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Abstract
The envisioned sixth-generation (6G) of wire-

less networks will involve an intelligent integration 
of communications and computing to meet the 
urgent demands of task-oriented applications. To 
realize the concept of the smart radio environ-
ment, reconfigurable intelligent surfaces (RISs) are 
becoming promising options for offering program-
mable propagation of impinging electromagnetic 
signals via external control. However, the purely 
reflective nature of conventional RISs induces sig-
nificant challenges in supporting a variety of com-
putation tasks, such as wave-based calculation 
and signal processing. To fulfill such computing 
demands, new metamaterials are needed to com-
plement the existing technologies of reconfigu-
rable surfaces, enabling further diversification of 
electronics and their applications. In this event, 
we introduce the concept of reconfigurable intel-
ligent computational surface (RICS), which is 
composed of two reconfigurable multifunction-
al layers: the reconfigurable beamforming layer, 
which is responsible for tunable signal reflection, 
absorption, and refraction, and the intelligence 
computation layer, which concentrates on meta-
materials-based task-oriented computing. By 
exploiting the recent trends in computational 
metamaterials, RICSs have the potential to make 
joint computation and communication a reali-
ty. We further demonstrate two typical tasks of 
RICSs, in particular a spectrum learning task for 
intelligent communications and a signal process-
ing task for physical layer security. Future research 
challenges arising from the design and operation 
of RICSs are finally highlighted.

Introduction
As a key enabler for building smart wireless envi-
ronments, metamaterials, sometimes known as 
metasurfaces, are engineered materials with prom-
ising artificial properties that are not exhibited by 
natural materials. Recent advances in the design 
of such materials offer exciting opportunities for 
unprecedented control and manipulation of elec-

tromagnetic (EM) properties, thereby promoting 
the emergence of reconfigurable/programma-
ble metasurfaces. In such context, reconfigurable 
intelligent surfaces (RISs) have the potential to 
significantly improve the quality of communica-
tion in the sixth-generation (6G) of wireless net-
works, by intelligently reconfiguring the wireless 
propagation of EM signals via low-cost passive 
reflecting elements (meta-atoms). For example, in 
communication scenarios with obstacles between 
the transmitter and receiver, virtual line-of-sight 
links can be created through RIS’s reflections 
to improve the desired received signal strength 
and extend the wireless coverage. Additionally, 
by configuring the reflection coefficients of RIS 
elements appropriately, the co-channel/inter-cell 
interference can be suppressed, EM field expo-
sure can be tamed, and physical-layer security can 
be further improved.

Although RISs constitute an emerging technol-
ogy for creating an intelligent wireless radio envi-
ronment, they are not capable of performing tasks 
other than wireless communications via passive 
reflection, thereby not satisfying the quality-of-ex-
perience (QoE) demands of envisioned future 
advanced tasks that involve both communications 
and computing. In contrast to existing efforts on 
RISs, in this article, we elaborate on a significant 
question: “why and how can task-oriented wire-
less communication and computation be achieved 
for future intelligent networks?” To answer this 
question, we introduce a motivating example to 
illustrate the inevitability of the task-oriented meta-
materials and demonstrate the indispensability of 
the proposed reconfigurable metasurfaces. 

In the conventional RISs-empowered wireless 
communication systems, the interfering signals 
tend to dynamically fluctuate and the convention-
al RIS “blindly” reflects both the desired and inter-
fering signals. Due to the unpredictable nature of 
interfering signals, undesired reflections via RISs 
become a critical challenge, which is known to 
severely degrade the desired signal at the receiv-
er [1]. To solve this challenge, carrying out the 
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tasks that involved both communication and com-
putation via RISs becomes necessary. If the con-
ventional RISs are empowered with some basic 
computational capabilities to perform active EM 
sensing for interference estimation, such a tech-
nical challenge could be mitigated with very low 
extra hardware cost [2]. Specifically, by exploiting 
the intrinsic potential of metamaterial-based com-
puting techniques, certain task-specific comput-
ing operations, such as mathematical functions 
(e.g., spatial differentiation, integration, and con-
volution) and artificial neural inference, can be 
achieved [3]. This kind of structure is referred to 
as computational metamaterials, which specializes 
in task-oriented computation on processing wire-
less signals,  images through neuromorphic com-
puting, and/or optical analog computing [4, 5].

At the task-execution level, computation effi-
ciency plays an important role for improving the 
QoE of the tasks. Compared to traditional task-in-
dependent computing, a potential trend of future 
metamaterials is the task-oriented driven design, 
where the task is computed according to its spe-
cific features. That is to say, the computation tasks 
are performed based on the prior knowledge, 
which can be achieved via an artificial neural net-
work [6]. For instance, a programmable artificial 
intelligence machine structure has been recently 
proposed to handle various deep learning tasks 
via manipulating the reflected or transmitted EM 
waves [7]. In this context, the task-oriented driven 
metamaterials design has potential to provide the 
unique possibility of extraction of task-relevant 
information, thereby enhancing the tasks’ compu-
tation efficiency substantially.

Inspired by the above, it is foreseen that future 
intelligent metasurfaces will integrate task-orient-
ed computation with communications functions 
via computational metamaterials. In this article, we 
explore a new structure of intelligent metasurfaces 
that exploits the natural superiority of computation-

al metamaterials to simultaneous enable dynami-
cally adjustable signal reflections and task-oriented 
computation. In particular, we term these struc-
tures “reconfigurable intelligent computational sur-
faces,” and abbreviate them as “RICSs.”

Fundamentals of RICS
Compared to materials found in nature, the prop-
erties of metamaterials, such as permittivity and 
permeability, stem from the form of their atomic 
design. Recently, the interest in analog computing 
was revived in the context of metamaterials [8]. 
In this context, the proposed RICS belongs to a 
composite material, which is designed and opti-
mized to function as a means to control the EM 
waves as well as to perform computation tasks. 
Different from conventional RISs that can only 
reflect their incoming signals, the proposed RICS 
structure is composed of three layers: the reconfig-
urable beamforming layer, the intelligence compu-
tation layer, and the control layer, as conceptually 
sketched in Fig. 1. The first two multifunctional lay-
ers interplay with each other and should be joint-
ly configured. The inner control layer is a control 
circuit board that implements a smart controller, 
which focuses on adjusting the tunable parameters 
of the beamforming layer and can be implemented 
via field-programmable gate arrays.

In the following, we introduce the design of the 
first two layers: the reconfigurable beamforming 
layer and the reconfigurable computation layer. 
Then we demonstrate the architectural design of 
the RICS, which can be used to reflect signals as 
well as perform computational operations.

Reconfigurable Beamforming Layer
The reconfigurable beamforming layer commonly 
comprises a number of tunable elements, which can 
be dynamically configured to intelligently reflect, 
refract, or absorb the incident radio frequency (RF) 
signal. In particular, due to the specific demand of 

FIGURE 1. The architecture design of an RICS. It contains three layers: a reconfigurable beamforming layer, 
an intelligence computation layer, and a control layer. In order to meet the diversification of computa-
tional tasks, the intelligence computation layer can be configured by different kind of metamaterials, for 
example, neuromorphic computing metamaterials for wireless spectrum learning (shown on the top-right 
[4]) or analog computing metamaterials for secrecy signal processing (shown on the bottom-right [5]).
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computation tasks, these tunable elements can be 
designed to have four kinds of operations.

Reflection: This operation indicates that the 
elements act just like the conventional passive ele-
ments that reflect the incident RF signal.

Refraction: In this operation, the incident 
RF signal can be simultaneously reflected and 
refracted toward both sides of the reconfigurable 
beamforming layer. For instance, by controlling 
the ON-OFF state of the positive-intrinsic-negative 
(PIN) diode of each element [9].

Absorption: By enabling this operation, some 
portion of the tunable elements work as receivers 
with reception RF chains, thereby allowing to further 
process the received signal in the digital domain. 

Storage and Retrieval: This operation enables 
the storage and retrieval of the EM waves by 
exploiting the electromagnetically induced trans-
parency effect.

Based on the configured operations of the tun-
able elements, the operating mode of the recon-
figurable beamforming layer can be categorized 
into two modes.

Reflection-Absorption (RA) Mode: This mode 
mainly consists of two types of elements: the con-
ventional passive reflecting elements and semi-ac-
tive elements for incident RF signal processing. 
Specifically, for the semi-active RICS elements, only 
few RF front-ends, analog-digital conversion, and 
down-conversion are required, to enable informa-
tion sensing from the incident wireless signals, for 
example, achieving the Inphase-and-Quadrature 
(I/Q) sequences. Hence, baseband processing for 
signal decoding is unnecessary, avoiding the dete-
rioration of tunable reflections since only very few 
semi-active elements are needed. Different from 
the active elements requiring full RF chains for 
sensing, our proposed semi-active elements results 
in less hardware requirements.

Reflection-Refraction (RR) Mode: To simul-
taneously realize reflection and refraction, the 
incident energy is split into two parts: some of 
the energy is reflected while the remaining of the 
energy is refracted to serve users located on the 
opposite side.

Intelligence Computation Layer
Determined by the growing demands of compu-
tational applications, the intelligence computation 
layer can consist of different kinds of computational 
metamaterials, such as neuromorphic computing 
metamaterials and analog computing metamaterials 
for performing certain specific task in near-real-time.

Neuromorphic Computing Metamaterials: 
To realize artificial neural computing with faster 
speed and lower energy consumption, optical neu-
romorphic computing was proposed, especially for 
achieving multi-class classification, by leveraging 
optical reflection through neuromorphic metama-
terials, as shown in top-right of Fig. 1. For instance, 
the neuromorphic computing metamaterial based 
intelligence computation layer can consist of an 
array of TiO2 pillars on top of a SiO2 substrate [10].

Principle: Emerging neuromorphic metamate-
rials generally consist of multiple layers of nano-
structures, which are composed of an array of 
nanoribbons. By changing the size of the ribbons, 
the amplitude and phase of scattered light can 
be controlled. Similar to the training of traditional 
deep neural networks, training the neuromorphic 

metasurface can be a gradient descent process 
that aims at minimizing the loss function. The dif-
ference is that the additional trainable parameters 
of neuromorphic metasurface include the widths 
of the nanoribbons. After going through a few 
layers of the appropriately trained neuromorphic 
metasurface, the output light becomes a focused 
beam, which points toward a spatial location cor-
responding to the inferred class.

Operating Mode: The operating mode of the 
intelligence computation layer via neuromorphic 
computing metamaterials is denoted as the neu-
romorphic-computing (NC) mode. For the NC 
mode, the intelligence computation layer con-
sists of multiple tiers of nanostructures, which 
are composed of an array of nanoribbons on top 
of a dielectric substrate. The well-trained intelli-
gence computation layer particularly serves the 
purpose of classification problem via neuromor-
phic computing. For instance, when a plane wave 
illuminates an object and passes through the intel-
ligence computation layer, this layer then scat-
ters the light in a way that is equivalent to artificial 
neural computing. In general, the input of neu-
romorphic computing metamaterials is the light 
scattered by an object, which is usually resized 
and converted into a digital vector first.

Analog Computing Metamaterials: In recent 
years, the study of analog computing through 
metamaterials has attracted wide attention due to 
the advantages of parallel processing with ultra-
high speed. Different from the fresh literature of 
intelligent surfaces design that conventionally uses 
digital units (such as received RF chains and com-
putational/storage units [11]) to achieve signal 
processing, the intelligence computation layer 
with analog computing metamaterials is able to 
perform computation tasks more efficiently (i.e., 
processing latency is very low), as highlighted in 
the bottom-right of Fig. 1. To replace circuits with 
computing metamaterials, two approaches can 
be implemented by letting EM waves propagate 
through metamaterials, such as the Green’s func-
tion approach and the metasurface approach [8].

Principle: Owning to the powerful wave 
manipulation abilities and subwavelength charac-
teristics, the EM metamaterial can perform math-
ematical operations, such as spatial integration, 
differentiation, and convolution. There exist two 
popular approaches to achieve this functionality: 
the metasurface approach, and the Green’s func-
tion (GF) approach, by which the computation 
can be directly performed on an analog signal. 
Specifically, the metasurface approach performs 
signal processing in the Fourier domain based on 
suitably designed metamaterial blocks that can 
perform mathematical operations. Each metasur-
face block is composed of a layered structure 
of two alternating materials, for example, Alu-
minum-doped zinc oxide and silicon. The meta-
surface approach consists of three sub-blocks: 
two Fourier transformers via graded-index and 
lenses, and an optical metasurface between the 
two graded-indexs for realizing the mathemati-
cal operation of choice. By suitably manipulat-
ing the impinging wave to propagate through 
the metamaterial blocks, signal processing can 
be achieved accordingly. In the GF approach, 
the multi-layer structure is composed of a stack 
of subwavelength metamaterial (e.g., dielectric) 

Determined by the 
growing demands of 
computational applica-
tions, the intelligence 
computation layer 
can consist of different 
kinds of computational 
metamaterials, such as 
neuromorphic com-
puting metamaterials 
and analog computing 
metamaterials for per-
forming certain specific 
task in near-real-time.
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slabs. By optimizing the permittivity, permeability, 
and thickness of each slab, it is feasible to carry 
out the computation directly in a spatial domain 
without involving additional Fourier lenses.

Operating Mode: The working mode of 
the intelligence computation layer via analog 
computing metamaterials is denoted as the ana-
log-computing (AC) mode. The AC mode par-
ticularly serves the purpose of signal processing 
via mathematical-based analog computing. In 
particular, the intelligence computation layer 
that works in this mode consists of multi-tiered 
dielectric slabs, thereby allowing the synthesis of 
mathematical operations of interest. By optimiz-
ing the permittivity, permeability, and thickness 
of each slab, the intelligence computation layer 
can act as certain mathematical operations on 
the incident refracted signal to match the consid-
ered transfer function without involving addition-
al Fourier lenses. 

In contrast to conventional solely reflective 
RISs and hybrid RISs for simultaneous tunable 
reflections and signal sensing [8], computational 
metamaterials can be designed for both signal 
reflection and specific computation tasks, without 
the requirement of additional computational units 
and analog combining circuitry, thereby involving 
lower power consumption and reduced hardware 
complexity, as highlighted in Table 1.

RICS Architecture Design
Based on the configurations of the reconfigurable 
beamforming layer and the intelligence computa-
tion layer, we present two kinds of RICS designs:

RICS-Design-A — RA+NC: This design is 
achieved via neuromorphic computing metamate-
rials, as shown in Fig. 2. Taking the task of wireless 
spectrum sensing as an example, to explore the 
potential of NC mode, data visualization needs 
to be utilized to map the wireless spectrum data 
into a unique image, which is, in turn, suitable 
for the neuromorphic computing metamaterials. 
Specifically, when the incident RF signal arrives 
at the reconfigurable beamforming layer working 
at the RA mode, the impinging signal is received 
via the semi-active absorption elements, while the 
remaining reflection elements reflect the signal 
in a conventional passive way. The received sig-
nal is transferred to an I/Q vector, which is then 
mapped into an image and further fed into the 

intelligence computation layer working as the NC 
mode. The final output indicates the class infer-
ring the components of the incident RF signal.

RICS-Design-B — RR+AC: This design is 
achieved via analog computing metamaterials, as 
shown in Fig. 3. Different from the RICS-Design-A, 
when the incident RF signal arrives at the recon-
figurable beamforming layer, the incident ener-
gy is divided into two parts: The reconfigurable 
beamforming layer is configured as the RR mode 
since the input of the intelligence computation 
layer is the original analog signal. In particular, 
some energy is used to reflect the impinging sig-
nal while the rest of the energy is for refracting 
the signal. Then the refracted signal is considered 
as the input to the intelligence computation layer 
with the AC mode. By performing analog com-
puting, the output of the intelligence computa-
tion layer demonstrates the specific mathematical 
operation of the incident signal.

Nowadays, intelligent reflection communica-
tion empowered wireless spectrum sensing and 
physical security are regarded as key features 
of supporting advanced tasks from society and 
industries [12]. To demonstrate the potential of 
RICSs, in the following sections, we present two 
illustrative computational tasks of RICSs: intelli-
gent spectrum sensing and secure wireless com-
munications.

TABLE 1. Comparison of the proposed RICS stricture with purely reflective and passive RISs as well as hybrid RISs.

Architecture design Key features Limitations and challenges

Conventional 
RIS

Consists of one reflection layer with 
almost passive elements, which are 
adjusted by a dedicated controller

Superposed multi-path signals impinge on each element, 
which provides tunable reflection, enhancing signal strength 
at a remote receiver

Purely passive reflective 
nature

Hybrid RIS [8]

Consists of one reflection layer 
with hybrid elements, which can be 
used for simultaneous reflection and 
sensing of the incoming signal

Each or groups of elements are attached to a waveguide, 
each connected to a reception RF chain, thereby enabling 
to sense a portion of the impinging signal via analog 
combining, and then, locally process it in the digital domain 
via a relevant unit

Additional power and 
complexity are introduced 
for signals sensing and local 
processing of the sensed 
information

Proposed 
RICS

Consists of the reconfigurable 
beamforming layer and the 
intelligence computation layer, 
thereby enabling wireless 
communications and computation 
via metamaterials

Computational metamaterials are used for performing 
certain computing tasks, without the requirement of analog 
combining circuitry, digital processing unit, and relevant 
converters, thereby involving lower power consumption 
and hardware complexity

Relies on computational 
metamaterials and on 
their joint design with the 
reconfigurable beamforming 
layer

FIGURE 2. The RICS-Design-A with RA+NC mode.
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spectrum leArnIng VIA rIcs-desIgn-A
In this section, we present an RICS-Design-A appli-
cation, which takes advantage of the neuromorphic 
computing metamaterials to perform the task of 
intelligent spectrum sensing while communicating.

motIVAtIon
In the context of tasks-oriented communications in 
future 6G wireless networks, integration of wireless 
sensing and communications has become an inev-
itable trend. Currently, RISs have been common-
ly used to improve the quality of wireless links by 
appropriately refl ecting the incident signals. How-
ever, due to the unpredictable superposition of the 
wireless signals, undesired refl ections of both the 
desired and interfering signals become a critical 
challenge, which may cause a deleterious eff ect on 
the receiver via the conventional RISs.

To address this challenge, it turns out that 
exploring wireless environments via RF spectrum 
learning becomes beneficial, which, however, 
requires a large amount of computing resources 
and power. This motivates the necessity to perform 
the task of wireless spectrum learning via the pro-
posed RICS, thereby enhancing the performance 
of wireless communications.

procedure
Due to the uniqueness of the wireless signal, the 
wireless spectrum learning task can be considered 
as a classifi cation problem and then addressed via 
a trained deep neural network model. With the 
inferred spectrum information given by RICS, the 
base station (BS) can improve the spectrum effi  -
ciency via allocating the wireless resources intelli-
gently for future 6G networks.

An illuminative example is illustrated in Fig. 4a, 
where three users (e.g., U1, U2, and U3) commu-
nicate with a BS via the RICS. The BS maintains a 
control link with a controller of the RICS, where 
the RICS sets the configuration as the RICS-De-
sign-A. Under such setups, an eight class classifi -
cation problem is described as follows:
• Class 1 - “Idle”: noise only.
• Class 2 - “U1”: user U1 only.
• Class 3 - “U2”: user U2 only.
• Class 4 - “U3”: user U3 only.
• Class 5 - “U1 + U2”: users U1 and U2.
• Class 6 - “U1 + U3”: users U1 and U3.
• Class 7 - “U2 + U3”: users U2 and U3.
• Class 8 - “U1 + U2 + U3”: users U1, U2, and U3.

To realize spectrum learning via RICS-De-
sign-A, we first train an optical neural network 
(ONN) model in the intelligence computation 
layer. Specifically, we collect RF traces by build-
ing a universal software radio peripheral based 
testbed and store the RF traces as I/Q sequences. 
With the collected I/Q data with diff erent signal 
combinations, the ONN model is trained offline 
via stochastic gradient descent method, which is 
further performed repeatedly until the loss func-
tion converges.

After the ONN model is appropriately trained, 
wireless spectrum sensing can be achieved via 
online inference at the RICS. Specifically, once 
the incident RF signals arrive at the refl ection-ab-
sorption layer, a portion of elements reflect the 
signal in a conventional way while the remaining 
elements vectorize and process the signal. Note 
that before feeding the I/Q vector to the trained 
intelligent computation layer, data preprocessing, 
such as frequency adapting and data visualization, 
is required. Then the spectrum information can 
be output by performing forward calculation via 
ONN inference. Consider that conventional RISs 
whose working bandwidth may be very limited 
due to their inherent implementation restricts, the 
RF signals impinging at the RICS are encouraged 
to be mixed through the same frequency band-
width, so as to obtain the I/Q samples at the RF 
chain for further spectrum sensing.

IllustrAtIVe results
The considered application scenario for evaluating 
the RICS-Design-A is shown in Fig. 4a, where three 
users ocassionally send data to the BS using the 
transmit power 200 mW and the data payload size 
of each user is 1000 bits. The distance between the 
users and the RICS is 60 m, the distance between 
the RICS and the BS is 80 m, the incident angle 
between the users and the BS is 160°. Moreover, 
the noise power density is –174 dBm/Hz, the wire-
less bandwidth is 10 MHz, and the power ratio of 
the refl ected and refracted signals is 1.

We focus on a wireless spectrum sensing 
task using the trained ONN model for classifica-
tion [13]. Specifically, we trained a 2 and 4 layer 
model with the collected RF dataset, consisting of 
a total of 100 million I/Q samples indicating one 
of the eight classes. Upon convergence, the 2 layer 
model achieved 85 percent accuracy for spectrum 
sensing, wheres the 4 layer model resulting in 90 
percent accuracy. This demonstrates that the infer-
ence accuracy can be improved when more layers 
are used. However, the number of layers needs to 
be chosen carefully to achieve the desired trade-off  
between inference accuracy and complexity.

To evaluate throughput performance, we fur-
ther implement a time division multiple access 
scheme for RICS and RIS, respectively. Then 
we evaluate and compare the achieved net-
work throughput, as illustrated in Fig. 4b. Dif-
ferent from statistical time slots allocation with 
the conventional RIS, we observe that the RICS 
transmission schemes are always superior to the 
conventional RIS-based scheme since the RICS 
can infer the incident signal components, there-
by enabling the BS to allocate time slots for the 
active users intelligently. Refl ected in Fig. 4b, we 
also note that the inference accuracy achieved 
by the trained ONN model at the RICS affects 

FIGURE 3. The RICS-Design-B with RR+AC mode.
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the network throughput significantly. In partic-
ular, compared to the RICS with 2-layer model, 
the RICS with 4-layer model outperforms and the 
performance gap becomes larger as the number 
of elements increases.

physIcAl lAyer securIty VIA rIcs-desIgn-b
In this section, we present an RICS-Design-B 
application, which takes advantage of the analog 
computing metamaterials to perform the task of 
secure wireless communications.

motIVAtIon
In recent years, physical layer security has attract-
ed increasing attention from research and industri-
al communities. Suppose an eavesdropper in the 
network, when the user transmits data to a legit-
imate receiver, information leakage may occur 
since the eavesdropper may intercept this wireless 
communication.

To address this challenge, deploying a conven-
tional RIS for generating dynamically safeguarding 
refl ected signals has become a recognized solu-
tion. In particular, the signal reflected by an RIS 
can be tuned to cancel out the signal received at 
the eavesdropper, which is usually assumed to lie 
on the same-side with the legitimate user. Howev-
er, the unavailability of computational capability 
at the RIS and the lack of prior information about 
the eavesdropper constitute a stumbling block for 
reducing information leakage in practice, espe-
cially when the eavesdropper is located on the 
opposite-side of the RIS. These motivate the desir-
ability of performing incident signal processing, 
thereby suppressing the received signal-to-interfer-
ence-plus-noise (SINR) at the eavesdropper. 

procedure
With the implementation of an RICS, the inci-
dent signal can be refracted at the reconfi gurable 
beamforming layer and adjusted appropriately 
by the intelligence computation layer. Then the 
processed signal can be destructively added with 
the non-reflected signal at the eavesdropper to 
neutralize the leaked signal.

An illustrative example is shown in Fig. 5a, 
where a sender transmits data to a receiver and 
an eavesdropper is nearby. We note that the wire-
less signal that comes from the sender can also be 
received at the eavesdropper. Different from the 
conventional RIS without computing capability, 
the RICS-Design-B can be exploited to generate an 
intended interfering signal to worsen the quality of 
the leakage of the signal.

Specifically, when the incident signal arrives 
at the reconfigurable beamforming layer of the 
RICS, the energy of the incident signal is divid-
ed into two parts: Some of the incident energy 
is reflected to serve the desired receiver locat-
ed on the same side as the sender, and the rest 
of the energy works for impinging signal refrac-
tion. Since the channel model of the reflected 
and refracted signals may not be symmetric, the 
power ratio of the refl ected and refracted signals 
in the reconfigurable beamforming layer could 
be appropriately optimized [9], thereby providing 
an extra degree of freedom for enhancing the 
RICS-aided communication performance. Then, 
by feeding the refracted signal to the intelligence 
computation layer that works in the AC mode, an 
intended interfering signal can be appropriately 
generated by performing the mathematical oper-
ation to the incident signal, for example, frequen-
cy shifting, to further worsen the leaked signal at 
the eavesdroppers who located at the opposite 
side of RICS. Instead of relying on higher-layer 
encryption, the RICS enables the exchange of 
confi dential messages over a wireless medium in 
the presence of unauthorized eavesdroppers.

IllustrAtIVe results
The considered application scenario for evaluat-
ing the RICS-Design-B is shown in Fig. 5a, where 
the distance between the RICS and the eaves-
dropper is 50 m and other critical parameters are 
kept unchanged. The power ratio between the 
refl ected signal and the incident signal is denoted 
as , the power ratio of between the refracted 
signal and the incident signal is denoted as , and 
 +  = 1 holds in the simulations.

FIGURE 4. An illuminative example of RICS-aided intelligent spectrum sensing, where three users transmit to a base station via the 
RICS-Design-A. Specifi cally, the application scenario is illustrated ina), and the achieved network throughput versus the number of 
elements is shown in b). 
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To demonstrate the performance of secure 
wireless communication via the RICS-Design-B, 
we evaluate the achievable secrecy rate in b/sec-
ond/Hertz (bps/Hz), which can be expressed as 
the achievable secrecy rate, and is the diff erence 
between the achievable rate of the legitimate link 
and the eavesdropper link.

Figure 5b compares the achievable secre-
cy rates of four schemes. We observe that the 
achievable secrecy rate of the three schemes that 
are based on the RICS is higher than that of the 
scheme “Without RICS,” and the performance 
gap increases as the number of RIS elements 
grows. This indicates that with more refl ecting ele-
ments, the refl ect and refract beamforming design 
of the RICS becomes more effective, thereby 
achieving higher gains of secrecy rate. We also 
observe that the power ratio coeffi  cients,  and , 
play a signifi cant impact on the achievable secre-
cy rate performance. In particular, when the num-
ber of elements is small, for example, less than 60, 
a lower value of  brings a beneficial impact on 
the RICS. As the number of RIS elements increas-
es, the scheme with a larger value of  outper-
forms. It is worth mentioning that there exists an 
optimal trade-off between the reflected power 
and the refracted power for a given number of 
elements of the RICS.

conclusIon And Future dIrectIons
In contrast to purely reflective RISs, RICSs offer 
the capability of performing certain tasks via com-
putational metamaterials, enabling both commu-
nications and computation applications. In this 
article, we discussed two motivating examples, 
although many others need to identified, which 
contribute toward the direction of RICSs embed-
ded with task-oriented computational metamateri-
als and relevant operation protocols. 

nonlIneAr computIng metAmAterIAls
Note that the analog computational metamateri-
als discussed in the proposed RICS structure are 

usually related to linear functionalities. With the 
emerging demands of complex computing tasks, 
investigating the possibility of performing nonlin-
ear processing operations through computational 
metamaterials is necessary. In this event, nonlin-
ear signal processing technologies has become a 
potential player for improving the performance of 
future 6G wireless system.

To swim with the tide, the concept of metasur-
faces is undergoing transformation for the reali-
zation of nonlinear functionalities [8]. In such a 
context, investigating the possibility of perform-
ing more complex calculations and operations via 
RICSs with nonlinear-enabled computational meta-
materials becomes an attractive research direction.

multIFunctIonAl computIng metAmAterIAls
At the metamaterials level, enhancing the speed 
of computation is important for the implemen-
tation of RICSs. Compared to the single-task 
processing for analog computing design, an 
important trend in computational metamaterials is 
multifunctional based analog computing, in which 
multiple computational tasks can be performed 
simultaneously via diff erent independent process-
ing channels. As a result, such multifunctional 
computing metamaterials can provide the unique 
possibility of parallel processing of information 
and, thus, enhance the computation performance.

Under this trend, the development of task-ori-
ented multifunctional computational metama-
terials will open a new route for the intelligent 
metasurfaces design with accelerated processing 
capability based on the prior knowledge of diff er-
ent specifi c tasks.

ArtIFIcIAl IntellIgence empowered desIgn
The RICS configurable profile, such as phase 
shift matrices in the reconfi gurable beamforming 
layer and the parameters settings of the intelli-
gence computation layer, has to be optimized for 
enhancing the network performance. In practical 
deployments, each RICS could be equipped with 

FIGURE 5. An illuminative example of RICS-aided secure wireless communication, where an intended interfering signal is generated 
via the RICS-Design-B to worsen the quality of the signal at the eavesdroppers. Specifi cally, the application scenario is illustrated in 
a), and the achieved secrecy rate versus the number of elements is shown in b).
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hundreds of meta-atoms. However, most of the 
existing contributions tend to rely on mathemat-
ical model-based optimization methods, which 
generally require a large number of iterations to 
find a near-optimal solution due to the non-con-
vex natures of the constraints and the objective 
function.

With the development of advanced AI tools, 
investigating the possibility of metasurfaces design 
using deep neural networks, or other machine 
learning structures, is of interest. In contrast to the 
conventional optimization methods for non-convex 
equation solving, deep learning can help to quickly 
infer the optimal solutions for the configurations 
of metasurfaces with higher accuracy [14]. In the 
future, due to privacy concerns and scarce wire-
less computation resources in practical scenarios, 
introducing advanced edge learning techniques to 
enable the realization of the proposed intelligent 
RICS design seems appealing [15].
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