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Abstract
Federated learning (FL) is a privacy-preserving 

distributed machine learning technique that trains 
models while keeping all the original data gen-
erated on devices locally. Since devices may be 
resource-constrained, offloading can be used to 
improve FL performance by transferring compu-
tational workload from devices to edge servers. 
However, due to mobility, devices participating 
in FL may leave the network during training and 
need to connect to a different edge server. This 
is challenging because the offloaded computa-
tions from an edge server need to be migrated. In 
line with this assertion, we present FedFly, which 
is, to the best of our knowledge, the first work 
to migrate a deep neural network (DNN) when 
devices move between edge servers during FL 
training. Our empirical results on the CIFAR-10 
dataset, with both balanced and imbalanced data 
distribution, support our claims that FedFly can 
reduce training time by up to 33 percent when 
a device moves after 50 percent of the training 
is completed, and by up to 45 percent when 90 
percent of the training is completed when com-
pared to the state-of-the-art offloading approach 
in FL. FedFly has negligible overhead of up to 
two seconds and does not compromise accuracy. 
Finally, we highlight a number of open research 
issues for further investigation. FedFly can be 
downloaded from https://github.com/qub-bless-
on/FedFly.

Introduction
Internet applications that rely on classic machine 
learning (ML) techniques gather data from mobile 
and Internet of Things (IoT) devices and process 
them on servers in cloud data centers. Limited 
uplink network bandwidth, latency sensitivity of 
applications, and data privacy concerns are key 
challenges in streaming large volumes of data 
generated by devices to geographically distant 
clouds. The concept of federated learning (FL) 
provides privacy by design in an ML technique 
that collaboratively learns across multiple distribut-
ed devices without sending raw data to a central 
server while processing data locally on devices. 

However, given the limited availability of 
resources on many devices, performing FL on 
such devices is impractical due to increased train-
ing times [1]. One approach is to leverage the 
computational resources offered by edge servers 

(located at the edge of the network) for training. 
The concept of offloading computations of the 
ML model that may be a deep neural network 
(DNN) from a device to an edge server for FL by 
splitting the ML model was introduced in [2] (this 
concept is referred to as edge-based FL). Howev-
er, a major challenge that has not been consid-
ered within the context of edge-based FL is device 
mobility. 

Mobile devices participating in edge-based 
FL may need to move from one edge server to 
another (e.g., a smartphone or a drone moving 
from the connectivity of one edge node to anoth-
er). This will in turn affect the performance of 
edge-based FL and result in large training times [3, 
4]. Moving a device without migrating the accom-
panying training data from an edge server to the 
destination will result in training for the device 
having to start all over again on the destination 
server. This would be inefficient, resulting in an 
increased overall training time [5]. Therefore, 
there is a need for developing techniques that can 
move devices while accounting for migrating par-
tially trained FL models of a device from one edge 
server to another. 

Research on device mobility has been consid-
ered in the context of migration. Migration on the 
edge has been investigated in the literature, more 
specifically by exploring VM migration [6] and 
container migration [7, 8]. However, migration in 
edge-based FL is minimally considered. This article 
presents FedFly, which addresses the mobility 
challenge of devices in edge-based FL, and the 
key research contributions are:
1. The technique for migrating DNNs in edge-

based FL, which to the best of our knowl-
edge is for the first time considered in the 
context of edge-based FL. When a device 
moves from an edge server to a destination 
server after 50 percent of FL training is com-
pleted, the training time using the FedFly 
migration technique is reduced by up to 33 
percent compared to the training time when 
restarting training on the destination server. 
Similarly, 45 percent reduction is obtained 
when a device moves to a destination server 
after 90 percent FL training is completed. It 
is noted that the original accuracy is main-
tained. 

2. The implementation and evaluation of Fed-
Fly  in a hierarchical cloud-edge-device 
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architecture that validates the migration tech-
nique of edge-based FL on a lab-based test-
bed. The experimental results are obtained 
from a lab-based testbed that includes four 
IoT devices, two edge servers, and one cen-
tral server (cloud-like) running the VGG-5 
DNN model. The evaluation is done on both 
a balanced (equal data distribution) and an 
imbalanced (unequal data distribution) data-
set. The empirical findings show that Fed-
Fly has a negligible overhead of up to 2 s 
on the testbed. It is further noted that the 
accuracy is preserved even when data on 
devices is imbalanced and the most signif-
icant node(s) (i.e., nodes with majority of 
data) move across edge servers.
The rest of this article is organized as follows. 

We introduce the concepts of FL and offloading 
in FL. We present the motivation for FedFly. We 
propose the migration technique for edge-based 
FL. We present the performance analysis of Fed-
Fly. We conclude the article and highlight direc-
tions for future research. 

Background
This section provides an overview of FL and high-
lights the benefits of offloading ML computations 
onto edge servers. 

FL [9] is a privacy-preserving technique in 
which an ML model is collaboratively trained 
across several participating distributed devices. 
All data generated by a device that is used for 
training resides on local devices. In an FL system, 
the server initiates a global model and distributes 
the model parameters to all connected devices. 
Then each device trains a local version of the ML 
model using local data. Instead of sending the 
raw data to the server, the local model parameter 
updates are sent up to the server. Subsequently, 
the server computes a weighted average using 
the parameter updates on the server using the 
federated averaging (FedAvg) algorithm [9] to 
obtain a new set of parameters for the global 
model. The updated global model is then sent 
back down to each device for the next round of 
training by the edge server. The entire process is 
repeated until the model converges [10]. 

In practice, running FL across resource-con-
strained devices (e.g., in an IoT environment) will 
result in large training times. Therefore, the con-
cept of partitioning and offloading the ML model 
(e.g., for a DNN) has been explored for perfor-
mance efficiency [11]. Split learning (SL) [12] is 
one ML technique that leverages this concept. 

In SL, a DNN is partitioned across the device 
and server. The DNN layer after which the model 
is partitioned is referred to as the split layer. The 
device trains the model up to the split layer and 
then sends the split layer activation (referred to as 
smashed data) to the server. The server trains the 
remaining layers of the DNN using the smashed 
data. The server performs back-propagation up 
to the split layer and sends the gradients of the 
smashed data to the devices. The devices use the 
gradients to perform back-propagation on the rest 
of the DNN.

However, when multiple devices participate 
in SL, the devices are trained in a sequential 
round-robin fashion whereby only one device is 
connected to the server at a time. This limitation 

is overcome by SplitFed [2] and FedAdapt [13]. 
SplitFed and FedAdapt allow for simultaneous 
training of all participating devices, at the same 
time leveraging on partitioning the DNN to alle-
viate the computational burden of training on the 
device. In addition to the underlying approaches 
of SplitFed, FedAdapt incorporates a reinforce-
ment learning approach to dynamically identify 
the DNN layers that need to be offloaded from 
the device to the edge based on the operational 
conditions of the environment. In this article, Split-
Fed is considered as the baseline. 

SplitFed reduces the amount of computation 
carried out on the device and is faster than clas-
sic SL. However, it is limited in that the challenge 
of device mobility during training has not been 
considered. Currently, there is no research in the 
literature that considers the migration of edge-
based FL when devices move between edge serv-
ers. The next section highlights the key challenges 
when using SplitFed. 

Impact of Device Mobility on 
Edge-Based Federated Learning

This section considers the impact ofdevice mobil-
ity on the training time in edge-based FL. Three 
contributing factors, namely model training, imbal-
anced data distribution, and frequency of device 
mobility are considered. 

Model training: Due to mobility, a device par-
ticipating in FL may disconnect from one edge 
server and will need to connect to another server 
at any stage during training. For example, in the 
early stages of training, if a device moves, restart-
ing training on a different edge server may result 
in a small increase in training time. However, if the 
device has completed a larger portion of its train-
ing on an edge server before the device moved, 
the training time would significantly increase. A 
migration mechanism is required so that mobile 
devices can resume training on the destination 
edge server rather than starting over.

Imbalanced data distribution: In a real edge-
based FL system, some devices may have more 
data than others due to frequent use of specific 
services or have more resources such as memo-
ry [3, 9]. Consequently, these devices will make 
a significant contribution to the quality (overall 
accuracy) of the global model. However, devic-
es that generate a large amount of data cannot 
be removed from contributing to training since 
the eventual accuracy of the global model will 
be adversely affected. Furthermore, devices with 
more data will require more training time. As a 
result, restarting training for the device after it has 
moved to a different edge server will increase 
the training time. A migration mechanism that 
allows such devices to resume training (rather 
than restarting from the beginning) when mov-
ing between edge servers is required to reduce 
training time while not compromising the global 
model accuracy.

Frequency of device mobility: The frequency 
with which devices may move between edge 
servers can have an impact on training time. If 
the devices move frequently during training, the 
overall training time will increase because training 
will need to be restarted on each device after it 
has moved to a different edge server. 

FL [9] is a privacy-preserv-
ing technique in which an 

ML model is collaboratively 
trained across several 

participating distributed 
devices. All data generated 
by a device that is used for 

training resides on local 
devices.
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In this article, we present FedFly, which aims 
to address the device mobility challenge by taking 
into account the above factors for reducing the train-
ing time and maintaining the accuracy of the global 
model as close as possible to that in classic FL.

FedFly for Migration in Hierarchical 
Edge-Based Federated Learning

This section presents FedFly  (https://github.
com/qub-blesson/FedFly), the edge-based distrib-
uted FL system that caters for mobility of devices. 
A hierarchical structure that comprises three enti-
ties, namely devices, edge servers, and a central 
server (cloud-like), is considered. The FedFly 
system is shown in Fig. 1. The following highlights 
the steps in relation to distributed FL and the 
mobility of devices within the FedFly system: 

Central server initialization: When training 
begins, the central server initializes the global 
model parameters and distributes them to the 
edge servers. The model parameters are received 
by the edge servers and passed to the participat-
ing devices (Step 1). The training on the devic-
es begins when the devices receive the model 
parameters from the servers.

Splitting Deep Neural Networks: When the 
model is initialized, the DNN, which would in clas-

sic FL run on a device, is split between device and 
edge server. After all devices and edge servers 
complete local training on the data generated by 
the device — forward and backward propagation 
(Step 2 and Step 3) — the local model updates 
are sent to the central server for global model 
aggregation (Step 4). A complete forward and 
backward propagation corresponds to one local 
epoch (an epoch refers to one complete cycle 
of an entire dataset on a device through the neu-
ral network) of a device for all local data of that 
device. The central server aggregates the model 
(Step 5), and then the updated parameters of the 
global model are sent back to the edge servers 
and devices for training for a next round of FL 
training (Step 6). 

At any point during training, it is possible for 
a device to move between edge servers. Figure 
2 shows the sequence of activities initiated by 
FedFly  when a device needs to move from 
the source edge server to the destination edge 
server. Assume that a device disconnects from 
the source edge server after the 50th round of 
training. When a device connects to the desti-
nation server without using a migration mecha-
nism, all the training is lost until the 50th round, 
and training is restarted on the destination edge 
server. This is because the destination edge serv-

A complete forward and 
backward propagation 

corresponds to one local 
epoch (an epoch refers to 
one complete cycle of an 

entire dataset on a device 
through the neural network) 
of a device for all local data 

of that device.

FIGURE 1. System of FedFly.
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er does not have a copy of the model that was 
trained on the source edge server. It is necessary 
to migrate the model data from the source edge 
server to the destination edge server before 
training can resume. 

FedFly  overcomes the mobility challenge 
by migrating model data from the source edge 
server to the destination edge server. There are 
three steps that are considered in FedFly when 
a device starts moving during FL training. 

Notify edge server: When a device starts to 
move, it instructs the source edge server to pre-
pare data that needs to be migrated to the des-
tination edge server (Step 6). In this article, it is 
assumed that the moving device knows when to 
disconnect from the source edge server. 

Model data checkpoint: The source edge server 
creates a data checkpoint that includes the epoch 
number, gradients, model weights, loss value, and 
state of optimizer (e.g., gradient descent) (Step 7). 
The checkpointed data is transferred via a socket 
to the destination edge server (Step 8).

Resume training: At the destination edge serv-
er, the checkpointed data is received via a socket. 
When a device connects to the destination edge 
server, training is resumed from the point where 
the device started moving at the source edge 
server (Step 9).

There are several possible ways to transfer 
model data between edge servers. In FedFly, 
the source edge server transfers data directly 
to the destination edge server, after which the 
device resumes training. However, in practice, 
the two edge servers may not be connected or 
may not have permission to share data with each 
other. In this case, the device can then transfer 
the checkpointed data between edge servers.

Evaluation
This section first describes the experimental setup, 
including the lab-based testbed used for carrying 
out experiments, and then substantiates the key 
claims of FedFly by presenting and analyzing 
the results obtained.

There are several possible 
ways to transfer model data 

between edge servers. In 
FedFly, the source 

edge server transfers data 
directly to the destination 

edge server, after which the 
device resumes training.

FIGURE 2. Sequence diagram of FedFly.
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Experimental Setup
The testbed includes four devices, two edge serv-
ers, and one central server. The devices are:
1. Two Raspberry Pi 4 (Pi4_1, and Pi4_2) Model 

B with 1.5 GHz quad-core ARM Cortex-A72 
CPU, 4 GB RAM, and 32 GB storage

2. Two Raspberry Pi 3 (Pi3_1, and Pi3_2) Model 
B with 1.2 GHz quad-core ARM Cortex-A53 
CPU, 1 GB RAM, and 32 GB storage

The edge servers comprise:
1. A 2.3 GHz quad-core Intel i5 CPU, 8 GB 

RAM, and 256 GB storage
2. A 2.3 GHz quad-core Intel i7 CPU, 16 GB 

RAM, and 500 GB storage.
The central server has a 2.9 GHz quad-core Intel i5 
CPU, 16 GB RAM, and 1 TB storage. All Raspberry 
Pis have the same version of the Raspbian GNU/

Linux 10 (Buster) operating system, Python version 
3.7, and PyTorch version 1.4.0. The edge servers 
and the central server have the same version of 
Python and PyTorch using Anaconda. All devices 
are connected to the servers in a Wi-Fi network 
with an average available bandwidth of 75 Mb/s.

The DNN model used is VGG-5 [14], and the 
CIFAR-10 [15] dataset is used as input with size 
3@32  32, and a batch size of 100 is used for all 
experiments. The CIFAR-10 dataset contains 50K 
training and 10K testing samples that consist of 
color images of 10 objects (classes), including plane, 
car, bird, cat, deer, dog, frog, horse, ship, and truck. 
The standard FedAvg [9] aggregation method is 
used, and the model parameters are updated using 
stochastic gradient descent (SGD), with a learning 
rate of 0.01 and a momentum of 0.9. 

Empirical Results and Discussion
In this section, we demonstrate the performance 
of FedFly by comparing it with SplitFed in terms 
of device training time and model accuracy. We 
validate our claims using balanced and imbal-
anced datasets at various stages (i.e., 50 and 90 
percent) of FL training.

Effect of mobility on device training time: 
When a device moves between edge servers, fac-
tors such as training stage and the dataset avail-
able on the device can affect training time. In this 
experiment, we validate the training time claim by 
generating 25 and 50 percent of the data required 
for training on a single device (i.e., Pi3_1, Pi3_2, 
Pi4_1, and Pi4_2) with training stages at 50 and 
90 percent, as shown in Figs. 3a and 3b.

Figure 3a shows the effects of device mobility 
on device training time when 25 percent of the 
dataset is required for training on a single device, 
as well as device movement when 50 and 90 per-
cent of the training is completed. It is evident from 
Fig. 3a that FedFly always outperforms SplitFed, 
in which the training is restarted at the destina-
tion edge server. When we move Pi3_1 when 50 
percent of the training is done, the training time 
is reduced by up to 33 percent per round. How-
ever, when we move Pi3_2 with the same data-
set but 90 percent of the training completed, the 
training time is reduced by up to 45 percent per 
round. We also move devices (Pi4_1 and Pi4_2) 
when 50 and 90 percent of the training is done, 
and the training time is reduced by up to 33 and 
45 percent per round, respectively. 

Figure 3b shows the effects of device mobility 
on device training time when 50 percent of the 
dataset is required for training on a single device, 
as well as device movement when 50 and 90 per-
cent of the training is completed. It can be seen in 
Fig. 3b that training time on devices is longer than 
on devices in Fig. 3a. This is due to the fact that 
50 percent of the dataset is used for training on 
mobile devices, which is comparably larger than 
used for devices in Fig. 3a. It has been demon-
strated from Figs. 3a and 3b that FedFly  can 
save a significant amount of training time when 
compared to SplitFed. 

Figure 3c highlights the system performance with 
device mobility by varying the split points (SPs). SP1 
denotes the first convolutional layer on devices, SP2 
denotes the first two convolutional layers on devic-
es, and SP3 denotes the first three convolutional 
layers on devices, with the remaining layers on edge 

When a device moves 
between edge servers, fac-
tors such as training stage 

and the dataset available on 
the device can affect train-

ing time. In this experiment, 
we validate the training 

time claim by generating 25 
and 50 percent of the data 
required for training on a 
single device (i.e., Pi3_1, 
Pi3_2, Pi4_1, and Pi4_2) 
with training stages at 50 

and 90 percent

FIGURE 3. a) Device training time per round when 25 percent of the dataset 
is required for training on a mobile device; b) device training time per 
round when 50 percent of the dataset is required for training on a 
mobile device; c) device training time per round by varying SPs with 
25 percent of the dataset on a mobile device and at 90 percent of the 
FL training.
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servers. It should be noted that in the experiments 
illustrated in Figs. 3a and 3b, all devices and edge 
servers have fixed split points (i.e., SP2). Figure 3c 
depicts that SPs impact the system performance in 
terms of training time. By changing the SPs from 
SP1 to SP3, we note a signifi cant increase in train-
ing time. This is because as the number of layers 
(i.e., computation) on devices and servers increases 
or decreases, the training time on devices or serv-
ers increases or decreases accordingly. In all cases, 
FedFly saves a signifi cant amount of training time 
when compared to SplitFed. The transfer time is still 
up to 2 s. This is because the VGG-5 model is used 
in the experiments, and the data that is checkpoint-
ed did not change signifi cantly by varying SPs.

Effect of mobility on global accuracy: In this 
experiment, we verify the accuracy of the global 
model when a device moves frequently between 
edge servers. 

We ran this experiment for a total of 100 rounds, 
with a mobile device holding 20 percent of the 
dataset and 50 percent of the dataset. We move 
the device at various rounds during 100 rounds of 
training, such as at the 10th, 20th, 30th, 40th, 50th, 
60th, 70th, 80th, and 90th rounds. Figure 4 clearly 
shows that there is no eff ect on accuracy. FedFly
and SplitFed both maintain accuracy when a device 
moves between edge servers holding 20 and 50 
percent of the datasets. In the case of SplitFed, the 
training is restarted at the destination edge server 
without any accuracy loss. This is because the device 
obtains the updated model parameters from the 
central server and restarts training at the destina-
tion edge server. For example, if a device moves at 
the 10th round, the central server has the updated 
model parameters until the 10th round, and when 
a device connects to the destination edge server, it 
receives updated parameters from the central server. 
Only the training is restarted, which increases the 
training time but has no effect on accuracy. Fed-
Fly, on the other hand, transfers the data to the 
destination edge server, where training is resumed 
and maintains the same level of accuracy as SplitFed.

summAry of tHe evAluAtIon results
FedFly performance is aff ected by a number of 
factors, including:
• Balanced and imbalanced datasets on devices
• Varying the SPs
• The frequency with which devices move
• The model training stages
Our experimental results provide the following 
insights:
• In comparison to SplitFed, FedFly reduces 

the training time per round by up to 33 per-
cent when a device moves after 50 percent 
of the training is completed, and by up to 45 
percent when 90 percent of the training is 
completed.

• FedFly maintains global accuracy as does 
SplitFed, and there is no accuracy loss. 

• FedFly results in up to 2 s overhead, which 
is the time it takes to transfer data between 
edge servers during migration. This overhead 
is negligible when compared to the device 
training time when training is restarted at the 
destination server. The reduction in training 
time and overhead reported in this article 
are based on experiments carried out on the 
lab-based testbed.

conclusIon And future reseArcH dIrectIons

The FL system is hindered by two major issues: 
training time and accuracy. This becomes more 
challenging when a device moves during FL train-
ing and especially when a DNN is partitioned 
between device and edge server. This article 
has proposed FedFly, which for the first time 
addresses the device mobility challenge during FL 
training, particularly in edge-based FL. We develop 
a prototype on a lab-based testbed that upholds 
and validates our claims in terms of training time 
and accuracy using balanced and imbalanced 
datasets when compared to the state-of-the-art 
SL approach called SplitFed. Our empirical results 
reveal that FedFly introduces a negligible over-
head but saves a significant amount of training 
time while maintaining accuracy. 

Future Research Directions: We develop 
FedFly for migration in edge-based distributed 
FL, which presents numerous research opportu-
nities. What follows are a few research questions 
that we may further investigate.

Multiple devices mobility: Further challenges 
may occur in the FL setting if multiple devices try 
to move at the same time with varying data distri-
bution at each node. The impact of a large num-
ber of devices on training time and accuracy will 
be investigated further in order to realize migra-
tion in practical FL systems.

Hardware heterogeneity: In FedFly, we per-
form migration in a homogeneous environment 
(i.e., the hardware at the edge servers is of the 
same instruction set architecture, ISA). However, 
in practical scenarios, edge servers are often built 
with CPUs of different ISAs. As a result, a DNN 
model that has been natively trained for one ISA 
cannot be moved to another, making migration 
to the destination edge server diffi  cult. Migration 
at runtime across edge servers featuring CPUs 
of diff erent ISAs, such as ARM and x86, requires 
further investigation. 

Neural network optimization: In practice, the 
destination edge server may not have enough 
resources to run the DNN model, meaning that the 
destination edge server resource is not equivalent 

FIGURE 4. Global accuracy when 20 percent and 50 percent of datasets are required for training on a mobile device 
for 100 rounds of training.
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to the source edge server resource. How to move 
DNN on the fly so that the DNN model can run on 
the destination edge server with limited resources 
and how to optimize the DNN without impacting 
its accuracy may be further investigated.

Asynchronous training: FedFly  currently 
focuses on synchronous training in edge-based 
distributed FL. However, the practical FL scenario 
shows significant heterogeneity in terms of com-
putation resources, hardware, dataset distribution, 
communication, and so on. It would be worth-
while to investigate the migration issues for asyn-
chronous training in edge-based distributed FL.

Communication overhead: FedFly does not 
impose any communication challenges, as training 
from the source edge server is resumed with a 2 
s overhead at the destination edge server. How-
ever, communication challenges may arise as a 
result of the hierarchical cloud-edge-device archi-
tecture in which FedFly operates since the vol-
ume of communication between the cloud, edge 
servers, and devices increase. This may result in 
a higher communication overhead since model 
parameters are frequently shared between the 
cloud to edge to device and vice versa. Efficient 
mechanisms for reducing communication over-
head between devices, edge servers, and the 
cloud will be considered in the future.
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