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GENE CHIPS AND DNA MICROARRAYS

Many, but not all, changes in cellular physiology are accompanied by changes in the
transcription of genes. These transcriptional changes can be followed by measuring the levels of
various mRNAs using hybridization. In the last several years, there has been great interest in
developing methods to determine the levels of very large numbers of mRNAs using solid state
hybridization arrays. The hope is that by determining a complete mRNA profile for a cell, it
will be possible to design new drug screens, characterize various pathological states and
understand interactions among genes that act in a pathway. Data from genome-wide
transciptional profiling has been available for over a year. In contrast, efficient methods for
monitoring protein-protein association and protein modification are only now being developed.
We will therefor examine DNA microarrays first.

The first pan-genomic solid state nucleotide arrays to have been preduced on a large
scale contained genes from the budding yeast S. cerevisiae. S. cerevisiae, in addition to being
the most widely studied simple eucaryote, is the first eukaryotic organism whose complete
sequence has been determined. It is currently thought that S. cerevesiaie contains about 6200
functional genes. The first results from pan-genomic gene analyses in yeast were published in
1997 and the amount of information in public databases is increasing rapidly.

The first DNA arrays to be commercialized are the Gene Chips from Affymetix.

However, at least four other companies are selling various forms of DINA arrays and over a
dozen companies have announced their intention to do the same.,

THE TECHNOLOGY OF MRNA PROFILING

mRNA profiling, as currently conceived, has five steps:

i) Constructing a DNA array comprised of either gene fragments or oligonucleotides

i)  Preparing labeled cDNA from control and experimental cultures of cells.

iii) Hybridizing the labeled cDNA to the DNA microarray

iv)  Scanning the array to determine the levels of hybridized message at each position in the
array

v)  Analyzing the mRNA profile to recover meaningful biological data
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Figure 1. Overview of DNA microarray analysis. Fluorescent cDNA is prepared by
reverse transcription of mRNA using red and green dyes (see below).
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The preparation of ¢cDNAs and the hybridization of the cDNA to immobilized

nucleotide targets make use of widely available and familiar technologies. We will not discuss
them in any detail. However, a key aspect of the mRNA profiling is the simultaneous
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- measurement of signals for control and experimental cDNA samples. Typically, control cDNA

is labeled green (with Cy3 ) and experimental cDNA is labeled red (with Cy5). The ratio of
mRNA levels in experimental and control cells in then read directly on a single array as the
ratio of red to green fluorescence (Figure 2).
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Figure 2. Schematic of an idealized DNA spot hybridized to control cDNA (green) and
experimental cDNA (red). The red-green ratio is a measure of the change in mRNA
levels between the control and experimental mRNA populations.
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Oligonucleotide Arrays (Affymetrix Gene Chips)

Two quite different methods have been developed for generating DNA arrays. The
first, from Affymetrix, involves variations on methods developed in the semiconductor
industry. In the Affymetrix approach, compact arrays of oligonucleotides are constructed using
photolithography (Figure 3). The substrate for the Affymetrix arrays is derivatized silicon.
Opaque masks are used to expose selected areas of the silicon chip to light. This releases
blocking groups and exposes reactive moieties on the chip. By flooding the chip with a
modified nucleotide, a base can be added selectively at the deprotected spots. This method
allows the stepwise synthesis of oligonucleotides up to about 25 bases long.
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Figure 3. Schematic of the Affymetrix photolithography-based method of
synthesizing oligonucleotide arrays. (a) A mask is used to selectively expose
regions of the chip to light. In these regions, the light removes a protecting
group. The chip is then flooded with a reactive nucleoside (red) resulting in
the selective addition to the exposed region of the chip. (b) Cycles of synthesis
and deprotection result in the removal of protecting groups (black circles) and
the addition of bases (red and green)
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For every gene in an Affymetix Gene Chip, there are typically 20 perfect match
oligonucleotides and 20 mismatch oligonucleotides. The use of multiple oligos increases the
signal-to-noise ratio in the measurement and allows cross-hybridization among related genes
to be detected and subsequently subtracted from the signal. A typical Gene Chip for yeast, (the
yeast Ye6100 series) requires four arrays for the complete genome of 6100 open reading frames.
With 40 oligos per gene, this means that there are ca. 60.000 olignucleotides on each array
with a pitch (center to center distance) of 50 Hm. The most recent generation of Gene Chips
contains 400,000 oligonucleotides.

DN A Microarrays

The second type of DNA array currently in use consists of spots of cDNA synthesized by
PCR and arrayed on glass using a robotic spotter (Figure 2). Typically, 500 to 2000 bp fragments
of each gene are amplified using PCR and then transferred to glass in small aliquots using a thin
needle. A complete design for this type of spotting system has been published on the Web by
Pat Brown at the Stanford Genome Center. Several organizations, including Stanford, Harvard
University, Toronto University and Millennium Pharmaceuticals have built spotting robots
from scratch, and six or more companies are marketing robots.

The published yeast arrays contain 6200 ORES on a single slide using ca. 40pum spots
arrayed with a pitch of 200 pm. Initial experiments suggest that the problem of cross-
hybridization among related members of a gene family is not severe. The use of long fragments
of DNA allows for high-stringency hybridization, apparently obviating the need for parallel
(+) and (-) DNA controls as used in the Affymetrix Gene Chip system.
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Figure 4. Schematic of a micro-arraying robot (spotter) transferring samples

from a 96 or 384 well microtitier trays to a glass slide. The typical spot—to-

spot distance (the pitch of the array) is 200 um and the feature size is usually

about 50 um. ‘
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The obvious advantage of cDNA microarrays is that they are relatively inexpensive
and can be customized without the need for complex and proprietary photolithography
processes.

Scanning the Array

Following the hybridization of cDNA to arrays, the arrays are read using a
fluorescence scanner. In the commonly used spot scanners (figure 5) Fluorescent probes are
excited with a blue-green laser causing them to emit green-red light. The emitted light is
collected by transfer optics and quantitated using a photomultiplier tube (PMT). Spot scanners
apply a single reading element to the acquisition and measurement of photons arising from one
element in an array and are basically fast, low resolution scanning confocal microscopes.

An alternative type of scanner, which we have been developing at MIT in collaboration
with Applied Precision Inc. of Issaquah WA, uses wide-field imaging much like a microscope.
In these scanners, the microarray is illuminated with white light from a metal halide bulb,
the light is collected through a microscope objective and the array imaged on a CCD (charged
coupled device) camera.

There are significant differences between the laser and wide field scanners. Our

experiments suggest that scanning is a little appreciated but critical step in DNA array
analysis. This is true because DNA micro-array data is very noisy and signal-limited
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Figure 5. Collecting data from arrays using various types of scanners. Existing
instruments from HP and Molecular Dynamics are spot scanners that examine
each element of an array in a serial fashion. Variable-field scanners use
transfer optics to optimize the number of pixels used to acquire data from each
element in an array. Wide-field imaging uses a wide-field lens to capture data
from an entire array in one image.
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Analyzing Microarray Data
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Figure 8 . The simplest type of data analysis - linking induction ratios to
information about the genes represented in the array (above) and applying a
simple database mining approach (below). In this representation, the selection
criterion is for spots whose intensity increases more than three-fold. Spots that
match this criterion represent the found set and can then be examined to see if
there are interesting relationships among the members of the set. In real life,
the selection criteria for the found set would be more complex.
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Perhaps the most challenging problem in the analysis of genome-wide microarray
data is the development of suitable computational tools. The large amount of data produced
by gene arrays must be processed to generate comprehensible and meaningful output.

The simplest type of analysis is to link information on the abundance of various
mRNAs, as represented by the induction ratio at a particular spot, to information about the
gene's identity, sequence and call-out in Genebank (Figure 8).

If each of the descriptors of a gene, and the measured mRNA levels under various
conditions, are entered into a database, then simple database mining approaches can be used to
analyze the expression data. These are generally Boolean queries in which ones ranks genes in
terms of their induction ratios etc.

while these manipulation are simple in theory, they are complicated in practice by
the fact that there is no universally accepted scheme for gathering together all of the
information about a gene into tables with similarly named fields. Several labs have run into
the problem that their data cannot be merged with data from other investigators because the
descriptors of the data are dissimilar. One way to solve this is to agree on a universal
standard for gathering and storing information about a gene (the YPD database from Proteome
Inc. is a noteworthy example). A more likely alternative is for the data to be "self-
describing" through the incorporation of metadata. Structured languages such as SGML and
XML can be used to exchange both the data itself and the metadata that describe the data

fields.

A more advanced way to analyze microarray data is to use pattern recognition
techniques to find similarities. An early application of pattern recognition to microarray
data is the clustering analysis of Eisen et al (PNAS 95, 14,863-68). Eisen et al. found that
correlation coefficients were an effective measure of similarity among plots of abundance v.
time for mRNAs from serum stimulated human fibroblasts (Figure 9). The correlation
coefficient captured the extent to which genes were co-expressed without bogging down on
differences in the overall level of expression. Unsupervised clustering of the correlation
coefficients was then used to group genes whose pattern of induction {or repression) was
similar. The clustering relationship was then plotted using a dendrogram in which the branch
lengths reflected the degree of similarity (Figure 9).

The most significant finding from this analysis was that genes clustered , on the basis
of expression, into discrete sets that appeared to reflect gene function. In almost every case,
highly related genes were found close together in the dendogram. Another impressive
example of this clustering was found when S. cerevisiae cultures were synchronized in the cell
cycle and then released. Clustering linked together sets of genes known to be highly co-
regulated (such as the histone genes) and discovered previously unrecognized similarities

between other genes {figure 10).

However intriguing, the problem with these clustering and database mining
approaches to array data is that they examine only correlation and do not take into account
causation. For example, in a metabolic pathway, enzymes are ordered in substrate-product
relationships. To capture this information , we need to map the data onto a representations of
gene function. One large-scale approach, currently under way , is to determine the effects of
mutating all 6200 yeast genes (Figure 11). It is planned that this “genetic footprint” be linked
to microarray data.
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The next step in the analysis of DNA microarray data will be map the expression
information onto cellular pathways. For basic metabolic pathways this process is aided by our
confidence in the overall order and structure of the pathway. However, for most other aspects
of cellular physiology, including signal transduction, the situation is much less clear. In these
cases, the representation of the pathway must be allowed to evolve as new data is collected.
One approach is to design a database in which genome-wide data can be mapped to a dynamic
representation of cellular physiology (Figure 12). Of particular interest would be cases in
which the pathway information reveals details in the expression data that were not
otherwise visible (or vice versa) .

® Map MicroArray data to static view of pathway

" Mapping ™

MicroArray Data Pathway

® Dynamically regenerate pathway basad on MicroArray data

: -
MicroArray Data Dynamic Linking Pathway

Figure 12. Analyzing expression data from arrays by linking it to information about
cellular pathways. The key to this approach will be the development of methods for
dynamic linking.
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Simplifying the Data

One difficulty in using microarray data is that it is very complex. In higher
eucaryotes we anticipate that tens of thousands of pieces of data will be needed to fully
describe a cell’s transcriptional state. A rational basis is needed for reducing the variables to
a more manageable number.

Clustering analysis has shown that many genes are tightly co-regulated. Thus, it

should be possible to replace the database features representing each gene in a cluster with a
composite feature that describes the entire cluster. More precisely, if we plot the gene array
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data into an n-dimensional hyperspace with n equal to the number of genes, we see that the
axes are not normal. However, it is possible to find a series of orthonormal eigenvectors to
describe the gene array space. The space described by the eigenvectors will be identical to the
original space but will have reduced dimensionality.

In image processing, similar decompositions of image space are possible but rarely
useful. The feature vectors have no direct physical meaning when combined (how does one
interpret an eigenvector made up of sharpness and contrast?). In the case of DNA arrays
however, the set of features has a clear and unambiguous derivation: it is the set of all
possible genes. Thus, an eigenvector made up of combinations of features that are genes might
be interpretable as reflecting an underlying pattern of co-regulation.

W‘hether such a decompesition of image space is possible and useful remains to be seen.

Continuum of physiological states

Basis State Basis State

Figure 13 Decomposing the continuum of physiological states (as represented by the
large number of possible of mRINA expression profiles) into a subset of discrete basis or
eigenstates, that, when combined, compactly describe the original data.
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Summary

The steps of generating, hybridizing and analyzing a DNA microarray are tightly
linked. It is important that the overall process be optimized as a whole. The better the DNA
array the easier the scanning. The better the scanning, the more meaningful and reliable the
data.

Development

cycle
Array : Sensitivity
Quality Seanning Requirement
Arraying Sample Bioiogical
and hybridizing Quality experiment

Figure 14. The coupling of arraying, scanning and experiment into a process that must
be optimized overall. The goals of the optimization are high sensitivity and
reliability and low variability.
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Further Reading

(Eisen et al., 1998; Iyer et al., 1999; Schena et al., 1996; Smith et al., 1996; Spellman et al.,

1998)
Pat Brown's web site at the Stanford Genome Center ()
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