UNIVERSITY OF PATRAS

DEPARTMENT OF BUSINESS ADMINISTRATION

FURTHER OPERATIONAL RESEARCH TECHNIQUES

Lecture 2: Other Problems in Graphs

Patras 2022

The Minimum Spanning Tree Problem (MST)

- Assume the national park of the previous lecture

- If all kiosks must be connected by phone lines, what is the minimum total length of lines required?

Properties of the Solution

- The solution to the MST is a tree, i.e.
- It has n-1 edges
- It has no cycles (circuits)
- The total length of this tree is minimal
- The final solution is not affected by the choice of starting node

Algorithm

1 Choose a node at random and connect it to its nearest neighbor

2 Repeat until the end
2.1 Find the non-connected node which is closest to one of the already connected nodes
2.2 Connect these two nodes

(Optimal Solution of the Example)

- Lets start (arbitrarily) with node B
- $1^{\text {st }}$ iteration: Connect node Γ

(Optimal Solution of the Example)

.2 ${ }^{\text {nd }}$ iteration: Connect node A

(Optimal Solution of the Example)

.3d iteration: Connect node O

(Optimal Solution of the Example)

.4 ${ }^{\text {th }}$ iteration: Connect node E

(Optimal Solution of the Example)

. $5^{\text {th }}$ iteration: Connect node Δ

(Optimal Solution of the Example)

-6 ${ }^{\text {th }}$ iteration: Connect node T

(Optimal Solution of the Example)

-Final Solution: minimum total length $2+2+1+3+1+5=14$
-Tree with 7 nodes and 6 edges

The Maximum Flow Problem- Example

- Assume the electricity distribution network of an area
- Node A denotes the power generating plant and node Z a concert hall. The other nodes denote intermediary distribution nodes whereas the edges denote power cables.
- Every edge has a certain capacity (in kWh).

(What is the maximal energy that can be distributed from the plant ($\mathrm{A}=\mathrm{so}$) to the concert hall ($\mathrm{Z}=\mathrm{si}$)?

The Maximum Flow Problem- Definition

- Let a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Let so (source) the origin and si (sink) the terminal node
- Let $u_{i j}>0$ the capacity of every edge $(i, j) \epsilon E$
- Problem: for every edge $(i, j) \epsilon E$ find flow $x_{i j}$ such that
- At every node (except so and si) incoming flow must be equal to outgoing flow (maintenance condition)
- For every edge $(i, j) \epsilon E$ we must have $x_{i j} \leq u_{i j}$
- The total incoming flow into the sink (si) must be maximized

Important Concept: Augmenting Path

- Solving the problem relies on our ability to find routes along which we can increase the flow
- Augmenting Path: A path $\mathbf{s o}=\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{r}}=\mathbf{s i}$ such that:
-We can increase the flow when moving in the same direction as the edge
-We can decrease existing flow when moving in the opposite direction of the edge
- (It doesn't matter which order we visit the edges)

The Maximum Flow Problem (continued)

- Basic idea: Augmenting path
- (Non-directed) path $s o=\mathbf{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{r}}=s i$ such that for every edge $(i, j) \epsilon E$ it must be

$$
\longrightarrow u_{i j}-x_{i j}>0 \text { or } x_{j i}>0
$$

There exists non-zero flow when moving against the direction of the edge

- If such a path exists, let δ the maximum increase in flow that can be achieved

Algorithm (Ford-Fulkerson)

1 Find a feasible flow (x_{ij}) with value $\mathrm{z}(\mathrm{i}, \mathrm{j} \in \mathrm{V})$
2 Find an augmenting path P.
If no such path exists, then the solution is optimal.
Otherwise, go to Step 3.
3 Let δ the maximum possible increase of the flow Increase the flow along the path as follows:

$$
x_{i j}^{\prime}=\left\{\begin{array}{l}
x_{i j}+\delta, \text { if }(\mathrm{i}, \mathrm{j}) \in \mathrm{P} \\
x_{i j}-\delta, \text { if }(\mathrm{j}, \mathrm{i}) \in \mathrm{P}
\end{array}\right.
$$

Then ($\left.\mathrm{x}_{\mathrm{ij}}{ }^{\mathrm{i}}\right)$ is a feasible flow with value $\mathrm{z}^{\prime}=\mathrm{z}+\boldsymbol{\delta}(\mathrm{i}, \mathrm{j} \in \mathrm{V})$
4 Return to Step 2

Return to the Example

-Augmenting Parth AB-BE-EZ with flow 5

- Total flow: 5

Return to the Example / 2

- Augmenting Path $\mathrm{A} \Gamma-\Gamma \Delta-\Delta Z$ with flow 5

- Total flow: 5+5=10

Back to the Example/ 3

- Augmenting Path $А Г-\Gamma E-E B-B \Delta-\Delta Z$ with flow 5

- We can move along EB (against the direction of the edge) because we have already sent positive flow along BE
- Total flow: 5+5+5=15 (Maximal!)

Ford-Fulkerson Algorithm /observation

- Moving against the direction of an edge, we basically reduce the flow along this edge
- This reduction allows us to change previous flows
- Example:

- Total flow=1

Total flow =2

The residual network

- Technique to implement the Ford-Fulkerson algorithm
- Shows the remaining capacity for each edge
- This is the maximum flow we can send along that edge
- Example: let an edge (A, B) with capacity 7 . This edge is represented as follows:

Actual Network

Residual Network

The residual network/2

- Example: if we send a flow of 5 units along edge (A, B), this flow is represented as follows:

Actual Network

Residual Network

- The residual network of the initial example (electricity distribution) is:

The residual network/3

- After the first iterations (send a flow of 5 units along the path) the network is as follows:

Actual Network

Residual Network

The Maximum Flow Problem /Example 2

- Assume the national park again
- Each road has a certain capacity i.e. it may accept a limited number of cars per unit time (see graph)
- What is the maximum number of cars that can travel from the entrance $(\mathrm{O}=s \mathrm{~s})$ to the exit $(\mathrm{T}=s i)$ of the park per unit time?

Solution / 1

- Augmented Path OB-BE-ET with flow 5

- Total flow 5

Solution / 2

- Augmented Path OA-AD- Δ T with flow 3

- Total flow 5+3=8

Solution / 3

- Augmented Path OB-B Δ - Δ T with flow 2

- Total flow 5+3+2=10

Solution / 4

- Augmented Path OA-AB-B $\Delta-\Delta T$ with flow 1

- Total flow $5+3+2+1=11$

Solution / 5

- Augmented Path ОГ-ГE-ET with flow 1

- Total flow 5+3+2+1+1=12

Solution / 6

- Augmented Path ОГ-ГЕ-E $\Delta-\Delta T$ with flow 1

- Total flow $5+3+2+1+1+1=13$

Solution / 7

- Augmented Path ОГ-ГЕ-ЕВ-В $\Delta-\Delta T$ with flow 1

- We can move along EB (against the direction of the edge) because we have already sent positive flow along BE
- Total flow $5+3+2+1+1+1+1=14$

Optimal Solution

Note: Although the maximum flow will always be 14 units, there may be different combination of flows giving this result!

Maximum Flow- Minimum Cut Theorem

- Cut
- Let A a set of nodes, which includes the destination node but does not include the origin.
- The set of edges (v, w) for which $v \notin A$ and $w \in A$ is called a cut
- Alternative definition: A cut is any set of edges which includes at least one edge from each path from the origin to the destination
- Practically
- A cut is any set of edges which, when removed from the graph, disconnect the origin from the destination

Maximum Flow- Minimum Cut Theorem / 2

- Capacity of a cut
- The sum of the capacities of all edges in the cut
- Theorem (Max Flow - Min Cut)
- In a network with a node \boldsymbol{s} as origin and a node \boldsymbol{t} as destination, the maximum flow from s to t is equal to the minimum cut
- Remark
- The two problems are dual to each other
- How to determine the Minimum Cut
- Divide the nodes of the network in two subsets S_{1} and S_{2}
- S_{1} : all the nodes that are accessible from s following edges that are not congested yet
- S_{2} : all other nodes

Application in the example of slides 20-28

- Optimal solution:

- Set S_{1} is $S_{1}=\{0, A, \Gamma, E, B\}$
- Set S_{2} is $S_{2}=\{\Delta, T\}$
- The edges whose first node is in S_{1} and final node in S_{2} are: $\mathrm{A} \Delta$ - $\mathrm{E} \Delta-$ ET - B Δ
- (You may confirm that they are a cut. If we delete them, there is no path from O to T)
- The sum of their capacities is: $\mathbf{3 + 1 + 6 + 4 = 1 4}$ (equal to the maximum flow!)

