MATH 133 - Formula Sheet

Definition(Norm of a vector)
If $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ in \mathbb{R}^{n} the norm of \mathbf{v} is given by $\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}$
Definition(Dot Product)
If $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ then the dot product of \mathbf{u} and \mathbf{v} is defined by

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

If θ is the angle between \mathbf{u} and \mathbf{v} then $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$

The Following Are Equivalent

1. \mathbf{u} is orthogonal to \mathbf{v}
$2 . \mathbf{u} \cdot \mathbf{v}=0$
2. $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$

Definition(Orthogonal projection)
Let $\mathbf{u} \neq \mathbf{0}$ and \mathbf{v} be two vectors in \mathbb{R}^{n}, the projection of \mathbf{v} onto \mathbf{u} is given by

$$
\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}
$$

$\underline{\text { Equation of a line in } \mathbb{R}^{2}}$
If L is a line in \mathbb{R}^{2} its general equation is given by $\mathbf{a x}+\mathbf{b y}=\mathbf{c}$ where $\mathbf{n}=\left[\begin{array}{c}a \\ b\end{array}\right]$ is a normal vector for L.

Equation of a line in \mathbb{R}^{3}

In \mathbb{R}^{3} the vector equation of a line is given by $(L): \mathbf{p}+t \mathbf{d}$
where $\mathbf{p}=\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the line and $\mathbf{d}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ is its directional vector.
In parametric form we write $(L):\left\{\begin{array}{l}x=x_{0}+a t \\ y=y_{0}+b t \\ z=z_{0}+c t\end{array}\right.$

$\underline{\text { Equation of a plane in } \mathbb{R}^{3}}$

Let $\mathbf{p}=\left(x_{0}, y_{0}, z_{0}\right)$ be a point in the plane, $\mathbf{n}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ a vector normal to the plane, \mathbf{u} and \mathbf{v} two vectors parallel to the plane (but not parallel to each other) and $\mathbf{x}=(x, y, z)$ any point in the plane then:

- Normal form: $\mathbf{n} \cdot(\mathbf{x}-\mathbf{p})$
- General form: $a x+b y+c z=d$
- Vector Form: $\mathbf{x}=\mathbf{p}+s \mathbf{u}+t \mathbf{v}$

Some distances

- distance from a point B to a line (L)

Get a point A on the line.
Let d be the directional vector of the line.
Denote the vector $\mathbf{A B}$ by \mathbf{v}.
$\operatorname{dist}(B, L)=\left\|\mathbf{v}-\operatorname{proj}_{d} \mathbf{v}\right\|$

- distance from a point $B\left(x_{0}, y_{0}\right)$ to a line $(L): a x+b y=c\left(\right.$ in $\left.\mathbb{R}^{2}\right)$

$$
\operatorname{dist}(B, L)=\frac{\left|a x_{0}+b y_{0}-c\right|}{\sqrt{a^{2}+b^{2}}}
$$

- distance from a point $B\left(x_{0}, y_{0}, z_{0}\right)$ to a plane $(P): a x+b y+c z=d$

$$
\operatorname{dist}(B, P)=\frac{\left|a x_{0}+b y_{0}+c z_{0}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

Theorem (Number of solution of a system of linear equations)
A system of linear equations can have only one of the following

- No solution (inconsistent system)
- A unique solution (consistent system)
- A infinte number of solutions (consistent system)

Definition(Elementary Row Operations, ERO)
The three elementary row operations are:

1. Interchange two rows.
2. Multiply (or divide) a row by a non-zero constant.
3. Add a multiple of a row to another.

Definition(Reduced Row Echelon Form, RREF)

A matrix is in Reduced Row Echelon Form if it satisfies the following 4 conditions

1. All zero rows are at the bottom.
2. The first non-zero entry of every non-zero row is a 1 (leading one).
3. Leading ones go from left to right.
4. All entries above and below any leading one are zero.

If a matrix satisfies only the first 3 conditions above then we say it is in Row Echelon Form (REF).

Definition(Gauss-Jordan elimination process)
This is the process of applying the ERO's to a matrix to get it to RREF.
Definition(Rank of a matrix)
The rank of a matrix is the number of non-zero rows in its $R R E F$ or $R E F$.

Definition(Linear combination)

A vector \mathbf{u} is a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ if we can find scalars $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\mathbf{u}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{n} \mathbf{v}_{n}
$$

Definition (Span, Spanning Set)
Given a set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ of vectors in \mathbb{R}^{n} :

- $\operatorname{Span}(S)=$ the set of all linear combinations of the vectors in S.
- If $\operatorname{span}(S)=\mathbb{R}^{n}$ then we say S is a spanning set for \mathbb{R}^{n}.

Definition(Linear independance)
A set $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ of vectors in \mathbb{R}^{n} is said to be linearly independant if the only solution to the equation

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}
$$

is $c_{1}=c_{2}=\cdots=c_{n}=0$. Otherwise the vectors are called linearly dependant (which also means that at least one of them can be written as a linear combination of the others).

Definition(Symmetric matrix)
A square matrix is symmetric if $A=A^{T}$.
Definition(Inverse of a Square Matrix)
Given a square matrix A its inverse (if it exists) is the matrix denoted by A^{-1} such that $A A^{-1}=A^{-1} A=I$.

If the matrix is a 2×2 matrix we use the formula

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

provided that the determinant of $A, \operatorname{det}(A)=a d-b c \neq 0$.
For a matrix of higher dimensions the process looks like this:

$$
[A \mid I] \rightarrow \text { Gauss Jordan Process } \rightarrow\left[I \mid A^{-1}\right]
$$

If the matrix is not invertible (i.e. does not have an inverse) we will not get the identity on the left side after applying the Gauss-Jordan process.

Definition(Elementary Matrix)

An elementary matrix is a matrix that can be obtained by applying one Elementary Row Operation to the identity matrix.

Definition(Row Space, Column Space, Null Space)
Let A be an $m \times n$ matrix,

- The row space of $A=\operatorname{span}($ Rows of $A)$.
- The Column space of $A=\operatorname{span}($ Columns of $A)$.
- The Null space is the subspace of \mathbb{R}^{n} spanned by the solutions of the homogeneous system $A \mathbf{x}=\mathbf{0}$.

Definition(Basis)

A basis of a subspace S of \mathbb{R}^{n} is a set of vectors that span S and are linearly independant.

Definition(Rank)

The rank of a matrix A (denoted by $\operatorname{rank}(A)$) is the dimension of its row space (or column space since they're equal)

Definition(Nullity)

The nullity of a matrix A (denoted by nullity (A)), is the dimension of its Null space.
Theorem (The Rank Theorem)
For any $A_{m \times n}$,

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n .
$$

Definition(Linear Transformation)
A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called a linear transformation if it satisfies

1. $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$
2. $T(k \mathbf{u})=k T(\mathbf{u})$

We usually check if T is a linear transformation by checking that

$$
T\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}\right)=c_{1} T\left(\mathbf{v}_{1}\right)+c_{2} T\left(\mathbf{v}_{2}\right)
$$

for c_{1}, c_{2} scalars and $\mathbf{v}_{1}, \mathbf{v}_{2}$ in \mathbb{R}^{n}.

Definition(Minor)

Given $A_{n \times n}$, the minor of entry $i j$ is denoted by $A_{i j}$ and is the determinant of the matrix we get from A by removing row i and column j.

Definition(Cofactor)

$$
C_{i j}=(-1)^{i+j} A_{i j}
$$

Definition(Determinant of an $n \times n$ matrix)
Given an $n \times n$ matrix $A(n \geqslant 2)$

$$
\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

by expanding along the $i^{\text {th }}$ row.

$$
\operatorname{det}(A)=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
$$

by expanding along the $j^{\text {th }}$ column.

Properties of the determinant function

Given an $n \times n$ matrix A

- If A has a zero row or zero column then $\operatorname{det}(A)=0$.
- If we get matrix B by interchanging two rows of A then $\operatorname{det}(B)=-\operatorname{det}(A)$.
- If we get matrix B by multipying one row of A by $k \neq 0$ then $\operatorname{det}(B)=k \operatorname{det}(A)$.
- If we get matrix B by adding a multiple of a row to another of matrix A then $\operatorname{det}(B)=\operatorname{det}(A)$.
- $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$.
- $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
- $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

Definition(Eigenvalue, Eigenvector, Eigenspace)

Given $A_{n \times n}$ a scalar λ is an eigenvalue of A if there is a non-zero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$.
The eigenvalues of A are the roots of the characteristic polynomial given by $\operatorname{det}(A-\lambda I)$; (we solve $\operatorname{det}(A-\lambda I)=0)$.
In this case \mathbf{x} is called an eigenvector or A corresponding to λ.
The collection of all eigenvectors corresponding to λ along with the zero vector form the eigenspace of λ denoted by E_{λ}.

Definition(Similar Matrices)

Given A and B two $n \times n$ matrices. A is said to be similar to B (written $A \sim B$) if there is an invertible matrix P such that $P^{-1} A P=B$.

Definition(Diagonalizable matrix)
An $n \times n$ matrix A is diagonalizable if there is a diagonal matrix D that is similar to A. i.e. If there is a diagonal matrix D and an invertible matrix P such that $D=P^{-1} A P$.

Theorem (when is a matrix diagonalizable?)
An $n \times n$ matrix A is diagonalizable if one of the following is true

- A has n distinct eigenvalues.
- For each eigenvalue the geometric multiplicity is equal to the algebraic multiplicity.

Definition (Orthogonal set)
A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is an orthogonal set if any two vectors in the set are orthogonal. (i.e. $\mathbf{v}_{i} \cdot \mathbf{v}_{j}=0$ for all $i, j=1, \ldots n$).

Definition(Orthogonal basis)
An orthogonal basis is a basis that is also an orthogonal set.
Definition(Orthogonal matrix)
An $m \times n$ matrix Q is called orthogonal if $Q^{T} Q=I_{n}$.
(The columns of Q form an orthonormal set)
Theorem (Important property about Orthogonal matrices)
If Q is a square orthogonal matrix then $Q^{T}=Q^{-1}$.
Definition(Orthogonal complement)
Let W be a subspace of \mathbb{R}^{n}. We say that a vector \mathbf{v} in \mathbb{R}^{n} is orthogonal to W if \mathbf{v} is orthogonal to every vector in W. The set of all vectors that are orthogonal to W is called the Orthogonal complement of W and denoted by \mathbf{W}^{\perp}.

Theorem (Important theorem to find \mathbf{W}^{\perp})
If A is an $m \times n$ matrix then then

$$
(\operatorname{row}(A))^{\perp}=\operatorname{null}(A) \quad \text { and } \quad(\operatorname{col}(A))^{\perp}=\operatorname{null}\left(A^{T}\right)
$$

Definition (Orthogonal projection of \mathbf{v} onto W)
Let W be a subspace of \mathbb{R}^{n} and let $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be an orthogonal basis for W. For any vector \mathbf{v} in \mathbb{R}^{n}, the orthogonal projection of \mathbf{v} onto W is given by

$$
\operatorname{proj}_{W} \mathbf{v}=\left(\frac{\mathbf{u}_{1} \cdot \mathbf{v}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\cdots+\left(\frac{\mathbf{u}_{k} \cdot \mathbf{v}}{\mathbf{u}_{k} \cdot \mathbf{u}_{k}}\right) \mathbf{u}_{k}
$$

Definition(The Gram-Schmidt process)
The Gram-Schmidt process is the process we use to transform a basis into an orthogonal basis. It works as follows:

Given $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ a basis for a subspace W of \mathbb{R}^{n}

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{x}_{1} \\
\mathbf{v}_{2} & =\mathbf{x}_{2}-\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{x}_{2} \\
\mathbf{v}_{3} & =\mathbf{x}_{3}-\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{x}_{3}-\operatorname{proj}_{\mathbf{v}_{2}} \mathbf{x}_{3} \\
& \vdots \\
\mathbf{v}_{k} & =\mathbf{x}_{k}-\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{x}_{k}-\operatorname{proj}_{\mathbf{v}_{2}} \mathbf{x}_{k}-\cdots-\operatorname{proj}_{\mathbf{v}_{k}} \mathbf{x}_{k}
\end{aligned}
$$

Finally we have $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ an orthogonal basis for W.

