[TapAAANANn Enieéepyaoia

Eapivo E€aunvo 2022-23
«Memory and Performance
- Roofline Model»

[Tavayiwtng Xatlnoovkag, Evotpdtioc I'aAddomovAog

Outline

- Memory

* Performance
e Amdalh’s law
« Strong and weak scaling

« Roofline Model

Memory

Locality

|dea: have near you only what you need

Temporal locality: if an item is referenced, it will need to be
referenced again soon
* Loops: instructions and data accessed repeatedly

Spatial locality: if an item ferenced, items whose
addresses are close by, will tend to be referenced soon

« Data access: sequential access to elements of array

>

Register and Caches

_ E What a memory access looks like
Register

Memory

What really happens

Register E
J WO cycles latency

Cache I

T T 200+ cycles latency
Memory -
—

Cache Line

Spatial Locality

cer W]
N

Cache m
Memory -

Better spatial locality!

Register w2
‘*\

Cache

T T Cache line only read once!

Memory -

Memory Hierarchy

* Multiple levels of memory with different speeds and sizes.

Memory
SRAM

DRAM

Magnetic Disk

Access time (ns)
05-25
50-70

5x10% - 20x10¢

$ per GB (2008)
2000 - 5000
20 - 75

02-2

ns

MS

ms

Latency and Bandwidth

10°°

10°®

107

1075

1075

1074

102

1072

107"

T }—— L1cache
— L2/L3 cache
Main memory
HPC networks
Gigabit Ethemet
|——1 Solid state disk
N] Local hard disk
Internet
Latency

[sec]

1011

_{ L
1010
1 10° GB/s
- L 100
Y
Bandwidth
[bytes/sec]

Characterization of Memory Hierarchies

- Peak Performance for 1 core of Intel Core2 Q6850 (DP):
« 3 GHz * (2 Flops (DP-Add) + 2 Flops (DP-Mult)) = 12 GFlops/s

Serial performance
real*8 A(ARRAY).....; ARRAY=2:4: A(L:N)=B(L:N+C(L:N)*D(1:N)

40(X) |||||I'I| 1 Ll llllllI LI IIIIIII I IllIIlII 1 Ll IllllII Ll 1 |||||l‘| LILLLBLLLL
Intel Core2 Extreme Q6850 (3 GHz) Performance decreases if
- ifort 9.1.045 (64-bit) ’ data set exceeds cache size
— — No compiler options (Default: -O2)
3000 — .03 N
— .03 xT

MFlops/s
S
S
|
]

| —_
1000 -
B 7 -xT : Enables vectorization & improves in-
cache performance: Packed SSE
0 instructions
1 2 3 4 5 6 7
10 10 10 10 10 10 10

N (loop length) 9

Cache: Terminology

Block/Line: minimum unit of information that can be
present or not present in a cache

Hit: data request by the processor, encountered in some
block in the upper (closer to processor) level of memory
hierarchy. If the data is not found, it is a miss. Then a lower
(further from processor) level is accessed to retrieve the
data.

Hit rate: fraction of memory accesses found in the upper
level.

Hit time: time to access upper level including time to
determine if it is a hit or a miss.

Miss penalty: time to replace a block in the upper level with
the corresponding block from the lower level.

10

Effective Access Time (EAT)

« Suppose that
cache access time = 10ns
main memory access time = 200ns
cache hit rate =99%

- What is the EAT for non-overlapped access?

EAT = 0.99(10ns) + 0.01(10ns + 200s) = 9.9ns + 2.1ns = 12ns

11

Caches and Multiprocessors

e BUS: a shared communication link, which uses
one set of wires to connect multiple subsystems.

e Used for communication between memory, 1/0
and processors.

. . since we have a single connection
scheme, new devices can be added

. : single set of wires is shared in
multiple ways

« communication bottleneck: limiting the 1/0
throughput as all information passes a single
wire

Processor-Memory Bus: bus that connects processor
and memory, and that is short, high speed and matched
to the memory system so as to maximize memory-
processor bandwidth.

Multi-core Processor

N\ 2 N\
Core Core Core Core
1 2 3 4

~

Individual Individual
Memory Memory
L

| Shared Memory

‘ Bus Interface

(Off-Chip Components

Chip Boundary

7
CPU Core CPU Core

and and
L1 Caches L1 Caches

Back side

Bus Interface
and
L2 Caches

Front side

BUS

\

|

12

Machine (16GB)

Portable Hardware Locality (hwloc

Socket P#0
I L3 (8192KB) I
| L2 (2048KB) | | L2 (2048KB) | | L2 (2048KB) | | L2 (2048KB) |
| L1 (16KB) | | L1 (16KB) | | L1(16KB) | I L1 (16KB) | | L1 (16KB) | | L1(16KB) | | L1(16KB) | I L1 (16KB) |
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7
I PUP#0 I I PU P#1 | | PUP#2 | I PUP#3 I I PUP#4 I I PUP#5 | | PUP#6 | I PUP#7 I
O u PCI 1002:6718
—{J—— Pcl10ec8168
p4pl
L] PCI 197b:2362
L] PCI 197b:2362

PCI 1002:4391

0

PCl 10de:1080

——{}——— PCI 10de:1022

PCI 8086:1503

em0

PCI 1b4b:9125

0

Machine (16GB)
Socket P#0
L3 (8192KB)
L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)
L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB)
Core P#0 Core P#1 Core P#2 Core P#3
PU P#0 PUP#2 PU P#4 PUP#6
PUP#1 PUP#3 PU P#5 PUP#7

0

PCl 11ab:6121

PCI 8086:1c02

Host: bulldozer.inf.ethz.ch

Host: cyrus.ethz.ch

http://www.open-mpi.org/projects/hwloc/

13

Euler Compute Node (text format

Machine (256GB)
m L#0 (P#0 128GB) + Socket L#0 + L3 L#0 (30MB)
L2 L#0 (256KB) + L1d L#0 (32KB) + L1i L¥0 (32KB) + Core L#0 + PU L0 (P#0)
L2 L#1 (256KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1 + PU L#1 (P#1)
L2 L#2 (256KB) + L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2 + PU L#2 (P#2)
L2 L#3 (256KB) + L1d L#3 (32KB) + L1i L#3 (32KB) + Core L#3 + PU L#3 (P#3)
L2 L#4 (256KB) + L1d L#4 (32KB) + L1i L#4 (32KB) + Core L#4 + PU L#4 (P#4) 1 St N U MA N O D E
L2 L#5 (256KB) + L1d L#5 (32KB) + L1i L#5 (32KB) + Core L#5 + PU L#5 (P#5)
L2 L#6 (256KB) + L1d L#6 (32KB) + L1i L#6 (32KB) + Core L#6 + PU L#6 (P#6)
L2 L#7 (256KB) + L1d L#7 (32KB) + L1i L#7 (32KB) + Core L#7 + PU L#7 (P#7)
L2 L#8 (256KB) + L1d L#8 (32KB) + L1i L#8 (32KB) + Core L#8 + PU L#8 (P#8)

L2 L#9 (256KB) + L1d L#9 (32KB) + L1i L#9 (32KB) + Core L#9 + PU L#9 (P#9) - Com pute node:
L2 L#10 (256KB) + L1d L#10 (32KB) + L1i L#10 (32KB) + Core L#10 + PU L#10 (P#10)
L2 L#11 (256KB) + L1d L#11 (32KB) + L1i L#11 (32KB) + Core L#11 + PU L#11 (P#11) e 256 GB RAM

HostBridge L#0

“PCiBridee. « 2 NUMA Nodes

PCl 14e4:168e

Net L#0 "eth0" « NUMA Node

PCl 14e4:168e

Net L#1 "eth1" ® 1 28G B RAM

PCl 103¢:323b « 1 Socket

Block L#2 "sda"

PCiBridge + 30MB L3 Cache

PCI 15b3:1003

Net L#3 "ib0" « 12 Cores

Net L#4 "ib1"

OpenFabrics L#5 "mix4_0" ° COre
PCIBridge

“pC1 10250533 « 256KB L2 Cache

NUMANode L#1 (P#1 128GB) + Socket L#1 + L3 L#1 (30MB)

L2 L#12 (256KB) + L1d L#12 (32KB) + L1i L#12 (32KB) + Core L#12 + PU L#12 (P#12) - 32KB L1 Data Cache
L2 L#13 (256KB) + L1d L#13 (32KB) + L1i L#13 (32KB) + Core L#13 + PU L#13 (P#13) .
L2 L#14 (256KB) + L1d L#14 (32KB) + L1i L#14 (32KB) + Core L#14 + PU L#14 (P#14) « 32KB L1 Instruction Cache

L2 L#15 (256KB) + L1d L#15 (32KB) + L1i L#15 (32KB) + Core L#15 + PU L#15 (P#15)

L2 L#16 (256KB) + L1d L#16 (32KB) + L1i L#16 (32KB) + Core L#16 + PU L#16 (P#16)

L2 L#17 (256KB) + L1d L#17 (32KB) + L1i L#17 (32KB) + Core L#17 + PU L#17 (P#17)

L2 L#18 (256KB) + L1d L#18 (32KB) + L1i L#18 (32KB) + Core L#18 + PU L#18 (P#18) 2 N d N U MA N O D E

L2 L#19 (256KB) + L1d L#19 (32KB) + L1i L#19 (32KB) + Core L#19 + PU L#19 (P#19)

L2 L#20 (256KB) + L1d L#20 (32KB) + L1i L#20 (32KB) + Core L#20 + PU L#20 (P#20)

L2 L#21 (256KB) + L1d L#21 (32KB) + L1i L#21 (32KB) + Core L#21 + PU L#21 (P#21)

L2 L#22 (256KB) + L1d L#22 (32KB) + L1i L#22 (32KB) + Core L#22 + PU L#22 (P#22) 14
L2 L#23 (256KB) + L1d L#23 (32KB) + L1i L#23 (32KB) + Core L#23 + PU L#23 (P#23)

Parallelism and Memory Hierarchies

Multicore multiprocessor:
* Processors (most likely) share a common physical address space

Caching shared data: view of memory for each processor through their
individual caches so it differs if changes are made.

CAREFUL: 2 different processors can have 2 different values for the
same location -> cache coherence problem

CPU @

main memory o '

15

Cache Coherency

- A memory system is coherent if:

A read by processor P to location X, that follows a write by P to X,
with no writes to X by another processor occurring between the
write and read by P, always returns the value written by P.

A read by a processor to location X that follows a write by another
processor to X returns the written value if the read and write are
sufficiently separated in time and no other writes to X occurs
between the 2 accesses. = needs controller

Writes to the same location are serialized: that is 2 writes to the

same location by any 2 processors are seen in the same order by all
Processors.

16

Enforcing Coherence

* Protocols are maintained for cache coherence by tracking
the state of any sharing of a data block.

* Example -> Snooping protocols: every cache with a copy of the
data from a block of physical memory, also has a copy of the
sharing status of the block, but no centralized state is kept.

» The caches are all accessible via some broadcast medium (bus or
network) and all cache controllers monitor (snoop) on the medium to
determine whether they have a copy of a block that is requested on
a bus or switch access.

17

Memory Usage: Remarks

- Software for improved memory usage, assisted by
compilers to transform programs.

reorganize program to enhance its spatial and temporal locality
(loop-oriented programs, using large arrays as the major data
structure; e.g. large linear algebra problems) by restructuring the
loops (to improve locality and obtain) better cache performance

prefetching: a block of data is brought to cache before it is
referenced. Hardware to predict accesses that may not be detected
by software.

cache-aware instructions to optimize memory transfer.

18

Effect of Data prefetching on BG/Q
- Single BG/Q node, 64 threads

N
~

70%
24
® 60% 21
g 18
< 0
E ~
S g15
S 50% 7
o o 12
© £
e =)
X 40% 6
3
30% 0

Peak Performance Time-to-Solution

con: L1P_stream_confirmed
opt: L1P_stream_optimistic
dis: L1P_stream_disable 19

Performance

The Difficulty of Parallel Processing Programs

- We must get efficiency - else use single processor

* Instruction level parallelism done by the compiler can help
(out of order execution, etc)

- Challenges
« scheduling
load balancing
 time for synchronization
« overhead for communication between parts

21

Amdahl’s Law

- How much can a problem be improved?

- e.g.: We want a speed up of 90x faster with 100 processors

Exec time affected by improvement
x y 1ip + Exec time unaffected

Exec time after improvement = ,
Amount of improvement

Exec time before

Speed-up = |
P P (Exec time before — Exec time affected) + Exec time affected
Processors
Speed 1
peed-up = : : —
(1 — Fraction time affected) + fraction time affected

Assumption of perfect load balanéing

Amdahl’s Law : Example 1

- We want a speed up of 90x faster with 100 processors

1
90 = S—
(1 — Fraction time affected) + Fraction time affected
89
— Fraction time affected = 0.1 = 0.999

- So to get a speed-up of 90 from 100 processors the

sequential part can only be 0.1%

23

Amdahl’s Law : Example 2

Suppose we want to perform two sums:
« sum of 10 scalar variables
matrix sum of pairs of 2D arrays with dimension 10x10

What speedup you get with 10 and 100 processors?

Calculate the speedups assuming matrices grow to
100x100.

Assume time t for the performance of an addition.
Then there are (for 100 processors) 100 additions that scale
and 10 that do not.

Time for 1 processor = 100t + 10t = 110t

24

Amdahl’s Law : Example 2

* For 110 numbers we get 55% of the potential speedup with
10 processors but only 10% of 100 processors.

Time for 10 processors =

Exec time affected

Time after improvement = -
Amount of improvement

+ Exec time unaffected

= %?t + 10t = 20
Speed-up;, = 121—(;): = 5.5 (out of 10)
e ——————————————— _
Time for 100 processors = % + 10t = 11t
Speed-up;gp = 1ot _ 10 (out of 100)

11¢
25

Amdahl’s Law : Example 2

- What happens when we increase the matrix order?

Time for 1 processor = 10t + 10000t = 10010¢

10000¢
% Exec time after improvement = 10 + 10t = 1010t
5
@
S 10010¢
o - = = 9. f1
S Speed-up; 10107 9.9 (out of 10)
e E oma - —— S o oo e . x S -
10000¢
% Exec time after improvement = + 10t = 110t
N 100
9p]
@
o 10010¢
= - = —— =01 f1
= Speed-up; oo 110t 91 (out of 100)

* For larger problem size we get 99% with 10 processors and
91% with 100 processors

26

Scaling

- Strong scaling:
speed-up on multiprocessors without increase on problem
size
 Amdahl’s law considers the strong scaling

- Weak scaling:
speed-up on multiprocessors, while increasing the size of
the problem proportionally to the increase in the number of
Processors

27

Strong Scaling

- Strong scaling: defines how the solution time varies with increasing
number of processors p for a fixed total problem size (i.e. fix workload is

split among cores):
(@) (b) (©)

» Speedup for strong scaling:

S0) = 7]

Split of the fixed problem size over a) 1 core, b) 2 cores, c) 4 cores

» Efficiency for strong scaling:

S(p)
Es(p) = ——
p
10 : ; ‘
T(1) = time of one thread to process the data ol ‘_:_':f;:'sured,
T(p) = time of p threads to process the same data ol
Example: g :
System with fix problem size N (e.g. # particles) j% 5/
Problem size: Execution time: Speedup: 4
N =100 T1)=12.0s S(1)=1.0 3
N =100 T@2)= 6.0s S(@)=2.0 2r
N=100 => T@)= 40s 5> S(4) =30]
N =100 T@8)= 3.0s S(8) =4.0 # threads

28

Weak Scaling

- Weak scaling: defines how the solution time varies with the number of
processors p for a fixed problem size per processor

» Speedup for weak scaling doesn’t make sense

» Efficiency for weak scaling:

Bu(p) = %

T(1) = time of one thread to process the data
T(p) = time of p threads to process p times the data

Example:

Problem size: Execution time: Efficiency:
N =100 T)=12s E(1)=1.0
N = 200 T(2) =15 s E©2)=0.8
N = 400 TW-20s = E@-06
N = 800 T(8) = 24 s E(8) = 0.5

(@ (b) ©

Problem size with a) 1 core, b) 2 cores, ¢) 4 cores

1.4

- - -ideal
1.2¢ measured |

Efficiency
© o o
> O ®

o
N

(@)
-

2 3 4 5 6 7 8 9 10
threads 29

Amdahl’s Law: Example 3

- Load balancing

 In the previous example, in order to achieve the speed-up of
91 (for the larger problem) with 100 processors, we
assumed that the load was perfectly balanced.

Perfect balance: each of the 100 processors has 1% of the work to
do

- What if: 1 of the 100 processors load is higher than all the

other 997
Calculate for increased loads of 2% and 5%

30

Amdahl’s Law: Example 3

If one has 2% of the parallel load then it must do
2% x 10000 (larger problem) = 200 additions

* The other 99 will share 9800
Since they operate simultaneously:

Exec time after improvement = max (93%075, 2010t) + 10t = 210¢
10010¢
The speedup drops to Speed-up;gg = 00— 48

Speed-upigg ° |N°= 48% (instead of 91%)

If one processor has 5% of the load, then it must perform
5% x 10000 = 500 additions

31

The roofline model

The Roofline Model

- Proposed by Williams, Waterman and Patterson [1]:
* Crucial in performance predictions
« Helpful for software optimization

- “Bound-and-bottleneck” analysis:
* Provides valuable performance insight

« Focuses on the primary performance factors
« Main system bottleneck is highlighted and quantified

[I7 Roofline: an insightful visual performance model for multicore architectures, Williams and Waterman and Patterson, Communication to ACM, 2009

33

Computation-Transfer overlap

On CPUs:

« Superscalar execution (multiple instructions per cycle)
* In principle: automatic overlap (balanced instructions)
* In practice: enforced through software prefetching

34

The Roofline Model

- Main assumptions/issues:

« The memory bandwidth is the constraining resource
(Off-chip system memory)

* Transfer-computation overlap

« Memory footprint does not fit in the cache
- We want a model that relates:

« Computing performance [GFLOP/s]

« Off-chip memory traffic [GB/s]

- New concept: the operational intensity [FLOP/Byte]

35

Operational Intensity

- Operations per byte of DRAM traffic

* It measures the traffic between the DRAM and the Last
Level Cache (further away from processor)

- It excludes the bytes filtered by the cache hierarchy

Off-chip
memory

Cache
hierarchy

Processing
element

Operational Intensity

- Not equivalent to arithmetic intensity [1], machine balance[2]
* which refer to traffic between the processor and the cache

- Not forcedly bound to FLOP/Bytes (e.g. Comparison/Byte)

4)

Off-chip
memory

Cache
hierarchy

Processing
element

[1] Harris, M. Mapping Computational Concepts To Gpus. In ACM SIGGRAPH Courses, 2005.
[2] Callahan, D., Cocke, J., Kennedy, K. Estimating Interlock and Improving Balance For Pipelined Machines (1988)

37

Abstraction

GFLOP/s FLOP/B

GB/s Operational Intensity:
FLOP-to-byte of off-chip memory transfers

38

The Roofline Model

* The roofline is a log-log plot

- It relates:
« Performance f [FLOP/s] with
« Operational intensity 1" [FLOP/Byte]

- Two theoretical regimes for a kernel k:

* Performance of k is limited by the DRAM bandwidth:

o f(rk) = Tk bpeak:

« Performance of k is limited by the compute power:

=) f(rk> — fpeak

39

The Roofline Model

100.0 e
L’
Sl
b:\ .’

7)) 1 00 = 4

g L 3 GFLOP/s
i [-M;Xi-m:m-a:hi-ev:lbl-e By C++ microbenchmark
Q) performance! o

0.010 1.000 10.000 100.000

% 0-1
Operational Intensity

9 4x Quad-Core AMD Opteron 8380 @ 2.5GHz - 1 Thread - C++

40

Nominal Performance

- How to estimate nominal Jfpeak and bpeak?
- From the hardware specifications of the platform

- Examples

Processor Vector size instructions per clock,
Clock/sec ((SSE, AVX,..) FMAs

PP: 2.5 [Ghz] * 4 [SIMD-width] * 2 [issued FLOP/clock] * 16 [cores] = 320 [GFLOP/s]

No. of cores

Cl\l/IOeCrE/oSré/C Channel size No. channels bits/Byte
PB: 1.3 [Ghz] * 64 [bits] * 2 [channels] / 8 [bits/Byte] = 21.3 [GB/s]

Performance=min(OI*PB,PP)

41

Measured Performance

« Microbenchmarks:

« STREAM benchmark or similar

« Nominal peak or vectorized
- https://github.com/Mysticial/Flops

- Expected discrepancy from nominal quantities:
 FLOP/s: 90-100% of nominal performance

« GByte/s : 50-70% of nominal performance

- Discrepancies reveal:
* Programming skills in extracting system performance
» Best case scenario for more complex kernels

42

https://github.com/Mysticial/Flops

The Roofline Model

* Run once per platform, not once per kernel

- Estimation of operational intensities (Flops/byte) can be
tricky

- What happens if you compute them wrong?

add scale triad
Zi=Xi+yi Z; = aX; zi=axi+yi
1 2readxy 1 tread¥ 2 2read ()
Intel Xeon W3520 12 1r\?v?ite)zz))/ 8 1$|?te ();) 12 1 write (2)
NOTE:
4P AMD Opteron 8380 1 3 read (x,y,2) L 2 read (x,2) 2 3 read (xy.z) Cache Dependent
16 "1 write () 12 4 write () 16 1 write (2) Numbers
1 1 2
2P AMD Opteron 2435 . 8 5
NVIDIA Tesla S1070 11—2 2—3 %

|

43

Operational Intensity: Example

« Given

for (int ix=1; 1ix<N-1; 1ix++)

out[ix] = in[ix-1]-2*in[ix]+in[ix+1]

- where in and out are float arrays of size N

1. What is the number of floating-point operations?

2. What is the number of memory accesses from main memory
If:
a) there is no caching

b) there is a perfect cache of infinite size

44

Operational Intensity: Example

for (int ix=1; ix<N-1; 1ix++)
out[ix] = in[ix-1]-2.*in[ix]+in[ix+1]

- Floating point operations: 3*(N-2) FLOP
- Memory accesses (no caching): 4*(N-2) floats accessed
every data accessed is counted

- Memory accesses (perfect caching): 2*N-2 floats accessed
data is read only once and written only once

45

Example: 2D Heat Equation

2D heat equation:
dq 5 point stencill

q: singe precision (4 Bytes)

Algorithm

1. Laplace Operator
RHS; ; = C1(q41,; + @1, + @41 + a1 j—1 — 447 ;)
2. Forward Euler Operator:

"t =g, + 6t - RHS;

46

A-Priori Performance Analysis

RHS; ; = Cl(qf?—l—l,j T qun—l,j + q2j+1 T q:irfj—l — 46123')
* Floating point operations per point: 4 ADD + 2 MUL

- Memory accesses per point:
Worst case: 5 read + 1 write
Best case: 1 read + 1 write

 Operational Intensity:
Worst case: 6 FLOP / (6"4 B) = 0.25 FLOP/B
Best case: 6 FLOP / (2*4 B) = 0.75 FLOP/B

47

A-Priori Performance Analysis

qZ;-H = qZ’j + o0t - RHS; ;

Floating point operations per point: 1 ADD + 1 MUL

Memory accesses per point:
Worst case: 2 read + 1 write
Best case: 2 read + 1 write

Operational Intensity:
Worst case: 2 FLOP / (3*4 B) = 0.17 FLOP/B
Best case: 2 FLOP / (3*4 B) = 0.17 FLOP/B

48

GFLOP/s

Roofline

o

BN BN BN BN By BN BN EN |

1.00

FLOP/B

10.00 100.00

49

A More Accurate Analysis

- We have locality!

- Memory accesses per point:
e 3read + 1 write

 Operational Intensity:
- 6 FLOP/(4*4 B) = 0.375 FLOP/B

Roofline

L

-----‘---

¢
4
4

-----*--------

72 GFLO)?J§

{)
al
o
|
LL
Q)
0.01 .7 | *hoo 10.00 100.00

FLOP/B

51

Optimization

1. Locality
2. Communication
3. Computation

1000 -
| |
|
| |

100 . ﬁ
i
|

10

GFLOP/s

D

©
»*

0.01 0.1 1 10 100
FLOP/Byte

Ceilings on Brutus (single precision)

1000.0
2
o 100.0
—1
L
O,
8 10.0
-
®
£ —
g p 1.0 Plain serial C+4+
O
(ol
0.01 0.10 1.00 10.00 100.00
0.1

Operational Intensity [FLOP/B]

53

Ceilings on Brutus (single precision)

1000.0

100.0

Multithreading

Plain serial C+4

Performance [GFLOP/s]

0.01 0.10 1.00 10.00 100.00

0.1
Operational Intensity [FLOP/B]

54

Performance [GFLOP/s]

Ceilings on Brutus (single precision)

1000.0

SIMD

Multithreading

Plain serial C+4

0.01

0.10 1.00 10.00 100.00

0.1
Operational Intensity [FLOP/B]

55

Performance [GFLOP/s]

Ceilings on Brutus (single precision)

Balanced MUL-ADD

1000.0
p g © 06 ¢ 06 06 0 0 0 0 0 o S o”\o/lD
e S Multithreading
. °10.0
1.0 Plain serial C+4+
0.01 0.10 1.00 10.00 100.00
0.1

Operational Intensity [FLOP/B]

56

Performance [GFLOP/s]

Ceilings on Brutus (single precision)

1000.0 Balanced I\/IUL—:A\.DD
p e © 0006 0 0 0 0_0% o S o”\o/lD
100.0 o e o o o000 e 0ed’ee I\./IL.JI’.[it.hI.’e.a.di.ng

Plain serial C+4

0.10 1.00 10.00 100.00

0.1
Operational Intensity [FLOP/B]

57

Improving Locality

=F] |
EE Z(Z|Z|Z

Linear Blocked Blocking Hierarchy

Z|

Morton or Z-Order Peano

The Ridge Point

- Ridge point characterizes the overall machine performance

* Ridge point “to the left”: it is relatively easy to get peak
performance

* Ridge point “to the right”: it is difficult to get peak performance

GFLOP/s

0.010 7100 1.000 10.000 100.000
0.1

Operational Intensity
What does it mean “a ridge point to the right” anyway? >

Production Software

- Assumption: production-ready software

- Limited set of algorithms
* Fixed set of kernels } Best hardware solution?

* Fixed operational intensities

100.0
% 10.0
S Best platform
-~
LL
Q)
0.01 1.000 10.000 100.000

FLOP/Byte

60

Is Moore worth?

|t depends:
* On the ridge point
« On the operational intensity of the considered kernels

128
Opteron X4
64
" 32
E Opteron X2
S 16 -
6 -
2 8 -
n -
)
4
&
2
1
1/2
1/4 1/2 1 2 4 8 16

61

The Roofline Model: Summary

- |t visually relates hardware with software
« Performance = min(PB x Ol, PP)
- Ridge point characterizes the model

1000

100

)

Hardware (GFLOP/s)

-

1/10 100

Software (FLOP/B)

62

Conclusions

+ When is the roofline model useless?
« When you discuss performance in terms to time-to-solution.

- When is the roofline model crucial?
« When you want to optimize your code (data reuse, ceilings)
« To predict maximum achievable performance (roofline, ridge point)
* To systematically assess your performance (roofline, op. int.)

- What do you do if all your kernels have a bad op. int.?

* Either live with it

* Go back to equations, pick better discretization schemes/algorithms
(leading to a higher op. int.)

« Wanted: less simulation steps, but more costly (high order schemes)

63

