
IEEE Communications Magazine • November 202242 0163-6804/22/$25.00 © 2022 IEEE

Abstract
Federated learning (FL) is a privacy-preserving

distributed machine learning technique that trains
models while keeping all the original data gen-
erated on devices locally. Since devices may be
resource-constrained, offloading can be used to
improve FL performance by transferring compu-
tational workload from devices to edge servers.
However, due to mobility, devices participating
in FL may leave the network during training and
need to connect to a different edge server. This
is challenging because the offloaded computa-
tions from an edge server need to be migrated. In
line with this assertion, we present FedFly, which
is, to the best of our knowledge, the first work
to migrate a deep neural network (DNN) when
devices move between edge servers during FL
training. Our empirical results on the CIFAR-10
dataset, with both balanced and imbalanced data
distribution, support our claims that FedFly can
reduce training time by up to 33 percent when
a device moves after 50 percent of the training
is completed, and by up to 45 percent when 90
percent of the training is completed when com-
pared to the state-of-the-art offloading approach
in FL. FedFly has negligible overhead of up to
two seconds and does not compromise accuracy.
Finally, we highlight a number of open research
issues for further investigation. FedFly can be
downloaded from https://github.com/qub-bless-
on/FedFly.

Introduction
Internet applications that rely on classic machine
learning (ML) techniques gather data from mobile
and Internet of Things (IoT) devices and process
them on servers in cloud data centers. Limited
uplink network bandwidth, latency sensitivity of
applications, and data privacy concerns are key
challenges in streaming large volumes of data
generated by devices to geographically distant
clouds. The concept of federated learning (FL)
provides privacy by design in an ML technique
that collaboratively learns across multiple distribut-
ed devices without sending raw data to a central
server while processing data locally on devices.

However, given the limited availability of
resources on many devices, performing FL on
such devices is impractical due to increased train-
ing times [1]. One approach is to leverage the
computational resources offered by edge servers

(located at the edge of the network) for training.
The concept of offloading computations of the
ML model that may be a deep neural network
(DNN) from a device to an edge server for FL by
splitting the ML model was introduced in [2] (this
concept is referred to as edge-based FL). Howev-
er, a major challenge that has not been consid-
ered within the context of edge-based FL is device
mobility.

Mobile devices participating in edge-based
FL may need to move from one edge server to
another (e.g., a smartphone or a drone moving
from the connectivity of one edge node to anoth-
er). This will in turn affect the performance of
edge-based FL and result in large training times [3,
4]. Moving a device without migrating the accom-
panying training data from an edge server to the
destination will result in training for the device
having to start all over again on the destination
server. This would be inefficient, resulting in an
increased overall training time [5]. Therefore,
there is a need for developing techniques that can
move devices while accounting for migrating par-
tially trained FL models of a device from one edge
server to another.

Research on device mobility has been consid-
ered in the context of migration. Migration on the
edge has been investigated in the literature, more
specifically by exploring VM migration [6] and
container migration [7, 8]. However, migration in
edge-based FL is minimally considered. This article
presents FedFly, which addresses the mobility
challenge of devices in edge-based FL, and the
key research contributions are:
1. The technique for migrating DNNs in edge-

based FL, which to the best of our knowl-
edge is for the first time considered in the
context of edge-based FL. When a device
moves from an edge server to a destination
server after 50 percent of FL training is com-
pleted, the training time using the FedFly
migration technique is reduced by up to 33
percent compared to the training time when
restarting training on the destination server.
Similarly, 45 percent reduction is obtained
when a device moves to a destination server
after 90 percent FL training is completed. It
is noted that the original accuracy is main-
tained.

2. The implementation and evaluation of Fed-
Fly in a hierarchical cloud-edge-device

Rehmat Ullah, Di Wu, Paul Harvey, Peter Kilpatrick, Ivor Spence, and Blesson Varghese

Rehmat Ullah (corresponding author), Di Wu, and Blesson Varghese are with the University of St Andrews, UK; Peter Kilpatrick and Ivor
Spence are with Queen’s University Belfast, UK; Paul Harvey is with the University of Glasgow, UK, and was previously with the Autono-

mous Networking Research & Innovation Department, Rakuten Mobile, Japan, when this work was undertaken.
Digital Object Identifier:
10.1109/MCOM.003.2100964

FedFly: Toward Migration in Edge-Based
Distributed Federated Learning

ARTIFICIAL INTELLIGENCE AND DATA SCIENCE FOR COMMUNICATIONS

The authors present FedFly, which
is, to the best of our knowledge,
the first work to migrate a deep
neural network when
devices move between edge
servers during FL training.

This work was supported by
funds from Rakuten Mobile,
Japan. The last author was also
supported by a Royal Society
Short Industry Fellowship.

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:12:14 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • November 2022 43

architecture that validates the migration tech-
nique of edge-based FL on a lab-based test-
bed. The experimental results are obtained
from a lab-based testbed that includes four
IoT devices, two edge servers, and one cen-
tral server (cloud-like) running the VGG-5
DNN model. The evaluation is done on both
a balanced (equal data distribution) and an
imbalanced (unequal data distribution) data-
set. The empirical findings show that Fed-
Fly has a negligible overhead of up to 2 s
on the testbed. It is further noted that the
accuracy is preserved even when data on
devices is imbalanced and the most signif-
icant node(s) (i.e., nodes with majority of
data) move across edge servers.
The rest of this article is organized as follows.

We introduce the concepts of FL and offloading
in FL. We present the motivation for FedFly. We
propose the migration technique for edge-based
FL. We present the performance analysis of Fed-
Fly. We conclude the article and highlight direc-
tions for future research.

Background
This section provides an overview of FL and high-
lights the benefits of offloading ML computations
onto edge servers.

FL [9] is a privacy-preserving technique in
which an ML model is collaboratively trained
across several participating distributed devices.
All data generated by a device that is used for
training resides on local devices. In an FL system,
the server initiates a global model and distributes
the model parameters to all connected devices.
Then each device trains a local version of the ML
model using local data. Instead of sending the
raw data to the server, the local model parameter
updates are sent up to the server. Subsequently,
the server computes a weighted average using
the parameter updates on the server using the
federated averaging (FedAvg) algorithm [9] to
obtain a new set of parameters for the global
model. The updated global model is then sent
back down to each device for the next round of
training by the edge server. The entire process is
repeated until the model converges [10].

In practice, running FL across resource-con-
strained devices (e.g., in an IoT environment) will
result in large training times. Therefore, the con-
cept of partitioning and offloading the ML model
(e.g., for a DNN) has been explored for perfor-
mance efficiency [11]. Split learning (SL) [12] is
one ML technique that leverages this concept.

In SL, a DNN is partitioned across the device
and server. The DNN layer after which the model
is partitioned is referred to as the split layer. The
device trains the model up to the split layer and
then sends the split layer activation (referred to as
smashed data) to the server. The server trains the
remaining layers of the DNN using the smashed
data. The server performs back-propagation up
to the split layer and sends the gradients of the
smashed data to the devices. The devices use the
gradients to perform back-propagation on the rest
of the DNN.

However, when multiple devices participate
in SL, the devices are trained in a sequential
round-robin fashion whereby only one device is
connected to the server at a time. This limitation

is overcome by SplitFed [2] and FedAdapt [13].
SplitFed and FedAdapt allow for simultaneous
training of all participating devices, at the same
time leveraging on partitioning the DNN to alle-
viate the computational burden of training on the
device. In addition to the underlying approaches
of SplitFed, FedAdapt incorporates a reinforce-
ment learning approach to dynamically identify
the DNN layers that need to be offloaded from
the device to the edge based on the operational
conditions of the environment. In this article, Split-
Fed is considered as the baseline.

SplitFed reduces the amount of computation
carried out on the device and is faster than clas-
sic SL. However, it is limited in that the challenge
of device mobility during training has not been
considered. Currently, there is no research in the
literature that considers the migration of edge-
based FL when devices move between edge serv-
ers. The next section highlights the key challenges
when using SplitFed.

Impact of Device Mobility on
Edge-Based Federated Learning

This section considers the impact ofdevice mobil-
ity on the training time in edge-based FL. Three
contributing factors, namely model training, imbal-
anced data distribution, and frequency of device
mobility are considered.

Model training: Due to mobility, a device par-
ticipating in FL may disconnect from one edge
server and will need to connect to another server
at any stage during training. For example, in the
early stages of training, if a device moves, restart-
ing training on a different edge server may result
in a small increase in training time. However, if the
device has completed a larger portion of its train-
ing on an edge server before the device moved,
the training time would significantly increase. A
migration mechanism is required so that mobile
devices can resume training on the destination
edge server rather than starting over.

Imbalanced data distribution: In a real edge-
based FL system, some devices may have more
data than others due to frequent use of specific
services or have more resources such as memo-
ry [3, 9]. Consequently, these devices will make
a significant contribution to the quality (overall
accuracy) of the global model. However, devic-
es that generate a large amount of data cannot
be removed from contributing to training since
the eventual accuracy of the global model will
be adversely affected. Furthermore, devices with
more data will require more training time. As a
result, restarting training for the device after it has
moved to a different edge server will increase
the training time. A migration mechanism that
allows such devices to resume training (rather
than restarting from the beginning) when mov-
ing between edge servers is required to reduce
training time while not compromising the global
model accuracy.

Frequency of device mobility: The frequency
with which devices may move between edge
servers can have an impact on training time. If
the devices move frequently during training, the
overall training time will increase because training
will need to be restarted on each device after it
has moved to a different edge server.

FL [9] is a privacy-preserv-
ing technique in which an

ML model is collaboratively
trained across several

participating distributed
devices. All data generated
by a device that is used for

training resides on local
devices.

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:12:14 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • November 202244

In this article, we present FedFly, which aims
to address the device mobility challenge by taking
into account the above factors for reducing the train-
ing time and maintaining the accuracy of the global
model as close as possible to that in classic FL.

FedFly for Migration in Hierarchical
Edge-Based Federated Learning

This section presents FedFly (https://github.
com/qub-blesson/FedFly), the edge-based distrib-
uted FL system that caters for mobility of devices.
A hierarchical structure that comprises three enti-
ties, namely devices, edge servers, and a central
server (cloud-like), is considered. The FedFly
system is shown in Fig. 1. The following highlights
the steps in relation to distributed FL and the
mobility of devices within the FedFly system:

Central server initialization: When training
begins, the central server initializes the global
model parameters and distributes them to the
edge servers. The model parameters are received
by the edge servers and passed to the participat-
ing devices (Step 1). The training on the devic-
es begins when the devices receive the model
parameters from the servers.

Splitting Deep Neural Networks: When the
model is initialized, the DNN, which would in clas-

sic FL run on a device, is split between device and
edge server. After all devices and edge servers
complete local training on the data generated by
the device — forward and backward propagation
(Step 2 and Step 3) — the local model updates
are sent to the central server for global model
aggregation (Step 4). A complete forward and
backward propagation corresponds to one local
epoch (an epoch refers to one complete cycle
of an entire dataset on a device through the neu-
ral network) of a device for all local data of that
device. The central server aggregates the model
(Step 5), and then the updated parameters of the
global model are sent back to the edge servers
and devices for training for a next round of FL
training (Step 6).

At any point during training, it is possible for
a device to move between edge servers. Figure
2 shows the sequence of activities initiated by
FedFly when a device needs to move from
the source edge server to the destination edge
server. Assume that a device disconnects from
the source edge server after the 50th round of
training. When a device connects to the desti-
nation server without using a migration mecha-
nism, all the training is lost until the 50th round,
and training is restarted on the destination edge
server. This is because the destination edge serv-

A complete forward and
backward propagation

corresponds to one local
epoch (an epoch refers to
one complete cycle of an

entire dataset on a device
through the neural network)
of a device for all local data

of that device.

FIGURE 1. System of FedFly.

Global model feedback
(Iterative)

D
istribute initial param

eters

Model aggregation

Source edge server
Fo

rw
ar

d
ac

tiv
at

io
n

Fo
rw

ar
d

ac
tiv

at
io

nB
ackw

ard gradients

Destination edge server

Central server

U
pl

oa
d

m
od

el
s

D
istribute initial param

eters

Global model feedback
(Iterative)

R
es

um
e

tr
ai

ni
ng

D
istribute initial param

eters

U
pl

oa
d

m
od

el
s

Model Splitting

Model data:
(epoch number, gradients, model

weights, loss value, optimizer's state)

B
ackw

ard gradients
Device movement

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:12:14 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • November 2022 45

er does not have a copy of the model that was
trained on the source edge server. It is necessary
to migrate the model data from the source edge
server to the destination edge server before
training can resume.

FedFly overcomes the mobility challenge
by migrating model data from the source edge
server to the destination edge server. There are
three steps that are considered in FedFly when
a device starts moving during FL training.

Notify edge server: When a device starts to
move, it instructs the source edge server to pre-
pare data that needs to be migrated to the des-
tination edge server (Step 6). In this article, it is
assumed that the moving device knows when to
disconnect from the source edge server.

Model data checkpoint: The source edge server
creates a data checkpoint that includes the epoch
number, gradients, model weights, loss value, and
state of optimizer (e.g., gradient descent) (Step 7).
The checkpointed data is transferred via a socket
to the destination edge server (Step 8).

Resume training: At the destination edge serv-
er, the checkpointed data is received via a socket.
When a device connects to the destination edge
server, training is resumed from the point where
the device started moving at the source edge
server (Step 9).

There are several possible ways to transfer
model data between edge servers. In FedFly,
the source edge server transfers data directly
to the destination edge server, after which the
device resumes training. However, in practice,
the two edge servers may not be connected or
may not have permission to share data with each
other. In this case, the device can then transfer
the checkpointed data between edge servers.

Evaluation
This section first describes the experimental setup,
including the lab-based testbed used for carrying
out experiments, and then substantiates the key
claims of FedFly by presenting and analyzing
the results obtained.

There are several possible
ways to transfer model data

between edge servers. In
FedFly, the source

edge server transfers data
directly to the destination

edge server, after which the
device resumes training.

FIGURE 2. Sequence diagram of FedFly.

Text

Notify source edge server

Device side
model

Edge server
side model

Forward propagation

Backward propagation

Device mobility (i.e., at
50th round of training)

Transfer of model data

Resume training

Upload model update

Model data
checkpoint:

(epoch, gradients,
model weights, loss
value, optimizer's

state)

Paritcipating devices Source edge server Destination edge server

Iterative

Global model feedback

Initial model parameters

Central server

Step 6 to Step 9

FedFly migration steps

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:12:14 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • November 202246

Experimental Setup
The testbed includes four devices, two edge serv-
ers, and one central server. The devices are:
1. Two Raspberry Pi 4 (Pi4_1, and Pi4_2) Model

B with 1.5 GHz quad-core ARM Cortex-A72
CPU, 4 GB RAM, and 32 GB storage

2. Two Raspberry Pi 3 (Pi3_1, and Pi3_2) Model
B with 1.2 GHz quad-core ARM Cortex-A53
CPU, 1 GB RAM, and 32 GB storage

The edge servers comprise:
1. A 2.3 GHz quad-core Intel i5 CPU, 8 GB

RAM, and 256 GB storage
2. A 2.3 GHz quad-core Intel i7 CPU, 16 GB

RAM, and 500 GB storage.
The central server has a 2.9 GHz quad-core Intel i5
CPU, 16 GB RAM, and 1 TB storage. All Raspberry
Pis have the same version of the Raspbian GNU/

Linux 10 (Buster) operating system, Python version
3.7, and PyTorch version 1.4.0. The edge servers
and the central server have the same version of
Python and PyTorch using Anaconda. All devices
are connected to the servers in a Wi-Fi network
with an average available bandwidth of 75 Mb/s.

The DNN model used is VGG-5 [14], and the
CIFAR-10 [15] dataset is used as input with size
3@32  32, and a batch size of 100 is used for all
experiments. The CIFAR-10 dataset contains 50K
training and 10K testing samples that consist of
color images of 10 objects (classes), including plane,
car, bird, cat, deer, dog, frog, horse, ship, and truck.
The standard FedAvg [9] aggregation method is
used, and the model parameters are updated using
stochastic gradient descent (SGD), with a learning
rate of 0.01 and a momentum of 0.9.

Empirical Results and Discussion
In this section, we demonstrate the performance
of FedFly by comparing it with SplitFed in terms
of device training time and model accuracy. We
validate our claims using balanced and imbal-
anced datasets at various stages (i.e., 50 and 90
percent) of FL training.

Effect of mobility on device training time:
When a device moves between edge servers, fac-
tors such as training stage and the dataset avail-
able on the device can affect training time. In this
experiment, we validate the training time claim by
generating 25 and 50 percent of the data required
for training on a single device (i.e., Pi3_1, Pi3_2,
Pi4_1, and Pi4_2) with training stages at 50 and
90 percent, as shown in Figs. 3a and 3b.

Figure 3a shows the effects of device mobility
on device training time when 25 percent of the
dataset is required for training on a single device,
as well as device movement when 50 and 90 per-
cent of the training is completed. It is evident from
Fig. 3a that FedFly always outperforms SplitFed,
in which the training is restarted at the destina-
tion edge server. When we move Pi3_1 when 50
percent of the training is done, the training time
is reduced by up to 33 percent per round. How-
ever, when we move Pi3_2 with the same data-
set but 90 percent of the training completed, the
training time is reduced by up to 45 percent per
round. We also move devices (Pi4_1 and Pi4_2)
when 50 and 90 percent of the training is done,
and the training time is reduced by up to 33 and
45 percent per round, respectively.

Figure 3b shows the effects of device mobility
on device training time when 50 percent of the
dataset is required for training on a single device,
as well as device movement when 50 and 90 per-
cent of the training is completed. It can be seen in
Fig. 3b that training time on devices is longer than
on devices in Fig. 3a. This is due to the fact that
50 percent of the dataset is used for training on
mobile devices, which is comparably larger than
used for devices in Fig. 3a. It has been demon-
strated from Figs. 3a and 3b that FedFly can
save a significant amount of training time when
compared to SplitFed.

Figure 3c highlights the system performance with
device mobility by varying the split points (SPs). SP1
denotes the first convolutional layer on devices, SP2
denotes the first two convolutional layers on devic-
es, and SP3 denotes the first three convolutional
layers on devices, with the remaining layers on edge

When a device moves
between edge servers, fac-
tors such as training stage

and the dataset available on
the device can affect train-

ing time. In this experiment,
we validate the training

time claim by generating 25
and 50 percent of the data
required for training on a
single device (i.e., Pi3_1,
Pi3_2, Pi4_1, and Pi4_2)
with training stages at 50

and 90 percent

FIGURE 3. a) Device training time per round when 25 percent of the dataset
is required for training on a mobile device; b) device training time per
round when 50 percent of the dataset is required for training on a
mobile device; c) device training time per round by varying SPs with
25 percent of the dataset on a mobile device and at 90 percent of the
FL training.

301

484

732

562

880

1383

301

484

732

562

880

1383

SP1 SP2 SP3
0

200

400

600

800

1000

1200

1400

Tr
ai

ni
ng

Ti
m

e
(s

)

Split Points (SP)

Resume training (FedFly)
Restart training (SplitFed)

(c)

(b)

991 988

746
630

1468

1853

1098
1220

991 988

746
630

1468

1853

1098
1220

Pi3_1 (50%) Pi3_2 (90%) Pi4_1 (50%) Pi4_2 (90%)
0

200

400

600

800

1000

1200

1400

1600

1800

Tr
ai

ni
ng

Ti
m

e
(s

)

Devices

Resume training (FedFly)
Restart training (SplitFed)

488 484

327
382

714

880

479

722

488 484

327
382

714

880

479

722

Pi3_1 (50%) Pi3_2 (90%) Pi4_1 (50%) Pi4_2 (90%)
0

200

400

600

800

1000

Tr
ai

ni
ng

Ti
m

e
(s

)

Devices

Resume training (FedFly)
Restart training (SplitFed)

(a)

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:12:14 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • November 2022 47

servers. It should be noted that in the experiments
illustrated in Figs. 3a and 3b, all devices and edge
servers have fixed split points (i.e., SP2). Figure 3c
depicts that SPs impact the system performance in
terms of training time. By changing the SPs from
SP1 to SP3, we note a signifi cant increase in train-
ing time. This is because as the number of layers
(i.e., computation) on devices and servers increases
or decreases, the training time on devices or serv-
ers increases or decreases accordingly. In all cases,
FedFly saves a signifi cant amount of training time
when compared to SplitFed. The transfer time is still
up to 2 s. This is because the VGG-5 model is used
in the experiments, and the data that is checkpoint-
ed did not change signifi cantly by varying SPs.

Effect of mobility on global accuracy: In this
experiment, we verify the accuracy of the global
model when a device moves frequently between
edge servers.

We ran this experiment for a total of 100 rounds,
with a mobile device holding 20 percent of the
dataset and 50 percent of the dataset. We move
the device at various rounds during 100 rounds of
training, such as at the 10th, 20th, 30th, 40th, 50th,
60th, 70th, 80th, and 90th rounds. Figure 4 clearly
shows that there is no eff ect on accuracy. FedFly
and SplitFed both maintain accuracy when a device
moves between edge servers holding 20 and 50
percent of the datasets. In the case of SplitFed, the
training is restarted at the destination edge server
without any accuracy loss. This is because the device
obtains the updated model parameters from the
central server and restarts training at the destina-
tion edge server. For example, if a device moves at
the 10th round, the central server has the updated
model parameters until the 10th round, and when
a device connects to the destination edge server, it
receives updated parameters from the central server.
Only the training is restarted, which increases the
training time but has no effect on accuracy. Fed-
Fly, on the other hand, transfers the data to the
destination edge server, where training is resumed
and maintains the same level of accuracy as SplitFed.

summAry of tHe evAluAtIon results
FedFly performance is aff ected by a number of
factors, including:
• Balanced and imbalanced datasets on devices
• Varying the SPs
• The frequency with which devices move
• The model training stages
Our experimental results provide the following
insights:
• In comparison to SplitFed, FedFly reduces

the training time per round by up to 33 per-
cent when a device moves after 50 percent
of the training is completed, and by up to 45
percent when 90 percent of the training is
completed.

• FedFly maintains global accuracy as does
SplitFed, and there is no accuracy loss.

• FedFly results in up to 2 s overhead, which
is the time it takes to transfer data between
edge servers during migration. This overhead
is negligible when compared to the device
training time when training is restarted at the
destination server. The reduction in training
time and overhead reported in this article
are based on experiments carried out on the
lab-based testbed.

conclusIon And future reseArcH dIrectIons

The FL system is hindered by two major issues:
training time and accuracy. This becomes more
challenging when a device moves during FL train-
ing and especially when a DNN is partitioned
between device and edge server. This article
has proposed FedFly, which for the first time
addresses the device mobility challenge during FL
training, particularly in edge-based FL. We develop
a prototype on a lab-based testbed that upholds
and validates our claims in terms of training time
and accuracy using balanced and imbalanced
datasets when compared to the state-of-the-art
SL approach called SplitFed. Our empirical results
reveal that FedFly introduces a negligible over-
head but saves a significant amount of training
time while maintaining accuracy.

Future Research Directions: We develop
FedFly for migration in edge-based distributed
FL, which presents numerous research opportu-
nities. What follows are a few research questions
that we may further investigate.

Multiple devices mobility: Further challenges
may occur in the FL setting if multiple devices try
to move at the same time with varying data distri-
bution at each node. The impact of a large num-
ber of devices on training time and accuracy will
be investigated further in order to realize migra-
tion in practical FL systems.

Hardware heterogeneity: In FedFly, we per-
form migration in a homogeneous environment
(i.e., the hardware at the edge servers is of the
same instruction set architecture, ISA). However,
in practical scenarios, edge servers are often built
with CPUs of different ISAs. As a result, a DNN
model that has been natively trained for one ISA
cannot be moved to another, making migration
to the destination edge server diffi cult. Migration
at runtime across edge servers featuring CPUs
of diff erent ISAs, such as ARM and x86, requires
further investigation.

Neural network optimization: In practice, the
destination edge server may not have enough
resources to run the DNN model, meaning that the
destination edge server resource is not equivalent

FIGURE 4. Global accuracy when 20 percent and 50 percent of datasets are required for training on a mobile device
for 100 rounds of training.

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:12:14 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • November 202248

to the source edge server resource. How to move
DNN on the fly so that the DNN model can run on
the destination edge server with limited resources
and how to optimize the DNN without impacting
its accuracy may be further investigated.

Asynchronous training: FedFly currently
focuses on synchronous training in edge-based
distributed FL. However, the practical FL scenario
shows significant heterogeneity in terms of com-
putation resources, hardware, dataset distribution,
communication, and so on. It would be worth-
while to investigate the migration issues for asyn-
chronous training in edge-based distributed FL.

Communication overhead: FedFly does not
impose any communication challenges, as training
from the source edge server is resumed with a 2
s overhead at the destination edge server. How-
ever, communication challenges may arise as a
result of the hierarchical cloud-edge-device archi-
tecture in which FedFly operates since the vol-
ume of communication between the cloud, edge
servers, and devices increase. This may result in
a higher communication overhead since model
parameters are frequently shared between the
cloud to edge to device and vice versa. Efficient
mechanisms for reducing communication over-
head between devices, edge servers, and the
cloud will be considered in the future.

References
[1] T. Li et al., “Federated Learning: Challenges, Methods, and

Future Directions,” IEEE Signal Processing Mag., vol. 37, no.
3, 2020, pp. 50–60.

[2] C. Thapa et al., “Splitfed: When Federated Learning Meets
Split Learning,” Proc. AAAI Conf. Artificial Intelligence, vol.
36, no. 8, 2022, pp. 8485–93.

[3] A. Imteaj et al., “A Survey on Federated Learning for
Resource-Constrained IoT Devices,” IEEE IoT J., vol. 9, no.
1, 2021, pp. 1–24.

[4] D. C. Nguyen et al., “Federated Learning for Internet of
Things: A Comprehensive Survey,” IEEE Commun. Surveys &
Tutorials, vol. 23, no. 3, 2021, pp. 1622–58.

[5] Q. Xia et al., “A Survey of Federated Learning for Edge Com-
puting: Research Problems and Solutions,” High-Confidence
Computing, vol. 1, no. 1, 2021, p. 100,008.

[6] F. Zhang et al., “A Survey on Virtual Machine Migration:
Challenges, Techniques, and Open Issues,” IEEE Commun.
Surveys & Tutorials, vol. 20, no. 2, 2018, pp. 1206–43.

[7] G. Singh and P. Singh, “A Taxonomy and Survey on Contain-

er Migration Techniques in Cloud Computing,” Sustainable
Development Through Engineering Innovations, Springer,
2021, pp. 419–29.

[8] S. Nadgowda et al., “Voyager: Complete Container State
Migration,” 2017 IEEE 37th Int’l. Conf. Distributed Comput-
ing Systems, 2017, pp. 2137–42.

[9] B. McMahan et al., “Communication-Efficient Learning of
Deep Networks from Decentralized Data,” Proc. 20th Artifi-
cial Intelligence and Statistics, 2017, pp. 1273–82.

[10] Y. Gao et al., “End-to-End Evaluation of Federated Learning
and Split Learning for Internet of Things,” arXiv preprint
arXiv:2003.13376, 2020, accessed 6 Aug., 2021.

[11] L. Lockhart et al., “Scission: Performance-Driven and Con-
text-Aware Cloud-Edge Distribution of Deep Neural Net-
works,” 2020 IEEE/ACM 13th Int’l. Conf. Utility and Cloud
Computing, 2020, pp. 257–68.

[12] P. Vepakomma et al., “Split Learning for Health: Distrib-
uted Deep Learning Without Sharing Raw Patient Data,”
arXiv:1812.00564, 2018, accessed 15 Aug., 2021.

[13] D. Wu et al., “Fedadapt: Adaptive Offloading for IoT Devic-
es in Federated Learning,” IEEE Internet of Things J., 2022.

[14] K. Simonyan and A. Zisserman, “Very Deep Convo-
lutional Networks for Large-Scale Image Recognition,”
arXiv:1409.1556, 2014, accessed 25 July, 2021.

[15] A. Krizhevsky et al., “Learning Multiple Layers of Features
From Tiny Images,” Technical report, University of Toronto,
2009, accessed 20 July, 2021.

Biographies
Rehmat Ullah (rehmat_ciit@hotmail.com) is a research fellow at
the University of St Andrews, United Kingdom. His research focus-
es on edge computing and information-centric networking, with a
recent focus on federated learning for edge computing systems.

Di Wu is currently pursuing a Ph.D. degree in computer science
at the University of St Andrews. His major interests are in the
areas of federated learning, distributed machine learning, edge
computing, model compression, and the Internet of Things.

Paul Harvey is a lecturer in autonomous systems at the James
Watt School of Engineering, University of Glasgow, United
Kingdom. He was previously with the Autonomous Networking
Research & Innovation Department, Rakuten Mobile, Japan.

Peter Kilpatrick is a reader in computer science at Queen’s
University Belfast, United Kingdom. His interests include parallel
programming models and cloud and edge computing.

Ivor Spence is a Reader in computer science at Queen’s Univer-
sity Belfast, where he works in the artificial intelligence research
theme with a focus on heterogeneous computing systems for AI.

Blesson Varghese is a reader in computer science at the Uni-
versity of St Andrews and the Principal Investigator of the Edge
Computing Hub. His recent interests are at the intersection of
the cloud-edge-device continuum and machine learning.

Authorized licensed use limited to: University of Patras. Downloaded on May 16,2023 at 17:12:14 UTC from IEEE Xplore. Restrictions apply.

