
1

Παράλληλη Επεξεργασία

Εαρινό Εξάμηνο 2023-24

«Εισαγωγή στον Πολυνηματισμό»

Παναγιώτης Χατζηδούκας, Ευστράτιος Γαλλόπουλος

2

Outline

• Processes and Threads

• POSIX Threads API

• Thread management

• Synchronization with mutexes

• Deadlock and thread safety

3

Terminology

int a[1000];

int main(int argc, char** argv)

{

 for(int i = 0; i < 500; i++) a[i] = 1;

 for(int i = 500; i < 1000; i++) a[i] = 2;

 return 0;

}

- Parallelism in

Hardware:

- multiple cores and

memory

- Parallelism in Software:

- process: execution

sequence within the OS,

a running program

- thread: can execution

sequence within a

process, all threads of

the same process share

the application data

(memory)

4

Processes

• A process consists of the following:

• Address space: text segment (code),

data segment, heap and stack

• Information maintained by the

operating system (process state,

priority, resources, statistics)

• Process state: snapshot where the

above information has specific

values

• Memory state: state of the address

space

• Processor state: register values

Heap

Data

Code

RegistersStack

5

Process Switching

• Before execution, the processor state of a process

must be loaded first to the specific processor

• During execution, the processor state of the

process changes

• Context switching: a running process stops and

another one starts (or resumes)

– The processor state of the current process is stored

– The processor state of the next process is loaded

6

Process Memory

• Each process has its own (private) memory space

– A process cannot access the memory of another process

– This provides basic safety in a multi-user environment

• The operating system has full access to the

memory of all processes

• Communication between processes is important

– When they cooperate to solve a single problem

• Operating systems implement several mechanisms

for interprocess communication

– signals, files, pipes, sockets

– shared memory

7

Process Memory Layout

Command line arguments

and environment variables

Stack

Heap

Uninitialized data

Initialized data

Text (code)

growth directions

8

Memory Organization (C/C++)

• Text segment

– Instruction executed by the processor

– Can be shared between multiple processes

– Read-only segment

• Initialized data segment

– Global variables with initial value:

double Pi = 3.1415;

static char message[] = "hello world!";

9

• Uninitialized data segment

– Global variables without initial value
int result;

double Matrix[512][512];

– The operating system initializes these variables to zero

before the execution of the program

• Stack

– Local variables, function parameters, returned value

• Heap

– Dynamic memory management (malloc, calloc, new,

…)

Memory Organization (C/C++)

10

Threads

• Thread: an independent stream of instructions that

can be scheduled to run as such by the operating

system

• execution sequence within the process

• A process can create multiple threads

• each thread executes a specific user-defined function

• main() is the first (primary) thread

• Threads

• share the memory space of the process they belong to

• have their own state and some private memory (stack)

• are cheap to create but difficult to use correctly

• can run on different processors

11

Threads

• Threads: also known as lightweight processes

• Process: memory, instructions, program counter, stack
pointer, registers, file descriptors, …

• Thread: program counter, stack pointer and stack,
registers

• The threads of a process share:

• Program instructions, most data, open files, signal
handlers, current working directory, user and group id

• The threads of a process do not share:

• Thread id, registers (program counter, stack pointer),
stack, errno, signal mask, priority

• POSIX Threads (pthreads): Application
Programming Interface (API) defined by the IEEE
POSIX.1c standard

Διεργασίες και Νήματα

Process ID

Signal Mask

Memory Map

File Descriptor Table

Stack Pointer &
Stack

Heap

Registers

Process Priority

Program Counter

Thread ID

Signal Mask

Stack Pointer &
Stack

Registers

Thread Priority

Program Counter

Threads share

the memory,

heap, signal

handlers and file

descriptors

Processes and Threads

Traditional Process

Single execution

flow

Multiple execution

flows

Multithreaded Process

Threads

Address Space

14

Processes and Threads

Heap

Data

Code

Traditional Process Multithreaded Process

RegistersStack

Heap

Data

Code

Single instruction

execution flow
Multiple instruction

execution flows

RegistersStack

RegistersStack

RegistersStack

RegistersStack

Processes and Threads

• Advantages/disadvantages of multithreading

[+] Lower creation and management overhead

[+] Simpler and cheaper communication between threads

than processes

[-] Error-prone programming

• Thread implementations

– user level threads

– system/kernel level threads

• It depends on whether the operating system is

aware of the existence of application threads or not

Kernel-level threads

• Implemented as the OS level

– Each thread is a lightweight process

– Thread management is based on system calls

• Scheduled by the OS, similarly to processes

– Straightforward parallel execution of threads on multicore
hardware

– If a threads blocks (at a system call), the rest of the
threads (of the same process) continue their execution

• Practically all POSIX Threads implementations
follow the specific model

Kernel-level threads

Thread 1

CPU 1

Kernel

Entity 1

Thread 2 Kernel

Entity 2

Thread 3 Kernel

Entity 3

Thread 4 Kernel

Entity 4

CPU 2

Code

Data

Heap

Stack Registers

Stack Registers

Stack Registers

1:1 (one-to-one) model

User-level threads

• User-mode implementation
– Stack and registers

– Execution management: setjmp, ucontext, assembly,
fibers…

• Very fast/lightweight thread management
– without any system calls

• The threads can be scheduled whenever the owner
process is scheduled
– the runtime system is responsible for their execution.

• User level threads cannot exploit multicore systems
because the OS is not aware of them.

• If a thread blocks (e.g., read system call) then the
process blocks.

User-level threads

Thread 1

CPU 1Thread 2

Kernel

Entity 1

Thread 3

Thread 4

CPU 2

Code

Data

Heap

Stack

Stack Registers

Stack

M:1 (many-to-one) model

Context switching

• Context switching can be cooperative (yield-based)

or automatic (alarm-based).

• Cooperative or non-preemptive threads

– When scheduler, it runs to completion without any

interruption

– It can voluntarily release the “processor” (execution flow)

and let another thread run

• Preemptive threads

– The user-level scheduler (see runtime system) can

interrupt the execution of a running thread

• Thread state is saved and can be restored later

Two-level threads

• Combination of the two previous models

• A single process can create multiple kernel threads
and map one or more user level threads to them

• The OS schedules the kernel level threads, while
the process (runtime system) schedules the user
level threads

• Advanced communication between the application
and the runtime system can lead to advanced
thread management, e.g., creation of additional
threads if there are available computational
resources

• Extension of the scheduling algorithm used by the
operating system.

Two-level threads

Thread 1

CPU 1Thread 2 Kernel

Entity 1

Thread 3 Kernel

Entity 2

Thread 4

CPU 2

Code

Data

Heap

Stack

Stack Registers

Stack Registers

M:N (many-to-many) model

23

Spawning and Joining Threads

• During the execution of a multithreaded program

threads get spawned and joined dynamically

spawn

join

main()

24

General View

Applications

SCHEDULER
Operating System

(OS)

User thread OS/Kernel

thread
Processor/Core

25

POSIX Threads (Pthreads)

• Standardized C language threads programming

interface

- http://pubs.opengroup.org/onlinepubs/9699919799/

• Header file:
#include <pthread.h>

• Compilation
$ gcc -pthread -o hello hello.c

• Execution
$./hello

http://pubs.opengroup.org/onlinepubs/9699919799/

26

Skeleton
void *func(void *arg)

{

 /* define local data */

 - - - - - - - - - - -

 - - - - - - - - - - - /* function code */

 - - - - - - - - - - -

 return (void *)&result;

}

main()

{

 pthread_t tid;

 int exit_value;

 - - - - - - - - - - -

 pthread_create (&tid, NULL, func, NULL);

 - - - - - - - - - - -

 pthread_join (tid, &exit_value);

 - - - - - - - - - - -

}

equivalently:

pthread_exit(&result);

27

Thread Creation

int pthread_create (pthread_t *thread,

const pthread_attr_t *attr,

void *(*routine)(void *), void *arg);

• thread: unique identifier for the new thread returned by the

subroutine

• attr: used to set thread attributes. If NULL, the default values

are used.

• routine: the C routine that the thread will execute once it is

created.

• arg: single argument that may be passed to start_routine. It

must be passed by reference as a pointer cast of type void.

NULL may be used if no argument is to be passed.

• if there are no errors, it returns 0

28

pthread_create
#include <pthread.h>

pthread_t tid;

extern void *func(void *arg);

void *arg;

int res = pthread_create(&tid, NULL, func, arg);

29

Passing Multiple Arguments
struct data {

 int i;

 float f;

};

void *routine(void *arg) {

 struct data *d = (struct data *) arg;

 int local_i = d->i;

 d->f = 5.0;

 return NULL;

}

int main() {

 pthread_t tid;

 struct data main_data;

 main_data.i = 6;

 pthread_create(&tid, NULL, routine, (void *) &main_data);

 //...

}

30

Thread Joining

int pthread_join (pthread_t thread,

 void **status);

• pthread_join() blocks the calling thread until the

specified thread terminates

• The value returned by the thread function is stored in the
memory location specified by status

• if there are no errors, it returns 0

31

pthread_join
#include <pthread.h>

pthread_t tid;

int result;

pthread_join(tid, (void *)&result);

pthread_join(tid, NULL);

32

Hello World
void *work(void *arg)

{

 pthread_t me = pthread_self();

 printf("Hello world from thread %ld!\n", (long)me);

 return NULL;

}

int main(int argc, char **argv)

{

 long i = 1;

 pthread_t thread;

 printf("main thread %ld!\n", (long)pthread_self());

 pthread_create(&thread, NULL, work, (void *)i);

 pthread_join(thread, NULL);

 printf("Child ended, exiting\n");

 return 0;

}

ID of calling thread

33

Spawning and Joining Threads
void *func(void *arg)

{

 sleep(1);

 return NULL;

}

int main(int argc, char * argv[])

{

 pthread_t id[4];

 for (long i = 0; i < 4; i++) {

 pthread_create(&id[i], NULL, func, NULL);

 }

 for (long i = 0; i < 4; i++) {

 pthread_join(id[i], NULL);

 }

 return 0;

}

34

Creating and Joining Threads
void * func(void * arg)

{

 long sec = (long) arg + 1;

 sleep((long) sec);

 return arg; /* pthread_exit(arg); */

}

int main(int argc, char * argv[])

{

 pthread_t id[4];

 long result;

 for (long i = 0; i < 4; i++) {

 pthread_create(&id[i], NULL, func, (void *) i);

 }

 for (long i = 0; i < 4; i++) {

 pthread_join(id[i], (void *) &result);

 /* result == i */;

 }

 return 0;

}

what if we pass &i

and also apply the

above fix

fix: *(long *) arg) +1;

35

References

• Advanced Programming in the Unix Environment,

W. Richard Stevens

• Programming with POSIX Threads, David R.

Butenhof

• www.openmp.org

• POSIX threads tutorial at LLNL, Blaise Barney

• https://computing.llnl.gov/tutorials/pthreads/

http://www.openmp.org
https://computing.llnl.gov/tutorials/pthreads

	Slide 1: Παράλληλη Επεξεργασία
	Slide 2: Outline
	Slide 3: Terminology
	Slide 4: Processes
	Slide 5: Process Switching
	Slide 6: Process Memory
	Slide 7: Process Memory Layout
	Slide 8: Memory Organization (C/C++)
	Slide 9: Memory Organization (C/C++)
	Slide 10: Threads
	Slide 11: Threads
	Slide 12: Διεργασίες και Νήματα
	Slide 13: Processes and Threads
	Slide 14: Processes and Threads
	Slide 15: Processes and Threads
	Slide 16: Kernel-level threads
	Slide 17: Kernel-level threads
	Slide 18: User-level threads
	Slide 19: User-level threads
	Slide 20: Context switching
	Slide 21: Two-level threads
	Slide 22: Two-level threads
	Slide 23: Spawning and Joining Threads
	Slide 24: General View
	Slide 25: POSIX Threads (Pthreads)
	Slide 26: Skeleton
	Slide 27: Thread Creation
	Slide 28: pthread_create
	Slide 29: Passing Multiple Arguments
	Slide 30: Thread Joining
	Slide 31: pthread_join
	Slide 32: Hello World
	Slide 33: Spawning and Joining Threads
	Slide 34: Creating and Joining Threads
	Slide 35: References

