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Abstract
The massive growth of connected devices, 

including sensors and machines, is revolution-
izing every aspect of human life. The socioeco-
nomic impacts are significant and have already 
transformed many industries. In this article, we 
discuss some of the challenges of the explosion of 
devices and exponential growth in personal digital 
content and machine generated data. The cen-
tralized cloud architecture adopted in the early 
days of mobile Internet was designed primarily 
to allow access to data stored on the worldwide 
web. Today, use cases have evolved significantly. 
Humans and devices are now producing most of 
the data consumed on the Internet. As a result, 
the existing centralized cloud infrastructure is no 
longer efficient or sustainable. There is significant 
waste of network bandwidth to send terabytes of 
data to server farms that may be hundreds of kilo-
meters away from the source and/or destination 
of data. The prevalent centralized cloud archi-
tecture does not adequately leverage massive 
amounts of computing resources on smart devic-
es, which are idle most of the time. Moreover, 
despite all the efforts to reduce network laten-
cies, communication to server farms is a major 
bottleneck for latency in many applications. We 
introduce a novel architectural approach to cloud 
decentralization called hybrid edge cloud (HEC) 
that minimizes network bandwidth usage, reduces 
communication latencies, and leverages resources 
on smart devices to reduce the burden on server 
farms and other centralized computing resources. 
HEC combines the benefits of new network tech-
nologies such as 5G and WiFi 6 in private and 
public clouds to leverage computing resources on 
smart devices to build a sustainable decentralized 
infrastructure for the hyper-connected world.

Introduction
The first four generations of cellular technologies 
have changed the landscape of mobile commu-
nications by changing the concept of telephony 
from calling to and from places to individuals [1]. 
The second and third generations enabled perva-
sive text communication and web browsing. Even-
tually, 4G and Wi-Fi provided ubiquitous access 
to the Internet and ushered in the era of mobile 
Internet and the app economy. In the early days 
of mobile Internet, the primary usage of these net-
works was for smartphones and later Internet of 
Things (IoT) devices to get access to information 
and apps hosted on the worldwide web. Initially, 

people and machines mostly acted as consum-
ers of the web content. As a result, the central-
ized cloud architecture was designed with the key 
assumption that most data would reside on cen-
tralized servers across the worldwide web, and 
client nodes would primarily be used to access 
these centralized sources of data and information. 
This assumption no longer holds true. The use 
of mobile Internet has evolved, and the roles of 
people and machines have transformed from con-
sumers to producers of data. Most of the data are 
now introduced by smart devices at the edge of 
the network [2–4].

The “cloud” [5] has been a major enabler for 
mobile Internet. Today, the most popular consum-
er and enterprise applications and solutions are 
hosted in data centers. This is what we refer to as 
the “cloud,” which has been essential for enabling 
the app economy. The underlying solution archi-
tecture is a hierarchical client-server architecture. 
Certain nodes act as servers and others act as cli-
ents. In contrast, in a peer-to-peer architecture, 
any node can act as both server and client. Most 
computing nodes operate in a client-server mode, 
where most servers are in data centers made up 
of server farms scattered around the world. This 
fixed and hierarchical client-server architecture 
may have been efficient for hosting applications 
that provide access to content and information 
from remote servers to billions of “client” devices. 
Solutions’ backends are hosted on servers that 
handle compute-intensive tasks, and the client 
application software are run on devices such as 
smartphones that perform simpler functions such 
as entering commands, caching content, and ren-
dering information for the end user. 

The latest evolution of cloud architecture is the 
move to microservices [6], which decomposes a 
monolithic backend solution into a collection of 
microservices that are dynamically instantiated 
(serverless1) behind an application programming 
interface (API) gateway. This evolution introduced 
new complexities in microservice-to-microservice 
communication (service mesh [7]) and cluster 
management [8]. 

The move to microservices is triggered by 
three major trends:
•	 API: Microservices implement and expose 

RESTful APIs (HTTP REST-based). A set of 
easy-to-use APIs can hide internal complex-
ities and facilitate communication between 
the microservices within a system.

•	 Automated deployment: It is possible to build 
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complex systems with a potentially large 
number of elements by deploying microser-
vices automatically using deployment scripts 
(e.g., Ansible) controlled by a pipeline infra-
structure (e.g., Jenkins). Moreover, auto-
mated deployment can help build flexible 
systems by providing the ability to determine 
where deployments occur.

• On-demand IT resources: The ability to 
request IT resources (CPU, storage, and 
network) through simple APIs and to obtain 
these resources in a near real-time fashion 
makes the creation of large and scalable sys-
tems more feasible. 
Figure 1 illustrates the typical deployment of 

an application in a centralized architecture. A 
client application runs on a smart device, and a 
collection of central cloud2 functions host the 
backend of the solution. This backend is usually 
made up of microservices reachable through an 
API gateway. As shown, every http request is 
sent from the “client” device to servers in the 
central cloud.

A special case of device-to-device communica-
tion is illustrated in Fig. 2. 

In this case, when device 1 wishes to send 
information to device 2, it sends an http request 
that ends up at the API gateway, and the appro-
priate microservice is launched. Usually, a push 
notification service informs device 2 that infor-
mation is available, and device 2 responds with 
a request that is serviced again by a microservice 
hosted on the central cloud. In other words, even 
if the two client devices are in proximity and on 
the same local network, all communications and 
data need to go through servers in a data center 
that may be hundreds of kilometers away! The 
same holds true even for two applications running 
on the same smart device.

The major advantage of this architecture is the 
rapid and low-cost deployment of (computing- 
and/or storage-intensive) applications on gener-
ic servers shared among many applications with 
the aid of virtualization and orchestration tech-
nologies [5]. However, within the last decade, 
we have witnessed three fundamental trends that 
make a hierarchical client-server architecture less 
efficient. The first is the explosion of computing 
devices and embedded computing in all things [9] 
and the increasing capabilities of smart devices. 
For instance, there are more computing, memory, 
and storage available in today’s smartphones than 
in powerful servers just a decade ago. This trend 
will continue due to Moore’s law [10]. The sec-
ond trend is the enormous amount of data gen-
erated on these (edge) devices. With the advent 
of social media on mobile devices, orders of mag-
nitude more personal multimedia content is gen-
erated on devices (photos, videos, sensor data, 
etc.) rather than premium content from major stu-
dios and broadcasters hosted on central servers 
in the cloud [11–13]. Currently, most of the data 
generated on smart devices are sent back to the 
central cloud for processing and to facilitate shar-
ing. The third trend is the decomposition of solu-
tions in the collection of microservices and the 
automation of deployment, which make backend 
solutions much more dynamic (serverless) with 
scalability that closely fits the demand in either 
volume or even geography.

The current hierarchical architecture makes 
central cloud resources and network connectivity 
bottlenecks for future growth. Sending data from 
hundreds of billions of client devices to thousands 
of centralized cloud servers can waste bandwidth 
and energy, which can have serious social and 
economic implications.

Another disadvantage of centralized cloud 
architecture is developers’ reliance on cloud ser-
vice providers who have access to the apps and 
the data stored or processed in their servers [14–
16]. As a result, a handful of very large companies 
have control over the vast majority of consumer 
and enterprise data. In addition, despite all sophis-
ticated security measures, storing data and host-
ing applications on third-party resources expose 
the owners of the information to risks. Cloud 
resources have been designed for easy access 
to millions of developers and application service 
providers, which has increased vulnerabilities and 
security holes. This has resulted in gross abuse of 
consumer and enterprise data privacy and securi-
ty [17–22].

An eff ective and feasible approach to address 
this dilemma is to enable any smart device to 
act as a cloud server when it makes sense. 
Enabling smart devices to act as cloud servers 
can potentially reduce reliance on third-party 
cloud services that are not necessary for applica-
tions and allow microservice-based solutions to 

FIGURE 1. Fixed client-server architecture using centralized cloud.
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FIGURE 2. Device-to-device communications in fixed client-server architecture of centralized cloud.
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2 From here on, we refer to 
server farms in data centers 
as central cloud.
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be more flexible by dynamically moving micro-
services from the backend to smart devices. 
Many of the functions performed in the central 
cloud can then be performed on smart devic-
es that act as servers. In effect, we can create 
a physical decentralized cloud fabric that is 
potentially several orders of magnitude larger 
than the central cloud fabric. For example, there 
are currently over 80 million Sony PlayStation 4 
(PS4) consoles in people’s homes [23]. This rep-
resents more than 600 million processor cores 
and 40,000 PB of storage. In comparison, this is 
much greater computing, storage, and memory 
resources in the aggregate than the entire Ama-
zon Web Services (AWS) infrastructure [24]. The 
PS4 is only one type of device. Billions of PCs, 
set-top boxes, game consoles, streaming players, 
routers, smartphones, tablets, and other comput-
ing devices can potentially act as cloud servers 
and collectively have orders of magnitude more 
computing power than the central cloud. There-
fore, we have the opportunity to create a cloud 
fabric composed of tens of billions of smart 
devices that are currently being used as clients 
only. Once we enable these devices to act as 
servers, we can build a decentralized cloud that 
is orders of magnitude larger than the current 
centralized cloud. 

The benefi ts of such an architecture are phe-
nomenal: reduced cloud hosting costs, reduced 
communication bandwidth and network effi  cien-
cy, reduced energy consumption and carbon 
emissions, reduced latency, reduced application 
development time, accelerating the microser-
vice trend, increasing data privacy, and providing 
consumers and enterprises better control over 
their data.

In this article, we discuss the opportunities and 
challenges for cloud decentralization and some 
of the drivers, requirements, and principles neces-
sary to establish a pragmatic and scalable decen-
tralized cloud fabric. Finally, we provide a detailed 
overview of a platform, referred to as a hybrid 
edge cloud (HEC), designed and developed 
according to these requirements and principles.

fundAMentAls of cloud decentrAlIzAtIon
Cloud decentralization has several advantages. As 
mentioned in the Introduction, in the current cen-
tralized cloud model, as more devices are added 
or more content is generated by these devices, 
more servers in data centers must be added to 
support them. Using a decentralized cloud, we 
can create a cloud fabric that scales with the num-
ber of smart devices. This reduces the need for 
additional servers and the upgrade cycle of these 
servers in data centers. In eff ect, we increase the 
“cloud” capacity as the number of smart devices 
increases. In addition, given that most of the data 
are produced on smart devices, we minimize the 
transport costs and latencies for applications. In 
this new model, much of the processing is per-
formed on devices, communication is kept as 
local as possible, and heterogeneous smart devic-
es from diff erent vendors and operating systems 
can collaborate and share computing and other 
resources. The central cloud remains a valuable 
resource because it may be indispensable for 
many applications that require global manage-
ment, central storage, or processing. Data center 
resources need to increase, but at a reasonable 
pace, to accommodate the needs for central pro-
cessing only and relegating all other possible tasks 
and functions to smart devices where most of the 
data are generated. Servers in data centers will no 
longer be the bottleneck or the “always neces-
sary” trust elements and do not need to grow in 
proportion with smart devices, but only in propor-
tion to the needs of central processing as dictated 
by use cases and applications.

cHAllenges of cloud decentrAlIzAtIon
There are several challenges to building a prag-
matic decentralized cloud platform. The first is 
fragmentation in operating systems and networks. 
For a decentralized cloud to become feasible, 
devices must connect, communicate, and collab-
orate across many fragmented operating systems 
and networks.

The second major challenge is the availability 
of network resources. Once smart devices act as 
servers, they must connect and communicate with 
other devices by using uplink network resourc-
es. Although network connectivity is gradually 
becoming symmetrical, today, there are more 
downlink than uplink resources available (down-
load speeds on most consumer and enterprise 
networks are better than uplink speeds). 

To better describe the challenge, Fig. 3 illus-
trates an example of posting a video from a smart-
phone (acting as a client) to the central cloud. 
We assume that the video is consumed by two 
smartphones and a personal computer (PC). In 
the centralized cloud model, the video is first 
uploaded to a server in the data center, and noti-
fications are sent to recipients to download the 
video from the server (which acts as a storage 
and streaming server). In the decentralized cloud 
model, the video can be streamed directly from 
the smartphone (acting as a streaming server) to 
the three destination smart devices. In the cen-
tralized case, we have one instance of uplink and 
three instances of downlink. In the decentralized 
case, we have three instances of uplink (assuming 
none are behind a firewall). From a bandwidth 

FIGURE 3. Video sharing example using centralized cloud vs. decentralized cloud.
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effi  ciency point of view, the decentralized cloud 
approach has an advantage; when we consider 
the asymmetric nature of most of the networks 
today, uplink resources may become a challenge 
and impact user experience. Thankfully, the tele-
com industry has become aware of this, and most 
new wired and wireless standards now specify 
more symmetric connections where uplink and 
downlink resources are balanced. However, it is 
important to be cognizant of this when building 
applications using decentralized clouds. 

The third major challenge is that, unlike serv-
ers in data centers, most smart devices may be 
non-persistent in nature. There is less control over 
their availability and reliability, especially for bat-
tery-operated and mobile devices. Unlike servers 
in data centers, there is little central control over 
these devices. For instance, in the example above, 
if the smartphone sending the video is turned off , 
the video streams to the other devices stop. This 
must be considered when building applications 
where persistent nodes are essential. Persistent 
nodes can always be provisioned using other 
collaborating edge servers (e.g., home or enter-
prise gateways); in the worst case, central cloud 
resources can be used when required. 

The fourth major challenge is the management 
of distribution. In data centers, distribution man-
agement deals with resource availability based 
on simpler criteria such as CPU load, memory 
constraint, and IO. The scope of distribution man-
agement is the specific data center where the 
solution is running. In a decentralized cloud, the 
criteria for distribution management are much 
more diverse and include power availability and 
consumption, reliability, and device capabilities. 
As discussed later, with decentralized cloud, distri-
bution scopes expand to devices on the same net-
work, within a given proximity, and user accounts 
because most devices belong to specifi c users.

The fifth challenge is security because in a 
decentralized cloud, it is not feasible to have fi re-
walls surrounding all available resources. Conse-
quently, every device on the network should be 
treated as a potential rogue device, and appropri-
ate security measures are required to ensure that 
rogue nodes cannot disrupt secure operations 
within the network of devices.

Despite these challenges, the benefits of a 
decentralized cloud far outweigh its challenges, 
and all of these challenges can be overcome in a 
well-designed system, as described in this article. 

drIVers And reQuIreMents for cloud decentrAlIzAtIon
Figure 4 shows the high-level architecture of 
“centralized cloud” and compares it to “decen-
tralized cloud.” With a decentralized cloud, all 
nodes, including the server farms in data centers, 
referred to as the central cloud in the fi gure, can 
act as cloud servers, and there is no designated 
permanent central element. Nodes can commu-
nicate, collaborate, and share resources directly, 
generally without resorting to a central element 
unless necessary. With this approach, the cen-
tral cloud resources are used only when required; 
for instance, when there is a need for global stor-
age, archiving, updating of centralized databas-
es, centralized registration, and so on. Any other 
functions that can be handled by smart devices at 
the edge can be assigned to them; for instance, 

messaging between devices, handshaking control 
signals between machines, and transmitting data 
between devices within a small cluster.

The explosion of “client” devices on the edge 
of the network and the change in role from con-
sumers of data to producers/consumers of data 
are major drivers of cloud decentralization. How-
ever, other trends in the software industry make 
cloud decentralization necessary and feasible. 
One important trend is the adoption of microser-
vice architecture. 

The complexity of managing software solutions 
made up of a large number of components in the 
past has led to monolithic solutions. However, 
with the evolution of virtualization technology 
toward lighter container management platforms, 
the consumerization of on-demand IT, the man-
agement of the collection of microservices (ser-
vice mesh and cluster management), and the ease 
of rich communication (APIs), this complexity has 
drastically decreased. A good software design 
practice involves developing solutions as a collec-
tion of many instances of single-purpose, well-de-
fi ned components called microservices [25, 26].

The consequences of designing systems in this 
way are: 
• More granular utilization of infrastructure 

resources to closely follow the demand curve
• Simplifi cation of the design of complex attri-

butes (session, tenancy)
• Better distribution and utilization of comput-

ing resources within or between data centers
• Memory-efficient and power-efficient archi-

tecture that loads memory and runs only 
active microservices at any time

• Further decomposition of solution clients from 
a monolithic to microservice architecture for 
faster application development time and ease 
of software upgrade and maintenance
To achieve even more efficiency of the soft-

ware solution, a current trend is to have ephem-
eral microservices, also referred to as server-less 
architecture, where microservices are instantiat-
ed (launched and run) based on API calls made 
to the microservice itself to achieve even more 
effi  ciency of the software solution. Programming 
using ephemeral microservices is referred to as 
a serverless architecture that leads to a more 
memory-efficient and power-efficient architec-
ture which loads to memory and runs only active 
microservices at any time.

FIGURE 4. Centralized vs. decentralized clouds.
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As previously discussed, a major challenge 
with offloading computing to smart devices is the 
possible lack of persistence in both the connec-
tivity and power status of these devices. These 
challenges may be overcome using a microser-
vice approach.

The cloud can be extended to include smart 
devices by recognizing and exposing their com-
puting resources and utilizing them in an oppor-
tunistic manner when available. Adding analytics 
to the way ephemeral microservices are deployed 
based on availability, policy, and context (includ-
ing social and other application-level events) 
can help to optimally deploy applications on the 
decentralized cloud. 

To make decentralized cloud computing prac-
tical and useful, several considerations must be 
considered. We need to ensure that existing smart 
devices can act as cloud servers when needed. 
The developers should be able to build applica-
tions with as little effort as possible. Given the het-
erogeneous nature of these devices, we should 
be able to assign functional roles based on device 
capabilities. To make life easier for developers, we 
should follow API semantics similar to the major 
existing public cloud platforms. We should also 
provide a light container to run microservices 
on any smart device and, in that light, follow the 
semantics of existing major container technolo-
gies as much as possible. 

From the perspective of smart devices, there 
are several essential requirements. Smart devices 
should have the following capabilities to become 
potential cloud servers:
•	 Discover the existence of other computing 

nodes of any type, regardless of the OS or 
the network.

•	 Discover other nodes’ capabilities and behav-
ior (hardware specifications, OS, persistency, 
connectivity, etc.).

•	 Discover microservices supported by other 
nodes.

•	 Dynamically form clusters along with other 
nodes, especially around the network, prox-
imity, and user accounts.

•	 Communicate with other nodes (including 
central cloud resources) at the microservice 
level, either directly or through other nodes 
across different clusters.

•	 Connect with other nodes if they choose to 
share data, services, or resources.

•	 Adapt to functions and roles based on their 
resources and capabilities.

•	 Process and analyze data locally when possible.
•	 Be as secure and trustworthy as a centralized 

cloud, using a zero-trust model.
We suggest a platform-agnostic approach 

to develop downloadable application-level soft-
ware to enable any computing device to act as a 
cloud server when possible, and as a result, build 
an end-to-end decentralized cloud platform. To 
make this feasible for the industry and developer 
community, we have concluded that the following 
requirements are essential for creating a pragmat-
ic decentralized cloud platform.
•	 It should require no change to the device 

hardware, OS Kernel, or drivers.
•	 It should work on most modern hardware 

(PCs, STBs, router tablets, smartphones, etc.).
•	 It should have a very small memory footprint.

•	 It should support hosting microservices, and 
load, run, and stop across devices.

•	 Ideally, it should support multi-tenancy, 
where multiple apps and microservices are 
hosted with a single instance of the plat-
form software.

•	 It should have a light but scalable backend host-
ed on central cloud whether private or public.

•	 It should use bootstrap mechanisms for the 
registration of the nodes.

•	 It should create dynamic clusters of nodes 
within a given scope.

•	 It should support non-persistency (appearing 
and disappearing) of inter- and intra-cluster 
nodes.

•	 It should create effective persistency when 
needed by pulling collaborating decentralized 
and/or centralized resources dynamically.

•	 It should manage communication between 
nodes either directly or through intermediate 
nodes.

•	 It should dynamically instantiate backend 
resources based on demands from the nodes.
Various principles must be considered to 

create a pragmatic and scalable architecture to 
unleash the power of smart devices and cre-
ate a massive decentralized cloud. This section 
describes several important principles.

Basic Principles of Cloud Decentralization
In this section, we describe some of the funda-
mental principles that ensure that cloud decentral-
ization is pragmatic, efficient, and secure. 

First Principle: Meritocracy: Meritocracy is 
a key principle in ensuring an efficient system 
design in which the use of network bandwidth 
and central resources is minimized. All nodes 
should have equal opportunities to participate in 
the network based on the merit and value they 
provide. Nodes may play a role based on their 
capabilities and characteristics. The capabilities 
of any node should be maintained in the node 
profile. For instance, a node with large storage 
can be selected dynamically as a cache node or 
a backup storage node, a node with high network 
connectivity can be a proxy node, and a persistent 
node can become the holder of knowledge for a 
cluster of nodes.

Meritocracy is essential for decentralization. 
Otherwise, we must provide central elements 
with predefined roles, which may lead to an inef-
ficient hierarchical structure. Ideally, any cluster of 
two or more nodes should be able to operate and 
collaborate based on merit. 

Several characteristics are necessary to estab-
lish meritocracy. For instance, transparency is 
essential. All the participating nodes should tell 
the truth regarding their profiles in a transpar-
ent manner. Otherwise, meritocracy cannot be 
applied optimally. The architecture should remove 
any incentives to lie (not providing node-specific 
privileges or rights). Even when there is no appar-
ent incentive to lie, we need a mechanism to 
blacklist nodes that lie about their profile to harm 
the operations of a cluster.

It is also important to consider that meritoc-
racy may change over time. Nodes can upgrade 
or downgrade their capabilities and profiles. The 
architecture must accommodate any changes to 
the nodes in real time.

Meritocracy is essential for 
decentralization. Otherwise, 
we must provide central ele-
ments with predefined roles, 
which may lead to an ineffi-
cient hierarchical structure. 
Ideally, any cluster of two or 
more nodes should be able 
to operate and collaborate 

based on merit.

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • September 2022 21

Perhaps the most important consideration with 
regard to the meritocracy principle is the merit 
of the central cloud resources in this new archi-
tecture. The centralized cloud architecture is a 
special case of a decentralized cloud in which 
smart devices are used only as clients. Therefore, 
it is easy to become complacent and assign most 
tasks back to the central cloud even when there 
is no merit. It is essential to avoid existing bad 
practices and avoid falling back on readily avail-
able third-party resources on the central cloud to 
speed up development while sacrificing hosting 
costs, latency, and privacy. For the meritocracy 
principle to work effectively, all nodes should be 
considered as potential servers to other nodes, 
and all requests must be kept local to the cluster 
where a node is active. 

Second Principle: Decentralized Discovery: 
A node needs to discover other nodes based on 
a scope. Some examples of scopes are being 
attached to the same network, owned by the same 
account holder, or within proximity of one another.

The discovery process should use any combi-
nation of these or other scopes without a dedi-
cated central node such as a presence server. For 
instance, if a node sits behind a firewall and is not 
reachable from the outside, it should rely on any 
node that is reachable to become discoverable 
and not on a central entity unless it is necessary.

The discovery process should not be limited to 
information on presence and how to connect and 
communicate to a node, but also to some of the 
important characteristics and roles and personas a 
node can adopt: cache node (a node with spare 
storage), proxy node (good connectivity to the 
Internet), CPU resources (node with spare CPU 
to run microservices), and so on.

Third Principle: Clustering: Human and 
machine communication occurs mostly in clus-
ters. Robert Dunbar, an anthropologist, suggest-
ed a cognitive limit of 150 for people with whom 
humans can have stable relationships [27]. He 
explained it as “the number of people you would 
not feel embarrassed about joining uninvited for 
a drink if you happened to bump into them in a 
bar.” In other words, humans communicate with-
in constrained clusters. Additionally, we seldom 
regularly communicate with everyone in our 
close relationship circle. In fact, daily communi-
cation may be limited to a handful of very close 
relationships. Therefore, it makes logical sense 
that the communication framework considers this 
when assigning roles and responsibilities to nodes 
within a cluster. 

However, cluster-based communication char-
acteristics are not limited to humans. The com-
munication between the machines is similar. For 
most applications, communication is often limit-
ed to a few nodes in a cluster at any given time. 
Therefore, communication should be optimized 
to occur locally in the cluster as much as possible. 
To remove the requirement for any node to have 
to handshake with every other node, we need an 
architecture in which one node (which we call the 
supernode) in a cluster is given a special role as the 
knowledge holder of the cluster and is assigned the 
role of communicating that knowledge to global 
discovery or nodes in other clusters.

The system should allow nodes to form their 
own ad hoc clusters dynamically based on cer-

tain scopes, as described above. Nodes should 
dynamically assume roles via election or selec-
tion by other nodes based on a series of charac-
teristics of nodes and rules. Thus, the nodes can 
dynamically form the fabric of a decentralized 
cloud (i.e., software-defined cloud infrastructure). 
As nodes enter and exit clusters, their roles should 
be reassigned dynamically based on merit. 

Following the creation of clusters, nodes can 
discover, connect, and communicate within 
and across clusters directly, or via the dynamic 
instantiation of intermediator nodes. This boot-
strap model helps to avoid overloading any 
nodes, whether global or local, and therefore 
reduces traffic and chattiness and creates a light 
and scalable architecture. Given the potential 
non-persistence of the nodes, presence notifica-
tion should be left to the node itself, along with 
the responsibility to decide which other nodes it 
wants to notify. Therefore, there is no need for a 
single global presence server or registration point. 
Similarly, there should be no need for “keep alive” 
mechanisms at the infrastructure level between 
the nodes. These types of mechanisms can be 
delegated to microservices if needed.

Fourth Principle: Microservice-to-Microser-
vice Communications: Once a decentralized 
cloud fabric is formed, applications on devices 
can utilize it to communicate directly without a 
pre-assigned third-party trust element. However, 
this is not sufficient to connect nodes at the phys-
ical network level. We must ensure direct and 
secure communication at the microservice level. 
All nodes, including smart devices on the edge, 
should be able to join the service mesh and com-
municate directly. In addition, any node should 
be able to load, start, and stop microservices on 
any other node. This ensures that microservices 
running across the platform can communicate 
without the need for a fixed central entity. 

Microservices enabled on smart devic-
es should follow the standard architecture by 
exposing them through their own API(s) and 
using fine-grained scopes to protect the resourc-
es exposed via APIs. The decentralized cloud 
platform should enable seamless reachability 
of microservices across nodes to form a ser-
vice mesh either directly or via a similar pattern 
[28], as described in more detail later. In envi-
ronments that can run container daemons (e.g., 
Linux), a decentralized cloud platform should 
provide functionalities for the communication 
of these microservices across all OSs, devices, 
and networks. In environments that cannot run 
container daemons (e.g., smartphones), the plat-
form should provide additional “light” container 
capabilities with the ability to download, deploy, 
and operate microservices. 

Fifth Principle: Dynamic Resource Instanti-
ation: For decentralization to be efficient, there 
should be very little overhead associated with 
enabling communication across nodes that are not 
accessible directly. For lack of a better term, we 
refer to this as a dynamic resource instantiation.

Signaling and data resources should be 
deployed dynamically based on the network con-
ditions and demand from nodes within clusters. 
As a result, there is no need to pre-assign com-
munication resources, but dynamically instantiate 
and dismantle these resources once the function 

Signaling and data resourc-
es should be deployed 

dynamically based on the 
network conditions and 

demand from nodes within 
clusters. As a result, there 
is no need to pre-assign 

communication resources, 
but dynamically instantiate 

and dismantle these 
resources once the function 

is completed.
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is completed. This increases efficiency and reduc-
es cost by deploying endpoints that are instantiat-
ed only when needed. The platform should assist 
the nodes in setting tunneling opportunistically to 
increase signaling and data bandwidth efficiency. 
Resources should be deployed based on certain 
parameters of network topology and demand by 
the application. These communications resources 
should be instantiated within the closest proximity 
to the cluster including private or public cloud.

Sixth Principle: Collaboration: Thankful-
ly, building a zero-trust network, encrypting all 
communications, and authenticating every device 
is feasible given that at any time only a limited 
number of devices may be active within any clus-
ter. The sharing of decentralized cloud resources 
should be seamless, as it is with server nodes in 
the central cloud. As a first step, we should be 
able to use the collective resources of all com-
puting devices. For instance, recording a video on 
a smartphone and seamlessly storing the record-
ed content on a personal computer, network-at-
tached storage (NAS), or even a connected 
storage dongle. As a next step, all nodes should 
be able to share their resources with others. For 
instance, allowing family members to share a NAS 
as a family resource, or allowing colleagues to 
share computing and communication resources in 
an enterprise. Ultimately, nodes should be able to 
lease computing resources to others and create 
an even larger, decentralized cloud.

That said, we must be careful not to tightly tie 
the decentralized cloud to collaboration. A decen-
tralized cloud provides the opportunity to take 
advantage of collaboration and resource sharing 
across nodes. However, even without device-lev-
el collaboration, a decentralized cloud can pro-
vide several benefits. As a fundamental step, any 
application built on a smart device should priori-
tize using its local resources to host microservices 
to service other nodes in its cluster based on the 
requirements of the application. In other words, 
Jack’s device should be used as a server to host 
Jack’s app. However, with collaboration, one can 
go further and use resources from other nodes. 
For instance, Jill’s phone can run a microservice 
for Jack’s application even when they are not in an 
active session, Jack can provide spare storage for 
Jill’s videos on his device, or Jill can use Jack’s fiber 
connection instead of her poor cellular connection.

In other words, collaboration can significantly 
improve efficiency and scaling; however, it is not 
necessary to make cloud decentralization impactful.

Seventh Principle: Infrastructure Indepen-
dence: A decentralized cloud platform must be 
agnostic to operating systems, central cloud plat-
forms, networks, and locations. There have been 
many failed attempts to standardize decentralized 
communication between nodes. Intellectual prop-
erty issues create a significant barrier in creating 
a homogeneous system. More importantly, it is 
best to allow operating systems and networks to 
evolve independently to provide a riper environ-
ment for innovation and fundamental disruption. 
Otherwise, we will face even more issues with 
legacy protocols, modules, libraries, and data. 

Therefore, the decentralized cloud platform 
itself must be independent of the evolution of 
operating systems and networks. In other words, 
the platform should operate on top of the existing 

operating systems and networking standards at 
the application layer. This is the most pragmatic 
way to ensure that the platform is deployed and 
maintained over the long term. 

Eight Principle: Zero Trust Security: As men-
tioned earlier, it is not feasible to create firewalls 
around all devices in an edge cloud cluster. In 
a decentralized cloud environment, a zero-trust 
security model is essential for ensuring secure 
communication and operation. Therefore, security 
needs to be ensured at many levels by encrypting 
the communication between devices, encrypting 
the payload, and protecting all resources using 
keys with fine-grained scopes. Thankfully, building 
a zero-trust network, encrypting all communica-
tions, and authenticating every device is feasible 
given that at any time only a limited number of 
devices may be active within any cluster. 

Introduction to Hybrid Edge Cloud
In this section, we describe HEC, a decentralized 
cloud platform designed and developed based on 
the above principles. The platform enables almost 
any computing device to act as a cloud server 
to run microservices when feasible and plausible 
in a completely decentralized fashion agnostic 
to hardware platforms, operation systems, and 
underlying networking technologies. 

As shown in Fig. 5, the HEC platform is an 
end-to-end system made up of a cloud manage-
ment backend and the Edge software develop-
ment kit (Edge SDK). This is a decentralized and 
liquid architecture; therefore, every element can 
reside anywhere on any reachable computing 
device. The HEC platform and microservices run-
ning within can run on any operating system and 
communicate over any network anywhere in the 
world and are independent of the hardware infra-
structure and central cloud platforms. 

The software component referred to by the 
Edge SDK enables any smart device to act as a 
cloud server. It is a collection of software libraries 
and their corresponding APIs. Edge SDK can run 
on any PC, server, mobile device, fixed gateway, 
autonomous car gateway, connected TV, or even 
in the central cloud, depending on the applica-
tion use case. Once the Edge SDK is loaded, the 
device becomes an HEC node. 

The HEC nodes:
•	 Can dynamically discover each other inde-

pendent from the OS and/or the network
•	 Can expose available capabilities and func-

tionalities via APIs to each other
•	 Can form and organize into clusters (edge 

clusters)
•	 Can communicate within a cluster even with 

no Internet availability (for the special case 
of link-local clusters) and across clusters
The platform operates via the formation of 

clusters. Nodes in a cluster discover, connect, and 
communicate with other nodes. This bootstrap 
model is used to avoid overloading any nodes, 
whether global or local, and therefore reduces traf-
fic and chattiness and creates a light and scalable 
architecture. Given the potential non-persistence 
of the nodes, a presence notification is left to the 
node itself, along with the responsibility to decide 
which other nodes it wants to notify. Therefore, 
there is no need for a single global presence server 
or point of registration. Similarly, there is no need 

A decentralized cloud pro-
vides the opportunity to take 

advantage of collaboration 
and resource sharing across 

nodes. However, even 
without device-level collabo-
ration, a decentralized cloud 
can provide several benefits.
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for “keep alive” mechanisms at the infrastructure 
level between the nodes. These types of mecha-
nisms can be delegated to microservices if needed.

As explained previously, the Edge SDK should 
be available for any computing device, hardware 
platform, and operating system.  It is an appli-
cation-level software that can be downloaded 
on many types of computing devices. Backend 
management services can be hosted on a central 
cloud or any reachable and reliable computing 
resource with sufficient computing and memory 
to provide the necessary services to support the 
edge nodes. We describe these elements in detail 
in the following sections.

edge sdk coMPonents
Figure 6 shows the major Edge SDK components. 
The Edge SDK resides between the OS and the 
end-user application. Developers can develop 
their own microservices that can be hosted on the 
device using the Edge SDK container manager. 
The runtime environment for microservices is also 
provided by Edge SDK.

By incorporating Edge SDK, computing devic-
es are transformed into intelligent network nodes 
that can form clusters. Edge SDK removes the 
complexity of networking among nodes, enabling 
developers to focus on their solutions in a micro-
service model, even on small computing devices. 

Nodes in a cluster can assume a specifi c role 
or a combination of roles, depending on the phys-
ical hardware capability, OS, attached network 
connectivity, types of microservices running on 
each node, and usage/privacy policy settings. 
Some roles are assigned through an election pro-
cess, considering other nodes within the cluster 
at any given time, whereas others are assigned 
through a process of selection. One of the most 
important roles in a cluster is that of a supernode 
elected by all the member nodes. In the trivial 
case of a single-node cluster, a node serves as its 
supernode. A supernode is the bearer of informa-
tion regarding a cluster and all its member nodes; 
it is the “single source of truth” for the cluster. 
The information maintained is related to nodes, 
microservices deployed on each node, and his-
torical artifacts from Edge SDK operations. The 
supernode is responsible for assigning roles such 
as link-local proxy and link-local cache to the 
other nodes in the cluster. 

Some examples of selected nodes are: 
• The link-local proxy node supports commu-

nication in cases where the cluster nodes 
reside behind a fi rewall.

• The link-local cache node can be a node with 
large amounts of physical storage, which can be 
assigned a link-local cache role for the cluster.
For each node, the Edge SDK can support 

microservices and apps from different provid-
ers (otherwise called “tenants”) on a device that 
belongs to one user. In other words, even if a user 
has loaded multiple apps on a smart device (e.g., 
a smartphone), all of which employ EdgeEngine, 
functionalities and capabilities are related to (and 
authorized for) that user.

In other words, even if a user has loaded mul-
tiple apps on a smart device (such as a smart 
phone) all of which employ Edge SDK, the func-
tionalities and capabilities are related to (and 
authorized for) that user. 

• Node and service discovery: auto-discovery 
and auto-routing for all nodes with Edge 
SDK in local and global networks (s)

• Node and service connection: ad hoc edge 
cloud of nodes forming a self-organizing cluster

• Light container: microservice runtime environ-
ment to allow remote/local load of microser-
vice images, start, stop of microservices

• Sidecar pattern: enabling frontend applica-
tion decomposition to abstract certain func-
tionalities (e.g., networking, load balancing, 
security, authentication, etc.) into a sidecar 
and making API calls vs. dealing with libraries 
and complexity of cross-OS support 
Scopes for Clusters of Nodes with Edge SDK:

Nodes with Edge SDK can discover, connect, and 
communicate with each other. Discovery is a “fi l-
tered search” operation based on the following 
three scopes:

FIGURE 5. HEC architectural building blocks.
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•	 Network: nodes that are members of the 
same link-local network cluster. In this case, 
the link-local identifier is formed by combin-
ing the public IP address and the local net-
work address. 

•	 Proximity: nodes that report themselves as 
physically present within a geographical loca-
tion or within an area defined by a geospa-
tial query (e.g., [30] ), independent of the 
network to which each node belongs.

•	 User account: nodes registered under the 
same account ID. For this purpose, Edge 
SDK can employ an authorization protocol 
through an identity software-as-a-service 
(SaaS) provider.
The discovery process can use any combi-

nation of these scopes, or new scopes can be 
defined. Microservices on each of these nodes 
and across clusters can form their own service 
meshes by calling each other via APIs. 

Nodes and microservices running on nodes 
have unique identifiers: a specific microservice 
on a specific node is addressable uniquely, both 
locally and globally.

Light Container: Microservice Runtime 
Environment: Microservices enabled on nodes 
expose their services through a common embed-
ded web server. Edge SDK complements contain-
er daemons in two ways. In environments (e.g., 
Linux) that can run container daemons, Edge SDK 
provides functionalities to manage ad hoc clus-
ters of edge nodes, as described previously. In 
environments that cannot run container daemons 
(e.g., smartphones), Edge SDK provides additional 
“light” container capabilities with the ability to 
download, deploy, and operate microservices. 
The embedded web server provides a subset of 
container management APIs.

Sidecar Pattern: The sidecar pattern [28] 
allows an application to be decomposed into 
components built using different technologies. 
Using the sidecar pattern, any component of an 
application can be built and deployed in isolation. 
The latency is reduced because of the proximi-
ty of the sidecar with the application, and com-
ponents and functionality can be added without 
changing the application. 

The sidecar pattern abstracts many complexi-
ties in dealing with the service mesh. This is pos-
sible because many of these complexities are 
independent of the type of microservice deployed 
across the edge cloud. However, the sidecar pat-
tern does not hide the decentralized nature of the 
network. For example, an API gateway or security 
token management system can be built using a 
sidecar pattern.

API Gateway: The API gateway is part of the 
net module within Edge SDK and makes the API 
endpoints for each service accessible to all other 
nodes in a cluster. By providing this API gateway, 
Edge SDK provides functionalities that abstract 
the complexity of dealing with other microser-
vices in different clusters.
•	 Security: At the edge, security is a crucial 

aspect of how microservices communicate. 
Certain elements, such as firewalls and net-
work partitioning, are common in the central 
cloud but do not generally exist on the edge. 
Therefore, it is necessary to address three 
security levels:

	 –It is not possible to use https on the link-lo-
cal cluster because the nodes in this cluster 
do not have domain names. Therefore, com-
munication between nodes within the same 
link-local network is encrypted. 

	 –The API of each microservice is protected 
via fine-grained scope tokens. Generally, 
Edge SDK operates in a zero-trust environ-
ment. Therefore, we cannot assume that fire-
walls protect microservices running on edge 
nodes. Dealing with a valid and non-expired 
token is abstracted by the sidecar.

	 –Because there are some special nodes that 
may manage data from other nodes (e.g., 
cache node or link-local proxy node), the user 
payload must be encrypted so that it is only 
visible to authorized parties. Acquiring the 
key and encrypting and decrypting the user 
payload are also abstracted by the sidecar. 

•	 Routing: For proximity and user account clus-
ters, routing to the proper node is a com-
plex operation that requires dealing with the 
supernode and link-local proxy node. The 
sidecar hides this complexity from the devel-
oper of the microservice, and they only need 
to invoke the appropriate microservice with-
in the cluster.

•	 Retry: Decentralized systems require retry 
mechanisms to ensure fault tolerance. The 
sidecar handles retry calls and strategies. 
Developers can focus on developing their 
microservice rather than the complexity of 
decentralized systems. 
Similar to backend technologies, such as Istio, 

which helps developers handle a service mesh (a 
solution based on microservices talking to each 
other), Edge SDK handles the service mesh at the 
edge and deals with all the constraints of using 
edge devices as servers.

HEC Management Backend
HEC management backend services are hosted 
on servers that are reachable through the Inter-
net and provide necessary services to support 
edge nodes across edge clouds. An HEC clus-
ter is defined as a collection of nodes, each with 
a globally unique ID, based on the context or 
scope. As explained previously, a given node at 
any time may be a member of any or all three 
clusters: user account, network, or proximity clus-
ters. Other scopes may be defined for the group-
ing of nodes; however, for most applications, 
these three scopes are sufficient.

The major elements of the HEC management 
backend shown in Fig. 7 are:
•	 DS: Discovery Service 
•	 SS: Signaling Service
•	 SEP: Signaling Endpoint (deployed dynami-

cally and on demand)
•	 BEP: Bearer Endpoint (deployed dynamically 

and on demand)
•	 IS: Identity Service, using any third-party SaaS 

provider 
Parts of SS and IS live on both the backend 

and edge nodes: link-local network proxies in 
each cluster are assisted by SS via SEP or BEP, and 
the supernode of a cluster is assisted by DS. The 
architecture departs from the traditional notion 
of “service by servers in the cloud–client on the 
edge.” Its value comes from the distribution of 

HEC management backend 
services are hosted on 

servers that are reachable 
through the Internet and 

provide necessary services 
to support edge nodes 

across edge clouds. An HEC 
cluster is defined as a col-
lection of nodes, each with 
a globally unique ID, based 

on the context or scope.
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services over the entire range, from the central 
cloud to the edge nodes, as depicted in Fig. 8.

The SS is used to provide APIs to launch the 
SEP and BEP components. The SS keeps track of 
the existing BEP and SEP in a cluster of SS and 
provides the information needed to properly load 
balance the BEP and SEP in the cluster of SS. To 
provide optimal latency based on where the BEP 
and SEP are needed, the DS and SS are inde-
pendently geo-decentralized. 

The DS holds knowledge to form clusters, the 
overall status of the clusters, and the nodes within 
them. Once a cluster is formed, any new node 
registers with the supernode, which subsequently 
informs the DS. To reduce traffic for scalability, 
updates from the supernode to the DS occur in 
an opportunistic fashion and only when a change 
occurs in the cluster. 

Another important function of the DS is the 
reachability test for a supernode. When a super-
node registers itself, the DS tests for reachability. The 
supernode might be behind a fi rewall, and while it 
could initiate a call to the DS, the DS or other exter-
nal nodes might not be able to initiate a call to the 
supernode. In such cases, the DS requests that the 
SS dynamically deploy a SEP for the cluster. The DS 
returns the SEP address to the supernode. Further 
descriptions of SEP and BEP are presented below. 

The DS holds a complete inventory of the 
nodes and cluster profi les. This inventory includes 
details of computing resources on all nodes, 
status of each node, location of each node, 
services available on each node, end-to-end 
network topology to reach each node and the 
clusters, reachability of the clusters, availability 
of resources, and other pertinent information. In 
other words, the DS has complete visibility of all 
resources across the network and can supply this 
information to dynamically deploy services on any 
available resource within the network in real time.

Signaling Endpoint (SEP) and Bearer End-
point (BEP): SEP and BEP are resources that can 
be deployed dynamically by the SS based on the 
demand from the nodes within the clusters. Con-
sequently, there is no need to reserve the com-
puting resources. This increases efficiency and 
reduces cost by deploying endpoints only when 
needed. SEP is used for signaling communication, 
while BEP is used for data communications and 
jointly assists the nodes to set up tunneling oppor-
tunistically to increase signaling and data band-
width efficiency. The SEP and BEP are deployed 
based on parameters such as time to live, number 
of concurrent connections, and communication 
protocols (HTTP, SSH, web socket, or UDP tun-
neling). If desired, endpoints can be deployed on 
the available computing resources within closest 
proximity of the cluster.

The mechanics of the SEP and BEP are best 
illustrated by the example depicted in Fig. 9. 

In the example, it is assumed that two nodes 
(Node 2 in the network cluster 1 and node 4 in 
the network cluster 2) belong to the same user 
and have already registered with their respective 
link-local network clusters. The platform provides 
the SEP as a reachable endpoint to Node 4 to 
communicate with Node 2 as if it were directly 
accessible. After signaling is established, a BEP is 
provided for the bulk of the exchange between 
the two nodes. The flexibility of separating the 

signaling and bearer channels allows the creation 
of service-specifi c BEPs that are not restricted to 
HTTP-based service delivery.

Steps for discovery, connection, and communi-
cation among nodes include:
• Sending discovery requests to the supernode 

for nodes that belong to a scope
• Obtaining a list of nodes together with 

appropriate signaling information
• Sending requests to remote nodes via a SEP
• Having remote nodes request a BEP for pro-

viding a service
• Connecting and communicating to consume 

the service through the provisioned BEP

FIGURE 7. Components of HEC architecture.
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Identity Service (ID): Identity management 
can be any SaaS-based solution that resides in 
the central cloud, and creates and maintains the 
authentication profile. The platform performs 
authorization, which requires token generation 
and management. The token holder can be Edge 
SDK, the microservice using Edge SDK, the appli-
cation developer using Edge SDK, or the end user 
of the application. The token is used to verify the 
credentials, legitimacy of the token holder, and 
authorizing access to all backend services using 
existing mechanisms such as Jason Web Tokens 
(JWT) [31] and a subset of standards defined in 
[32] to verify the identity of the token holder. 

benefIts of Hec for 5g And beyond
To make 5G efficient and economically viable, 
communication service providers must install 
computing resources on their deployment sites to 
minimize service latency and reduce CAPEX and 
OPEX costs. Service providers plan to use Europe-
an Telecommunications Standards Institute (ETSI) 
multi-access edge computing (MEC) or GSMA 
(3rd Generation Partnership Project, 3GPP, SA6) 
standards to deploy and operate application com-
ponents on the network equipment. Moreover, 
these standards consider a device to be attached 
to the network. Utilizing the HEC concept, net-
work-attached devices can be leveraged to run 
applications and:
• Off load unnecessary traffi  c over the network 

by enabling policy enforcement, data pro-
cessing, and caching on edge devices

• Reduce energy consumption and the carbon 
footprint of the MEC/3GPP infrastructure 
in their base stations, given that edge devic-
es no longer need to constantly send traffi  c 
over the network

• Provide a more responsive and effi  cient solu-
tion to their enterprise customers.

• Manage higher-value data instead of raw 
data, which may have signifi cant duplication/

noise, and as a result, improve the value/
cost ratio of their MEC/3GPP infrastructure.

• Provide cross-industry solutions to their cus-
tomers and ecosystem synergy across their 
customer base and seamlessly connect high-
ly fragmented MEC/3GPP silos.

• Build and maintain systems with lower 
CAPEX and OPEX: Today, these systems rely 
on centralized application servers that are 
the focal points of all interactions between 
all devices, and waste significant network 
and computing resources.

• Increase revenue by off ering a diff erentiated 
private enterprise network as a service with 
higher data privacy and security.

• Provide a foundational approach for GDPR 
for their enterprise customers.

• Support GDPR compliance with built-in pri-
vacy and reduced complexity.

• Support environmentally friendly solutions 
and reduce carbon footprint.

• Avoid heavy device orchestration by relegat-
ing many functions to the furthest edge of 
the network.

• Empower native microservice developers to 
build applications instead of being limited 
to embedded systems for specific industry 
specialists.

• The resiliency and robustness of their solutions 
are increased by minimizing the points of fail-
ure through decentralization and localization.

• Reduce the necessary upgrade cycle of com-
puting, storage, memory, and bandwidth 
resources in the infrastructure. 

APPlIcAtIon deVeloPMent usIng Hec
A major advantage of Edge SDK is its ability to 
develop front-end applications on typical client 
devices using the microservice concept and 
architecture. 

The transition to microservices and HEC requires 
development teams to work more closely because 
it blends diff erent knowledge and expertise:
• Backend developers: Supporting billions of 

smart devices as clients (e.g., the Internet of 
Things, IoT) places a significant burden on 
the central cloud. On one hand, too many 
resources may remain idle, waiting for signals 
from smart devices on the edge. Additional-
ly, fulfi lling the performance demands of an 
application may not be feasible. For instance, 
deploying a backend system in the United 
States to support a client in Europe may not 
meet the latency constraints for many appli-
cations. Therefore, backend developers must 
leverage client resources better to support 
these new demands. They may be forced to 
offload many of the functions closer to the 
application, even if it requires deploying part 
of the backend system in the “client” device 
running the application. 

• IT/DevOps: For a long time, IT teams have 
been responsible for determining and man-
aging the infrastructure where solutions are 
deployed. They must consider many con-
straints and parameters such as deployment 
and operation costs, scalability, and elastic-
ity. For most applications, the scope of the 
cloud infrastructure is a single data center, 
and the main task is to address computing 

FIGURE 9. Discovery, connection, and communication for two devices belonging to the same UID.
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and networking resource constraints. To 
support the explosion of devices and data 
at the edge, the scope should be expand-
ed to deploy IT resources at the right time 
and place (generally beyond the scope of a 
data center). New scopes, such as proximity, 
account, and link-local presence, need to be 
considered to ensure efficient deployment 
and operations. 

• Frontend developers: Front-end applica-
tions are used to perform simple tasks such 
as inputting and sending information to 
the backend and/or rendering information 
coming from the backend. Most complex 
functions are generally relegated to back-
end servers. However, given the explosion 
of data generated at the edge, many new 
functions must be supported on smart 
devices, such as caching, augmented real-
ity (AR), image recognition, authorization, 
and authentication. As a result, front-end 
applications are becoming larger and more 
complex (e.g., the Facebook app on iOS has 
tripled in size to over 300 MB in less than 
two years). Therefore, there is an opportuni-
ty to transition from a monolithic front-end 
app design to a microservice architecture 
and to decompose the front-end app sub-
system into microservices. The app can then 
seamlessly call microservices that are local to 
the device, along with those running on the 
backend (hosted on the central cloud). 
One of the many consequences of a micro-

service-based system is the choice between 
multi-tenancy and single-tenancy. One of the 
major benefits of a public cloud is multi-tenan-
cy, where multiple applications can share public 
cloud resources and the microservices deployed 
on them. However, certain applications may 
have to deploy microservices that must remain 
as single tenants for a variety of reasons, such 
as security or data privacy. Therefore, a hybrid 
approach in which one can choose whether a 
microservice is a multi-tenant or a single tenant is 
a better approach.

Another important aspect is whether a micro-
service is a single user or multiple users. At first 
glance, multi-user microservices may appear to be 
more desirable. However, this is not always true. 
For instance, if a microservice is to always serve 
a single user within a “client device” or a pair of 
“client devices, ” where only one acts as a client 
and the other acts as a server, a multi-user platform 
may be ineffi  cient. Therefore, a hybrid approach, in 
which one can choose whether a microservice is 
multi-user or single-user, is a better approach.

As the complexity of systems increases, the 
benefits of a hybrid approach to both of these 
aspects become of paramount importance. The 
HEC platform can provide fl exibility and ease of 
implementing an approach to benefit backend, 
front-end, and DevOps with simplicity, fl exibility, 
redeployability, and scalability of development, as 
described below. 
• Backend developers can easily transition 

from a multi-user microservice to a single-us-
er microservice that resides on the closest 
resource to the application, that is, on the 
same resource that the front-end application 
is running. In most cases, the resource exists 

as the application does, and the microservice 
only exists if the application makes a request 
through the API gateway. This reduces the 
complexity of developing multi-user micro-
services and brings the serverless microser-
vice model to all types of edge resources 
beyond the central cloud. If serverless micro-
services expose their RESTful APIs, they can 
be utilized cross-domain. 

• IT/DevOps has a smaller number of micro-
services to manage in the central cloud, 
which helps reduce the complexity and 
operational cost. When microservices reside 
close to the application need (e.g., on the cli-
ent device), we achieve ultimate horizontal 
scalability with minimal or even no hosting 
cost. The complexity is also reduced because 
there is no need for different infrastructure 
knowledge because resources at the edge 
appear the same (albeit with different con-
straints) as those on the central cloud.

• Front-end application developers can follow 
backend development methodologies and 
decompose the complexity of the front-end 
application into serverless microservice and 
sidecar patterns, as illustrated in Fig. 10. 
The developer can then decide where an 
application is active and what microservices 
need to run within a cluster of nodes: on the 
central cloud, on a local device, or another 
device or gateway within the cluster. As a 
result, the developer has more options to 
break down a client application, usually writ-
ten as a monolithic block, into microservices 
and enjoy all the benefi ts of the microservice 
architecture common in backend develop-
ment: scalability, fl exibility, choice of technol-
ogies, isolated impact on other modules or 
functions, ease of deployment, and so on.
In contrast to the centralized cloud approach 

shown in Fig. 1, the application can make 
requests not only to the API gateway in the cen-
tral cloud, but also locally to the same device. In 
other words, the application can take advantage 
of microservices hosted locally for local functions, 
and globally on the central cloud for functions 
that cannot be hosted locally. This concept can 
be expanded to multiple devices and edge nodes, 
as shown in Fig. 11, as an example of client-to-cli-
ent communication.

In contrast to the centralized cloud approach 
shown in Fig. 2, where edge devices act as clients 
only, client-to-client communication can occur 
directly between edge devices (or through serv-

FIGURE 10. Client-server communication using HEC with Edge SDK.
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ers in the central cloud), giving the developer the 
opportunity to optimize all aspects of deployment: 
cloud hosting costs, latency, bandwidth usage, 
data privacy, and all other benefi ts of the micros-
ervice architecture for typical backend functions.

As a result, Edge SDK benefi ts developers by 
seamlessly expanding:
• The notion of on-demand IT resources to the 

edge using the same models and APIs 
• The notion of clustering by adding new cluster 

scopes: user accounts, proximity, and networks.
• The notion of service mesh by providing a 

similar pattern at the edge to handle the 
API gateway, security, and routing for 
communication with other microservices, 
whether locally on the edge, globally, or in 
the central cloud
In conclusion, we have devised a pragmatic 

approach for building a decentralized cloud that 
can leverage the processing power, storage, and 
memory of billions of smart connected devices 
that are currently unused or seriously underuti-
lized. This can create a cloud fabric that is orders 
of magnitude larger, cheaper, and faster, has a 
lower carbon footprint, and can provide better 
data privacy for all consumer and enterprise appli-
cations. This will address many of the challenges 
of 5G deployment and help build a more effi  cient, 
equitable, and sustainable hyperconnected world.
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FIGURE 11. Client to client communication using HEC with Edge SDK.
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