.o util.o
 $(CC) $(LDFLAGS) -o $@ $^ $(LIBS)

bomb.o: bomb.c phases.h support.h
phases.o: phases.c phases.h support.h
phases-solve.o: phases-solve.c phases.h support.h
util.o: util.c support.h

clean:
 rm -f bomb bomb-solve *.o

.PHONY: all clean

all

bomb bomb-solve

bomb.o phases.o phases-solve.o util.o

bomb.c phases.c phases-solve.c util.c

clean

Make avoids unnecessary work
• If bomb.c changes, make all will re-create

bomb.o, bomb, bomb-solve
• If phases.c changes, make all will only re-

create phases.o and bomb

Make can see through missing targets
• If bomb.o does not exist, make bomb creates

it from bomb.c

Rules form a graph

	Slide 1: Λειτουργικά Συστήματα Χειμερινό Εξάμηνο 2023-24
	Slide 2: Compilation
	Slide 3: Levels of abstraction
	Slide 4: Code compilation
	Slide 5: Code compilation
	Slide 6: Compilation stages
	Slide 7: Pre-Processor
	Slide 8: Before and after preprocessing
	Slide 9: Compiler
	Slide 10: Before and after compilation
	Slide 11: Assembler
	Slide 12: Before and after assembling
	Slide 13: Before and after assembling
	Slide 14: Linker
	Slide 15: GCC
	Slide 16: GCC Common Flags
	Slide 17: Makefile
	Slide 18: Makefiles are lists of rules
	Slide 19: Normal rule example
	Slide 20: Normal rule example
	Slide 21: Normal rule example
	Slide 22: Normal rule without prerequisites
	Slide 23: Normal rule without commands
	Slide 24: Pattern and implicit rules
	Slide 25: Phony rule example
	Slide 26: Phony rule example 2
	Slide 27: The make command
	Slide 28: Makefile
	Slide 29: Rules form a graph

