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The Minimum Spanning Tree Problem (MST)

• Assume  the national park of the previous lecture
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• If all kiosks must be connected by phone lines, what is the 

minimum total length of lines required?



Properties of the Solution

• The solution to the MST is a tree, i.e.

– It has n-1 edges

– It has no cycles (circuits)

• The total length of this tree is minimal

• The  final solution is not affected by the choice of starting node



Algorithm

1 Choose a node at random and connect it to its nearest 

neighbor

2 Repeat until the end

2.1  Find the non-connected node which is closest to one 

of the already connected nodes

2.2  Connect these two nodes



(Optimal Solution of the Example)

• Lets start (arbitrarily) with node Β

• 1st iteration: Connect node Γ
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(Optimal Solution of the Example)

•2nd iteration: Connect node Α
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(Optimal Solution of the Example)

•3d iteration: Connect node Ο
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(Optimal Solution of the Example)

•4th iteration: Connect node Ε
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(Optimal Solution of the Example)

•5th iteration: Connect node Δ
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(Optimal Solution of the Example)

•6th iteration: Connect node Τ
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(Optimal Solution of the Example)

•Final Solution: minimum total length 2+2+1+3+1+5=14

•Tree with 7 nodes and 6 edges
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The Maximum Flow Problem- Example

• Assume the electricity distribution network of an area

• Node A denotes the power generating plant and node Z a 

concert hall. The other nodes denote intermediary distribution 

nodes whereas the edges denote power cables.

• Every edge has a certain capacity (in kWh). 

(What is the maximal energy that can be distributed from the plant 

(Α=so) to the concert hall (Ζ=si)?
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The Maximum Flow Problem- Definition

• Let a directed graph G=(V,E)

• Let so (source) the origin and si (sink) the terminal node

• Let 𝒖𝒊𝒋 > 𝟎 the capacity of every edge 𝒊, 𝒋 𝝐 𝑬

• Problem: for every edge 𝒊, 𝒋 𝝐 𝑬 find flow 𝒙𝒊𝒋 such that

– At every node (except so and si) incoming flow must be 

equal to outgoing flow (maintenance condition)

– For every edge 𝒊, 𝒋 𝝐 𝑬 we must have 𝒙𝒊𝒋 ≤ 𝒖𝒊𝒋

– The total incoming flow into the sink (si) must be maximized



Important Concept: Augmenting Path

• Solving the problem relies on our ability to find routes along 

which we can increase the flow

• Augmenting Path: A path so=v1,v2,…,vr=si such that:

–We  can increase the flow when moving in the same direction 

as the edge

–We can decrease existing flow when moving in the opposite 

direction of the edge

• (It doesn’t matter which order we visit the edges)



The Maximum Flow Problem (continued)

• Basic idea: Augmenting path

– (Non-directed) path so=v1,v2,…,vr=si such that for every 

edge 𝒊, 𝒋 𝝐 𝑬 it must be

𝒖𝒊𝒋 − 𝒙𝒊𝒋 > 𝟎 or 𝒙𝒋𝒊 > 𝟎

• If such a path exists, let δ the maximum increase in flow that 

can be achieved

There exists remaining 

capacity when moving in 

the direction of the edge

There exists non-zero flow 

when moving against the 

direction of the edge



Algorithm (Ford-Fulkerson)

1 Find a feasible flow (xij) with value z (i,jV)

2 Find an augmenting path P.

If no such path exists, then the solution is optimal. 

Otherwise, go to Step 3.

3 Let δ the maximum possible increase of the flow

Increase the flow along the path as follows:

Then (x′ij) is a feasible flow with value z′=z+δ (i,jV)

4 Return to Step 2





−

+
=

Pi)(j, if ,

Pj)(i, if  ,





ij

ij

ij x

x
x



Return to the Example

•Augmenting Parth ΑΒ-ΒΕ-ΕΖ with flow 5

• Total flow: 5

Rem.Capacity/Flow
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Return to the Example / 2

• Augmenting Path ΑΓ-ΓΔ-ΔΖ with flow 5

• Total flow: 5+5=10

Rem. Capacity/Flow
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Back to the Example/ 3

• Augmenting Path ΑΓ-ΓΕ-ΕΒ-ΒΔ-ΔΖ with flow 5

• We can move along ΕΒ (against the direction of the edge) 

because we have already sent positive flow along BE

• Total flow: 5+5+5=15 (Maximal!)

Rem. Capacity/Flow
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Ford-Fulkerson Algorithm /observation

• Moving against the direction of an edge, we basically reduce 

the flow along this edge

• This reduction allows us to change previous flows

• Example:
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The residual network

• Technique to implement the Ford-Fulkerson algorithm

• Shows the remaining capacity for each edge

• This is the maximum flow we can send along that edge

• Example: let an edge (Α, Β) with capacity 7. This edge is 

represented as follows:
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The residual network/2

• Example: if we send a flow of 5 units along edge (Α, Β), this 

flow is represented as follows:

ΒΑ
2/5

ΒΑ
2 5

Actual Network Residual Network

• The residual network of the initial example (electricity 

distribution) is:
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The residual network/3

• After the first iterations (send a flow of 5 units along the path) 

the network is as follows:

Actual Network Residual Network
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The Maximum Flow Problem /Example 2

• Assume the national park again

• Each road has a certain capacity i.e. it may accept a limited  

number of cars per unit time (see graph)

• What is the maximum number of cars that can travel from the 

entrance (Ο=so) to the exit (Τ=si) of the park per unit time?
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7

Solution / 1

Rem. Capacity/Flow

• Augmented Path ΟΒ-ΒΕ-ΕΤ with flow 5
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Solution / 2

• Augmented Path ΟΑ-ΑΔ-ΔΤ with flow 3
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• Total flow 5+3=8
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Solution / 3

• Augmented Path ΟΒ-ΒΔ-ΔΤ with flow 2

• Total flow 5+3+2=10

6/3
2/5Ο

Α

Β

Γ

Δ

Ε

Τ

5/3

4

0/3
1

2

4

0/5
1 1/5

40/7 2/2 4/5

Rem. Capacity/Flow



4/52/2
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Solution / 4

• Augmented Path ΟΑ-ΑΒ-ΒΔ-ΔΤ with flow 1
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Solution / 5
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• Total flow 5+3+2+1+1=12

• Augmented Path ΟΓ-ΓΕ-ΕΤ with flow 1
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Solution / 6
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Solution / 7
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• We can move along ΕΒ (against the direction of the edge) 

because we have already sent positive flow along BE 

• Total flow 5+3+2+1+1+1+1=14

• Augmented Path ΟΓ-ΓΕ-ΕΒ-ΒΔ-ΔΤ with flow 1
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Optimal Solution
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Note:  Although the maximum flow will always be 14 units, there 

may be different combination of flows giving this result!



Maximum Flow– Minimum Cut Theorem

• Cut

– Let Α a set of nodes, which includes the destination node 

but does not include the origin.

– The set of edges (v,w) for which vA and wA is called a 

cut

– Alternative definition: A cut is any set of edges which 

includes at least one edge from each path from the origin to 

the destination

• Practically

– A cut is any set of edges which, when removed from the 

graph, disconnect the origin from the destination



Maximum Flow– Minimum Cut Theorem / 2

• Capacity of a cut

– The sum of the capacities of all edges in the cut

• Theorem (Max Flow – Min Cut)

– In a network with a node s as origin and a node t as 

destination, the maximum flow from s to t is equal to the 

minimum cut

• Remark

– The two problems are dual to each other

• How to determine the Minimum Cut

– Divide the nodes of the network in two subsets S1 and S2

– S1: all the nodes that are accessible from s following edges 

that are not congested yet

– S2: all other nodes



Application in the example of slides 20-28

• Optimal solution:

• Set S1 is S1={Ο, Α, Γ, Ε, Β}

• Set S2 is S2={Δ, Τ}

• The edges whose first node is in S1 and final node in S2 are: ΑΔ – ΕΔ –

ΕΤ – ΒΔ

• (You may confirm that they are a cut. If we delete them, there is no path from Ο to Τ)

• The sum of their capacities is: 3+1+6+4=14 (equal to the maximum 

flow!)
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