UNIVERSITY OF PATRAS

DEPARTMENT OF BUSINESS ADMINISTRATION

FURTHER OPERATIONAL RESEARCH TECHNIQUES

Lecture 2: Other Problems in Graphs

Patras 2022

The Minimum Spanning Tree Problem (MST)

• Assume the national park of the previous lecture

• If all kiosks must be connected by phone lines, what is the minimum total length of lines required?

Properties of the Solution

- The solution to the MST is a tree, i.e.
 - It has n-1 edges
 - It has no cycles (circuits)
- The total length of this tree is minimal
- The final solution is not affected by the choice of starting node

Algorithm

- 1 Choose a node at random and connect it to its nearest neighbor
- 2 Repeat until the end

2.1 Find the non-connected node which is closest to one of the already connected nodes

2.2 Connect these two nodes

- Lets start (arbitrarily) with node B
- 1^{st} iteration: Connect node Γ

•2nd iteration: Connect node A

•3^d iteration: Connect node O

•4th iteration: Connect node E

•5th iteration: Connect node Δ

•6th iteration: Connect node T

•Final Solution: minimum total length 2+2+1+3+1+5=14

•Tree with 7 nodes and 6 edges

The Maximum Flow Problem- Example

- Assume the electricity distribution network of an area
- Node A denotes the power generating plant and node Z a concert hall. The other nodes denote intermediary distribution nodes whereas the edges denote power cables.
- Every edge has a certain capacity (in kWh).

(What is the maximal energy that can be distributed from the plant (A=so) to the concert hall (Z=si)?

The Maximum Flow Problem- Definition

- Let a directed graph G=(V,E)
- Let so (source) the origin and si (sink) the terminal node
- Let $u_{ij} > 0$ the capacity of every edge $(i, j) \in E$
- Problem: for every edge $(i, j) \in E$ find flow x_{ij} such that
 - At every node (except so and si) incoming flow must be equal to outgoing flow (maintenance condition)
 - For every edge $(i, j) \in E$ we must have $x_{ij} \leq u_{ij}$
 - The total incoming flow into the sink (si) must be maximized

Important Concept: Augmenting Path

- Solving the problem relies on our ability to find routes along which we can increase the flow
- <u>Augmenting Path</u>: A path $so=v_1, v_2, ..., v_r = si$ such that:

-We can increase the flow when moving in the same direction as the edge

-We can decrease existing flow when moving in the opposite direction of the edge

• (It doesn't matter which order we visit the edges)

The Maximum Flow Problem (continued)

Basic idea: Augmenting path

- (Non-directed) path $so=v_1, v_2, ..., v_r = si$ such that for every edge $(i, j) \in E$ it must be

There exists remaining
capacity when moving in
the direction of the edge
$$u_{ij} - x_{ij} > 0$$
 or $x_{ji} > 0$ There exists non-zero flow
when moving against the
direction of the edge

y = x > 0 or x > 0

• If such a path exists, let $\boldsymbol{\delta}$ the maximum increase in flow that can be achieved

- 1 Find a feasible flow (x_{ij}) with value z $(i,j \in V)$
- 2 Find an augmenting path P.

If no such path exists, then the solution is optimal. Otherwise, go to Step 3.

3 Let δ the maximum possible increase of the flow Increase the flow along the path as follows:

$$x'_{ij} = \begin{cases} x_{ij} + \delta, \text{ if } (i, j) \in P \\ x_{ij} - \delta, \text{ if } (j, i) \in P \end{cases}$$

Then (x'_{ij}) is a feasible flow with value $z'=z+\delta$ $(i,j\in V)$

4 Return to Step 2

Return to the Example

•Augmenting Parth AB-BE-EZ with flow 5

• Total flow: 5

Return to the Example / 2

• Augmenting Path AF-F Δ - Δ Z with flow 5

• Total flow: 5+5=10

Back to the Example/3

• Augmenting Path AΓ-ΓΕ-EB-BΔ-ΔZ with flow 5

• We can move along EB (against the direction of the edge) because we have already sent positive flow along BE

• Total flow: 5+5+5=15 (Maximal!)

Ford-Fulkerson Algorithm / observation

- Moving against the direction of an edge, we basically reduce the flow along this edge
- This reduction allows us to change previous flows
- Example:

Total flow =2

The residual network

- Technique to implement the Ford-Fulkerson algorithm
- Shows the remaining capacity for each edge
- This is the maximum flow we can send along that edge
- Example: let an edge (A, B) with capacity 7. This edge is represented as follows:

$$A \xrightarrow{7} B$$

Actual Network

Residual Network

The residual network/2

• Example: if we send a flow of 5 units along edge (A, B), this flow is represented as follows:

Actual Network

Residual Network

• The residual network of the initial example (electricity distribution) is:

The residual network/3

• After the first iterations (send a flow of 5 units along the path) the network is as follows:

Actual Network

Residual Network

The Maximum Flow Problem / Example 2

- Assume the national park again
- Each road has a certain capacity i.e. it may accept a limited number of cars per unit time (see graph)
- What is the maximum number of cars that can travel from the entrance (O=so) to the exit (T=si) of the park per unit time?

• Augmented Path OB-BE-ET with flow 5

• Total flow 5

• Augmented Path OA-A Δ - Δ T with flow 3

• Total flow 5+3=8

Augmented Path OB-BΔ-ΔT with flow 2

• Total flow 5+3+2=10

• Augmented Path OA-AB-BΔ-ΔT with flow 1

• Total flow 5+3+2+1=11

• Augmented Path OF-FE-ET with flow 1

[•] Total flow 5+3+2+1+1=12

• Augmented Path OF-FE-E Δ - Δ T with flow 1

[•] Total flow 5+3+2+1+1+1=13

Augmented Path OΓ-ΓΕ-ΕΒ-ΒΔ-ΔT with flow 1

• We can move along EB (against the direction of the edge) because we have already sent positive flow along BE

• Total flow 5+3+2+1+1+1=14

Optimal Solution

Note: Although the maximum flow will always be 14 units, there may be different combination of flows giving this result!

Maximum Flow– Minimum Cut Theorem

- Cut
 - Let A a set of nodes, which includes the destination node but does not include the origin.
 - The set of edges (v,w) for which v∉A and w∈A is called a cut
 - Alternative definition: A cut is any set of edges which includes at least one edge from each path from the origin to the destination
- Practically
 - A cut is any set of edges which, when removed from the graph, disconnect the origin from the destination

Maximum Flow– Minimum Cut Theorem / 2

- Capacity of a cut
 - The sum of the capacities of all edges in the cut
- Theorem (Max Flow Min Cut)
 - In a network with a node s as origin and a node t as destination, the maximum flow from s to t is equal to the minimum cut
- Remark
 - The two problems are dual to each other
- How to determine the Minimum Cut
 - Divide the nodes of the network in two subsets S_1 and S_2
 - S_1 : all the nodes that are accessible from s following edges that are not congested yet
 - S₂: all other nodes

Application in the example of slides 20-28

• Optimal solution:

- Set S₁ is S₁={O, A, Γ, E, B}
- Set S_2 is $S_2 = \{\Delta, T\}$
- The edges whose first node is in S₁ and final node in S₂ are: $A\Delta E\Delta ET B\Delta$
- (You may confirm that they are a cut. If we delete them, there is no path from O to T)
- The sum of their capacities is: 3+1+6+4=14 (equal to the maximum flow!)