
IEEE Communications Magazine • September 202216 0163-6804/22/$25.00 © 2022 IEEE

Abstract
The massive growth of connected devices,

including sensors and machines, is revolution-
izing every aspect of human life. The socioeco-
nomic impacts are significant and have already
transformed many industries. In this article, we
discuss some of the challenges of the explosion of
devices and exponential growth in personal digital
content and machine generated data. The cen-
tralized cloud architecture adopted in the early
days of mobile Internet was designed primarily
to allow access to data stored on the worldwide
web. Today, use cases have evolved significantly.
Humans and devices are now producing most of
the data consumed on the Internet. As a result,
the existing centralized cloud infrastructure is no
longer efficient or sustainable. There is significant
waste of network bandwidth to send terabytes of
data to server farms that may be hundreds of kilo-
meters away from the source and/or destination
of data. The prevalent centralized cloud archi-
tecture does not adequately leverage massive
amounts of computing resources on smart devic-
es, which are idle most of the time. Moreover,
despite all the efforts to reduce network laten-
cies, communication to server farms is a major
bottleneck for latency in many applications. We
introduce a novel architectural approach to cloud
decentralization called hybrid edge cloud (HEC)
that minimizes network bandwidth usage, reduces
communication latencies, and leverages resources
on smart devices to reduce the burden on server
farms and other centralized computing resources.
HEC combines the benefits of new network tech-
nologies such as 5G and WiFi 6 in private and
public clouds to leverage computing resources on
smart devices to build a sustainable decentralized
infrastructure for the hyper-connected world.

Introduction
The first four generations of cellular technologies
have changed the landscape of mobile commu-
nications by changing the concept of telephony
from calling to and from places to individuals [1].
The second and third generations enabled perva-
sive text communication and web browsing. Even-
tually, 4G and Wi-Fi provided ubiquitous access
to the Internet and ushered in the era of mobile
Internet and the app economy. In the early days
of mobile Internet, the primary usage of these net-
works was for smartphones and later Internet of
Things (IoT) devices to get access to information
and apps hosted on the worldwide web. Initially,

people and machines mostly acted as consum-
ers of the web content. As a result, the central-
ized cloud architecture was designed with the key
assumption that most data would reside on cen-
tralized servers across the worldwide web, and
client nodes would primarily be used to access
these centralized sources of data and information.
This assumption no longer holds true. The use
of mobile Internet has evolved, and the roles of
people and machines have transformed from con-
sumers to producers of data. Most of the data are
now introduced by smart devices at the edge of
the network [2–4].

The “cloud” [5] has been a major enabler for
mobile Internet. Today, the most popular consum-
er and enterprise applications and solutions are
hosted in data centers. This is what we refer to as
the “cloud,” which has been essential for enabling
the app economy. The underlying solution archi-
tecture is a hierarchical client-server architecture.
Certain nodes act as servers and others act as cli-
ents. In contrast, in a peer-to-peer architecture,
any node can act as both server and client. Most
computing nodes operate in a client-server mode,
where most servers are in data centers made up
of server farms scattered around the world. This
fixed and hierarchical client-server architecture
may have been efficient for hosting applications
that provide access to content and information
from remote servers to billions of “client” devices.
Solutions’ backends are hosted on servers that
handle compute-intensive tasks, and the client
application software are run on devices such as
smartphones that perform simpler functions such
as entering commands, caching content, and ren-
dering information for the end user.

The latest evolution of cloud architecture is the
move to microservices [6], which decomposes a
monolithic backend solution into a collection of
microservices that are dynamically instantiated
(serverless1) behind an application programming
interface (API) gateway. This evolution introduced
new complexities in microservice-to-microservice
communication (service mesh [7]) and cluster
management [8].

The move to microservices is triggered by
three major trends:
•	 API: Microservices implement and expose

RESTful APIs (HTTP REST-based). A set of
easy-to-use APIs can hide internal complex-
ities and facilitate communication between
the microservices within a system.

•	 Automated deployment: It is possible to build

Siavash M. Alamouti, Fay Arjomandi, and Michel Burger

The authors are with mimik Technology, Inc., USA and Canada.
Digital Object Identifier:
10.1109/MCOM.001.2200251

Hybrid Edge Cloud: A Pragmatic Approach for
Decentralized Cloud Computing

INVITED ARTICLE

The authors introduce a novel
architectural approach to cloud
decentralization called hybrid
edge cloud (HEC) that minimizes
network bandwidth usage,
reduces communication latencies,
and leverages resources on smart
devices to reduce the burden on
server farms and other centralized
computing resources.

Ethical Compliance: All pro-
cedures performed in studies
involving human participants
were in accordance with
the ethical standards of the
institutional and/or national
research committee and with
the 1964 Helsinki Declaration
and its later amendments or
comparable ethical standards.

Conflict of Interest Decla-
ration: The authors declare
that they have affiliations
with mimik Technology Inc.,
which has financial interest in
the subject matter or materials
discussed in this manuscript.

1 The term serverless can be
confusing as it doesn’t mean
that severs are not required.
Instead, it means that the
server role is not permanently
assigned [29].

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • September 2022 17

complex systems with a potentially large
number of elements by deploying microser-
vices automatically using deployment scripts
(e.g., Ansible) controlled by a pipeline infra-
structure (e.g., Jenkins). Moreover, auto-
mated deployment can help build flexible
systems by providing the ability to determine
where deployments occur.

• On-demand IT resources: The ability to
request IT resources (CPU, storage, and
network) through simple APIs and to obtain
these resources in a near real-time fashion
makes the creation of large and scalable sys-
tems more feasible.
Figure 1 illustrates the typical deployment of

an application in a centralized architecture. A
client application runs on a smart device, and a
collection of central cloud2 functions host the
backend of the solution. This backend is usually
made up of microservices reachable through an
API gateway. As shown, every http request is
sent from the “client” device to servers in the
central cloud.

A special case of device-to-device communica-
tion is illustrated in Fig. 2.

In this case, when device 1 wishes to send
information to device 2, it sends an http request
that ends up at the API gateway, and the appro-
priate microservice is launched. Usually, a push
notification service informs device 2 that infor-
mation is available, and device 2 responds with
a request that is serviced again by a microservice
hosted on the central cloud. In other words, even
if the two client devices are in proximity and on
the same local network, all communications and
data need to go through servers in a data center
that may be hundreds of kilometers away! The
same holds true even for two applications running
on the same smart device.

The major advantage of this architecture is the
rapid and low-cost deployment of (computing-
and/or storage-intensive) applications on gener-
ic servers shared among many applications with
the aid of virtualization and orchestration tech-
nologies [5]. However, within the last decade,
we have witnessed three fundamental trends that
make a hierarchical client-server architecture less
efficient. The first is the explosion of computing
devices and embedded computing in all things [9]
and the increasing capabilities of smart devices.
For instance, there are more computing, memory,
and storage available in today’s smartphones than
in powerful servers just a decade ago. This trend
will continue due to Moore’s law [10]. The sec-
ond trend is the enormous amount of data gen-
erated on these (edge) devices. With the advent
of social media on mobile devices, orders of mag-
nitude more personal multimedia content is gen-
erated on devices (photos, videos, sensor data,
etc.) rather than premium content from major stu-
dios and broadcasters hosted on central servers
in the cloud [11–13]. Currently, most of the data
generated on smart devices are sent back to the
central cloud for processing and to facilitate shar-
ing. The third trend is the decomposition of solu-
tions in the collection of microservices and the
automation of deployment, which make backend
solutions much more dynamic (serverless) with
scalability that closely fits the demand in either
volume or even geography.

The current hierarchical architecture makes
central cloud resources and network connectivity
bottlenecks for future growth. Sending data from
hundreds of billions of client devices to thousands
of centralized cloud servers can waste bandwidth
and energy, which can have serious social and
economic implications.

Another disadvantage of centralized cloud
architecture is developers’ reliance on cloud ser-
vice providers who have access to the apps and
the data stored or processed in their servers [14–
16]. As a result, a handful of very large companies
have control over the vast majority of consumer
and enterprise data. In addition, despite all sophis-
ticated security measures, storing data and host-
ing applications on third-party resources expose
the owners of the information to risks. Cloud
resources have been designed for easy access
to millions of developers and application service
providers, which has increased vulnerabilities and
security holes. This has resulted in gross abuse of
consumer and enterprise data privacy and securi-
ty [17–22].

An eff ective and feasible approach to address
this dilemma is to enable any smart device to
act as a cloud server when it makes sense.
Enabling smart devices to act as cloud servers
can potentially reduce reliance on third-party
cloud services that are not necessary for applica-
tions and allow microservice-based solutions to

FIGURE 1. Fixed client-server architecture using centralized cloud.

Client
Application

http/https request

http/https response

Device 1

A
PI

 G
AT

EW
AY 1

2

3

1

3

2

μS: microservice

FIGURE 2. Device-to-device communications in fixed client-server architecture of centralized cloud.

Client
Application

Send information to device 2

Information available
from device 1

Information
available
from device 1

Get infoDevice 1

Device 2

A
PI

 G
AT

EW
AY 1

2

3

1

5

2

3
6

Client
Application

Push
notification

service

4

7

μS: microservice

2 From here on, we refer to
server farms in data centers
as central cloud.

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • September 202218

be more flexible by dynamically moving micro-
services from the backend to smart devices.
Many of the functions performed in the central
cloud can then be performed on smart devic-
es that act as servers. In effect, we can create
a physical decentralized cloud fabric that is
potentially several orders of magnitude larger
than the central cloud fabric. For example, there
are currently over 80 million Sony PlayStation 4
(PS4) consoles in people’s homes [23]. This rep-
resents more than 600 million processor cores
and 40,000 PB of storage. In comparison, this is
much greater computing, storage, and memory
resources in the aggregate than the entire Ama-
zon Web Services (AWS) infrastructure [24]. The
PS4 is only one type of device. Billions of PCs,
set-top boxes, game consoles, streaming players,
routers, smartphones, tablets, and other comput-
ing devices can potentially act as cloud servers
and collectively have orders of magnitude more
computing power than the central cloud. There-
fore, we have the opportunity to create a cloud
fabric composed of tens of billions of smart
devices that are currently being used as clients
only. Once we enable these devices to act as
servers, we can build a decentralized cloud that
is orders of magnitude larger than the current
centralized cloud.

The benefi ts of such an architecture are phe-
nomenal: reduced cloud hosting costs, reduced
communication bandwidth and network effi cien-
cy, reduced energy consumption and carbon
emissions, reduced latency, reduced application
development time, accelerating the microser-
vice trend, increasing data privacy, and providing
consumers and enterprises better control over
their data.

In this article, we discuss the opportunities and
challenges for cloud decentralization and some
of the drivers, requirements, and principles neces-
sary to establish a pragmatic and scalable decen-
tralized cloud fabric. Finally, we provide a detailed
overview of a platform, referred to as a hybrid
edge cloud (HEC), designed and developed
according to these requirements and principles.

fundAMentAls of cloud decentrAlIzAtIon
Cloud decentralization has several advantages. As
mentioned in the Introduction, in the current cen-
tralized cloud model, as more devices are added
or more content is generated by these devices,
more servers in data centers must be added to
support them. Using a decentralized cloud, we
can create a cloud fabric that scales with the num-
ber of smart devices. This reduces the need for
additional servers and the upgrade cycle of these
servers in data centers. In eff ect, we increase the
“cloud” capacity as the number of smart devices
increases. In addition, given that most of the data
are produced on smart devices, we minimize the
transport costs and latencies for applications. In
this new model, much of the processing is per-
formed on devices, communication is kept as
local as possible, and heterogeneous smart devic-
es from diff erent vendors and operating systems
can collaborate and share computing and other
resources. The central cloud remains a valuable
resource because it may be indispensable for
many applications that require global manage-
ment, central storage, or processing. Data center
resources need to increase, but at a reasonable
pace, to accommodate the needs for central pro-
cessing only and relegating all other possible tasks
and functions to smart devices where most of the
data are generated. Servers in data centers will no
longer be the bottleneck or the “always neces-
sary” trust elements and do not need to grow in
proportion with smart devices, but only in propor-
tion to the needs of central processing as dictated
by use cases and applications.

cHAllenges of cloud decentrAlIzAtIon
There are several challenges to building a prag-
matic decentralized cloud platform. The first is
fragmentation in operating systems and networks.
For a decentralized cloud to become feasible,
devices must connect, communicate, and collab-
orate across many fragmented operating systems
and networks.

The second major challenge is the availability
of network resources. Once smart devices act as
servers, they must connect and communicate with
other devices by using uplink network resourc-
es. Although network connectivity is gradually
becoming symmetrical, today, there are more
downlink than uplink resources available (down-
load speeds on most consumer and enterprise
networks are better than uplink speeds).

To better describe the challenge, Fig. 3 illus-
trates an example of posting a video from a smart-
phone (acting as a client) to the central cloud.
We assume that the video is consumed by two
smartphones and a personal computer (PC). In
the centralized cloud model, the video is first
uploaded to a server in the data center, and noti-
fications are sent to recipients to download the
video from the server (which acts as a storage
and streaming server). In the decentralized cloud
model, the video can be streamed directly from
the smartphone (acting as a streaming server) to
the three destination smart devices. In the cen-
tralized case, we have one instance of uplink and
three instances of downlink. In the decentralized
case, we have three instances of uplink (assuming
none are behind a firewall). From a bandwidth

FIGURE 3. Video sharing example using centralized cloud vs. decentralized cloud.

Centralized Decentralized

Public/Private
Cloud

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • September 2022 19

effi ciency point of view, the decentralized cloud
approach has an advantage; when we consider
the asymmetric nature of most of the networks
today, uplink resources may become a challenge
and impact user experience. Thankfully, the tele-
com industry has become aware of this, and most
new wired and wireless standards now specify
more symmetric connections where uplink and
downlink resources are balanced. However, it is
important to be cognizant of this when building
applications using decentralized clouds.

The third major challenge is that, unlike serv-
ers in data centers, most smart devices may be
non-persistent in nature. There is less control over
their availability and reliability, especially for bat-
tery-operated and mobile devices. Unlike servers
in data centers, there is little central control over
these devices. For instance, in the example above,
if the smartphone sending the video is turned off ,
the video streams to the other devices stop. This
must be considered when building applications
where persistent nodes are essential. Persistent
nodes can always be provisioned using other
collaborating edge servers (e.g., home or enter-
prise gateways); in the worst case, central cloud
resources can be used when required.

The fourth major challenge is the management
of distribution. In data centers, distribution man-
agement deals with resource availability based
on simpler criteria such as CPU load, memory
constraint, and IO. The scope of distribution man-
agement is the specific data center where the
solution is running. In a decentralized cloud, the
criteria for distribution management are much
more diverse and include power availability and
consumption, reliability, and device capabilities.
As discussed later, with decentralized cloud, distri-
bution scopes expand to devices on the same net-
work, within a given proximity, and user accounts
because most devices belong to specifi c users.

The fifth challenge is security because in a
decentralized cloud, it is not feasible to have fi re-
walls surrounding all available resources. Conse-
quently, every device on the network should be
treated as a potential rogue device, and appropri-
ate security measures are required to ensure that
rogue nodes cannot disrupt secure operations
within the network of devices.

Despite these challenges, the benefits of a
decentralized cloud far outweigh its challenges,
and all of these challenges can be overcome in a
well-designed system, as described in this article.

drIVers And reQuIreMents for cloud decentrAlIzAtIon
Figure 4 shows the high-level architecture of
“centralized cloud” and compares it to “decen-
tralized cloud.” With a decentralized cloud, all
nodes, including the server farms in data centers,
referred to as the central cloud in the fi gure, can
act as cloud servers, and there is no designated
permanent central element. Nodes can commu-
nicate, collaborate, and share resources directly,
generally without resorting to a central element
unless necessary. With this approach, the cen-
tral cloud resources are used only when required;
for instance, when there is a need for global stor-
age, archiving, updating of centralized databas-
es, centralized registration, and so on. Any other
functions that can be handled by smart devices at
the edge can be assigned to them; for instance,

messaging between devices, handshaking control
signals between machines, and transmitting data
between devices within a small cluster.

The explosion of “client” devices on the edge
of the network and the change in role from con-
sumers of data to producers/consumers of data
are major drivers of cloud decentralization. How-
ever, other trends in the software industry make
cloud decentralization necessary and feasible.
One important trend is the adoption of microser-
vice architecture.

The complexity of managing software solutions
made up of a large number of components in the
past has led to monolithic solutions. However,
with the evolution of virtualization technology
toward lighter container management platforms,
the consumerization of on-demand IT, the man-
agement of the collection of microservices (ser-
vice mesh and cluster management), and the ease
of rich communication (APIs), this complexity has
drastically decreased. A good software design
practice involves developing solutions as a collec-
tion of many instances of single-purpose, well-de-
fi ned components called microservices [25, 26].

The consequences of designing systems in this
way are:
• More granular utilization of infrastructure

resources to closely follow the demand curve
• Simplifi cation of the design of complex attri-

butes (session, tenancy)
• Better distribution and utilization of comput-

ing resources within or between data centers
• Memory-efficient and power-efficient archi-

tecture that loads memory and runs only
active microservices at any time

• Further decomposition of solution clients from
a monolithic to microservice architecture for
faster application development time and ease
of software upgrade and maintenance
To achieve even more efficiency of the soft-

ware solution, a current trend is to have ephem-
eral microservices, also referred to as server-less
architecture, where microservices are instantiat-
ed (launched and run) based on API calls made
to the microservice itself to achieve even more
effi ciency of the software solution. Programming
using ephemeral microservices is referred to as
a serverless architecture that leads to a more
memory-efficient and power-efficient architec-
ture which loads to memory and runs only active
microservices at any time.

FIGURE 4. Centralized vs. decentralized clouds.

Centralized Cloud Decentralized Cloud

Public/Private
Cloud

Public/Private
Cloud

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • September 202220

As previously discussed, a major challenge
with offloading computing to smart devices is the
possible lack of persistence in both the connec-
tivity and power status of these devices. These
challenges may be overcome using a microser-
vice approach.

The cloud can be extended to include smart
devices by recognizing and exposing their com-
puting resources and utilizing them in an oppor-
tunistic manner when available. Adding analytics
to the way ephemeral microservices are deployed
based on availability, policy, and context (includ-
ing social and other application-level events)
can help to optimally deploy applications on the
decentralized cloud.

To make decentralized cloud computing prac-
tical and useful, several considerations must be
considered. We need to ensure that existing smart
devices can act as cloud servers when needed.
The developers should be able to build applica-
tions with as little effort as possible. Given the het-
erogeneous nature of these devices, we should
be able to assign functional roles based on device
capabilities. To make life easier for developers, we
should follow API semantics similar to the major
existing public cloud platforms. We should also
provide a light container to run microservices
on any smart device and, in that light, follow the
semantics of existing major container technolo-
gies as much as possible.

From the perspective of smart devices, there
are several essential requirements. Smart devices
should have the following capabilities to become
potential cloud servers:
•	 Discover the existence of other computing

nodes of any type, regardless of the OS or
the network.

•	 Discover other nodes’ capabilities and behav-
ior (hardware specifications, OS, persistency,
connectivity, etc.).

•	 Discover microservices supported by other
nodes.

•	 Dynamically form clusters along with other
nodes, especially around the network, prox-
imity, and user accounts.

•	 Communicate with other nodes (including
central cloud resources) at the microservice
level, either directly or through other nodes
across different clusters.

•	 Connect with other nodes if they choose to
share data, services, or resources.

•	 Adapt to functions and roles based on their
resources and capabilities.

•	 Process and analyze data locally when possible.
•	 Be as secure and trustworthy as a centralized

cloud, using a zero-trust model.
We suggest a platform-agnostic approach

to develop downloadable application-level soft-
ware to enable any computing device to act as a
cloud server when possible, and as a result, build
an end-to-end decentralized cloud platform. To
make this feasible for the industry and developer
community, we have concluded that the following
requirements are essential for creating a pragmat-
ic decentralized cloud platform.
•	 It should require no change to the device

hardware, OS Kernel, or drivers.
•	 It should work on most modern hardware

(PCs, STBs, router tablets, smartphones, etc.).
•	 It should have a very small memory footprint.

•	 It should support hosting microservices, and
load, run, and stop across devices.

•	 Ideally, it should support multi-tenancy,
where multiple apps and microservices are
hosted with a single instance of the plat-
form software.

•	 It should have a light but scalable backend host-
ed on central cloud whether private or public.

•	 It should use bootstrap mechanisms for the
registration of the nodes.

•	 It should create dynamic clusters of nodes
within a given scope.

•	 It should support non-persistency (appearing
and disappearing) of inter- and intra-cluster
nodes.

•	 It should create effective persistency when
needed by pulling collaborating decentralized
and/or centralized resources dynamically.

•	 It should manage communication between
nodes either directly or through intermediate
nodes.

•	 It should dynamically instantiate backend
resources based on demands from the nodes.
Various principles must be considered to

create a pragmatic and scalable architecture to
unleash the power of smart devices and cre-
ate a massive decentralized cloud. This section
describes several important principles.

Basic Principles of Cloud Decentralization
In this section, we describe some of the funda-
mental principles that ensure that cloud decentral-
ization is pragmatic, efficient, and secure.

First Principle: Meritocracy: Meritocracy is
a key principle in ensuring an efficient system
design in which the use of network bandwidth
and central resources is minimized. All nodes
should have equal opportunities to participate in
the network based on the merit and value they
provide. Nodes may play a role based on their
capabilities and characteristics. The capabilities
of any node should be maintained in the node
profile. For instance, a node with large storage
can be selected dynamically as a cache node or
a backup storage node, a node with high network
connectivity can be a proxy node, and a persistent
node can become the holder of knowledge for a
cluster of nodes.

Meritocracy is essential for decentralization.
Otherwise, we must provide central elements
with predefined roles, which may lead to an inef-
ficient hierarchical structure. Ideally, any cluster of
two or more nodes should be able to operate and
collaborate based on merit.

Several characteristics are necessary to estab-
lish meritocracy. For instance, transparency is
essential. All the participating nodes should tell
the truth regarding their profiles in a transpar-
ent manner. Otherwise, meritocracy cannot be
applied optimally. The architecture should remove
any incentives to lie (not providing node-specific
privileges or rights). Even when there is no appar-
ent incentive to lie, we need a mechanism to
blacklist nodes that lie about their profile to harm
the operations of a cluster.

It is also important to consider that meritoc-
racy may change over time. Nodes can upgrade
or downgrade their capabilities and profiles. The
architecture must accommodate any changes to
the nodes in real time.

Meritocracy is essential for
decentralization. Otherwise,
we must provide central ele-
ments with predefined roles,
which may lead to an ineffi-
cient hierarchical structure.
Ideally, any cluster of two or
more nodes should be able
to operate and collaborate

based on merit.

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • September 2022 21

Perhaps the most important consideration with
regard to the meritocracy principle is the merit
of the central cloud resources in this new archi-
tecture. The centralized cloud architecture is a
special case of a decentralized cloud in which
smart devices are used only as clients. Therefore,
it is easy to become complacent and assign most
tasks back to the central cloud even when there
is no merit. It is essential to avoid existing bad
practices and avoid falling back on readily avail-
able third-party resources on the central cloud to
speed up development while sacrificing hosting
costs, latency, and privacy. For the meritocracy
principle to work effectively, all nodes should be
considered as potential servers to other nodes,
and all requests must be kept local to the cluster
where a node is active.

Second Principle: Decentralized Discovery:
A node needs to discover other nodes based on
a scope. Some examples of scopes are being
attached to the same network, owned by the same
account holder, or within proximity of one another.

The discovery process should use any combi-
nation of these or other scopes without a dedi-
cated central node such as a presence server. For
instance, if a node sits behind a firewall and is not
reachable from the outside, it should rely on any
node that is reachable to become discoverable
and not on a central entity unless it is necessary.

The discovery process should not be limited to
information on presence and how to connect and
communicate to a node, but also to some of the
important characteristics and roles and personas a
node can adopt: cache node (a node with spare
storage), proxy node (good connectivity to the
Internet), CPU resources (node with spare CPU
to run microservices), and so on.

Third Principle: Clustering: Human and
machine communication occurs mostly in clus-
ters. Robert Dunbar, an anthropologist, suggest-
ed a cognitive limit of 150 for people with whom
humans can have stable relationships [27]. He
explained it as “the number of people you would
not feel embarrassed about joining uninvited for
a drink if you happened to bump into them in a
bar.” In other words, humans communicate with-
in constrained clusters. Additionally, we seldom
regularly communicate with everyone in our
close relationship circle. In fact, daily communi-
cation may be limited to a handful of very close
relationships. Therefore, it makes logical sense
that the communication framework considers this
when assigning roles and responsibilities to nodes
within a cluster.

However, cluster-based communication char-
acteristics are not limited to humans. The com-
munication between the machines is similar. For
most applications, communication is often limit-
ed to a few nodes in a cluster at any given time.
Therefore, communication should be optimized
to occur locally in the cluster as much as possible.
To remove the requirement for any node to have
to handshake with every other node, we need an
architecture in which one node (which we call the
supernode) in a cluster is given a special role as the
knowledge holder of the cluster and is assigned the
role of communicating that knowledge to global
discovery or nodes in other clusters.

The system should allow nodes to form their
own ad hoc clusters dynamically based on cer-

tain scopes, as described above. Nodes should
dynamically assume roles via election or selec-
tion by other nodes based on a series of charac-
teristics of nodes and rules. Thus, the nodes can
dynamically form the fabric of a decentralized
cloud (i.e., software-defined cloud infrastructure).
As nodes enter and exit clusters, their roles should
be reassigned dynamically based on merit.

Following the creation of clusters, nodes can
discover, connect, and communicate within
and across clusters directly, or via the dynamic
instantiation of intermediator nodes. This boot-
strap model helps to avoid overloading any
nodes, whether global or local, and therefore
reduces traffic and chattiness and creates a light
and scalable architecture. Given the potential
non-persistence of the nodes, presence notifica-
tion should be left to the node itself, along with
the responsibility to decide which other nodes it
wants to notify. Therefore, there is no need for a
single global presence server or registration point.
Similarly, there should be no need for “keep alive”
mechanisms at the infrastructure level between
the nodes. These types of mechanisms can be
delegated to microservices if needed.

Fourth Principle: Microservice-to-Microser-
vice Communications: Once a decentralized
cloud fabric is formed, applications on devices
can utilize it to communicate directly without a
pre-assigned third-party trust element. However,
this is not sufficient to connect nodes at the phys-
ical network level. We must ensure direct and
secure communication at the microservice level.
All nodes, including smart devices on the edge,
should be able to join the service mesh and com-
municate directly. In addition, any node should
be able to load, start, and stop microservices on
any other node. This ensures that microservices
running across the platform can communicate
without the need for a fixed central entity.

Microservices enabled on smart devic-
es should follow the standard architecture by
exposing them through their own API(s) and
using fine-grained scopes to protect the resourc-
es exposed via APIs. The decentralized cloud
platform should enable seamless reachability
of microservices across nodes to form a ser-
vice mesh either directly or via a similar pattern
[28], as described in more detail later. In envi-
ronments that can run container daemons (e.g.,
Linux), a decentralized cloud platform should
provide functionalities for the communication
of these microservices across all OSs, devices,
and networks. In environments that cannot run
container daemons (e.g., smartphones), the plat-
form should provide additional “light” container
capabilities with the ability to download, deploy,
and operate microservices.

Fifth Principle: Dynamic Resource Instanti-
ation: For decentralization to be efficient, there
should be very little overhead associated with
enabling communication across nodes that are not
accessible directly. For lack of a better term, we
refer to this as a dynamic resource instantiation.

Signaling and data resources should be
deployed dynamically based on the network con-
ditions and demand from nodes within clusters.
As a result, there is no need to pre-assign com-
munication resources, but dynamically instantiate
and dismantle these resources once the function

Signaling and data resourc-
es should be deployed

dynamically based on the
network conditions and

demand from nodes within
clusters. As a result, there
is no need to pre-assign

communication resources,
but dynamically instantiate

and dismantle these
resources once the function

is completed.

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • September 202222

is completed. This increases efficiency and reduc-
es cost by deploying endpoints that are instantiat-
ed only when needed. The platform should assist
the nodes in setting tunneling opportunistically to
increase signaling and data bandwidth efficiency.
Resources should be deployed based on certain
parameters of network topology and demand by
the application. These communications resources
should be instantiated within the closest proximity
to the cluster including private or public cloud.

Sixth Principle: Collaboration: Thankful-
ly, building a zero-trust network, encrypting all
communications, and authenticating every device
is feasible given that at any time only a limited
number of devices may be active within any clus-
ter. The sharing of decentralized cloud resources
should be seamless, as it is with server nodes in
the central cloud. As a first step, we should be
able to use the collective resources of all com-
puting devices. For instance, recording a video on
a smartphone and seamlessly storing the record-
ed content on a personal computer, network-at-
tached storage (NAS), or even a connected
storage dongle. As a next step, all nodes should
be able to share their resources with others. For
instance, allowing family members to share a NAS
as a family resource, or allowing colleagues to
share computing and communication resources in
an enterprise. Ultimately, nodes should be able to
lease computing resources to others and create
an even larger, decentralized cloud.

That said, we must be careful not to tightly tie
the decentralized cloud to collaboration. A decen-
tralized cloud provides the opportunity to take
advantage of collaboration and resource sharing
across nodes. However, even without device-lev-
el collaboration, a decentralized cloud can pro-
vide several benefits. As a fundamental step, any
application built on a smart device should priori-
tize using its local resources to host microservices
to service other nodes in its cluster based on the
requirements of the application. In other words,
Jack’s device should be used as a server to host
Jack’s app. However, with collaboration, one can
go further and use resources from other nodes.
For instance, Jill’s phone can run a microservice
for Jack’s application even when they are not in an
active session, Jack can provide spare storage for
Jill’s videos on his device, or Jill can use Jack’s fiber
connection instead of her poor cellular connection.

In other words, collaboration can significantly
improve efficiency and scaling; however, it is not
necessary to make cloud decentralization impactful.

Seventh Principle: Infrastructure Indepen-
dence: A decentralized cloud platform must be
agnostic to operating systems, central cloud plat-
forms, networks, and locations. There have been
many failed attempts to standardize decentralized
communication between nodes. Intellectual prop-
erty issues create a significant barrier in creating
a homogeneous system. More importantly, it is
best to allow operating systems and networks to
evolve independently to provide a riper environ-
ment for innovation and fundamental disruption.
Otherwise, we will face even more issues with
legacy protocols, modules, libraries, and data.

Therefore, the decentralized cloud platform
itself must be independent of the evolution of
operating systems and networks. In other words,
the platform should operate on top of the existing

operating systems and networking standards at
the application layer. This is the most pragmatic
way to ensure that the platform is deployed and
maintained over the long term.

Eight Principle: Zero Trust Security: As men-
tioned earlier, it is not feasible to create firewalls
around all devices in an edge cloud cluster. In
a decentralized cloud environment, a zero-trust
security model is essential for ensuring secure
communication and operation. Therefore, security
needs to be ensured at many levels by encrypting
the communication between devices, encrypting
the payload, and protecting all resources using
keys with fine-grained scopes. Thankfully, building
a zero-trust network, encrypting all communica-
tions, and authenticating every device is feasible
given that at any time only a limited number of
devices may be active within any cluster.

Introduction to Hybrid Edge Cloud
In this section, we describe HEC, a decentralized
cloud platform designed and developed based on
the above principles. The platform enables almost
any computing device to act as a cloud server
to run microservices when feasible and plausible
in a completely decentralized fashion agnostic
to hardware platforms, operation systems, and
underlying networking technologies.

As shown in Fig. 5, the HEC platform is an
end-to-end system made up of a cloud manage-
ment backend and the Edge software develop-
ment kit (Edge SDK). This is a decentralized and
liquid architecture; therefore, every element can
reside anywhere on any reachable computing
device. The HEC platform and microservices run-
ning within can run on any operating system and
communicate over any network anywhere in the
world and are independent of the hardware infra-
structure and central cloud platforms.

The software component referred to by the
Edge SDK enables any smart device to act as a
cloud server. It is a collection of software libraries
and their corresponding APIs. Edge SDK can run
on any PC, server, mobile device, fixed gateway,
autonomous car gateway, connected TV, or even
in the central cloud, depending on the applica-
tion use case. Once the Edge SDK is loaded, the
device becomes an HEC node.

The HEC nodes:
•	 Can dynamically discover each other inde-

pendent from the OS and/or the network
•	 Can expose available capabilities and func-

tionalities via APIs to each other
•	 Can form and organize into clusters (edge

clusters)
•	 Can communicate within a cluster even with

no Internet availability (for the special case
of link-local clusters) and across clusters
The platform operates via the formation of

clusters. Nodes in a cluster discover, connect, and
communicate with other nodes. This bootstrap
model is used to avoid overloading any nodes,
whether global or local, and therefore reduces traf-
fic and chattiness and creates a light and scalable
architecture. Given the potential non-persistence
of the nodes, a presence notification is left to the
node itself, along with the responsibility to decide
which other nodes it wants to notify. Therefore,
there is no need for a single global presence server
or point of registration. Similarly, there is no need

A decentralized cloud pro-
vides the opportunity to take

advantage of collaboration
and resource sharing across

nodes. However, even
without device-level collabo-
ration, a decentralized cloud
can provide several benefits.

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • September 2022 23

for “keep alive” mechanisms at the infrastructure
level between the nodes. These types of mecha-
nisms can be delegated to microservices if needed.

As explained previously, the Edge SDK should
be available for any computing device, hardware
platform, and operating system. It is an appli-
cation-level software that can be downloaded
on many types of computing devices. Backend
management services can be hosted on a central
cloud or any reachable and reliable computing
resource with sufficient computing and memory
to provide the necessary services to support the
edge nodes. We describe these elements in detail
in the following sections.

edge sdk coMPonents
Figure 6 shows the major Edge SDK components.
The Edge SDK resides between the OS and the
end-user application. Developers can develop
their own microservices that can be hosted on the
device using the Edge SDK container manager.
The runtime environment for microservices is also
provided by Edge SDK.

By incorporating Edge SDK, computing devic-
es are transformed into intelligent network nodes
that can form clusters. Edge SDK removes the
complexity of networking among nodes, enabling
developers to focus on their solutions in a micro-
service model, even on small computing devices.

Nodes in a cluster can assume a specifi c role
or a combination of roles, depending on the phys-
ical hardware capability, OS, attached network
connectivity, types of microservices running on
each node, and usage/privacy policy settings.
Some roles are assigned through an election pro-
cess, considering other nodes within the cluster
at any given time, whereas others are assigned
through a process of selection. One of the most
important roles in a cluster is that of a supernode
elected by all the member nodes. In the trivial
case of a single-node cluster, a node serves as its
supernode. A supernode is the bearer of informa-
tion regarding a cluster and all its member nodes;
it is the “single source of truth” for the cluster.
The information maintained is related to nodes,
microservices deployed on each node, and his-
torical artifacts from Edge SDK operations. The
supernode is responsible for assigning roles such
as link-local proxy and link-local cache to the
other nodes in the cluster.

Some examples of selected nodes are:
• The link-local proxy node supports commu-

nication in cases where the cluster nodes
reside behind a fi rewall.

• The link-local cache node can be a node with
large amounts of physical storage, which can be
assigned a link-local cache role for the cluster.
For each node, the Edge SDK can support

microservices and apps from different provid-
ers (otherwise called “tenants”) on a device that
belongs to one user. In other words, even if a user
has loaded multiple apps on a smart device (e.g.,
a smartphone), all of which employ EdgeEngine,
functionalities and capabilities are related to (and
authorized for) that user.

In other words, even if a user has loaded mul-
tiple apps on a smart device (such as a smart
phone) all of which employ Edge SDK, the func-
tionalities and capabilities are related to (and
authorized for) that user.

• Node and service discovery: auto-discovery
and auto-routing for all nodes with Edge
SDK in local and global networks (s)

• Node and service connection: ad hoc edge
cloud of nodes forming a self-organizing cluster

• Light container: microservice runtime environ-
ment to allow remote/local load of microser-
vice images, start, stop of microservices

• Sidecar pattern: enabling frontend applica-
tion decomposition to abstract certain func-
tionalities (e.g., networking, load balancing,
security, authentication, etc.) into a sidecar
and making API calls vs. dealing with libraries
and complexity of cross-OS support
Scopes for Clusters of Nodes with Edge SDK:

Nodes with Edge SDK can discover, connect, and
communicate with each other. Discovery is a “fi l-
tered search” operation based on the following
three scopes:

FIGURE 5. HEC architectural building blocks.

Smart Device

Private/Public Cloud Services

Hybrid Edge Cloud Management Backend

Discovery
Service
(DS)

Signalling
Service

(SS)

Identity
Service

(SS)

Signalling
End-point

(SEP)

Bearer
End-point

(SEP)

3rd Party
Apps

μservices

Edge SDK

Operating System

FIGURE 6. Edge SDK high-level components.

3rd Part Exposed API

Operating System

Exposed μS

Start / Stop
Download /

Deploy

Discover
Connect

μS μS μS
Apps
Logic

Apps
Logic

Webserver (lib)

Net ModuleA
PI

 G
AT

EW
AY

Edge SDK

Container Manager
Microservice Image Repository

HTTP request
Wrapper(lib)

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • September 202224

•	 Network: nodes that are members of the
same link-local network cluster. In this case,
the link-local identifier is formed by combin-
ing the public IP address and the local net-
work address.

•	 Proximity: nodes that report themselves as
physically present within a geographical loca-
tion or within an area defined by a geospa-
tial query (e.g., [30]), independent of the
network to which each node belongs.

•	 User account: nodes registered under the
same account ID. For this purpose, Edge
SDK can employ an authorization protocol
through an identity software-as-a-service
(SaaS) provider.
The discovery process can use any combi-

nation of these scopes, or new scopes can be
defined. Microservices on each of these nodes
and across clusters can form their own service
meshes by calling each other via APIs.

Nodes and microservices running on nodes
have unique identifiers: a specific microservice
on a specific node is addressable uniquely, both
locally and globally.

Light Container: Microservice Runtime
Environment: Microservices enabled on nodes
expose their services through a common embed-
ded web server. Edge SDK complements contain-
er daemons in two ways. In environments (e.g.,
Linux) that can run container daemons, Edge SDK
provides functionalities to manage ad hoc clus-
ters of edge nodes, as described previously. In
environments that cannot run container daemons
(e.g., smartphones), Edge SDK provides additional
“light” container capabilities with the ability to
download, deploy, and operate microservices.
The embedded web server provides a subset of
container management APIs.

Sidecar Pattern: The sidecar pattern [28]
allows an application to be decomposed into
components built using different technologies.
Using the sidecar pattern, any component of an
application can be built and deployed in isolation.
The latency is reduced because of the proximi-
ty of the sidecar with the application, and com-
ponents and functionality can be added without
changing the application.

The sidecar pattern abstracts many complexi-
ties in dealing with the service mesh. This is pos-
sible because many of these complexities are
independent of the type of microservice deployed
across the edge cloud. However, the sidecar pat-
tern does not hide the decentralized nature of the
network. For example, an API gateway or security
token management system can be built using a
sidecar pattern.

API Gateway: The API gateway is part of the
net module within Edge SDK and makes the API
endpoints for each service accessible to all other
nodes in a cluster. By providing this API gateway,
Edge SDK provides functionalities that abstract
the complexity of dealing with other microser-
vices in different clusters.
•	 Security: At the edge, security is a crucial

aspect of how microservices communicate.
Certain elements, such as firewalls and net-
work partitioning, are common in the central
cloud but do not generally exist on the edge.
Therefore, it is necessary to address three
security levels:

	 –It is not possible to use https on the link-lo-
cal cluster because the nodes in this cluster
do not have domain names. Therefore, com-
munication between nodes within the same
link-local network is encrypted.

	 –The API of each microservice is protected
via fine-grained scope tokens. Generally,
Edge SDK operates in a zero-trust environ-
ment. Therefore, we cannot assume that fire-
walls protect microservices running on edge
nodes. Dealing with a valid and non-expired
token is abstracted by the sidecar.

	 –Because there are some special nodes that
may manage data from other nodes (e.g.,
cache node or link-local proxy node), the user
payload must be encrypted so that it is only
visible to authorized parties. Acquiring the
key and encrypting and decrypting the user
payload are also abstracted by the sidecar.

•	 Routing: For proximity and user account clus-
ters, routing to the proper node is a com-
plex operation that requires dealing with the
supernode and link-local proxy node. The
sidecar hides this complexity from the devel-
oper of the microservice, and they only need
to invoke the appropriate microservice with-
in the cluster.

•	 Retry: Decentralized systems require retry
mechanisms to ensure fault tolerance. The
sidecar handles retry calls and strategies.
Developers can focus on developing their
microservice rather than the complexity of
decentralized systems.
Similar to backend technologies, such as Istio,

which helps developers handle a service mesh (a
solution based on microservices talking to each
other), Edge SDK handles the service mesh at the
edge and deals with all the constraints of using
edge devices as servers.

HEC Management Backend
HEC management backend services are hosted
on servers that are reachable through the Inter-
net and provide necessary services to support
edge nodes across edge clouds. An HEC clus-
ter is defined as a collection of nodes, each with
a globally unique ID, based on the context or
scope. As explained previously, a given node at
any time may be a member of any or all three
clusters: user account, network, or proximity clus-
ters. Other scopes may be defined for the group-
ing of nodes; however, for most applications,
these three scopes are sufficient.

The major elements of the HEC management
backend shown in Fig. 7 are:
•	 DS: Discovery Service
•	 SS: Signaling Service
•	 SEP: Signaling Endpoint (deployed dynami-

cally and on demand)
•	 BEP: Bearer Endpoint (deployed dynamically

and on demand)
•	 IS: Identity Service, using any third-party SaaS

provider
Parts of SS and IS live on both the backend

and edge nodes: link-local network proxies in
each cluster are assisted by SS via SEP or BEP, and
the supernode of a cluster is assisted by DS. The
architecture departs from the traditional notion
of “service by servers in the cloud–client on the
edge.” Its value comes from the distribution of

HEC management backend
services are hosted on

servers that are reachable
through the Internet and

provide necessary services
to support edge nodes

across edge clouds. An HEC
cluster is defined as a col-
lection of nodes, each with
a globally unique ID, based

on the context or scope.

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • September 2022 25

services over the entire range, from the central
cloud to the edge nodes, as depicted in Fig. 8.

The SS is used to provide APIs to launch the
SEP and BEP components. The SS keeps track of
the existing BEP and SEP in a cluster of SS and
provides the information needed to properly load
balance the BEP and SEP in the cluster of SS. To
provide optimal latency based on where the BEP
and SEP are needed, the DS and SS are inde-
pendently geo-decentralized.

The DS holds knowledge to form clusters, the
overall status of the clusters, and the nodes within
them. Once a cluster is formed, any new node
registers with the supernode, which subsequently
informs the DS. To reduce traffic for scalability,
updates from the supernode to the DS occur in
an opportunistic fashion and only when a change
occurs in the cluster.

Another important function of the DS is the
reachability test for a supernode. When a super-
node registers itself, the DS tests for reachability. The
supernode might be behind a fi rewall, and while it
could initiate a call to the DS, the DS or other exter-
nal nodes might not be able to initiate a call to the
supernode. In such cases, the DS requests that the
SS dynamically deploy a SEP for the cluster. The DS
returns the SEP address to the supernode. Further
descriptions of SEP and BEP are presented below.

The DS holds a complete inventory of the
nodes and cluster profi les. This inventory includes
details of computing resources on all nodes,
status of each node, location of each node,
services available on each node, end-to-end
network topology to reach each node and the
clusters, reachability of the clusters, availability
of resources, and other pertinent information. In
other words, the DS has complete visibility of all
resources across the network and can supply this
information to dynamically deploy services on any
available resource within the network in real time.

Signaling Endpoint (SEP) and Bearer End-
point (BEP): SEP and BEP are resources that can
be deployed dynamically by the SS based on the
demand from the nodes within the clusters. Con-
sequently, there is no need to reserve the com-
puting resources. This increases efficiency and
reduces cost by deploying endpoints only when
needed. SEP is used for signaling communication,
while BEP is used for data communications and
jointly assists the nodes to set up tunneling oppor-
tunistically to increase signaling and data band-
width efficiency. The SEP and BEP are deployed
based on parameters such as time to live, number
of concurrent connections, and communication
protocols (HTTP, SSH, web socket, or UDP tun-
neling). If desired, endpoints can be deployed on
the available computing resources within closest
proximity of the cluster.

The mechanics of the SEP and BEP are best
illustrated by the example depicted in Fig. 9.

In the example, it is assumed that two nodes
(Node 2 in the network cluster 1 and node 4 in
the network cluster 2) belong to the same user
and have already registered with their respective
link-local network clusters. The platform provides
the SEP as a reachable endpoint to Node 4 to
communicate with Node 2 as if it were directly
accessible. After signaling is established, a BEP is
provided for the bulk of the exchange between
the two nodes. The flexibility of separating the

signaling and bearer channels allows the creation
of service-specifi c BEPs that are not restricted to
HTTP-based service delivery.

Steps for discovery, connection, and communi-
cation among nodes include:
• Sending discovery requests to the supernode

for nodes that belong to a scope
• Obtaining a list of nodes together with

appropriate signaling information
• Sending requests to remote nodes via a SEP
• Having remote nodes request a BEP for pro-

viding a service
• Connecting and communicating to consume

the service through the provisioned BEP

FIGURE 7. Components of HEC architecture.

Node 6
Cache proxy

Node 4

Private/Public Cloud Services

Hybrid Edge Cloud Management Backend

Network cluster Proximity cluster Account cluster

Edge
Discovery

Service (DS)

Edge
Signalling

Service (SS)

Signalling
End-point

(SEP)

Bearer
End-point

(BEP)

3rd Party
Identity Service

(IS)

Node 1
Supernode

Node 3
Network proxy

Node 2

Node 5
Supernode

and Network proxy

3rdParty
Apps μservices

Edge SDK

3rdParty
Apps μservices

Edge SDK

Network proxy

3rdParty
Apps μservices

Edge SDK

3rdParty
Apps μservices

Edge SDK 3rdParty
Apps μservices

Edge SDK

3rdParty
Apps μservices

Edge SDK

FIGURE 8. HEC management backend microservice distribution.

Load Balancer

Cluster of
microservices

Geo distributed
database

Geo distributed
microservice clusters

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • September 202226

Identity Service (ID): Identity management
can be any SaaS-based solution that resides in
the central cloud, and creates and maintains the
authentication profile. The platform performs
authorization, which requires token generation
and management. The token holder can be Edge
SDK, the microservice using Edge SDK, the appli-
cation developer using Edge SDK, or the end user
of the application. The token is used to verify the
credentials, legitimacy of the token holder, and
authorizing access to all backend services using
existing mechanisms such as Jason Web Tokens
(JWT) [31] and a subset of standards defined in
[32] to verify the identity of the token holder.

benefIts of Hec for 5g And beyond
To make 5G efficient and economically viable,
communication service providers must install
computing resources on their deployment sites to
minimize service latency and reduce CAPEX and
OPEX costs. Service providers plan to use Europe-
an Telecommunications Standards Institute (ETSI)
multi-access edge computing (MEC) or GSMA
(3rd Generation Partnership Project, 3GPP, SA6)
standards to deploy and operate application com-
ponents on the network equipment. Moreover,
these standards consider a device to be attached
to the network. Utilizing the HEC concept, net-
work-attached devices can be leveraged to run
applications and:
• Off load unnecessary traffi c over the network

by enabling policy enforcement, data pro-
cessing, and caching on edge devices

• Reduce energy consumption and the carbon
footprint of the MEC/3GPP infrastructure
in their base stations, given that edge devic-
es no longer need to constantly send traffi c
over the network

• Provide a more responsive and effi cient solu-
tion to their enterprise customers.

• Manage higher-value data instead of raw
data, which may have signifi cant duplication/

noise, and as a result, improve the value/
cost ratio of their MEC/3GPP infrastructure.

• Provide cross-industry solutions to their cus-
tomers and ecosystem synergy across their
customer base and seamlessly connect high-
ly fragmented MEC/3GPP silos.

• Build and maintain systems with lower
CAPEX and OPEX: Today, these systems rely
on centralized application servers that are
the focal points of all interactions between
all devices, and waste significant network
and computing resources.

• Increase revenue by off ering a diff erentiated
private enterprise network as a service with
higher data privacy and security.

• Provide a foundational approach for GDPR
for their enterprise customers.

• Support GDPR compliance with built-in pri-
vacy and reduced complexity.

• Support environmentally friendly solutions
and reduce carbon footprint.

• Avoid heavy device orchestration by relegat-
ing many functions to the furthest edge of
the network.

• Empower native microservice developers to
build applications instead of being limited
to embedded systems for specific industry
specialists.

• The resiliency and robustness of their solutions
are increased by minimizing the points of fail-
ure through decentralization and localization.

• Reduce the necessary upgrade cycle of com-
puting, storage, memory, and bandwidth
resources in the infrastructure.

APPlIcAtIon deVeloPMent usIng Hec
A major advantage of Edge SDK is its ability to
develop front-end applications on typical client
devices using the microservice concept and
architecture.

The transition to microservices and HEC requires
development teams to work more closely because
it blends diff erent knowledge and expertise:
• Backend developers: Supporting billions of

smart devices as clients (e.g., the Internet of
Things, IoT) places a significant burden on
the central cloud. On one hand, too many
resources may remain idle, waiting for signals
from smart devices on the edge. Additional-
ly, fulfi lling the performance demands of an
application may not be feasible. For instance,
deploying a backend system in the United
States to support a client in Europe may not
meet the latency constraints for many appli-
cations. Therefore, backend developers must
leverage client resources better to support
these new demands. They may be forced to
offload many of the functions closer to the
application, even if it requires deploying part
of the backend system in the “client” device
running the application.

• IT/DevOps: For a long time, IT teams have
been responsible for determining and man-
aging the infrastructure where solutions are
deployed. They must consider many con-
straints and parameters such as deployment
and operation costs, scalability, and elastic-
ity. For most applications, the scope of the
cloud infrastructure is a single data center,
and the main task is to address computing

FIGURE 9. Discovery, connection, and communication for two devices belonging to the same UID.

Node 4Node 3
Network proxy

Private/Public Cloud Services

Hybrid Edge Cloud Management Backend

Network cluster 1 Network cluster 2

Edge
Discovery

Service (DS)

Edge
Signalling

Service (SS)

Signalling
End-point

(SEP)

Bearer
End-point

(BEP)

3rd Party
Identity Service

(IS)

Node 1
Supernode

Node 2

Node 5
Supernode and
Network proxy

3rdParty
Apps μservices

Edge SDK

3rdParty
Apps μservices

Edge SDK

3rdParty
Apps μservices

Edge SDK

3rdParty
Apps μservices

Edge SDK

3rdParty
Apps μservices

Edge SDK

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • September 2022 27

and networking resource constraints. To
support the explosion of devices and data
at the edge, the scope should be expand-
ed to deploy IT resources at the right time
and place (generally beyond the scope of a
data center). New scopes, such as proximity,
account, and link-local presence, need to be
considered to ensure efficient deployment
and operations.

• Frontend developers: Front-end applica-
tions are used to perform simple tasks such
as inputting and sending information to
the backend and/or rendering information
coming from the backend. Most complex
functions are generally relegated to back-
end servers. However, given the explosion
of data generated at the edge, many new
functions must be supported on smart
devices, such as caching, augmented real-
ity (AR), image recognition, authorization,
and authentication. As a result, front-end
applications are becoming larger and more
complex (e.g., the Facebook app on iOS has
tripled in size to over 300 MB in less than
two years). Therefore, there is an opportuni-
ty to transition from a monolithic front-end
app design to a microservice architecture
and to decompose the front-end app sub-
system into microservices. The app can then
seamlessly call microservices that are local to
the device, along with those running on the
backend (hosted on the central cloud).
One of the many consequences of a micro-

service-based system is the choice between
multi-tenancy and single-tenancy. One of the
major benefits of a public cloud is multi-tenan-
cy, where multiple applications can share public
cloud resources and the microservices deployed
on them. However, certain applications may
have to deploy microservices that must remain
as single tenants for a variety of reasons, such
as security or data privacy. Therefore, a hybrid
approach in which one can choose whether a
microservice is a multi-tenant or a single tenant is
a better approach.

Another important aspect is whether a micro-
service is a single user or multiple users. At first
glance, multi-user microservices may appear to be
more desirable. However, this is not always true.
For instance, if a microservice is to always serve
a single user within a “client device” or a pair of
“client devices, ” where only one acts as a client
and the other acts as a server, a multi-user platform
may be ineffi cient. Therefore, a hybrid approach, in
which one can choose whether a microservice is
multi-user or single-user, is a better approach.

As the complexity of systems increases, the
benefits of a hybrid approach to both of these
aspects become of paramount importance. The
HEC platform can provide fl exibility and ease of
implementing an approach to benefit backend,
front-end, and DevOps with simplicity, fl exibility,
redeployability, and scalability of development, as
described below.
• Backend developers can easily transition

from a multi-user microservice to a single-us-
er microservice that resides on the closest
resource to the application, that is, on the
same resource that the front-end application
is running. In most cases, the resource exists

as the application does, and the microservice
only exists if the application makes a request
through the API gateway. This reduces the
complexity of developing multi-user micro-
services and brings the serverless microser-
vice model to all types of edge resources
beyond the central cloud. If serverless micro-
services expose their RESTful APIs, they can
be utilized cross-domain.

• IT/DevOps has a smaller number of micro-
services to manage in the central cloud,
which helps reduce the complexity and
operational cost. When microservices reside
close to the application need (e.g., on the cli-
ent device), we achieve ultimate horizontal
scalability with minimal or even no hosting
cost. The complexity is also reduced because
there is no need for different infrastructure
knowledge because resources at the edge
appear the same (albeit with different con-
straints) as those on the central cloud.

• Front-end application developers can follow
backend development methodologies and
decompose the complexity of the front-end
application into serverless microservice and
sidecar patterns, as illustrated in Fig. 10.
The developer can then decide where an
application is active and what microservices
need to run within a cluster of nodes: on the
central cloud, on a local device, or another
device or gateway within the cluster. As a
result, the developer has more options to
break down a client application, usually writ-
ten as a monolithic block, into microservices
and enjoy all the benefi ts of the microservice
architecture common in backend develop-
ment: scalability, fl exibility, choice of technol-
ogies, isolated impact on other modules or
functions, ease of deployment, and so on.
In contrast to the centralized cloud approach

shown in Fig. 1, the application can make
requests not only to the API gateway in the cen-
tral cloud, but also locally to the same device. In
other words, the application can take advantage
of microservices hosted locally for local functions,
and globally on the central cloud for functions
that cannot be hosted locally. This concept can
be expanded to multiple devices and edge nodes,
as shown in Fig. 11, as an example of client-to-cli-
ent communication.

In contrast to the centralized cloud approach
shown in Fig. 2, where edge devices act as clients
only, client-to-client communication can occur
directly between edge devices (or through serv-

FIGURE 10. Client-server communication using HEC with Edge SDK.

Client
Application

Edge SDK

API GATEWAY

1

2

3

http/https request

http/https response

μS: microservice

A
PI

 G
AT

EW
AY 1

2

3

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • September 202228

ers in the central cloud), giving the developer the
opportunity to optimize all aspects of deployment:
cloud hosting costs, latency, bandwidth usage,
data privacy, and all other benefi ts of the micros-
ervice architecture for typical backend functions.

As a result, Edge SDK benefi ts developers by
seamlessly expanding:
• The notion of on-demand IT resources to the

edge using the same models and APIs
• The notion of clustering by adding new cluster

scopes: user accounts, proximity, and networks.
• The notion of service mesh by providing a

similar pattern at the edge to handle the
API gateway, security, and routing for
communication with other microservices,
whether locally on the edge, globally, or in
the central cloud
In conclusion, we have devised a pragmatic

approach for building a decentralized cloud that
can leverage the processing power, storage, and
memory of billions of smart connected devices
that are currently unused or seriously underuti-
lized. This can create a cloud fabric that is orders
of magnitude larger, cheaper, and faster, has a
lower carbon footprint, and can provide better
data privacy for all consumer and enterprise appli-
cations. This will address many of the challenges
of 5G deployment and help build a more effi cient,
equitable, and sustainable hyperconnected world.

AcknoWledgMents
Funding Statement: The study was partially sup-
ported by Canada’s Industrial Research Assistance
Program (IRAP) and the Canadian government’s
Scientific Research and Experimental Develop-
ment (SR&ED) tax incentives.

Author Contributions: Fay Arjomandi con-
ceived the original concept and approach. Siavash
Alamouti, Fay Arjomandi, and Michel Burger have
contributed to the design and implementation
of the research and to the writing of the manu-
script. Jeremy Hsu, the Chief Architect and the
core engineering team at mimik Technology Inc.
contributed greatly to the design and implementa-
tion of the solution.

references
[1] “5G: Personal Mobile Internet Beyond What Cellular Did to

Telephony,” IEEE Commun. Mag., vol. 52, no. 2, Feb. 2014.
[2] R. van der Meulen, “What Edge Computing Means for Infra-

structure and Operations Leaders,” Gartner Technology
Insights, Oct. 3, 2018.

[3] D. Evans, “The Internet of Things: How the Next Evolution of
the Internet is Changing Everything”; https://www.research-
gate.net/publication/30612290, accessed Dec. 3, 2016.

[4] V. Turner, J. F. Gantz, and D. Reinsel, “The Digital Universe
of Opportunities: Rich Data and the Increasing Value of the
Internet of Things,” Nov. 26, 2018; https://www.emc.com/
leadership/digitaluniverse/2014iview/index.htm.

[5] “What is Cloud Computing?,” Amazon Web Services, Mar.
3, 2013, accessed Mar. 20, 2013.

[6] L. P. Chen, “ Microservices: Architecting for Continuous
Delivery and DevOps,” Proc. IEEE Int’l. Conf. Software Archi-
tecture, ICSA 201.

[7] “What’s A Service Mesh?,” Buoyant, Apr. 25, 2017, accessed
Dec. 5, 2018.

[8] “Adaptive Control of Extreme-Scale Stream Processing Systems,”
Proc. 26th IEEE Int’l. Conf. Decentralized Computing Systems.

[9] A. Nordrum, “Popular Internet of Things Forecast of 50 Bil-
lion Devices by 2020 is Outdated,” IEEE, Aug. 18, 2016.

[10] “Over 6 Decades of Continued Transistor Shrinkage, Inno-
vation” (press release), Santa Clara, CA.

[11] M. Zink et al., “Characteristics of YouTube Network Traffi c at a
Campus Network — Measurements, Models, and Implications.”

[12] https://www.statista.com/statistics/195140/new-user-gen-
erated-content-uploaded-by-users-per-minute/

[13] OECD, Participative Web and User-Created Content: Web
2.0, Wikis and Social Networking Edition Complete, OCDE
Information Sciences and Technologies, Oct. 2007; http://
www.oecd.org/document/40/0,3343,en_2649_34223_3
9428648_1_1_1_1,00.html.

[14] M. Hamdaqa, Cloud Computing Uncovered: A Research
Landscape, Elsevier, 2012, PDF, pp. 41–85. ISBN 0-12-
396535-7.

[15] “Should Companies Do Most of Their Computing in the
Cloud? (Part 1) — Schneier on Security”; www.schneier.com,
accessed Feb. 28, 2016.

[16] “Disadvantages of Cloud Computing (Part 1) — Limited
Control and Flexibility”; www.cloudacademy.com, accessed
Nov. 3, 2016.

[17] B. Gellman and L. Poitras, “US Intelligence Mining Data from
Nine U.S. Internet Companies in Broad Secret Program,”
June 6, 2013, The Washington Post, accessed June 15, 2013.

[18] G. Greenwald and E. MacAskill, “NSA Taps into Internet
Giants’ Systems to Mine User Data, Secret Files Reveal –
Top-Secret Prism Program Claims Direct Access to Servers
of Firms Including Google, Apple, and Facebook — Compa-
nies Deny Any Knowledge of Program in Operation Since
2007 — Obama Orders US to Draw Up Overseas Target List
for Cyber-Attacks,” The Guardian, June 6, 2013, accessed
June 15, 2013.

[19] S. Braun et al., “Secret to PRISM Program: Even Bigger
Data Seizures,” Associated Press, June 15, 2013, accessed
June 18, 2013.

[20] B. Chappell, “NSA Reportedly Mines Servers of US Internet
Firms for Data,” June 6, 2013, The Two-Way (Blog of NPR),
accessed June 15, 2013.

[21] Staf, “PRISM: Here’s How the NSA Wiretapped the Inter-
net,” ZDNet, June 8, 2013, accessed June 15, 2013.

[22] B. Gellman and A. Soltani, 30 Oct.r 2013, “NSA Infi ltrates Links
to Yahoo, Google Data Centers Worldwide, Snowden Docu-
ments Say,” The Washington Post, accessed Oct. 31, 2013.

[23] “PlayStation 4 Sales Pass over 82 Million,” Venture Beat,
July 31, 2018.

[24] AWS Global Infrastructure.
[25] I. Baldini et al., “Serverless Computing: Current Trends and

Open Problems,” arXiv:1706.03178, June 2017.
[26] A. Glikson et al., “Deviceless Edge Computing: Extending Server-

less Computing to the Edge of the Network,” 10th ACM Int’l.
Systems and Storage Conf., Haifa, Israel, May 2017.

[27] R. I. M. Dunbar, “Neocortex Size as A Constraint on Group
Size in Primates,” 1992, J. Human Evolution, vol. 22, no. 6,
pp. 469–93. DOI: 10.1016/0047-2484(92)90081-J.

[28] B. Burns, “Designing Decentralized Systems: Patterns and
Paradigms for Scalable, Reliable Services,” 1st ed., Feb. 2018.

[29] P Cheng, S. J. Fink, and N. Mitchell, “The Serverless Tri-
lemma: Function Composition for Serverless Computing
Baldini,” Proc. ACM, 2017, dl.acm.org.

[30] MongoDB Geospatial Query Operators; https://docs.mon-
godb.com/manual/reference/operator/query-geospatial/.

[31] JSON Web Tokens RFC 7519; https://jwt.io/.
[32] OpenID Connect Core 1.0; http://openid.net/specs/

openid-connect-core-1_0.html.

FIGURE 11. Client to client communication using HEC with Edge SDK.

Client
Application

Edge SDK

API GATEWAY

1
2

3

μS: microservice

Device 2

A
PI

 G
AT

EW
AY 1

2

3

Client Application

Edge SDK

API GATEWAY

3 2 1

http/https request
http/https response

1

2

3

4

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • September 2022 29

Biographies
Siavash Alamouti received his B.A.Sc. and M.A.Sc. degrees in
electrical engineering from the University of British Columbia,
Vancouver, Canada, in 1989 and 1992, respectively. He is cur-
rently an entrepreneur helping build new companies focused
on hybrid edge cloud. He has been the executive chairman
of mimik Technology Inc. since 2010 and was the CEO of the
company from 2014 to 2020. He was the EVP of R&D at Wells
Fargo from 2020 to 2021 and Group R&D Director for Voda-
fone from 2010 to 2013. From 2004 to 2010 he was an Intel
Fellow and the CTO of the Mobile Wireless Group. Prior to
joining Intel, he held engineering positions at various companies
including Vivato, Cadence Design Systems, AT&T, and MPR
Teltech. His current research has been focused on edge cloud
computing, cloud decentralization, data sovereignty, and open
Internet. He is most well known for the invention of the Alamou-
ti Code. He has received more than 20.000 citations for his sci-
entific work and has received multiple industry awards including
the 2022 Marconi Prize and the IEEE Eric E. Sumner Award. His
1998 paper in the IEEE Journal on Selected Areas in Communica-
tions was selected by IEEE Communication Society for publica-
tion in The Best of the Best: Fifty Years of Communications and
Networking Research.

Fay Arjomandi received her B.A.Sc. degree in electrical
engineering from Concordia University, Montreal, Canada,
in 1998. She is the founder and the CEO of the pioneering
hybrid edge cloud company mimik. From 2016 to 2018, she
was the executive chair of H2 Wellness. Between August
2014 and October 2016, she was the CEO of digital health
company NantMobile. Prior to NantMobile, she was the
CEO of Vodafone xone, the innovation brand for Vodafone

Group, where she also managed the corporate venture. Prior
to Vodafone, she was the co-founder and CEO of three tech-
nology startups: L3 Technology, Mobidia, and Disternet. Her
current interest areas are edge cloud computing, and digi-
tal inclusion and equity, and she has spent the last decade
creating disruptive technology platforms and enablers for
cloud decentralization to ensure a future sustainable Internet.
She was named the Edge Woman of the year in 2020 by the
Linux Foundation. In 2018, she was the Alumni of the Year at
Concordia University. She is a member of the Forbes Tech-
nology Council and advises many startup companies, and is
a Board Advisor to American Tower, the global provider of
wireless communications infrastructure.

Michel Burger received an M.A.Sc degree in process engi-
neering from Grenoble Polytechnical Institute in 1987, France,
and an M.A.Sc degree in telecommunication from CITCOM,
Paris, France, in 1988. He is the chief technology officer at
mimik. Prior to joining mimik, he was the CTO of H2 Wellness
from 2016 to 2022 and NantMobile from 2015 to 2016. From
2013 to 2015, he was the lead architect at Apigee. From 2008
to 2013, he was head of architecture for Vodafone Internet
Services. In 2011, he became a Vodafone Distinguished Engi-
neer and was appointed chief architect for the R&D Group at
Vodafone. From 2003 to 2008, he was the CTO of the Com-
munications Sector at Microsoft. From 2002 to 2003, he was
the CTO at Embrace Networks. From 1999 to 2002, he was
director of innovation at Sapient, and from 1988 to 1999, he
held a variety of technical positions at Nortel Networks, includ-
ing web technology pioneer. He has been granted multiple
patents on various technology domains and is a member of the
Technical Executive Committee and a Distinguished Fellow at
the TM Forum.

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:16:29 UTC from IEEE Xplore. Restrictions apply.

