;, CEID Parallel Processing
e Spring semester 2022-23

P. Hadjidoukas

Set 4 - OpenMP I
Issued: March 29, 2023

Question 1: OpenMP bug hunting

Identify and explain any bugs in the following OpenMP code. Propose a solution. Assume all
headers are included correctly.

#define N 1000

1
2

3 extern struct data member[N]; // array of structures, defined elsewhere
4 extern int is good(int i); // returns 1 if member[i] is "good", 0 otherwise
5

6 int good members[N];

7 int pos=0;

8

9 wvoid find good members()

10 {

11 #pragma omp parallel for

12 for(int i=0; i<N; i++) {

13 if (is_good(i)) {

14 good members[pos] = i;

15

16 #pragma omp atomic

17 pos—+-;

18 }

19 }

20 }

Hints:

e Identify the race condition (as we saw in the class)

e In your solution you can use “omp critical” or “omp atomic capture” !

In order to avoid data races between different updates of global variable pos, the code puts the
increment in an atomic construct. However, the code does not work, because there is a data
race between the read of pos right before the atomic construct and the write of pos within the
construct.

int mypos ;
#pragma omp critical

1
2
3 {

4 mypos = pos ;
5 pos++;

6
7

good members[mypos] = i;

Lomp atomic capture: OpenMP specs 3.1, section 2.8.5, especially page 74, lines 8-13

int mypos;

#pragma omp atomic capture
mypos = pos+-+;

good members[mypos] = i;

Question 2: Statistics

In statistics.c, the sequential diagnostics function compute_max_density() finds and
prints the maximum density value and its location.

1 void compute max_density(double xrho , int N)

2 {

3 // rho_: matrix of size NxN, allocated as one dimensional array.
4 // rho[i*Nt+j] corresponds to rhof[i, j]

5 // This routine finds the value of max density (max_rho) and its
6 // location (max_i, max_j) — it assumes there are no duplicate values
8 double max rho;

9 int max_i,max_j;

10

11 max_rho=rho_[0];

12 max_ i=0;

13 max_ j=0;

14

15 for (int i=0 ; i<N; ++i)

16 for (int j=0 ; j<N; 4++j)

17

18 if (rho [i*N4+j]>max_rho)

19

20 max_rho=rho [i*N+]j];

21 max_i=i ;

22 max_ j=j ;

23 }

24 }

25

26 printf (" A\n")

27 printf("Output of compute max_density():\ n");

28 printf("Max rho: %.16f\n", max_ rho);

29 printf("Matrix location: %d %d\n", max i, max_j);

30 }

Provide, in the function compute_max_density_omp(), a parallel OpenMP implementation of
the previous code.

e Try to keep the number of memory accesses close to that of the sequential version.

e Study the hands-on example find_max of the last lecture (OpenMP part 2).

A possible solution code for this question is depicted below. Similarly to previously studied
examples, it is beneficial if we spawn a parallel region and have each thread compute its private
maximum density value and its location. Finally, each thread updates the global result within a
critical section.

Note: use of the collapse and the nowait clauses are not required in the solution because this
was not specified / requested in the question.

© 0N OO W N

W W W W W NN NDNDNDNDNDNNN = e e e e e e e e
B W N = O © 0N GE WN RO © 0N O U WN = O

double max_rho;
int max_i, max_j;

max_rho=rho_[0] ;
max_ i=0;
max_j=0;

#pragma omp parallel

double Imax_rho = rho_ [0];
int Imax_i=0;
int Imax_j=0;

#pragma omp for nowait collapse(2)
for (int i=0; i<N; ++i)
for (int j=0; j<N; ++j)

if (rho_[i*N+j]>Imax_rho)

Imax_rho=rho [i*N+j];
Imax_i=i;
Imax_j=j ;
}
¥
#pragma omp critical

if (Imax_rho>max_rho)
{
max_rho=Imax_rho;
max_i=lmax_i;
max_j=lmax_j;

