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Preface

Statistical background is essential for researchers in order
to be able to design proper scientific experiments, analyze
and interpret data correctly, and present their findings
appropriately. However, most aquaculture scientists/
researchers have limited knowledge in statistics.

Most agricultural universities offer statistics courses
specific to agriculture or livestock husbandry.
Surprisingly, no course on statistics specific to aquaculture
exists in the world. Research in agriculture and livestock
husbandry is relatively well-established, and several
handbooks are available for these disciplines. Almost all
aquaculture researchers have to find those books or find
experts in their statistics departments for help in designing
experiments and analyzing data. However most
statisticians have only theoretical background and lack
background in aquaculture or even biology. A statistician
can’t confidently suggest a design, analysis, and
interpretation of data when it comes to the specific field
situations. Most aquaculture researchers often feel helpless
and face tough challenges at times of presentation and
publication. They often end up without publication, which
means huge funds and resources used for research are
being wasted. At the same time, researchers quite often
misinterpret the results and publish or present them with
prejudice set in their mind. As a result, they are misled and
misguide their readers. A simple erroneous conclusion and
recommendation can have multiplier effect as it is cited by
several others and the outcome is passed on to thousands
of people, or even to millions. It is not practically possible
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to control the quality of all the papers, magazines, and
newsletters by experienced scientists who have good
statistical knowledge as well as background of the
discipline. This has been a real challenge to the scientific
community, especially in aquaculture research. Blue
revolution is yet to come, and research in aquaculture is
lagging behind agriculture and livestock. There are
indications that the pace of aquaculture development has
suffered quite a lot due to poor research and applicability
of research results in the real industry. The cost of this
must be huge, although it has not been estimated yet.

This handbook has been written as an attempt to mitigate
the problems mentioned above, using the experience of
postgraduate level teaching and working as a researcher in
a regional hub of aquaculture development. One of the
unique characteristics of the book is that it has actual cases
as examples from real aquaculture research. Therefore,
readers should get additional knowledge and practical
problem-solving skills from this book. More importantly, it
also covers nonparametric tests, realizing that they have
become increasingly important and useful but are not
covered by most other statistical books. Another aspect of
this handbook is that advanced topics of covariance
analysis, multivariate analysis, and cluster analysis have
been described. Similarly, uses of computer software for
complex designs have also been emphasized.

Most statistical books are loaded with statistical tables
which may not have so much use in aquaculture research.
Therefore, only a few statistical tables have been included
in reduced forms.
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It is, therefore, hoped that this book will serve as a toolkit
for the researchers and educators involved especially in
aquaculture and related fields.

Thank you.

The author

AIT, Bangkok
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The Society Preface

The United States Aquaculture Society (USAS) is a
chapter of the World Aquaculture Society (WAS), “a
worldwide professional organization dedicated to the
exchange of information and the networking among the
diverse aquaculture constituencies interested in the
advancement of the aquaculture industry, through the
provision of services and professional development
opportunities” (source: U.S. Aquaculture Society website:
http://www.was.org/Usas/Default.htm). The mission of the
USAS is to “provide a national forum for the exchange of
timely information among aquaculture researchers,
students and industry members in the United States. To
accomplish this mission, the USAS will sponsor and
convene workshops and meetings, foster educational
opportunities and publish aquaculture-related materials
important to U.S. aquaculture development.

The USAS membership is diverse, with 606 active
members in 2008, representing researchers, students,
commercial producers, academics, consultants,
commercial support personnel, extension specialists, and
other undesignated members. Member benefits are
substantial and include issue awareness, a unified voice for
addressing issues of importance to the U.S. Aquaculture
Community, net-working opportunities, business contacts,
employment services, discounts on publications and a
semi-annual newsletter reported by regional editors and
USAS members. Membership also provides opportunities
for leadership and professional development through
service as an elected officer or board member, chair of a
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working committee, or organizer of a Special Session or
Workshop, special project, program or publication as well
as recognition through three categories of career
achievement (early career, distinguished service, and
career). Student members are eligible for student awards
and special accommodations at national meetings of the
USAS, and have opportunities for leadership through
committees, participation in Board activities, sponsorship
of social mixers, networking at annual meetings and
organization of special projects.

At its annual business meeting in New Orleans in January
2005, the USAS under the leadership of President LaDon
Swann, voted to increase both the diversity and quality of
publications for its members through a formal solicitation
process for sponsored publications, including books,
conference proceedings, fact sheets, pictorials, hatchery or
production manuals, data compilations, and other materials
that are important to US Aquaculture development and that
will be of benefit to USAS members. Proper experimental
design and analysis and interpretation and presentation of
data are fundamental, yet challenging aspects of
aquaculture research for most students, teachers and
scientists. In this book project “Statistics for Aquaculture”
Dr. Ram Bhujel draws from his experience as an
aquaculture researcher and post-graduate level instructor to
provide a practical reference book on statistical methods
commonly used in aquaculture with examples from actual
aquaculture research. Through collaboration with
Blackwell Publishing on books projects such as these, the
USAS Board aims to serve its membership by providing
timely information through publications of the highest
quality at a reasonable cost. The USAS thanks the author
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Dr. Ram Bhujel for sharing royalties which will help
provide benefits and services to members and to the
aquaculture community and Justin Jeffryes and Shelby
Hayes (WileyBlackwell) for their cooperation. The USAS
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Chapter 1

Introduction

1.1 Background

Before learning statistics, one should know the scientific
method. The ultimate goal of science is to understand and
explain the natural and social phenomenon based on the
conclusion of valid experiments and comprehensive
observations. Observation and experimentation are the
main two ways of generating “knowledge” about the
natural world. In addition to observation and
experimentation, scientific method also includes
identification, description, and the theoretical explanation.
In contrast, traditional knowledge is teachings and
experiences passed on from generation to generation that is
deeply rooted and developed as culture, customs,
mythology, and language of the people as a way of living.
Most traditional knowledge passes verbally from person to
person across generations in the forms of stories, legends,
folklore, rituals, songs, even regulation and laws. It refers
sometimes to the matured traditions and practices in
certain local communities that may differ from one
community to another and may serve as a unique identity
of particular communities. Most traditional knowledge is
very valuable, but some needs to be tested in new contexts.

In many circumstances, observations and measurements
are not possible; therefore, people have to imagine or
hypothesize based on the limited available knowledge,
which might not be true. Standard methods or procedures
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have been developed and are in use to carry out scientific
inquiry or research. Depending on the nature of the
research, outcomes can be broadly categorized into two
groups: discovery and invention. Finding out things that
already exist in the universe is called discovery, whereas
creating or designing something new that never existed
before is invention. Many scientific discoveries and
inventions have played a significant role in changing the
world and making human life a lot easier; for example, the
invention of the bicycle, steam and jet engines, telephone,
television, modern information technology, and so on. In
agriculture, invention of new high-yielding varieties has
brought about the green revolution, which is helping in
feeding the ever-increasing population. Similarly, the
development of high-milk-yielding dairy cattle has
resulted in the white revolution. In aquaculture, we often
talk about bringing about a blue revolution, but it has never
taken place. People in this field are working hard in
various ways to make it a reality.

A farmer grew five fish of a new strain in a single tank
with excessive feeding. His fish grew 600 g in 3 months,
and he compared the growth rate of his fish against the
rates published in literature. He quickly noticed that the
growth rate of his fish was almost double. He started
advertising about his strain of fish around the world via
e-mail, claiming that he had developed a new strain that
grows two times faster than any other strains. Should we
believe this claim? There is a similar story of a journalist
who tested a new variety of rice, sowing a single seed in a
well-managed plot to find a solution to the chronic
shortage of rice in the Philippines in the 1950s. He
harvested 1,000 grains from a single rice plant and, after

20



extrapolating the yield, found 50 t·ha−1. Compared with
1·2 t·ha−1, the national average, he thought that, if that
new variety was distributed to all the farmers, his country
would not have any problems with rice shortages and
could export and earn millions (Gomez and Gomez 1984).
Is this a scientifically valid comparison and conclusion?
The answer is “No.” The scientific method involves a long
process (Figure 1.1) that starts with observation then
passes through all the way from imagination or hypothesis,
designing and conducting experiment, data collection,
analysis, and interpretation or reasoning. If the original
imagination or hypothesis is proved, then it becomes a
theory. A theory is not only a set of findings but also a set
of well-developed themes and concepts that logically
explain particular phenomena. Once a theory is widely
accepted and applied, it becomes a universal law.
Basically, a theory should be based on supporting data.
This is often called a grounded or substantive theory,
which is based on reality. It is derived from data gathered
or generated systematically and analyzed through a
research process. The process includes data collection
from reliable sources or well-designed experiments,
compilation of data, analysis and interpretation,
presentation of findings, and theorizing or building a
theory. Theory derived simply from phenomena is called
formal theory, and if a theory is not empirically grounded
in research, it is called speculative.

Scientific research is a long process and hard work. It can
be boring but can also be exciting with the full joy of
discovery or invention. Developing a career in research is
climbing a steep ladder. Most researchers are either about
to enter it or on the way to becoming researchers or great
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scientists, which means no one is 100% perfect. The
knowledge and skills in doing research are reflected in
their publications and presentations of research findings.
The author has experienced several examples of lack of
basic knowledge in statistics. For example, while attending
a number of conferences and seminars, several researchers
present their results, which say that fish fed with
supplementary vitamin C or other nutrients had higher
growth rate, survival, feed conversion ratio, meat yield,
etc. than the fish fed from control treatment. However,
these values were not statistically significant (P > 0.05).
They even conclude and recommend that vitamin C or the
other nutrients should be supplemented in the diet to
increase the yield, which is wrong and misleading.
Similarly, in survey type of research, researchers would
say that farmers in district A had relatively bigger farms
and higher fish production; however, these figures were
not significantly different (P > 0.05) when compared using
statistical tools. To claim this is wrong if the statistical
analysis does not show any difference. Plenty of examples
of this kind are found even in scientific literature,
especially in aquaculture, which shows that there is a need
for enhanced understanding of statistics among
aquaculturists. This handbook has been written to help
those researchers who are encountering problems,
considering the fact that statistics is a must for researchers.
However, commenting on the present status, Galton rightly
said, “Some people hate the very name statistics, but I find
them full of beauty and interest whenever they are not
brutalized, but delicately handled by the higher methods,
and are warily interpreted, their power of dealing with
complicated phenomena is extraordinary.”
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Figure 1.1 Scientific method.

1.2 History and definition of statistics

The word “statistics” originated from the Latin word
“state,” which means government. The states or the
militaries were the first users of statistics and other
advanced equipment or technologies, e.g. computers,
remote sensing and geographical information systems, for
the purpose of keeping records on the number of soldiers
who died and returned alive during or after wars, the
population of a city or state, and so on. Now, statistics is
widely used by common people, e.g. football statistics,
labor statistics, student enrollment statistics, and so on. As
a plural noun, statistics means computed or estimated
quantities, e.g. FAO statistics on production of rice (mt),
aquaculture production (mt) of carps, catfish, tilapias, and
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so on. Statistic as a singular noun means a datum or
numerical fact.

As statistics basically deals with numerical facts, it is
considered a branch of applied mathematics. In fact, it is
not only the mathematics; it is more about critical thinking
and reasoning. Various scholars have tried to define
statistics differently to reflect its processes and increasing
roles. The simplest definition considers statistics a branch
of mathematics that deals with the collection, analysis, and
interpretation of data. The collection of data includes a
good plan or design for a trial or questionnaire or survey, a
clear procedure or method, materials or equipments to be
used, and data compilation and storage. Data analysis
means locating the central tendency, analyzing variability,
exploring relationships or trends, and so on. The final part
is the interpretation of the results and then making
conclusions and recommendations. Therefore, the above
definition was thought to be incomplete. Other definitions
have been proposed. For example, statistics is the scientific
study of numerical data based on variation in nature or the
science of analyzing data and drawing conclusions, taking
variation into account. This definition grasps the variation
in data as the main characteristic. Variation or diversity is
universal; For example, weights of fish vary, even if they
are from the same age group, raised in the same cage, tank,
or pond, and fed the same amount and type of feed. Even
identical twins can differ in many attributes. If there is no
variation in data, statistical analysis is not necessary. For
example, Table 1.1 shows that variations (standard
deviations) are zero in both sets of data in Trial 1. It can be
seen that Treatment B resulted in higher survival of fish
compared with Treatment A. But in Trial 2, replication 3
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of Treatment A had higher survival than replication 4 of
Treatment B. Due to this overlap, it is difficult to
determine whether Treatment B results in higher survival
of fish. Use of a statistical tool is not necessary in the case
of Trial 1, whereas for Trial 2, a statistical tool is very
important to make the right and confirmed decision.

Similarly, if all the fish spawned when a new hormone was
used repeatedly, we could say that the new hormone is
effective. But if only 90% of fish spawned among the fish
injected with the new hormone, even in only one trial out
of five, then statistics is necessary for making any
decision. Variation in data means there are gray areas. In
order to express the gray areas, researchers frequently use
the terms almost, higher, lower, many, few, or relatively
more, and so on. But the results of the research supposedly
conveyed by these words are not clear as these are vague
and general words/statements. Those who have statistical
knowledge would at least use percentage or probability.
Statistical skill and knowledge therefore give individuals
the skill or the power of interpretation and reaching
conclusions. Furthermore, it teaches the techniques of
presenting research results correctly and also helps in
critical evaluation of literature published or planned to be
published. Considering the various uses and importance of
statistics, it has been defined as the science of decision
making under uncertainty, as a body of methods and
theory applied to numerical evidence in making decisions
in the face of uncertainty, as a toolkit for problem solving,
and so on.

Table 1.1 Hypothetical data showing
with and without variation.
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Statistics is categorized as descriptive, which means use of
data to report or describe the present status or the situation.
It can be in either tabular or graphical form for the purpose
of facilitating explanation. Selection of appropriate
descriptive statistics is important. Another category of
statistics is inferential, which means data are used to make
inference, decisions, or conclusions based on the
characteristics of the samples or parts of a whole.
Knud-Hansen (1997) considers statistics as an inductive
process where attempts to understand the whole are based
on examining representative parts (or samples) through
sampling and experimentation. Therefore, statistics can
also be considered an art of collecting, presenting,
describing, and interpreting data to understand our world
and solve the problems.

There are several benefits of researchers having statistical
knowledge and skill. According to Knud–Hansen (1997), it
provides:

• skills of establishing and testing (proving/disproving)
hypotheses

• knowledge about what and how much data to collect and not to
collect

26



• confidence in results and interpretations
• power to critically review literature or others’ work

In conclusion, statistics should not be considered only a
branch of mathematics, but also an essential background
for researchers, which ultimately becomes a way of their
life. More importantly, it is a logical way of thinking that
is necessary for everyone; therefore, according to H.G.
Wells, “Statistical thinking will one day be as necessary
for efficient citizenship as the ability to read and write.”

1.3 Scope and application

1.3.1 In general

Attempts to define statistics have also been made based on
its application. Statistics for biological sciences is often
defined as “biometry,” derived from two words: bio
meaning life and metron meaning measure. In other words,
it is the measurement of living organisms. The biological
phenomena are so diverse and affected by many causal or
environmental factors, and the factors themselves are
variable, uncontrollable, and often unidentifiable;
therefore, a fish pond is considered a black box! These are
probabilistic in nature or statistical thinking, which means
there is nothing absolutely right and nothing absolutely
wrong! Some scholars express that it should be considered
as a separate discipline. It is also referred to as
“Bio-statistics,” which means application of statistical
methods to the solution of biological problems. Francis
Galton, the cousin of Charles Darwin, has been considered
the father of biometry. Other contributors and great
scholars of biometry include Karl Pearson (1857–1936)
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and Ronald Fisher (1890–1962). Now, statistics has also
been incorporated in various other disciplines, e.g.
sociometrics, which means statistics combined with
sociology. Similarly, when combined with economics, it is
called econometrics; with psychology, psychometrics; with
chemistry, chemometrics; and with forestry, forest
biometrics. There are many more fields that are using
statistics as an essential component in their disciplines.
This clearly shows that the use of statistics exists in almost
every field.

More importantly, this age is the era of information
technology. The majority of organizations understand the
value of data. They have maintained databases and stored a
lot of data, even though they may not have used it yet. The
number of such organizations is increasing daily. One
organization may have several products and activities; all
of them need to be recorded or maintained. Therefore,
people who have skill in using the data are always in
demand. The demand lies not only in maintaining the
databases but also in analyzing them. Most organizations
have started doing this, and they are used for making
decisions or policies and formulating strategic plans. Large
corporations have large volumes of data and require very
skillful people to handle, analyze, and interpret that data.
Data mining is the handling of such large volumes of data
to explore, analyze, and discover meaningful patterns or
trends so that forecasting is possible. Until now, most
organizations have only stored data, but the time is coming
for data mining to help policy making of these
organizations. This shows that there will be a huge demand
for statisticians in the near future.
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1.3.2 In aquaculture

Although fish farming dates back about 4,000 years, FAO
data show that its actual growth started only after the
1980s. It has now become the fastest growing food
production sector. As it is the only alternative to
compensate for the decline of capture fishery, it is
expected to grow even faster to meet the 80 million mt
(almost double the current level) production demand by
the year 2050. However, currently, numerous challenges in
this field have created an urgent need for more research
within various disciplines, for example:

• increasing environmental problems caused by aquaculture
development

• introduction of new aquaculture species causing threat to
indigenous ones

• developing techniques of breeding, nursing, and culture of
indigenous species

• increasing disease problems as a result of transboundary
movement of aquatic species and intensification of culture
systems

• development of low-cost feeds from locally available
ingredients

• replacement for fish meal and fish oils, which are also used for
livestock feeds

• economic studies for its viability or comparative studies with
other sectors

• little is known about the roles of micronutrients and their
interactions, e.g. minerals, vitamins, and fatty acids

• more studies on technology transfer or adaptive research and
participatory on-farm trials

• food safety and quality

There is so much research to do for the full-fledged
development of the aquaculture sector; however, most of
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the aquaculture scientists/researchers lack statistical
knowledge and skills. Statistical background is essential
for researchers to be able to design proper scientific
experiments, analyze and interpret data correctly, and
present them appropriately. Most aquaculture researchers
have to find experts in their Statistics Departments or even
outside to get help with designing experiments and
analyzing and interpreting the data. They also face big
challenges in publishing research articles. As a result,
many of them often end up not disseminating the results
after carrying out research, even when they have very
fruitful findings; because of this, the whole aquaculture
industry is suffering.

1.4 Questions

Q1. Why do science and statistics have such a close
relationship?

Q2. Why do you think statistics is so important?

Q3. How will you apply statistical knowledge and skills in
the future?

Q4. Debate whether one can or can’t be a researcher
without statistical knowledge.

Q5. Write an essay on the applications of statistics in
aquaculture.

1.5 Practical exercise
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Ex. 1. During the first practical session, instructors should
guide students or trainees in developing basic skills of
efficient spreadsheet data handling techniques. The
following exercise would be useful:

• select, insert, and delete rows/columns
• insert and rename a worksheet
• enter numbers or texts
• create series of numbers, alphabets, dates, and their

combinations
• perform data sorting and use of formula, functions, e.g. sum,

etc.
• make good tables and different types of graphs

Data are given in Table 1.2 for practice.

Table 1.2 Batch weights of 15 fish
from a trial at the Asian Institute of
Technology, Thailand.
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Note: Normal fish (Group A) were only 3 months of age,
whereas stunted fish (Group B) were 12 months old but
raised at high density under limited feeding conditions.
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Chapter 2

Experimental units in aquaculture

2.1 Background

While planning and designing research, a clear
understanding of experimental units and system is very
important. Several factors, such as costs involved,
purposes or objectives, availability of facility,
applicability, management, climatic conditions, and
experimental period, have to be considered. In this chapter,
experimental systems commonly used for aquaculture
research are briefly described.

2.2 Earth ponds

Earth ponds are the most common and cheapest
aquaculture systems in most countries and locations.
Therefore, research results of ponds trials are directly
applicable and have wide use. The sizes of ponds used
vary depending on the purpose of culture and availability
of land. A nursery pond may range from 50 to 200 m2,
whereas a grow-out pond may vary from 500 m2 to 1 ha,
or even bigger. However, ponds as experimental units for
research purposes should not be large, as land itself is
expensive and research requiring adequate replications is
costly. Normally, 50–100 m2 for nursing and 200–400 m2

for grow-out trials should be adequate. Unlike a land plot,
where fertility of soil varies greatly, environmental
conditions within a pond are very uniform if all ponds are
supplied with the same water, as nutrients or chemicals can
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disperse freely in the water. However, some environmental
parameters that are directly or indirectly associated with
the survival, growth, and reproductive performances of
fish among ponds may differ. For example, if a pond is
close to an irrigation canal, road, or shade, gradient toward
the pond’s other side (see Section 7.3 for more
information) may exist and need blocking (Figure 2.1).
Bamboo, wooden, and/or metal walkways are built in
experimental ponds in order to facilitate sampling of fish
and water. While conducting an experiment in a pond
system, the following should be considered:

Figure 2.1 Earth ponds in a series next to windbreaker
trees.

• Birds can be a problem because they can eat experimental fish,
and we can’t expect the same level of predation in all units.
Regular patrol by security guards, cover provided by nets,
plastics hanging on ropes tied across the pond, and various other
means would mitigate this problem to some extent.

• There is high chance of predatory fish and other animals, e.g.
snakes, entering from outside, especially during a rainy/flood
season. Double screens in inlets or outlets, net enclosure fences,
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sufficiently high dykes, and monitoring of water level may
avoid the problem.

• During a rainy season, especially in low-lying areas, flooding
can be a problem and could sweep away all of the experimental
fish. In such areas, proper scheduling is needed or arrangement
for flood monitoring and control is necessary if avoiding the
flood schedule is not possible.

2.3 Hapas and cages in ponds

It is quite difficult to design or conduct research using
ponds as replicates unless there is a large facility or
specially designed smaller ponds are available. In some
cases, it can be prohibitively expensive. However, a pond
can be split into several experimental units by setting up
hapas or cages, or hapas can be installed in rows (Figure
2.2a, b). There can be gradients from the edge of the pond
to the center, as there are more chances for noises and
shallowness at the edge compared with the central parts of
the pond. If the hapas or cages are arranged in rows, the
rows should be considered as blocks so that variability can
be separated while carrying out the statistical analysis. As
the nutrients/chemicals have no free movement from one
pond to another, there is a good possibility that one pond
may differ from another. Therefore, if more than one pond
is used for the same trial, each pond should be considered
a block, which means that each treatment should be
allocated in each pond randomly. Nevertheless, in such a
case, ponds or the blocks serve as replicates.

Figure 2.2 (a) Cages in three ponds. (b) An experimental
pond with cages.
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Hapas or cages have advantages for experimental purposes
compared with ponds without because problems of
predation by birds can be easily avoided by covering them.
Also, cages and hapas can be lifted if the water level
increases to avoid loss of fish due to flooding. However,
cages and hapas can be expensive and setup
time-consuming. Although sampling and harvesting of fish
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is easier, hapas or cages make it easier to steal fish, if there
is a theft problem.

2.4 Cages in lakes or reservoirs

In many locations, lakes or reservoirs may serve as the
experimental facility. Due to their large size, many
experimental units can be set up in the same water;
therefore, this is suitable for a completely randomized
design (see Section 7.2). There is a chance of low
variability or higher chance for any treatment to show its
real impacts. However, care should be taken if cages are at
or near the bank of lakes or reservoirs, where sunlight or
shade can affect the rows at or near the bank more than
others. In this case, cages can be arranged in rows along
the bank, the rows can be considered blocks (Figure 2.3a,
b). Randomized complete block design would be suitable
(see Section 7.3). At the same time, if the experimental
location is close to the water source or human activities,
such as boating, additional blocking is necessary, which
means two-way blocking.

2.5 Tanks

Conducting research in tanks allows more control over
environmental factors and is also easier than research in
ponds with cages, hapas, or pens. Various types of tanks
can be built or chosen, e.g. circular, square, or rectangular.
However, building tanks can be costly and care should be
taken while designing a trial; a small mistake can ruin the
research, requiring repetition. If tanks are supplied with the
same source of water recirculated (bio- or mechanically
filtered), then variability in water quality parameters other
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than temperature would be very low. On the other hand,
outdoor tanks without water recirculation/exchange vary
greatly. Tanks close to walls and water supply canals
(Figure 2.4a, b) can affect water quality parameters and
thereby fish growth and survival. Therefore, water quality
parameters of each tank need to be monitored or measured.
As tanks are smaller in size, productivity of the system or
yield is expressed or compared normally in terms of
kg·m–2 or kg·m–3.

2.6 Aquaria

Aquaria are the best experimental units for small-scale
experiments, especially in a laboratory or fish hatchery
under shade. These are easy to set up and handle.
Researchers can have a large number of experimental units
in most cases; therefore, they won’t be constrained by the
facility, shortage of replication, or treatment levels. They
can even be stacked to one another (Figure 2.5a, b). The
height can be a block in such a case. A researcher can
maintain better control over the environmental factors,
which means there is less chance of masking the real
effects of treatments. Most breeding and some feeding
research is done using aquaria. However, the results of the
trials in aquaria may have limited application on a
commercial scale.

Figure 2.3 (a) Arrangement of experimental cages in lake.
(b) Cages in a lake designed for a research station.

38



Figure 2.4 (a) Experimental tanks. (b) Tanks constructed
for a research station.
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2.7 Farmer’s field: participatory research

Any research conducted within research stations or
university facilities is called on-station research, which is
directly controlled by people who are well aware of the
research objectives or purposes. As the ultimate purpose of
the on-station research is to serve a larger population,
research outcomes will have to be tested in the field
situation where there is less control of factors. Before
making any policy recommendations, they have to be
piloted and determined whether it works for the real
beneficiaries. On the other hand, government extension
organizations can conduct pilot studies using the facilities
of selected farmers who are able to follow a set of
guidelines. The research trials conducted with farmers –
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the ultimate beneficiaries – using their facilities is called
participatory research. There is a popular saying, “farmers
are researchers.” By doing this, farmers also learn how to
design a simple trial for comparisons when there is a need
in later stages. At the same time, most extension workers
think their responsibilities are only to transfer the research
outcomes and the well-developed technology packages to
the farmers. But, as no technology is perfect, they need
continuous improvement and adaptation to special local
conditions. Therefore, plenty of room for research is
always there. An example of how a two-way block design
can be adjusted for participatory research is shown in
Figure 2.6a, b; there are four regions, and three
agroecological zones are stretched in each region.

Figure 2.5 (a) Arrangement of aquaria for research. (b)
Large buckets used for a trial.
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Although control of factors is limited, research outcomes
can be extremely valuable because they are directly drawn
from exactly the same conditions and thus are directly
applicable. Participatory research is quite difficult to
manage because suitable farmers might be far away from
each other, and the researcher also has to deal with many
types of people who may have a wide range of cultural
backgrounds, beliefs, education, and/or income.
Sometimes it can be very costly even though farmers’
facilities are available for use free of cost because they
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may need to be adjusted or developed to meet the
requirements of the research.

At the same time, the survey research can also be designed
considering various factors, e.g. locations, elevations (low
or high), soil types (fertile or unfertile), area (irrigated or
nonirrigated), and so on. For example, in Figure 2.7,
distance from the sea (Factor A) and elevation (Factor B)
can be considered two-way factors affecting the
productivity of ponds in the area of shrimp culture.

Figure 2.6 (a) Two-way blocking (4 × 3 design, see
Section 7.2 for details). (b) One of the farmer’s ponds used
for participatory research and demonstration program.
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2.8 Conclusion

A researcher should be very clear about what experimental
unit is to be used. Individual fish within the same
aquarium, tank, cage, hapa, or pond can be experimental
units or replicates if all the fish are tagged. Conducting a
breeding trial with hormone injection to determine the
hormone efficacy in producing eggs is an example. In such
a case, either number or volume of eggs is counted or
measured per female or per spawning, which can be
converted into relative fecundity or per kilogram of
female.
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Figure 2.7 Two-way blocking (Factor A, sea; Factor B,
elevation).

Selection of a culture system for research depends on the
researcher. Unless there is specific need, aquaria or tanks
should not be selected simply because they are easier to
manage and cheaper. The outcome of the research can
have limited application in the real field situation. On the
other hand, research in larger experimental units is
unnecessary if they are unmanageable. Sometimes, it turns
out to be waste of time, funds, and efforts if the potential
factors cannot be controlled or monitored properly. Use of
relatively smaller experimental units and a well-planned
and properly managed experiment can generate adequate
data. Appropriate statistical analysis can provide sufficient
information to make precise and useful inferences.

2.9 Questions
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Q1. What is an experimental unit?

Q2. What do you mean by experimental subunit?

Q3. Under which conditions can tanks be used as
experimental units? And under which conditions can
individual fish of the tanks be used?

2.10 Practical exercises

Ex. 1. If a researcher is planning to conduct an experiment
to determine the effects of four different types of hormones
in spawning, what should be the experimental unit and
which experimental system should be used? How many of
the experimental unit and the system would you suggest
using?

Ex. 2. You are planning to conduct an experiment in
earthen ponds to compare two strains of tilapia for
breeding performance. How could you use these ponds for
your trial? Estimate the number of each strain of fish
needed based on different plans.
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Chapter 3

Sampling and data collection

3.1 Sampling principles and methods

The entire collection of all possible organisms, objects, or
observations of a specific characteristic of interest in a
certain geographical area is population. In some research
trials, measurement of all organisms may be possible, but
most of the time, monitoring of an entire population is
difficult, costly, impractical, and often impossible. For
example, measuring of all 50 or up to 100 fish individually
in a few experimental tanks or aquaria is possible. But if
the tanks are larger, having 200 fish each or more,
obtaining individual measurements of length and weight is
tedious. Moreover, if we are supposed to find out the
average weight of a fish species of a reservoir or lake, it is
impossible to catch all the fish of that species. Therefore,
instead of monitoring or measuring all of the organisms,
manageable portions of the population are taken as
samples. There is no hard and fast rule about the size of the
sample. It varies widely, e.g. 1%, 5%, 10%, 25%,50%, and
even more depending on the situation. The larger the
sample, the higher the accuracy and reliability will be, but
cost increases with the sample size. Therefore, there is a
trade-off between cost and accuracy. The main point is that
the sample should be minimal but should be taken
randomly so that all members of the population have an
equal chance of being selected and the sample will be
representative of the whole population. In order to make
the samples representative, appropriate sampling
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techniques or methods have to be followed. The main
methods of sampling are as follows:

• Random sampling: the common method by which samples are
randomly chosen at a single stage from a population. For
example, selecting 100 fish randomly, without any prejudice for
size, color, or any other characteristics, from a tank containing
500 fish to measure individual weight and length. Random
sampling needs to be done from each replicate, group, or strata
of the whole experimental system.

Figure 3.1 Three-stage sampling.

• Systematic sampling: sampling that is carried out at certain
intervals of time. For example, monitoring water temperature
and dissolved oxygen at 6 a.m. and 3 p.m. when these are
minimum and maximum, respectively, in order to catch the
window of critical times.

• Stratified sampling: the representative method of sampling
from all the strata or groups. For example, a sample from each
size class, e.g. large, medium, and small size groups of fish, to
represent the whole population of differential size. The factor
group can be included as block while analyzing the data.

• Cluster sampling: involves selection of certain groups or
clusters first in order to avoid the types that are not necessary to
include. Then, random selection within each cluster is done. For
example, selecting 10 representative provinces of Thailand out
of 76 to study the aquaculture development, followed by the
selection of 35 farmers randomly from each province for
interview.

• Multistage sampling: when the population is too large,
sampling should be done a few times instead of just once.
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Figure 3.1 shows that first sampling is random. At the second
stage, samples can be taken from two opposite sides (up and
down) out of four quarters of a circle. Then at the third stage,
again, selecting opposite sides (left and right) could produce a
good sample.

3.2 Parameters or variables

Characteristics of populations are called parameters. The
word “parameter” is the combined form of Greek words
“para” and “metron,” which mean beyond measure. An
example is the population or true mean of 30,000 fish
grown in a pond of 1 ha size, which is almost impossible to
find by measuring individually. The true or population
mean is a single value at a point of time, and it does not
vary but is almost impossible to find in most cases.
Parameters have to be estimated by sampling and may vary
with the method of sampling and other factors. The word
“variable” is popularly used; it reflects the properties with
respect to which individual organisms or objects vary in
some ascertainable way due to some cause(s). Any
scientific inquiry or research begins with thinking about
“cause and effect” relationship. The causes are the factors
and are often called independent variables, and the effects
are exhibited in terms of properties

3.2.1 Variable types

Researchers should be clear about which attributes or
properties are important to collect or generate for
comparisons or to look at associations. Addition of a single
variable may add considerable amounts of cost, effort, and
time spent for the research. Some variables are qualitative
and easy to collect, e.g. race, gender, occupation, and are
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called nominal variables. Many others are quantitative and
called measurement variables as these can be measured
and expressed in a numerically ordered fashion. The
quantitative variables are also known as ratio or interval
variables as they can be fitted or compared on a numerical
scale. In some cases, there are attributes that can be
compared but may not be easy to quantify. An example is
comparing rich and poor farmers; this proves difficult
unless all of their assets are converted into monetary terms,
which is not easy to do, and in real situations, people may
not bother to do so. How much richer the group is
compared with the poor group may not be clear. These
types of variables are often classified as ordinal variables.
Even though they are not quantifiable, as statistics deals
only with numerical facts, all qualitative information has to
be converted into numerical form before analysis, using
ranks or assigned numbers for the group differing in
particular characteristics.

A variable after enumeration is also called data or
numerical fact, which can be a continuous or discrete
series. The continuous series has infinite intermediate
levels in between two points, whereas a discrete or
meristic series has none. For example, weights of fish can
be in between 1 kg and 2 kg, e.g. 1.3 kg, 1.8 kg, or even
1.35 kg or 1.82 kg, whereas if 1 and 2 are the number of
fish counted, there cannot be 1.3 or 1.8 fish. There are
either 1 or 2 fish in a bucket. In the first case, data are in a
continuous series, whereas in the second case, the data are
in a discrete series.

Enumeration of qualitative information is quite difficult in
many cases, there- fore it should be done carefully. These
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attributes or nominal categorical variables are arbitrarily
given numbers or ranks to present the group and make
analysis possible using statistical tools. For instance, if 1
represents red and 5 represents white, then 2, 3, and 4 can
be given depending on the degree of color in between
these two. Similarly, numbers can be assigned for groups,
such as 1 for the best taste, 2 for good, and 3 for fair, to be
given by the taste panelists when comparing the tastes of
fish from among the strains, source, or methods of
cooking.

3.2.2 Variables of aquaculture

There are a number of variables used in aquaculture
research. For an aquaculture trial, the main measurable
variables are the number and weight of fish, fingerlings, or
eggs (individual or batch) based on which other parameters
are computed and used for comparisons. The computed
parameters using two or more measurable variables are
often called derived variables. An example of a derived
variable in aquaculture is survival rate, or the number of
animals that survived in relation to the number originally
stocked. This is one of the most important derived
variables in aquaculture and other animal production
systems.

Other important derived variables are growth and
productivity. For example, daily weight gain (DWG,
g·fish·day−1) is the rate of growth assumed to be linear
throughout the research period, which is more or less true
in grow-out phase (Phase II in Figure 3.2).
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Where,

W1 is final mean weight,

W0 is initial mean weight, and

T is time period or number of experimental days.

At younger stages, most organisms grow exponentially.
Therefore, the appropriate variable or parameter for
growth is to report specific growth rate (SGR) as a
percentage, which can be computed using natural log (Ln)
as:

On the other hand, to compare the growth of broodfish,
usually relative weight gain (or loss) is used, which means
the percent gain or loss in weight is measured against the
original weight. It is important to understand that this gain
or loss may not occur only on a daily basis. For example, a
female fish may lose a lot of weight just after spawning,
which means it may occur within 1 minute. Most
organisms normally have three distinct growth phases,
which is explained by asymptotic function (Figure 3.2).
Therefore, it is important to have as many intermediate
data points as possible so that the actual growth curve can
be fitted and comparisons can be made not only at the end
point. Similarly, productivity of a system or yield is
usually reported in terms of net fish yield, which measures
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the increased growth per unit area or volume per day. In
general, ton·ha−1·year−1 is used for larger culture systems
(especially earth ponds), whereas kg·m−2·day−1 or
kg·m−3·day−1 is used for smaller culture systems, such as
tanks and cages.

Figure 3.2 Growth pattern in aquatic organisms.

Reproductive performance is expressed as the total number
of eggs or young ones produced by each female. It is
expressed as fecundity. Total fecundity is determined by
estimating the number of eggs per female per spawning.
However, it can be misleading, as the sizes of females and
their ovaries differ considerably within the same group.
Therefore, relative fecundity, i.e. number of eggs per
kilogram of female per spawning, is used as a parameter
for comparisons. However, reproductive performance of
frequent spawners collectively managed (group as the
experimental unit) has to be estimated per unit time period,
i.e. day, week, or month, rather than per spawning; for
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example, in tilapia, the number of eggs, fry, or fingerlings
(collectively called seed) per female or per kilogram of
female per day or week. As tilapia broodstock are
managed in groups and require considerable space, their
reproductive performance is often measured per unit area
of culture system, i.e. number of seed per square meter per
day (Bhujel et al. 2007).

For nutritional research, feed conversion ratio, net protein
utilization, and other feed efficiency parameters are used.
It is quite common to see the effect of nutrients on the
quantity or quality of reproductive cells, e.g. eggs/ova and
sperms by counting or measuring their lengths and/or
diameters. In addition, the rate of feed converted to egg
biomass might be an important parameter if the purpose of
trial is to analyze the reproductive performance. If these
data are in percentage form, data have to be transformed.
However, qualitative parameters, e.g. color and shape, are
quite commonly observed but not analyzed. Similarly,
taste of wild versus cultured fish can be compared. As
these data are qualitative in nature, statistical analysis is
possible only when they are assigned or coded with
numbers. These types of data are analyzed by using
nonparametric tests; some of the important ones have been
covered in this book.

Many parameters are related to each other. For example,
survival of fish has an effect on daily weight gain, and
both of them have an effect on net fish yield. Therefore, in
such a case, multivariate analysis is needed. However,
most of the researchers analyze these parameters
separately. In addition, most aquaculture researchers work
hard to collect water-quality parameters, such as water
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temperature, pH, dissolved oxygen, nitrite, and ammonia
levels, but these are merely analyzed. They might mask
treatment effects in many cases. These could be used as
covariates as they cannot be controlled, are also called
noise factors, but have considerable effects on survival and
many production parameters. If they are used as covariates
during analysis, their effects can be separated. It could
increase the chances of determining the real treatment
effects.

Normally, economic parameters are not used to compare
statistically among treatments. As it is quite difficult to
keep records separately for each replicate, it is considered
one of the most difficult parts of the analysis. Economic
parameters are important only when there is a significant
difference between treatments. Normally, economic
figures are determined for the treatment combined
(collectively for all the replicates of the treatment) and
compared between the treatments rather than computing
separately for each replicate, computing variance for
comparison in a statistical way.

3.3 Fish sampling

A researcher can weigh the whole group (batch weight per
replicate) and divide by that number to estimate the mean
weight, or sample a certain number of fish to weigh
individually and compute the sample average as a
representative weight of the whole replicate group. The
first method gives a more accurate mean; however, in
many cases, it is not possible to weigh all of the fish. In
such cases, sampling of a certain number of fish is
necessary. Live fish sampling is quite difficult to do, and it
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is difficult to determine whether a proper random sample
can be drawn because fish move fast from one corner to
another. If the experimental units, e.g. ponds or tanks, are
quite big, although it is difficult, it should be kept in mind
that samples need to be taken from the middle parts as well
as from every corner. Most researchers do carry out the
intermediate samplings but do not use data of intermediate
samplings and use only final or end point data for
statistical analysis. If there are intermediate samplings, the
data collected can be valuable and informative to see the
trend over the period rather than just the result at the end.
In such a case, time should be considered as block while
performing statistical analysis. Therefore, separating the
block effect would increase the reliability of the test or
decrease the chance of committing an error.

3.4 Sampling of feed and feed ingredients

Sampling of feeds and feed ingredients is quite difficult,
especially if it involves large volume. Sampling from
commercial feeds might be easier because every pellet or
mass is supposed to be uniform. But, if sampling is taken
from homemade feeds, extra care should be taken in order
to make the samples representative. If samples are to be
taken from large volumes, multistage sampling (see
Section 3.1) should be applied. As the conditions of
storage have effects on the nutrient loss, sampling should
be considered and representative subsamples should be
taken from each part, e.g. bottom of the stock, middle and
top of the piles, and similarly, from dark corners and
well-lit areas. If the storage loss of different types of feeds
or ingredients has to be compared in such a case, samples
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are kept separate and the factors can be considered as
factor (block) while analyzing the data.

Feed samples should be dried and stored in deep freezers if
they are analyzed after a few days or even later. While
preparing for analysis, feed samples have to be
well-ground and mixed uniformly. Figure 3.3 shows a
large number of samples ready for analysis in a feed
company’s lab.

Figure 3.3 Feed samples in a feed company’s lab in
Mekong delta, Vietnam.

3.5 Water sampling and monitoring

The environmental factors to be considered are water
temperature, dissolved oxygen (DO), pH, turbidity,
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chlorophyll-a, ammonia, nitrate, and nitrite concentrations.
Within a pond, these parameters fluctuate with diel cycle.
Monitoring of water quality, early in the morning between
06:00 and 06:30 hrs for the lowest and in the afternoon
between 14:00 and 16:00 hrs to record the highest levels, is
important, especially for temperature and DO over the
experimental period. Most water-quality parameters
usually vary with depth; therefore, sampling or
measurement should also be taken at the depths of 20 and
50 cm. But if the purpose is to see the variation with
depths, then measurement could be done at 10-cm
intervals. For representative sampling, a simple water
sampler (Figure 3.4a) can be locally made using PVC pipe,
the bottom of which can be covered once the sampler is
brought down slowly into the water to collect water from
the whole column. Usually, 100–200 mL of water, which
can be stored in small, plastic bottles (Figure 3.4b), is
sufficient for an analysis, but if there are other parameters
to analyze, then 1–2 liters of water need to be sampled
from various points. However, many researchers get
puzzled about the volume of water to be sampled. They
may think that only 1–2 liters of sample might not be
representative, especially when trials are conducted in
ponds that contain large volumes of water. Fortunately,
water is more uniform as compared with bottom soil,
which differs even within a centimeter of distance.

Figure 3.4 (a) Locally made column water sampler. (b)
Water samples collected in plastic bottles stored in a
freezer.
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3.6 Sampling of eggs, muscles, blood, and others
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Depending on the purpose of the analysis, samples of eggs
(Figure 3.5), muscles, blood, and other parts of fish have to
be stored in a deep freezer (at −20°C) immediately after
collection. Care must be taken so that these samples
represent the population. For lipid analysis, for example,
the sample should be preserved by using
chloroform:ethanol (2:1) and butylated hydroxytoluene to
protect from oxidation of fatty acids. Similar standard
protocols need to be used for other purposes. If the
samples have to be transported, they must be kept in a
sealed icebox. In cases of transporting samples across
country borders, a researcher may need to have specified
documentation as they are considered to be live animal
cells.

Figure 3.5 Samples of different stages of tilapia eggs
collected for laboratory analysis.
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Samples of eggs, muscles, blood, and other parts are used
for the purpose of comparing changes in chemical or
nutritional compositions, especially for lab analysis. Their
compositions might be affected by the same treatment
factor, which means that they might have correlation. At
the same time, regression analysis with the treatment factor
and correlation among the dependent factors indicate the
right method of analysis. In such a case, multivariate
analysis is the correct tool, rather than analyzing the single
parameter individually.

3.7 Sample size (volume/number)

Deciding the size of samples, both volume and number, is
one of the most important, and also somewhat difficult
task. Sample size has a direct impact on the amount of
effort and the costs of research. Many researchers decide
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on an ad hoc basis, which results in too much work in
some cases and shortage of samples at the end in other
cases. Therefore, prior determination of the actual volume
necessary for analysis is suggested. It is also strongly
suggested that an additional volume of the sample, e.g. at
least double the amount or even more, is taken and stored
in the proper place and condition, so that if there is any
failure of equipment, electricity, or anything else while
analyzing the samples, stock can be used to repeat it. This
is particularly important in cases where there is a limited
time or window of opportunity for sampling.

In cases of sampling of water, soil, muscle, feed, and feed
ingredients for analytical purpose, usually a small volume
is adequate. For example, 5–10 g of each feed or its
ingredients is enough for proximate analysis. Similarly,
100 mL of water is more than enough for most of the
laboratory analysis. However, a researcher should be
certain that these volumes really represent the whole from
where they are taken. In these cases, multistage sampling
would be the best method. The basic principle is to collect
the largest volume possible at the first stage so that it
represents the whole volume of water of a pond, tank, or
other experimental unit. At the same time, larger volume
will be less affected in case there is any contamination
while handling the samples during analysis or sample
preparation.

In most cases, sample size may mean the number of
animals or objects that represent the whole population of
any experimental unit. Most researchers often decide based
on the percentage, e.g. 20%, 10%, 5%, or 3%. But when
there are situations in which researchers need to make
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decisions about sample size from sufficiently large
populations, e.g. tens of thousands, hundreds of thousands,
or even millions, then a percentage formula would not
work because even 0.1% would result in a large number
that is not manageable. Two methods have been found to
determine sample size.

3.7.1 Simple method for sample size estimation

In this method, as mentioned by Knud-Hansen (1997),
sample size does not depend on the size of the population,
but instead depends on the potential variance among the
individuals in the population and the method of sampling,
which determines how far the sample mean can be
expected to be the population mean; in other words, an
acceptable difference between sample mean ( ) and
population mean (m). Using the following equation for
t-test, sample size (n) can be estimated as:

For example, if a researcher found a standard deviation (s)
of 16 g from a preliminary sample (or from published
literature with similar type of research) from a tilapia trial
and the difference between population and sample means (

– m) of 5 g, then the sample size can be estimated as:

Here,

t∞ = value from t-table assuming ∞ df at 0.05 = 1.96
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s =16g

– m=5g

Therefore, the minimum size of the sample (n) = [(1.96 ×
16)/5]2 = 39.3, or rounded to 40.

Therefore, the minimum sample size should be 40. It is
strongly suggested to take a larger sample than this to
ensure that at least 40 individuals will remain at the end, in
case some of them die or become unusable due to
unavoidable circumstance, such as handling and
transportation. For example, if 10% mortality during
handling is common, then:

Actual size of sample (n) = 40 + (10% × 40) = 44 per
experimental unit.

3.7.2 Comprehensive method for sample size estimation

A more comprehensive method of computing sample size
is using power of the test. As in the first method, standard
deviation is obtained by presampling or is taken from
related studies, and minimum detectable difference is
assumed. In this method, probabilities of committing both
errors (Type I and Type II; for more information, see
Chapter 6) are taken into account. If b is the probability of
committing Type II error, then statistical power is 1 – b,
which is the probability of detecting the significant
difference or correctly rejecting a false null hypothesis.
The following equations described by Zar (1996) can be
used to estimate the sample size for one sample t-test
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assuming a minimum acceptable level of statistical power,
i.e. 0.80, and at the same time the power of the statistical
test can be computed back using the sample size if it is
known.

Where,

n is number of samples or replicates,

s is standard deviation of sample from presampling or
similar past studies,

d is minimum detectable or meaningful difference,

df is degree of freedom,

ta, df is significance level (e.g. 0.05), and

tb,df is power of the statistical test (e.g. 90%).

Similarly, this equation can be used to determine the
power of the statistical test; for example, if d = 1.0 g, n =
12, and s2 = 1.5682 g2, then the power of the test can be
computed as:
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From the t-table, 0.57 corresponds to about 0.25, which is
the b; therefore, power =1−b =1−0.25=0.75, which means
there is a 75% chance of detecting significant difference,
which is lower than the normally acceptable level (i.e.
80%). Low statistical power means that sample size/
replication is lower than the required, which might result
in effects of a treatment going without detection/ notice.

Similarly, for two-sample t-test and analysis of variance
(ANOVA), sample sizes and the statistical powers can be
computed using the following equations: For two-sample

t-test:

Sample size and power of ANOVA:

Where,

Φ is statistics based on which to see probability from F
table,

k is the number of treatments/factors,

d is minimum detectable difference,

and s2 isvariance.

3.7.3 Sample size estimation for survey research
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This method has been suggested by Yamane (1967) for
research based on the social survey. In this method, sample
size depends on the size of the population; however,
sample size does not proportionately increase with the
increase in population size. Even if the population is very
large, the sample size does not go beyond 400; however,
probability of committing Type II error (b), another factor
affecting the sample size, should be considered lower, i.e.
5% (90% confidence level), than the normally used
probability, i.e. 10% in the equation.

The equation for sample size (n) = N/(1 + N × e2)

Where,

n is sample size,

N is total population, and

e is probability of committing Type II error or b (normally
10%).

For an example, if there are 400 fishers’ families in a
village, then for the number of sample households required
(n) = 400/(1 + 400 × 0.102) = 80.

In many cases, at least for some parameters, some of the
families might not respond or data can be missing. In order
to compensate for that, 5–10% more should be considered
for survey. Therefore, the actual sample size (n) = 80 + (80
× 10%) = 88.
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Many researchers get confused with the sample size and
the number of house- holds to be surveyed or interviewed.
Before making a decision, they should be clear about the
research objectives, which determine the number of
samples and households needed. For example, if the
objective of a research is to compare the parameters of a
particular village against the national standard parameters
established by the government or any organizations
(statistical bureau or alike) using standard methods, then
there is only one sample involved in the research;
therefore, the number of households to be surveyed is the
sample size of that village as estimated above. But, if the
researcher is to compare parameters between two villages
then he or she should estimate the sample size for each
village separately. That means the total number of
households to be interviewed is the sum of the sample
sizes, which can be double. Similarly, if the purpose of a
research is to compare a parameter between two ethnic
groups of fisher folks living in the same village, then a
reliable source of information should be obtained or a
preliminary survey is necessary to know the approximately
numbers of households in each ethnic group so that actual
sample size can be worked out for each group. In reality, it
is very unlikely that two ethnic groups in a village or two
separate villages can have the same population. Therefore,
the size of the samples would be different. But, most
researchers try to set the number equal, either because they
think it will be easier for data-handling purposes or they
lack statistical knowledge. If anyone chooses to use an
equal sample size, then he or she has to pick the highest
figure of the villages under study.

3.8 Questions
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Q1. Why is sampling important?

Q2. You are supposed to recommend either tilapia or
catfish for culture. In order to compare between two
species, which variables would you use for comparison?

Q3. If you are a quality control officer responsible for a
district where there are 30 feed manufacturers producing
four types of feeds, how would you perform sampling for
laboratory analysis of the feeds they produce?

3.9 Practical exercises

Ex. 1. Calculate the total number of fish to be sampled
from 20 experimental tanks (5 treatments with 4
replications) containing 1,000 fish each, if you expect the
difference of 10 g.

Ex. 2. Determine the total number of fish farmers needed
to be interviewed for a research to compare productivity of
three cooperatives (A, B, and C) that have 350,1,000, and
1,500 members, respectively.

Ex. 3. Data shown in Table 3.1 are the batch weights (g) of
15 fish from each replicate tank. The experiment was
conducted at a fish hatchery using circular tanks (1.75 m2)
for 15 weeks. Compute the following derived variables and
their treatment means for each treatment using the
formulas given below. Present them in tabular forms and
bar diagrams.

a. Daily weight gain (weight·fish−1 · day−1)
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b. Relative weight gain = (Final weight – Initial weight) ×
100/Initial weight

c. Specific growth rate = (LnW1 – LnW0) × 100/no. of
experimental days

d. Net fish yield (g·m−2·day−1) = (Final biomass – Initial
biomass)/area of tank/no. of days

e. Net fish yield (t·ha−1·year−1)

Table 3.1 Batch weights of 15 fish from a trial at AIT,
Thailand.

Note: normal fish (Group A) were only 3 months of age,
whereas stunted fish (Group B) were 12 months old but raised
at high density under limited, restricted feeding conditions.
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Chapter 4

Data accuracy and exploratory analysis

4.1 Importance

Exploratory analysis implies finding any indications or
trends and also pointing out any errors in data sets. In most
of cases, collection of data from the field or laboratory is
carried out by technicians who may not be aware of the
treatments and their effects or the objectives of the
research. They just do their regular job and follow the set
of guidelines. They may not be careful about the accuracy
of data and precision because they just record whatever
they measure. However, in some cases, data might be
recorded by those who are very much aware of the
research objective, hypothesis, or the treatments, e.g.
student research. When they record data, they are very
careful; therefore, they can have some prejudice toward
supporting their hypothesis. In the former case, there is a
greater chance of unbiased data, but there can be more
errors. Whereas in the second case, errors are avoided but
there can be biased data. All data should be carefully
checked before keying. Any odd data should be carefully
handled. If there are problems, the causes should be found
so that any outliers (extreme points) can be either corrected
or rejected with adequate justification.

Exploratory data analysis is very important as a single
incorrect datum may result in skewed means and medians
hence need of repetition of the whole analysis. Therefore,
actual statistical analysis should begin only when a

71



researcher is fully confident that there are no errors or odd
values.

4.2 Data accuracy and precision

Accuracy implies the nearness of a measurement to the
actual or expected value of the variable. Appropriate units
and their levels of measurement (kg, g, mg, mg, etc.) for
each variable have to be selected so that the data recorded
can be as accurate as possible. For example, the weight of
a fish could be measured up to one decimal figure, e.g. 8.5
g, or up to two decimals, e.g. 8.53 g, and so on, depending
on the level of accuracy of the measurement needed and
also the capacity or type of measuring instrument.
Precision has been misunderstood quite often. It means
closeness of repeated measurements or data points to each
other. But, if any factor is affected during measurement,
data points can be close but they may not be accurate.
Therefore, we strive for both accuracy and precision.
Figure 4.1 explains the distinction between accuracy and
precision.

Figure 4.1 Diagram showing distinction between accuracy
and precision.

4.3 Significant numbers
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Although it sounds very basic, the author feels the need to
mention that most researchers are not careful or clear about
significant numbers when recording data and reporting
results. The level of accuracy in recording the data
determines the type of equipment/instrument required. For
example, to weigh fish fry, a balance that can measure up
to two decimal points of a gram is necessary, whereas to
weigh bigger fish (100 g or above) for grow-out trials,
measuring up to two decimal points is not necessary. In
such a case, simple balance measuring between 1 g and
1000 g would be enough.

The basic principle of precise measurement is that there
must be enough space to exhibit variations in data so that
statistics can detect them and determine whether the
differences are significant or not. In general, between
minimum and maximum values expected to measure, there
should be 30 to 300 intermediate levels. For example, if
we expect that weights of fish in our trial will range from 5
g to 10 g, then a balance that records grams without
decimal figures should not be used as there will only be 5
intermediate steps between 5 g and 10 g. We need a
balance that can record up to one decimal figure, which
means recorded data will resemble 5.0 g, 5.1 g, 5.2 g, etc.,
up to 10.0 g. There will be about 51 steps between the
minimum (5.0) and maximum (10.0) values. A balance
that can measure up to two decimal points is also not
necessary. There will be 501 intermediate steps if
measured between 5.00 g and 10.00 g. Therefore,
measurement or data recorded up to one decimal place is
adequate in this case. The same principle should be applied
for other units as well. If data have been recorded more
precisely than needed using decimal levels, then they need
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to be rounded off to keep only the significant figures. It is
a general rule that calculated or derived variables can have
one more digit. For example, the average family size of a
district can be 3.5 even though number of family members
cannot be 3.5 in reality.

Similarly, when computing figures, answers should not be
expressed more accurately than the least accurate figure
used. For example:

1. 5,200 + 85.7 = 5,285.7 (incorrect) => 5,300 (correct)

2. 5,200.0 + 85.7 = 5,285.7 (correct)

3. 5.15 × 3.1216 × 150 × 561.617 = 1,354,303.452
(incorrect) => 1,354,300 (correct)

Table 4.1 shows examples of calculated values that can be
reported a variety of ways, depending on how many digits
are significant. It is suggested to write out numbers in
words if there are many zeros after the rounded numbers
which are not significant, e.g. 5.6 million would be better
or shorter than writing 5,600,000 or 5 million and 6
hundred thousand.

Table 4.1 Examples of significant figures.

4.4 Errors and their sources
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Errors in data can mask the treatment effects, easily
leading to faulty conclusions and recommendations.
Therefore, it is extremely important to take measures to
avoid, minimize, or separate errors, so it is important to
know about their sources. Three main types of errors are
described in the following sections.

4.4.1 Gross errors

These errors are due to incomplete or missing data,
missing important persons/times (e.g. DO should be
monitored at around 6 a.m. but is likely to be missed),
malfunction of the instruments while recording data,
human errors, intentional data manipulation, mistakes
while typing/keying, contaminated reagents, and so on.
Due to these errors, data become neither accurate nor
precise; therefore, these errors should be avoided or
minimized as much as possible.

4.4.2 Systematic errors

The errors that occur repeatedly due to bias, rounding off,
and faulty calibration of reagents and instruments are
called systematic errors. In the presence of these errors,
data can be precise, but they are not accurate. It is possible
to separate, avoid, or minimize these errors by adjusting,
revising, or recalculating the data recorded with errors,
with proper evidence of errors.

4.4.3 Random or residual errors (unsystematic)

These are the remaining errors which vary unpredictably.
It is impossible to completely wipe out all errors as every
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individual/object differs from one another. For example,
even identical twins differ in physical appearance and
mental capabilities. The errors are often called
experimental errors, which are the basis for comparison.
Effects of treatments or blocks have to be sufficiently
higher than the random errors to be significant.

4.5 Error minimization and separation

Gross and systematic errors can be avoided if the
researchers plan properly, use proper sampling methods,
keep control of the trial or research project, and avoid
re-keying of data. Many researchers enter data again or
take rounded figures when they need to calculate and
compare another derived variable. In such cases, the
chance of making errors increases. Therefore, it is strongly
advised to copy and paste from the original data file if they
have already been entered once. Residual error is
impossible to avoid, but it can be minimized to the
smallest error possible. The following seven rules would
help reduce errors.

4.5.1 Experimental conditions and procedures

When/wherever possible, it is wise to preset and prerun the
trial so that data generated during the trial will have less
variability. Pretesting of instruments, equipment (e.g. DO
and pH meters), reagents, or any other chemicals,
experimental systems, or questionnaires is necessary.

4.5.2 Materials, methods, and equipment
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It is necessary to use the same size and age of fish or
experimental materials (units) as much as possible for the
trial if the size is not the treatment. Similarly, the same
method should be used for the whole trial period, e.g.
using DO meter to measure DO level in 1 week (treatment)
and chemical method in another week means there is a
high chance of variability. When/wherever possible, the
same instrument or at least the same model should be used
throughout the experimental period.

4.5.3 Randomization

This is the cornerstone of the statistical theory in the
design of experiments as it provides similar and equal
chances to all of the treatments. Randomization is
normally done using lottery method or random numbers by
using a table or generating spreadsheet programs, e.g. MS
Excel [=Rand ()*1000]. A random table of any size can be
generated whenever needed. An example of a 10 × 20 table
generated is shown in Table 4.2.

Suppose four treatments, T1, T2, T3, and T4, are to be
randomly allocated in 8 ponds that are in 2 rows. A
number can be chosen as the beginning point without
looking at the random table. Let’s say 368 (see Table 4.2)
was chosen by chance; then take the other three figures,
i.e. 271, 499, and 799, on the same row, and take the four
figures right below them, i.e. 409, 901, 76, and 920. These
two rows can be considered as two blocks. The first-row
tanks are numbered 1–4, and the second-row tanks are
numbered 5–8, then T1 goes to the tanks with the lowest
random number in each row, which means tanks with the
number 271 in the first row and 76 in the second row.
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Similarly, T2 goes to the second lowest random numbers,
which means tanks with 368 in the first row and 409 in the
second row. Similarly, T3 and T4 can also be randomized.
If a researcher feels that the initial randomization does not
look well-randomized, then it can be repeated to get the
best randomized layout. More specific details on
randomization for each type of experimental design are
described in Chapter 7.

Table 4.2 A sample of random table generated using
Microsoft ® Excel spreadsheet using function =
random*(1000).

4.5.4 Pairing

Pairing means grouping of experimental units into two. It
is extremely difficult to find same-size animals, even from
the same age group. In such cases, the effect of size
difference can be separated by pairing them based on size
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and assigning both treatments. Other examples include
monitoring of water-quality parameters at the same time,
such as DO, temperature, and others over time. The data
obtained from paired experimental units are analyzed using
paired sample t-test (for details on statistical analysis, see
Section 6.8.1.4).

4.5.5 Blocking

Blocking means grouping of similar experimental units
into a single group. Its purpose is to separate effects that
already exist in the system which are either impossible or
too expensive to avoid. These types of effects caused by
factors such as canal, shade, different ponds/plots, districts,
community, and so on can mask the treatment effects;
therefore, they need to be separated while analyzing the
data. A block can be spatial in area, as well as in terms of
time.

4.5.6 Measurement of additional variables/factors

In reality, a biological system is very complex where
several factors are acting together and separation of effects
of the factors other than the treatment(s) is almost
impossible. Any changes expected in certain experimental
conditions that may affect the variables in question should
be measured. Their effects can be separated by using
covariance analysis. For example, water temperature, pH,
and DO of aquaculture systems may vary with time, which
affects fish growth and survival. Therefore, it is necessary
to measure these types of variables even when they are not
considered as treatments.
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4.5.7 Increasing number of treatment and replication

Increasing the number of replication and/or treatment
levels in experimental designs for regression or factorial
analysis could improve precision and accuracy.
Experimental error can be measured only if there are at
least two units treated the same way. If we see the same
thing happening again and again, we are more confident
that that event happens again if such conditions are
available. The minimum replication is two, but using only
two replications has a risk and is considered unacceptable.
Basically, the higher the replication, the more reliable the
research outcomes will be. However, trials with higher
replication are expensive, and sometimes facilities are not
available. A range of four to eight replicates has been
suggested for agricultural research; however, most
aquacultural research uses three replicates. The basic
principle is that, if very little variation is expected, then
only three replicates will be sufficient and acceptable, but
if a researcher suspects that there will be less control over
other factors and variation will be high, then more
replication should be used. Care should be taken with
treatments, replications, and experimental units. For
example, use of nitrogenous fertilizer in a fish pond is a
treatment (control: without the use of nitrogenous
fertilizer). Doses of nitrogen, e.g. 20, 30, or 40
kg·ha−1·week−1, are treatment levels. Researchers should
be careful about pseudoreplication. Replicate samples or
subsamples measuring individual fish in a tank is
pseudoreplication if the tank is an experimental unit. In a
grow-out trial, tanks, cages, or even ponds can be
experimental units. On the other hand, in a breeding trial,
individual fish can be experimental unit as the variables
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will be recorded based on the individual performance.
While in a grow-out trial, all the fish in a tank, cage, or
pond are considered a group, and average weight of the
whole group is used to compare with the average of
another treatment group. Treatments can either be
replicated spatially or in terms of time. If the experimental
units are not sufficient, they can be replicated over time,
e.g. weekly, monthly, yearly, which may provide
additional information on temporal or seasonal variations.

Table 4.3 Effect of replication on variation

Replication can be different for different treatments, but
equal replication decreases the standard error or variance
and increases the precision (Table 4.3).

A minimum number of replications or samples can be
calculated if we know the expected variance and minimum
substantial difference from a preliminary sampling or
similar research carried out in the past using the method
described in Section 3.7.

In field trial, there is a possibility of not having enough
replication, which may give nonsignificant results;
therefore, power analysis is needed to determine whether
the nonsignificant difference was due to inadequate
replication or the real treatment effects.
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4.6 Exploratory data analysis

There are several steps and methods for exploring initial
trends, outliers, and others before analyzing any data.
Exploratory data analysis should actually begin from the
beginning when data are starting to be recorded. An
experienced person can immediately point out when there
is any extreme value, discover the possible reason(s), and
write some notes on the data sheet. Therefore, while
managing the experiment and data recording systems or
equipments, data sheets should be separate and specific to
each variable, e.g. a sheet for a day which can be filed
chronologically. The data sheet should include records of
the person (who collects the data), date, time, and any
other conditions, so that all data can be traced back in case
of doubt during exploratory data analysis, or even any time
in the later stages.

The following major steps are suggested before starting
proper statistical analysis.

4.6.1 Checking for any errors

• obvious mistakes: double check original data, ask someone else
to check (you may not see your mistakes)

• precision of recording
• recorder/instrument differences
• trends with treatment levels and time, any increase/decrease
• treatment responses
• extreme values

4.6.2 Comparison with others
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Comparing data helps researchers build confidence in their
work if they find similar and relevant data in published
forms, such as:

• Journals and magazines
• Books and proceedings
• Newspapers, thesis, reports, and other forms

4.6.3 Useful tools

• Tables: Drawing a table of a summary of results is a must, as it
can accommodate a large amount of information to see at a
glance. It can show the exact numbers, e.g. frequency and its
distribution, cumulative frequency, sum, mean, maximum,
minimum, etc., based on which results can be predicted.

• Graphs: The first step in exploratory data analysis for each
variable starts with drawing scatter plots to see the distribution
of data. Line graphs can be used to see/show the trends, whereas
bar charts are for discrete series. If the data are in circular
fashion, pie charts should be used. Depending on the nature of
data and the objectives, various other types of graphs, e.g.
frequency distribution polygons or histograms, can be used.
Reports or papers should not be loaded with many graphs.
During the exploratory stage, graphs can be made for all of the
variables, but they should be used only for very important
findings in order to place more emphasis to them, especially in
the final presentation or publication.

• Pictures and diagrams: A single good picture can describe
something better than thousand words. Therefore, the use of
pictures should be maximized wherever possible. But care must
be taken, because space occupied by pictures and diagrams can
be huge; therefore, their inclusion in presentations/ publications
can be problematic.

• Unexpected events/data: It is common that extreme values may
be recorded or observed. Do not discard them, even if they are
unexpected. Try to find the causes and solutions. Simple notes
and explanations can be very important sometimes. For
example, a member of the AIT outreach staff found a record of
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a fish pond 5 m deep. He was not sure about that. He went back
to the field to check and asked the farmers whether that was
correct. He found that it was correct because the farmer used the
pit he had made when he used the soil to make bricks. A note
from the data collector could have made this clear and saved the
cost of a trip (time and efforts) incurred later.

4.6.4 Basic assumptions

Before starting detailed statistical analysis, it is necessary
to determine whether the collected data from samples
show any additive effects of treatments or whether blocks
and errors are additive. For example, Table 4.4 shows a
hypothetical example where use of nitrogen showed 33%
and the block showed 50% additive effects.

Data or the observations collected from each replicate and
their variances are supposed to be normally distributed or
homogenous. Properties of normal distribution are
described in Section 4.7. For tests for normality and
heterogeneity of any data series, see Section 6.7 on the x
2-test and K-S test.

Table 4.4 Additive effect of treatments.

Figure 4.2 Normal curve, area of coverage, and distances
from the mean.
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4.7 Normal distribution

If a set of data is normally distributed, the frequency
distribution forms a graph, which is popularly known as
the normal curve (Figure 4.2).

The normal curve is characteristically unimodal,
bell-shaped, and symmetrical around the mean, i.e.
skewness is zero and not too peaked or too flattened
(kurtosis = 3). If the data series are perfectly normal mean,
median and mode will be in the middle of the curve; or the
data series are the same, and the mean is always higher
than variance.

To know normality, researchers need to know
non-normality. The following two words for non-normality
are important to know:
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• Skewness: the measure of asymmetry, i.e. pointedness of a
curve toward the right or left. It is very hard to get zero (0)
skewness, i.e. perfectly normal. Therefore, in general, data sets
having skewness between +1 and −1 are considered within the
normality. Negative value of skewness means the curve is
pointed toward the left, whereas positive means toward the
right. The top three curves in Figure 4.3 show skewness.

• Kurtosis: the measure of height or peak of a curve. In general,
data sets with the kurtosis values between 2 and 4 are
considered normal. If the height is higher than 4, it is called
leptokurtic, and lower than 2 is platykurtic. The bottom two
curves in Figure 4.3 represent these types of curves based on
kurtosis as compared with the normally distributed one.

Table 4.5 is a summary which shows the normality ranges
on the scales of skewness and kurtosis.

The following are the working formulas for skewness and
kurtosis:

Skewness (g1) = (1/ns 3) å(Xi − m)3

Kurtosis (g2) = (1/ns 4) å(Xi − m)4

Where,

Xi is observations,

m is mean, and

s is standard deviation.

Figure 4.3 Types of curves based on skewness and
kurtosis compared with the normal one.
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Table 4.5 Summary of skewness and kurtosis in relation to
normality.

4.7.1 Concept of probability

In a population of fish, there is an equal chance of being
sampled for male and female.

Here,
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Probability for male (p) = probability of female (q) = 0.5

p+q=1(or 100%)

If a population has a mean (m) of 350 g and standard
deviation (SD) of 15 g, what are the probabilities or
chances of obtaining the following measurements?

a) 360 g or bigger

b) 380 g or bigger

c) 500 g and higher

d) Lower than 340 g and higher than 360 g?

Here,

a) 360 g

Z value = (Xi − m)/s

= (360–350)/15 = 0.67

Probability = 0.2514 = 25.14% (from table in Appendix
A1)

b) 380 g

Z value = (380–350)/15 = 2.00

probability = 0.0228, p = 2.28%

c) 500 g
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Z value = (500–350)/15 = 10.00

probability is < 0.0001, p < 0.01%

4.7.2 Frequency distribution and probability

Frequency is a count of repeated occurrence of a particular
event or object, as shown in Table 4.6.

Discrete variable: Following are the data of the size of
fish farmers’ families collected by a researcher. Data have
been arranged in a respective order to the family number, 1
to 20. Arrange them in a frequency table, draw a bar graph,
and point out family sizes that have the lowest and highest
number of families.

Here,

Family size (no. of family members): 5, 2, 3, 3, 4, 5, 3, 4,
4, 3, 4, 5, 2, 3, 2, 6, 4,4,6,5

If a discrete variable also has large range (minimum -
maximum), grouping is necessary. The number of groups
to establish depends on the purpose and nature of the data.
However, the basic principle is that the number of group or
class should not be too many or too few. The number of
class should be between 8 and 12. For example, Figure 4.4
shows only 6 classes. Its bars look quite apart from each
other. This shows that it could accommodate more bars,
meaning additional information could have been included
in the same space.
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Table 4.6 Frequency table showing frequencies of family
size.

Figure 4.4 Frequency bar graph showing family size of 20
fish farmers.

For example, the data set below is the number of tilapia
recruits collected in each pond when harvesting of tilapia
after growing for 6 months (pond no. 1, 2,3, and so on):
25, 402, 203, 303, 204, 125, 38, 441, 200, 50, 112, 45, 200,
111,0,36,14,445,60,500, 1200, 300, 600, 20, 400, 30, 20,
22, 40, 300, 200, 1150,300.

Find the range first and work out for class interval as:
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Here,

Minimum value = 0

Maximum value = 1200

If class interval is 100,

No. of classes = (1200–0)/100 = 12

If we need to present these data in terms of pond size, such
as small, medium, large, and very large, then we can use a
class interval of 300 that gives only 4 class intervals.

Table 4.7 Frequency of discrete data series after grouping.

Continuous variables: Unlike discrete variables,
repetition of the same value is rare in this type of data set
as there can be a number of intermediate values in between
two. For the sake of simplicity, the values can be groups as
shown in Table 4.7, and frequencies are shown for those
groups.

Farm size (ha) (family no. 1–20, respectively):

5.4,2.3, 3.5, 3.2, 4.5, 5.6, 3.2, 4.0, 4.4, 3.6, 4.3, 5.2, 2.3,
3.5, 2.5, 6.3, 4.5, 4.2, 6.2,5.3
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4.7.3 Grouping classes

An ungrouped distribution is a set of data that shows the
actual values and observed frequencies for those values,
whereas a grouped distribution is a set of data that shows
frequencies for each group rather than the actual values
recorded. Group is often called class. Each class has its
extreme boundaries (not to overlap boundaries) called
class limits. The number to the left of the class is the lower
limit, whereas upper limit on the right. Some of the classes
can be open, especially the beginning or the last class. For
example, <25, 25–50, 50–75, 75-100, >100. The first class,
<25, means any number even below 0 and the last class,
>100, includes any possible values above 100, meaning
values can even be 300 or higher. The difference between
the true or mathematical upper and lower class limit (or
difference in stated limits) is class interval, also called
class width. There are two methods of grouping classes.

Method 1: upper limit excluded, e.g. the class 0–9 means
0 – under 9; that means data are included from −0.999
right up to 8.999, but 9 is not included.

Method 2: upper limit included, e.g. class 0–10 means it
includes values from −0.5 upto 10.4. But not 10.5, which
will be included in class 10–20.

4.7.4 Histogram and frequency curves

A histogram is a bar diagram for continuous data, a graph
of frequency distribution with the x-axis extending from
one class limit to the other and the observed frequency in
the y-axis (Figure 4.5, left). The area of a rectangle is
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proportional to the observed frequency in the class. The
vertical bars show the frequency density. When class limits
are repeated, i.e. upper limit of the first class and the lower
limit of the second frequency, the diagram looks like
Figure 4.5 (right), popularly know as a histogram. A line
graph drawn using mid-points (class mark) on the x-axis
and frequencies on y-axis is called a frequency polygon. If
the frequency polygon is smooth, it is also called a
frequency curve (Figure 4.6, left). The shape of the
frequency curve may change based on the class intervals.
Using the frequency curves, it can be guessed whether a
distribution is normal or not. A curve can also be drawn
using cumulative frequencies (Figure 4.6, right)
Cumulative frequency curve become straight if the data set
is normally distributed. Therefore, based on the nature of
cumulative frequency curves (Figure 4.7), it can also be
guessed quite confidently whether they are in normal
distribution or not. The maximum point of deviation is the
reference point for K-S test of normality (see Section 6.8).

Figure 4.5 Frequency bar graph (left) and histogram
(right).

Figure 4.6 Frequency polygon (left) and cumulative
frequencies (right).
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4.7.5 Variance heterogeneity

One of the characteristics of the normal distribution is
homogenous variance. The nature of frequency curves
(Figure 4.8) can also show whether variances are
homogenous or heterogeneous. One of the indicators that
has been widely accepted is the level of variance. If
standard deviation (s) is greater than mean (x),then the data
set is considered to be not normal.

Figure 4.7 Cumulative frequency curves for different
types of data sets.
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Figure 4.8 Frequency curves showing variance
homogeneity/heterogeneity.
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4.7.6 Data transformation

In most of the conventional statistical tests, such as
Student’s t-test, F-tests, or ANOVA, regression is
designed for normal distribution. Due to the presence of a
large number of uncontrolled factors, especially in the
biological field, there are plenty of chances of having
normally distributed data. If the data collected are not
normally distributed, a researcher should either transform
the data first to make them normal and analyze using
parametric tests or they should be analyzed using
nonparametric tests. Statisticians have also developed
nonparametric tests. In this section, the main three
methods of data transformation are briefly described:

• Square root ( ): Square root transformation is used mostly
to count ratio or percentage data that have wide ranges. For
example, survival rate of fry during nursing may range from 0%
to 100% (e.g. Table 4.8). Percentage data between 30% and
70% normally do not need transformation. If variance is equal
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and proportional to the mean, square root transformation suits
the best. In the case of percentage data with 0 values, 0.5 is
added so that square roots can be obtained. Addition of 0.5 to all
of the data is needed for analysis purpose only so i√ doesn’t
affect the results. Percentage data, therefore, will be in the form

of
• Log or Ln: Log or natural log (Ln, value 2.718282)

transformation is suitable for the data with whole numbers
having a wide range with multiplicative effects rather than
additive. Log or Ln transformation changes this multiplicative
effect to additive, which is the characteristic of normal
distribution (see Table 4.9 for example). One of the
characteristics of data when frequency curve is drawn is skewed
to the right, and standard deviation is proportional to the mean
or effects are multiplicative or exponential, which occurs in
fast-growing organisms, e.g. during early stages of fish. Specific
growth rate (SGR) = 100× (LnW1 − LnW0)/T, which uses natural
log transformation, is used for larval rearing or nursing trials,
instead of DWG. If even an observation in a data series is less
than 10, then 1 is added so that log transformation can be done,
e.g. = Ln/log(X + 1).

Table 4.8 Square root transformation.
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Table 4.9 Log/Ln transformation.

• ArcSine or angular transformation: Angular (ArcSine), i.e.
Asin(x), transformation has also been used to minimize the
variation. It is normally coupled with square root

transformation, i.e. Asin( ). In case of percentage data, if
there are 0% values, they should be replaced by 1/4n and 100%
by 100 – 1/4n. Table 4.10 is given as an example.

Table 4.10 ArcSine-square root and then transformation to
radians.
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The basic principle behind transformation is to bring the
data to normality
(reducevariation).Forexamples,Tables4.8–4.10showthis.Theratioofvariance
(VA/VB) is reduced from 7.7 to 3.0 times when they were
transformed using square root. The ratio was further
reduced to 1.1 by Log or Ln transformation, and the
variance became equal when arcsine or radians
transformations were performed, which may indicate that
this is the best method unless there is specific need for
other transformations.

Once a parametric test is carried out using transformed
data, they have to be converted to original scale in order to
be presented in the results of the report, papers, or thesis.
For example, square root transformed data should be
squared ( )2 and log/Ln transformed data should be
transformed back to original data using antilog (Logx). In
Microsoft Excel, they can be converted by using = Power
(10, logx) and =Power (2.7148282, Lnx) functions.
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Similarly, ArcSine or a√gular transformation or Square
root – ArcSine should be reconverted using Sin( )2.

Many researchers rush to transform their data when they
see in percentage form. However, as a general rule, if the
percentage data are within the range of 30–70%, they do
not need to transform. If there is even only one observation
outside this range, then all of the data set need to be
transformed, dividing by 100 before transformation. For
example, square root transformation is performed by using

.

4.8 Questions

Q1. What do you mean by significant figures, and why are
they important?

Q2. How do you know whether a particular set of data is in
normal distribution?

Q3. How can you avoid the errors in data?

Q4. Why is exploratory data analysis important?

Q5. Why is data transformation done?

4.9 Practical exercises

Ex. 1.
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1. Calculate the mean values and standard deviation, then
see whether 95% of the data are within the range of mean
± SD × 1.96.

2. If a coastal district has 20 rich fishermen’s families, 200
middle class, and 80 poor families, what are the
probabilities of sampling:

a) poor and rich families?

b) poor or middle class families?

Ex. 2. Suppose you have the following data: 4, 5, 6, 7, and
8.

1. Are these discrete variables or continuous? if these
values are for:

a) farm size

b) family size

c) pH values

d) numbers of leaves in each plant

e) values for DO

f) weights of fish

g) levels used for bad, fair, good, very good, and excellent,
respectively.
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2. What are the differences between 0 and 0.0, and 100 and
100.000?

3. Round the numbers 106.55, 0.04819, 3.0495, 7815.01,
12.9149, and 20.1500 to

a) one decimal place

b) three significant figures

c) If these were raw data collected by your staff for the pH
of your media in your lab experiment, what would you
think and how precisely would you present them?

d) If these were raw data (g) collected by your staff for the
weights of individual fish fingerlings, what would you
think and how precisely should you present them?

4. Suppose you are designing a new efficient pumping
machine. You expect that its capacity is 10 liters per
second. If you think it would vary by 1 liter, how precisely
should you measure the data to test its efficiency and why?

Ex. 3. In a nursing experiment of fish fry with and without
added vitamin mixture in feed, mortalities (%) recorded in
each tank are given in Table 4.11.

1. Find the probabilities of keeping fry mortality less than
10% in both groups.

2. Sort the data and present them in a frequency table, bar
diagram/histogram, and frequency curve. Compare
between the two groups based on the diagrams.
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3. Calculate skewness and kurtosis for both groups.

4. Transform data into square root, logarithmic and arcsine
forms, draw frequency curve for these transformed data,
and compare between the two groups based on the original
and transformed data.

Table 4.11 Mortality rate (%) of fish fry in a trial with
Vitamin mixture in feed.

Ex. 4. An experiment was performed to determine the
effects of feeding in prawn growth. The two treatments
were replicated three times. Freshwater prawns, obtained
from a commercial farm, were stocked at 2 prawns ·m−2

and harvested after 85 days. At harvest, all prawns were
counted and individually weighed. Table 4.12 shows the
individual weight of harvested prawns. Take a look at the
data table provided carefully, and as a student of statistics:

1. Point out the extreme values or odd things, including
consistency in significant numbers as well as formats that
you would like to correct them.
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2. Round the numbers (those that need rounding), to
suitable significant figures.

3. Plot scattered graphs, draw line graphs, and make bar
charts for each data set. Point out the errors/extreme
values, and then double check the data against original
data to correct them (original will be provided later).

4. Calculate means for each data set before and after
correction. Then, compare them and explain how the
conclusions and recommendations could be affected by
mistakes on data entry.

5. Using Microsoft Excel or any statistical package, group
the data and present them in a frequency table, bar
diagram, histogram, and frequency polygon. Compare the
treatments based on these diagrams.

Table 4.12Individual weight (g) of freshwater prawn at
harvest.
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Chapter 5

Central locations and variability

5.1 Concept and importance

Central tendency is a single value that represents or
describes the whole population or a sample of particular
characteristics. In other words, it is the measure of a
central location or the value or characteristics that fall in or
near the middle. It was originated from the concept of
“average man,” based on which people make up their
minds on similarities or differences between or among
particular groups. An example is the average height or IQ
of Asian students as compared with Japanese or American
students. Similarly, if we want to know the productivity of
fish per hectare in a pond system in Thailand, we would
think average, which is 4 t·ha−1; that means that about half
of the farmers get less and the other half achieve higher
than that. However, when we need to state the productivity
of pond aquaculture, we use the average value to represent
the whole country. Such representative values are widely
used as bases while planning research projects or
development programs. Ideally, a representative value
should fall in the middle, as shown in Figure 5.1, but in a
real world situation, it may not. In some cases, a single
value may not be able to represent the whole data set.
Therefore, a number of ways have been developed for the
measurement of central representative value(s), which are
described in the following section.
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Figure 5.1 In a normally distributed data, most data points
are in the middle.

5.2 Measure of central tendency

Although the most common central location is the average
or mean (arithmetic, geometric, and harmonic), there are
also other types of central locations, i.e. median, mode,
midrange, midhinge, quartiles, and percentiles. Their use
depends on the nature of data and propose of the research.
For a normally distributed data set, arithmetic mean can
represent the central point; whereas in other cases, or if
data are not normally distributed, median and mode can be
more useful and appropriate. In some cases, other central
points and subcentral points, e.g. midrange, midhinge,
quartiles, and percentiles, might provide better and/or
additional information about further distribution and
cluster of observations. This section discusses their
computation methods and their usefulness.

5.2.1 Mean

5.2.1.1 Arithmetic mean
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Arithmetic mean (AM) or average is the most commonly
used value to describe the central point or to measure
central tendency. It is often referred to as the center of
gravity of the data. AM is calculated by adding the values
of all of the observations, i.e. sum (), and dividing by the
number of observations (n). AM represents the data very
well if they are in normal distribution or if the observations
follow the arithmetic series, e.g. 2, 4, 6, 8…(X + 2).
Therefore, the following observations can be estimated by
adding a constant value to its preceding ones. From the
definition,

mathematically, AM (average) is expressed as:

or if some of the observations are repeated, then AM can
be arranged along with their respective frequencies, and
the equation becomes:
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For example, what is the mean size of fish if we have
recorded 10 g, 12 g, 15 g, and 20 g for individual weight of
four random samples drawn from a tank after a 30-day
nursing trial?

Here,

Number of observations (n) = 4

Therefore, average or mean ( ) = (10 + 12 + 15 + 20)/4 =
57/4 = 14.25 g.

While calculating the mean, in some cases, an investigator
has to take the relative importance of each observation into
account. The difference in importance (weight) may be due
to a different number of observations for particular figures
or the values may carry different weights/ranks. In such a
case, AM is often referred to as weighted mean/average:
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which is expressed as:

The example in Table 5.1 shows the scores of two students
for aquaculture entrance using weights for different
subjects based on their relevance. The score in biology
gets 3 weights because it is the most important subject for
aquaculture, and other subjects get lower scores because
they are of less importance to the study of aquaculture. In
this case, although Student 2 has a higher total score (210
vs. 215), Student 1 has higher weighted scores (total and
weighted mean) because of the higher weight given to
biology, which is the most important background
knowledge required for aquaculture. Because Student 1
received a higher score in biology, s/he will be preferred
over Student 2.

Table 5.1 Comparison of two students based on the simple
score and weighted scores.

5.2.1.2 Geometric mean
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If data are in geometric series (multiplication of a constant
value), e.g. 2, 4, 8, 16…(X × 2), then geometric mean
(GM) represents the central location. It is calculated by
multiplying the values of all the observations and nth root,
such as:

If data are in a geometric series, log transformation is
required before computing the GM. After computing the
GM, it is then transformed back to the actual GM.

5.2.1.3 Harmonic mean

Harmonic series is the reciprocal of arithmetic series; for
example, if the arithmetic series is 2, 4, 6, 8 then the
harmonic series is 1/2, 1/4, 1/6, 1/8, which is expressed as
1/(x + 2). Likewise, harmonic mean (HM) is the reciprocal
of the arithmetic mean, which is the sum of the reciprocals
of the observations divided by the number of observations
(items):

HM is used in the engineering field for computing average
speed, in microbiology when concentrations are expressed
as reciprocals, and in post-harvest technology for the color
intensity of the product, and so on.
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5.2.2 Median

AM can be used only if data are normally distributed. In
some cases, AM does not represent the data, e.g. per capita
income of the countries, salaries of staff in most
organization, and other cases in which data vary a lot. In
such cases, standard deviations are higher than the means.
It is necessary to find a value that can represent this type of
data set at least somehow and some parts, if not whole
data. The median is one of the most popular locations after
mean to represent data.

After sorting and arranging a data set as an array, the value
that falls right in the middle of the scale is called the
median, which divides the values in such a way that 50%
of the observations are smaller and 50% of the
observations are larger.

Table 5.2 shows an example in which AM may not
represent the salary of all the staff of a fish farm. It shows
the salaries of 21 staff members, and salaries range from
$109 to $1,515. In this case, the calculated AM ($287)
does not correctly represent all of the staff; the standard
deviation ($332) is higher than the average, and only 5
staff members make above the average, whereas the other
16 make salaries below the average.

Table 5.2 Salary of staff of a fish farm in Thailand.

SN Position Monthly Salary (US$)

1 General Manager 1,515

2 Assistant manager 909
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3 Hatchery manager 364

4 Grow-out manager 333

5 Marketing manager 333

6 Accountant 273

7 Technician 1 242

8 Technician 2 212

9 Technician 3 197

10 Technician 4 197

11 Technician 5 197

12 Labourer 1 139

13 Labourer 2 136

14 Labourer 3 133

15 Labourer 4 130

16 Labourer 5 127

17 Labourer 6 127

18 Labourer 7 127

19 Labourer 8 109

20 Labourer 9 109

21 Labourer 10 109

Total 6,021

Mean 287

SD 332

Max 1,515

Min 109

In this case, instead of AM, other types of central locations
would be appropriate to describe the data. An example is
median value, which can be located by arranging data in
ascending or descending order. If there is an odd number
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of samples or observations, middle value can be easily
pointed out. For example, $197 is the median salary of fish
farm staff (Table 5.2) as it falls on the 11th position.
However, if the number of observations or samples is
even, the median value is the sum of the 2 middle values
divided by 2. The following examples should make this
clear.

Case 1: Odd number of observations.

Raw data: 3, 2, 4, 5, 10, 8, 9, 6, 7

Data array (sorted) = 2, 3, 4, 5 ,7,8,9,10

Here,

Number of observation (n) = 9

Median = [(n + 1) ÷ 2]th value = 10/2

= 5th value in the data array, i.e. 6

Table 5.3 A hypothetical data set with frequencies.
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Case 2: Even number of observations.

Data array = 2, 3, 4, 5, 6, 9,10,11,13,14

Total observations = 12

Median = (6th value + 7th value)/2

= (7 + 8)/2 = 7.5

Case 3: Table 5.3 presents a data series with frequencies.

Here,

Total number of observations (n) = 24

115



Median = (12th + 13th values)/2 = 4.0 cm

If 4.0 represents a class, it is necessary to locate the
median within the class. As class interval is equally
spaced, it can be divided by the number of frequencies that
fall in that class, e.g. 4 observations are in the class 4.0 or
(3.95–4.05). The class 4.0 can mean (3.95–4.05).

= Lower limit + [(4.05 – 3.95)/4]

= 3.95 + 0.025

= 3.975 cm

Therefore, median = 3.975 cm

5.2.3 Mode

Mode is defined as the value that appears most frequently
in a given set of data. It can also be considered a “typical”
item that carries important information. In many cases,
mean and median are not adequate to describe the data,
especially if there are extreme values and high variability.
In such cases, locating the most common or clustered
observations, i.e. the modes, is more appropriate, no matter
whether a few observations are far away from that
location. In an ungrouped data set, a mode is the actual
value measured or recorded, but in a grouped frequency
distribution, the mode refers to the modal class rather than
one particular value. In a perfectly normal data set, mode
is close to the middle; however, depending on the nature of
variables, it can be anywhere (see Figure 5.2). A set of
data can have more than one mode. If a data set has two
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values appearing most often, the data set is said to be
“bimodal” (Figure 5.3). A data set can have even more
than two modes; this is called a multimodal data set. On
the other hand, a data set may have no mode. If a
frequency distribution is U-shaped, which means the value
in the middle expected to be the highest in frequency
appears instead to be the lowest, then the lowest value is
referred to as the antimode.

Figure 5.2 Location of mode as compared with mean and
median.

In some cases, mode can describe a data set more
appropriately. For example, using a data set of per capita
income (Table 5.4), if we report based on the mean, we
have to say that mean per capita income of 19 Asian
countries is $5,802; however, this does not make sense
because no country has close to the mean and there is very
high variability among the countries. Similarly, if we say
the median per capita income is $1,080 (e.g. the
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Philippines), this is more representative for many
countries, e.g. from Sri Lanka to Malaysia, but it still
misleads the readers because there is no way that 4 of the
top countries and 8 of the bottom can be represented by
that median value. In this case, using the idea of frequency
distribution after grouping and locating a mode would be
more appropriate. For example, grouped data showed that,
although few Asian countries (4) in the list have very high
income ($10,000), many of them (6) have lower than $500
per capita income. This is certainly more valid and
appropriate reporting.

Figure 5.3 Distributions showing animode, two modes, and
no clear mode.

Table 5.4 Per capita income of 19 Asian countries.
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An example of modes can be explained using the model
size of fish farms, e.g. the most common size of farm that
the majority of fish farmers have in any country/region.
The majority of farmers may have a 2-ha fish farm in most
countries, although they may range from 0.2 ha to 500 ha
(high variation or SD). As few farmers have very big
farms, the average farm size can be larger than 2 ha. If the
majority of farmers have 2-ha fish farms, then there must
be a reason. For example, government policy or promotion
might have recommended that size. Discovering the reason
is one of the more important aspects of the research.

5.2.4 Midrange and midhinge

In some cases, the average of the smallest and largest
observations, i.e. the midrange, can be useful. In other
cases, the average of the first and third quartiles might be
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used as a central location, which is called midhinge. These
are expressed as:

5.2.5 Quartiles, percentiles, and others

In a data set, there are other important points to locate.
Various ways of locating these central points of such
subgroups have been used. The most commonly used are
quartiles, deciles, percentiles, and so on.

Quartiles are the values or observations that divide the
whole set of ordered data into four equal parts. Therefore,
there will be three cut-off points: the first, second, and
third quartiles. The second quartile lies right in the middle;
therefore, it is actually the median. They can also be
defined in another way. In an ordered data set, if the value
has 25% of the smaller observations on one side and 75%
on the other side, it is called the first quartile (Q1). The
value that has 75% smaller values on one side and the
remaining 25% on the other side is called the third quartile
(Q3). Figure 5.4 shows the locations of quartiles, and the
Box-and-Whisker plots (bottom of Figure 5.4) are used to
show this in a more attractive way.

The positions of the quartiles can be located as:

120



Similarly, percentiles and other fractiles can be used
whenever necessary. For examples, quintiles divide a data
set into 5 equal parts, deciles divide 10 equal parts, and
percentiles divide 100 equal parts. In percentile scale, the
25th percentile means the first quartile, 50th percentile is
the median, and 75th percentile is the third quartile. It is
easier to find the value of the required fractile item in a
grouped frequency distribution. The location of the fractile
item can be determined by multiplying a fraction by the
total number of observations. For example, if a data set has
36 observations,

Figure 5.4 Box-and-Whisker plots that uses quartiles as
basis.
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Case 1: the third quartile of the data = 3/4 × 36 = 27th
observation; and

Case 2: the 60th percentile of the data = 60/100 × 36 =
21.6 = 22nd observation.

The application of fractiles can be found in medical
research. For example, LC50 is the lethal concentration
(ppm, etc.) of certain medicines at which 50% of the
animals die in an hour or certain time. LD50 is the lethal
dose at which 50% of organisms die in a certain period of
time. ED50 means effective dose at which 50% animals
are cured. In such cases, death of 50% organisms is
adequate to see the efficacy and the rest is not necessary.
Similarly, percentiles are used as cutoff values. For
example, in a normal distribution, lower than 2.5% and
above 97.5% values of the distribution are considered
extreme values. The investigator is interested in only the
middle 95% of values without considering the first and the
last 2.5% values in the tail area.

5.3 Measure of variability

Variability implies how the observations are either
scattered all over or clustered around the central location.
Variability is the basis for comparison, without which the
definition of statistics is incomplete. As an example,
statistics has been defined as “the scientific study of
numerical data based on variation in nature.” Similarly, it
has also been defined as “science of analyzing data and
drawing conclusions, taking variation into account.” The
variability or dispersion is measured by using various
parameters, which are described in the following sections.
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5.3.1 Range

Range is the difference between the largest and the
smallest observations in a set of data.

It is the simplest and a very crude measure of dispersion. It
considers only how far the two extreme values are from
the center; therefore, it is very much affected by a single
extreme/outlying observation and sample size. It doesn’t
take into account how and where other observations are
clustered or dispersed. When expressing the range in
writing, the lowest and highest observations or values
themselves are shown rather than the calculated difference
between them. For example, “the average survival of
prawn in an experiment was 85% (range 65–94%).”

5.3.2 Interquartile range or quartile deviation

Interquartile range is the difference between the third and
the first quartiles, i.e. Q3 − Q1. It considers only the central
half of the data set; therefore, it is not affected by the
extreme values or outliers. It sounds better than range in
that sense, but it ignores the values below the first quartile
and beyond the third quartile. Half of the interquartile
range is called quartile deviation. Quartile deviation = (Q3
− Q1)/2

5.3.3 Mean deviation
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With mean deviation (MD), dispersion of data is measured
more comprehensively considering all the deviations of
observations from the central location. The average of
these deviations is the MD or average deviation, which is
expressed as:

But, in a normal population, 50% of observations are
higher than the mean and 50% are lower, so the sum of
these deviations is zero (0). Therefore, statisticians started
to use absolute differences or deviations from the mean,
ignoring +/ – signs.

Another way to eliminate the negative sign is to square the
deviations:

5.3.4 Variance and standard deviation

MD was popular during the early 20th century, but now
variance (Var) is widely used and has become the
fundamental basis for analysis as it is used for probability

124



and hypothesis testing. The average of the squared
deviations is variance. As the variance is a squared unit,
e.g. m2, positive square root of variance, which is called
standard deviation (SD), is used for the presentation
purpose to express variation of a particular mean as:

5.3.5 Population and sample variance/SD

If data are collected from samples for analysis, calculations
of variance and SD using the aforementioned equations are
underestimated and biased. In order to correct this, the
deviations are divided by degree of freedom (n – 1) instead
of the total number of observations (n). Therefore, these
variability parameters are estimated as shown below:
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Variance and SD can be computed using raw data without
calculating a mean using the following equations:

This method helps reduce efforts and time. For example,
we will calculate the variance or SD of the following data
set: 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, and 2.4. Table 5.5 shows the
way these methods can be used:

Here,

Number of observations (n) = 7

Range = 2.4 – 1.2

Mean deviation = 2.4/7 = 0.34 g

Table 5.5 Calculating SD by using the mean.

Table 5.6 Observations and frequencies.
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X (g) X2 (g2)

1.2 1.44

1.4 1.96

1.6 2.56

1.8 3.24

2.0 4.00

2.2 4.84

2.4 5.76

ΣX =12.6 23.80

Variance (s2) = Σ(Yi – )2/(n – 1) = 1.12/6 = 0.187 g2, SD
= 0.43 g

Table 5.6 describes the calculation of SD directly from raw
data.

Here,

Number of observations (n) = 7

Range = 2.4 – 1.2 = 1.2 g

s2 =[Σ(Xi
2) – (Σ Xi)2/n]/(n – 1)

= [23.8 – (12.6)2/7]/6 = 1.12/6

= 0.187 g2

SD (s) = √0.187 = 0.43 g

5.3.6 Standard error
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Standard error (SE) has become popular recently.
Researchers often misunderstand and misuse it. Variability
of observations within a data set is SD, whereas variability
of two or more means is SE. Therefore, it is often called
standard error of means. It is computed as SD of two or
more means divided by the square root of the number of
observations: SE = SD ÷ √n.

Most researchers may incorrectly calculate it as the
average of SDs. Table 5.7 shows how to compute these.

Table 5.7 Sample means, treatment means, SDs, and SEs.

Note: =STDEV(…) is the formula function for SD in
Microsoft ® Excel.

5.3.7 Coefficient of variation

Coefficient of variation is the percentage measure of
variation relative to the magnitude of a mean, which is
computed as:

128



From the example given in Tables 5.5 and 5.6, the
coefficient of variation (CV) = (0.43/1.8) × 100 = 24%.

5.3.8 Implications of variability

A highly dispersed data set has larger range, variance, SD,
and SE. In other words, a highly spread out data set is low
in precision and accuracy. Conversely, more concentrated,
precise, or homogenous data will have smaller range,
variance, and SD (with high precision and accuracy). If all
the observations are the same, the range, variance, and SD
will be zero. None of these measures can be negative. Two
distant means with little variations are more likely to be
significantly different, and means with high variations are
likely not to be significantly different.

In Figure 5.5, there is a higher chance of a significant
difference between two means in Group A (very little
overlap), whereas there is no chance of significant
difference in Group B as the overlap seems to be more
than 5%.

From a statistical point of view, presenting means without
variability (SD or SE) has no meaning. Either SD or SE
needs to be presented along with the means while
presenting results both in tabular and graphical forms;
mean ± SD or SE in tabular form is shown in Table 5.8,
and error bars in graphical presentations are show in
Figure 5.6. Both of them show that a mean can go up and
down by that amount. Therefore, most researchers have
started using error bars as they show variations very
clearly. For example, in Figure 5.6, it can be seen that
Group B has high variation, whereas in Group A, both
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treatments have less variability. More importantly, error
bars drawn using SE or SD may serve as rough indicators
of the presence or absence of significant differences
between means. If the error bars of two means are
overlapping, it is almost sure that they are not significantly
different; if they are not overlapping with large distance,
there is a high chance of a statistically significant
difference. However, this has to be confirmed by using the
appropriate statistical tool.

Figure 5.5 Frequency distributions with low and high
overlaps.

Table 5.8 Means for Treatments A and B (mean ± SE).
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Treatments Mean

Treatment A 24.6 ± 4.2 (SD)

Treatment B 30.2 ± 3.3 (SD)

Overall mean 27.4 ± 2.8 (SE)

Figure 5.6 Graphical presentation of SD or SE is shown
using error bars.

5.4 Questions

Q1. Why are central locations of data sets important?

Q2. Explain why mean without standard deviation or
standard error has no meaning.

Q3. Why is median important? Q4. What is the use of
mode?
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5.5 Practical exercises

Ex. 1. Calculate the following parameters for each
replicate of the experimental data using Microsoft® Excel
(formulas and data analysis functions) as well as other
statistical packages.

Central tendiency/locations:

• Mean (arithmetic, geometric, harmonic and weighted means)
• Median
• Mode
• Quartiles (Q1, Q2, and Q3)
• Percentiles (5%, 25%, 33%, 50%, 66%, 75%, and 95%)

Dispersion/variability:

• Minimum (Min)
• Maximum (Max)
• Range
• Midrange
• Midhinge (you can make a Box-and-Whisker Plot using SPSSâ)
• Variance (Var)
• Standard deviation (SD)
• Standard error (SE)
• Coefficient of variation

Ex. 2. Solve the following problem.

Suppose you had stocked 720 broodfish (1:1 sex ratio) in
20 jumbo hapas. After 3 months, the data set shown in
Table 5.9 was recorded by your staff at the end of the
experiment. You were supposed to compare the survival
rate between male and female broodfish. After taking a
look at the data sheet, you have noticed that the 19th hapa
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(∗) has no data recorded. No special note from your staff
was found about this hapa. How would you compare the
survival?

Hints: There are three main possibilities:

1. As there are very low survivals of males in the 19th
hapa, you could imagine that all the females might have
died, i.e. 0 females.

2. It could be an accident which might have resulted in
escaping of those females and mixed with other fish before
counting. This can be considered as data not available (N/
A) or missing values.

3. Sometimes we can’t analyze even if we lose only a
single datum. In such a case, we have to estimate the
missing value using a statistical formula: Missing value =
[(b × block total) + (t × treatment total) – grand total]/(t –
1)(b – 1)

where b is the number of blocks and t is the number of
treatments.

Table 5.9 Number of males and females counted in each
hapa at the final harvest.
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Chapter 6

Basics of hypothesis formulation and testing

6.1 Concept

A hypothesis is an assumption made for the sake of
argument and claim after having made observations of the
natural phenomena. It is the starting point of scientific
discovery and invention. Normally, it is testable and
provides a possible explanation of a certain phenomenon
or event. A hypothesis can be thought of as an embryo,
which might develop into a theory and then become a law.
If a hypothesis is not testable, it implies insufficient
evidence to provide more than a tentative explanation, e.g.
hypotheses to explain the extinction of dinosaurs, the
origin of the universe, or extinction of sea food species.
Whereas theory implies a greater range of evidence or
greater likelihood of truth. The theory of evolution and the
“law” imply a statement of order and relation in nature that
has been found to be invariable under the same conditions,
e.g. the law of gravitation, law of inheritance, and so on.

Any new knowledge or belief has to be tested or compared
against the existing one. Therefore, while comparing
between them, a null hypothesis (H0) is established that
assumes there is no difference between the new and old
ones. However, there can be some indications that existing
knowledge or beliefs may not be true, and an alternate idea
might prove to be true. The new idea is called the alternate
hypothesis (HA) and assumes that the new idea is better or
true and goes against the traditional belief. A hypothesis
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(alternative) is sometimes known as “an intelligent guess”
based on limited information. Although experimental
results may match predictions, no one should believe an
“intelligent guess” is true. Without proper testing and
analysis using appropriate tool(s), which includes
designing an experiment or survey to generate or collect
data/information (raw), exploratory data analysis, choosing
an appropriate significance level or confidence limits
(intervals), and analyzing data by using appropriate
statistical tools. In statistical procedure, null hypothesis is
tested, not the alternative hypothesis. Based on the data
outputs or results, the null hypothesis is either accepted or
rejected, which is expressed mathematically as:

H0 = HA which means there is no difference → Accept

H0 H0 = HA which means there is a difference → Reject
H0

As the hypothesis is either accepted or rejected based on
the numerical facts, only trustworthy data can be used for
this purpose. Hypothesis testing therefore involves data
collection using proper methods, compilation, and
securitization, use of appropriate tools for analysis, and
judicious decision, interpretation, and explanation.

6.2 Significance level

Probability (P) of occurrence of any event by chance or
random error is popularly known as significance level. The
level of error can be higher or lower depending on the
situation. For example, in very controlled laboratory
research, chance of error can be 1% or even less.
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Therefore, level of significance is considered 1% for those
cases; whereas, in aquaculture and other field-based
biological research, 5% is considered a significant level. In
social survey research, the significant level is normally
considered 10%. In fact, there is no fixed level of
significance. Researchers themselves determine the
significance level depending on the conditions. For
example, a 40% level of confidence may be considered
adequate if a drug is found to be effective (i.e. 60%)
against AIDS since there is no effective drug invented so
far. On the other hand, concerning drugs for the common
cold, a probability as low as 0.01% may be necessary to
convince that the treatment does not cause any side effects.
Therefore, ultimately, the researchers are the ones to fix
the significance level rather than depending on a machine
or mindless mechanistic statistical significance.

6.3 Confidence level, limits, and interval

When concluding that any hypothesis is true or false, there
is a certain level of confidence. From a statistical point of
view, nothing is absolutely true or absolutely false.
Therefore, 100% confidence is very rare. In social survey
research, a 90% confidence level might be enough;
however, in most biological research, a confidence level of
95% is considered sufficient, and in medical research, the
confidence level is usually as high as 99%.

Any mean has two confidence limits: the lower limit (LL)
and the upper limit (UL) for a given level of confidence.
The difference between the two limits is called confidence
interval (CI). The sample mean estimates the true mean,
and standard error (SE) describes the variability of that
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estimation. This variability can be conveniently expressed
in terms of probabilities by calculating CIs. The following
example describes these methods.

Suppose a sample of 40 fish was drawn from a pond
containing 3,000 fish. If the computed mean is 100 g and
standard deviation (SD) is 35 g, what are the

LL and UL for 68%, 95%, and 99% CIs? For this, SE is
computed as:

The range mean ± 1 SE covers 68% in the normal curve.
Or by simply adding/subtracting 1 SE to/from the mean,
we can get the LL and UL for 68% CI:

LL = 100–5.5 = 94.5 g

UL = 100 + 5.5 = 105.5 g

CI = 105.5 − 94.5 = 11 g

However, for 95% and 99% CIs, SE has to be multiplied
by t-statistics, which depend on the degree of freedom (df),
before adding to or subtracting from the mean (the critical
value for 39 df of the t-distribution):

t-statistics for 95% CI

= (t0.05, 39) × SE for n − 1 = 39

= 2.023 × 5.5
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= 11.1 g

LL = 100–11.1 = 88.9 g

UL = 100 + 11.1 = 111.1 g

CI = 111.1 − 88.9 = 22.2 g

In this case, we can now say with 95% confidence that the
true mean falls between these limits (88.9 − 111.1 g).
Similarly, CI further increases as we want higher
confidence, e.g. for 99%:

t-statistics = mean ± (2.708 × 5.5) = 100 ± 14.9 g

LL = 100–14.9 = 85.1 g

UL = 100 + 14.9 = 114.9 g

CI = 114.9 − 85.1 or 14.9 × 2 = 29.8 g

This shows that CI increases as the confident level
increased. Wider range is necessary to be confident that
the sample mean will fall within the range.

6.4 Statistical and biological significance

In some cases, two means may have statistical difference
but that may not affect the practical life situation where we
apply it. For example, Samples 1 and 2 are the weights of
fish in grams:
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Sample 1: 100.1, 100.2, 100.3, 100.1, 100.2, 100.3 →
Mean 100.2 g.

Sample 2: 100.4, 100.5, 100.5, 100.6, 100.6, 100.4 →
Mean 100.5 g.

Student’s t-test shows that the difference between these
two means is highly significant (P < 0.01). However, the
actual difference (100.5 − 100.2 = 0.3 g) has no biological
significance because the difference between two fish
weighing 100.2 g and 100.5 g would not matter much.
However, if we were weighing gold or some other
precious substance, a weight difference of 0.3 g would be
economically significant and care would be taken while
measuring. There is a saying that the difference to be a
difference must make a difference. Therefore, a researcher
should see whether any statistically significant difference,
often called detectable effect size, has any practical
concern. In practical life, terms such as concept of
biological or economic significance, effect size, or
substantive importance/significance/meaningful
differences are frequently used. For example, if you feed
vitamin C at 50 g·kg−1 of feed to your fish, the survival
will be increased by 10%. This 10% survival, which is
claimed due to the use of vitamin C, is substantial and has
an economic value for farmers. However, an increase
lower than this may be still statistically significant but may
not be considered substantial.

6.5 Errors in hypothesis testing

Proper designing of the research trial or survey and
selection of appropriate statistical tools while analyzing
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data play crucial roles in avoiding or minimizing errors.
However, in the real world, errors occur quite often. There
are two types of error in hypothesis testing: Type I and
Type II. Rejecting H0 when it is true is Type I error, also
called a error. Accepting H0 when it is wrong is Type II
error, which is also called b error. The power of the
statistical test is 1 - b, which means probability of rejecting
the H0 when it is wrong and should be rejected. In other
words, it is the probability of making the right decision or
detecting significant difference when it exists. Therefore,
power analysis is important, especially when the results are
nonsignificant. Power analysis can reveal whether the
replication was adequate for any treatment to show its
effects. A minimum of 80% (or b = 0.20) is considered
acceptable statistical power (Searcy-Bernal 1994), the
higher the better. Table 6.1 shows a summary of errors.

The two types of errors are often compared. It is better to
miss significant difference/relationship if there is one than
to claim significant difference when there is none. For
example, a researcher found that a new strain of tilapia
gave higher production compared with the local strain and
recommended that farmers to grow the new one. But, when
the second researcher tested later using the same
experimental protocols, he did not actually find any
difference. In this case, the first researcher committed the
Type I error. In another trial with catfish, the researcher
did not see any difference between new and old strains and
didn’t suggest that farmers use the new strain. But later,
another researcher found that the new strain could actually
produce more. In this case, statistical difference was not
detected, so the first researcher made a Type II error. If we
compare these two cases of tilapia and catfish, it is clear
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which error is more dangerous. In the tilapia case, many
farmers might have spent a lot to purchase the new strain
as per recommendation to replace the existing stock and
also change the existing practices and facilities; whereas,
in the case of catfish, farmers didn’t need to change
anything—they just followed their existing protocols. This
means that there was no additional cost involved. Although
both of these errors are unwanted and should be avoided,
the case of tilapia (Type I error) is more dangerous than
the case of catfish (Type II error).

Table 6.1 Types of errors in
hypothesis testing.

Decision When H0 Is True When H0 Is False

H0 rejected Type I Error (a) √

H0 accepted √ Type II Error (b)

6.6 Selection of statistical tools

The main purpose of teaching/learning statistics is to be
able to choose the appropriate statistical tool(s) for a
particular data set. Even if data have been generated
perfectly, proper statistical analysis is needed to be able to
make the right decisions. Misuse of statistical tools might
result in wrong conclusions, thereby bad
recommendations. Hence, even carefully collected data,
which takes so much effort and time, can be useless.
Researchers need to determine which distribution a
particular data set follows: normal, binomial, Poisson, or
free of any distribution. The fundamental principle is that,
if the data sets are normally distributed sample means, SEs
or SEs represent the population; but, if the data sets are
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distribution-free, then these parameters do not represent
the population. Therefore, use of the mean values to
represent and compare between/among them has no
meaning. In such cases, nonparametric tests are used.
These tests do not consider the actual figures and degree of
deviations from central tendency but simply use ranks
assigned to the data points. The following are the three
main conditions suitable for the use of nonparametric tests:

• Data are far from normal or data do not follow any distribution
pattern (normal, linear, binomial, or exponential), e.g. number
of insects, bacterial count, disease incidence, salaries of staff,
etc.

• Sample means, SDs, SEs, or variances do not represent the
populations.

• Data are measured using ranks or other units, e.g. pH of water,
grade point average or IQ of student, taste of fish, levels of
social status, etc.

However, researchers should be clear about the
assumptions and characteristics of nonparametric tests,
which are as follows:

• Observations are independent of each other
• Scale of measurement is “rank”; therefore, ranking is done if

data are not ranks (see Section 6.7.2)

Table 6.2 The names of tests their
uses (detailed descriptions and
methods are discussed in later
sections).
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• Have lower power than parametric tests; therefore, if parametric
tests are not applicable, then these methods should be applied

• These methods are becoming more popular because occurrence
of distributionfree data is quite common, especially in biological
fields

Table 6.2 is a list summarizing all of the tests along with
their uses. The list shows the names of nonparametric tests
parallel to the parametric tests. As a researcher has to
determine whether or not his/her data are in normal
distribution before starting the statistical analysis,
normality test should be the first step researchers take to
decide whether to use parametric or nonparametric tests
for a particular set of data.

6.7 Test of goodness-of-fit
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How well a set of observations or the data match with a
theoretical distribution is known as goodness-of-fit.
Departure of observed data from the theoretical expected
values occurs quite often. Using appropriate tools, these
departures can be measured and tested to determine
whether they are statistically still within the acceptable
limit. A set of frequencies can be tested to determine
whether it follows specific distribution, e.g. normal,
binomial, and others. At the same time, data sets of two
different samples can be tested to determine whether they
follow the same pattern of frequency distribution. For this
purpose, chi-square (x 2) and Kolmogorov–Smirnov (K–S)
tests are used.

6.7.1 x 2 -test

The x 2-test was first introduced by Karl Pearson in around
1900 and is usually used for discrete series following
binomial and Poisson distributions. It tests a null
hypothesis whether relative frequencies of occurrence of
observed events follow any specific frequency distribution
using the following formula:

x2 = ∑[(O− E)2/E]

Where,

O is observed frequencies, and

E is expected or theoretical frequencies.

The x 2-test is only for frequency data, not for percentages.
If data are shown as percentages, then they must be
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converted to frequencies before using the x 2-test.
Therefore, the test is useful only if the data are convertible
to frequencies. Some uses of the x 2-test are given below.

a) Test for normal distribution (normality test): The
normality test is the gateway test which determines
whether we should choose a parametric or nonparametric
test. If the collected data are normally distributed, then
parametric tests are used for hypothesis testing; but, if they
are not normally distributed, then we have to either
normalize them by using data transformation methods or
use nonparametric tests instead. Normally, the x 2-test or
K–S test (see Section 6.8.2) is used to determine whether
the data set is normally distributed or not.

Table 6.3, for example, shows the size distribution of a
sample taken from a fish population. It is necessary to test
whether these data are normally distributed or whether the
sample is a true representative of the population. The x
2-test can be used for this purpose. However, we must first
establish a set of standardized (expected) frequencies, and
then we can test for agreement or disagreement between
observed and expected frequencies. To create the
standardized frequencies from a given set of frequencies,
the following formula is used:

where,

exp is exponential,
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X is data points,

m is mean,

p is pi (3.14), and

s is SD.

Dotted lines in Figure 6.1 and Table 6.3 show the
deviations in frequencies from the expected frequencies
(solid lines). A x 2-test can determine whether these
deviations are still within the limits. Here, the x 2-test
showed that probability is only 0.266.

Table 6.3Size distribution of fish at
harvest raised in a tank.
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Figure 6.1 Fish size distribution with normal
(standardized) curve.
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Table 6.4 Number of fish counted
for sex ratio test.

Therefore, the researcher’s decision will be “accept H0,”
i.e. no difference between expected and observed
frequencies. This means that, even though many
frequencies seem to be away from the expected ones, the
deviation can still be within the limit. Therefore, the
sample is normally distributed, and it can serve as a
representative for hypothesis testing using parametric tests.

b) Test for binomial distribution: Binomial distribution
refers to a discrete series or nominal scale in which there
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are two (or sometimes more) mutually exclusive categories
or classes, e.g. male and female, live and dead, etc.
Normally, these data are in frequencies observed or
measured, which can be tested against the expected ratio.
For example, the ratio of male-to-female is 1:1 in normal
population, if a student has a sample consisting of 38
males and 22 females. The x 2-test is used for this purpose
in which the differences between the observed (O) and
expected (E) numbers or frequencies are squared. The x 2

value is computed by summing the squared differences
divided by their corresponding observed frequencies, as
shown in Table 6.4.

Here,

x2 = ∑[(O− E)2/E] = 4.27

x2
1,0.05 = 3.84 (from Appendix A2).

The value 4.27 corresponds with the P value of 0.039
(<0.05). Therefore, the researcher will “reject H0,” which
means that the observed ratio of male-to-female is
significantly different from the normal ratio. This means
that the number of males is significantly higher than the
females in that population. This test can also be used for
more than two categories.

c) Heterogeneity test or contingency tables: In a trial
with formalin to protect fry from parasites, we found 77
alive and 33 dead with treatment compared with 55 alive
and 47 dead without formalin (Table 6.5). We need to
determine whether the formalin treatment had any effect or
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whether the survival/mortality was independent of the
treatment.

In this case, expected frequencies are calculated. Then x 2

value in this case is 4.95, and the degree of freedom is 1.

Here, x 2
1.0.05=3.841; therefore, “reject H0” means that

survival/mortality is affected by the formalin treatment.
More specifically, results showed that formalin increased
fry survival from 53.9% (55/102 × 100) to 70.0% (77/110
× 100), i.e. 16.1% improvement.

Table 6.5 Heterogeneity test on the
effects of formalin treatment on fry
survival.

6.7.2 One-sample K–S test

This method was developed by two Russian statisticians
(Kolmogorov and Smirnov) to test the normality or the
goodness-of-fit using cumulative frequencies based on the
maximum difference in cumulative frequency (Dmax or /d/
). This means that it tests whether the highest deviation is
still within the acceptable limit. Therefore, differences
between observed cumulative frequencies and their
respective expected frequencies are computed, as shown in
Table 6.6, and the Dmax is located and compared with the
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table value. These differences can be illustrated more
clearly in graphical form, as shown in Figure 6.2.

Here,

Dmax = 11.60

Number of observations = 80

Number of classes = 17

Dmax 0.05,17,80 = 12.7 (from statistical table, similar to
given in Appendix A3)

K–S probability (P) = 0.06

Decision: Accept H0, i.e. no difference between expected
and observed frequencies.

Compared with the x 2-test, the one-sample K–S test is
more precise and preferred, especially for the data set in a
continuous series. However, the x 2-test is more
appropriate for binomial distributions.

6.8 One- and two-sample tests

The most common and simplest form of hypothesis testing
is the comparison between two means. Means are
compared using the variability (Figure 6.3). If the sampled
sets of data are normally distributed, as tested by K–S or as
above, then parametric tests, e.g. Z- and t-tests, are used. If
the data sets are not normally distributed, then
nonparametric tests, e.g. Mann-Whitney and Wilcoxon’s
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tests, are applied. Throughout this book, wherever
possible, both parametric and nonparametric hypothesis
testing have been described.

Table 6.6Data on fish size
distribution (from Table 6.3).

Figure 6.2 Observed and expected cumulative frequencies
of fish size distribution.
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Figure 6.3 Types of mean based on the variability.

6.8.1 Parametric tests: t- and Z-tests

A sample mean ( ) can be compared against its
population mean (m) or against another sample mean. In
order to compare with a standard population mean, the
minimum sample size is considered 30. In this case, the
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test is called a Z-test. However, if the sample size is <30,
then the Student’s t-test is appropriate.

In other cases, a treatment mean is compared against zero
in order to test the null hypothesis, which states, “there is
no effect of treatment.” Many researchers do not realize
the value of this test. In many cases, experimental units
can be limited in aquaculture. The trial can be designed for
one sample test. For example, suppose a researcher has
only four experimental units available. If he or she wants
to compare two treatments and use two replications, there
is a high chance of not detecting the significant difference
between the two treatments due to lack of adequate
replications. This means that there is a high possibility of
committing Type II error. Instead of dividing four ponds
among two treatments, another option is that all four ponds
be used as replicates for a single treatment (described
below).

6.8.1.1 One-sample t-test

A hypothesis that “tilapia does not grow in cold climate”
was tested (Shrestha and Bhujel, 1999). We used four
replicate cement ponds (Table 6.7) and conducted a trial
using Nile tilapia (Oreochromis niloticus) in Nepal, where
weather is normally considered cold and tilapia are not
commonly accepted due to fear of low temperature and
poor growth. The mean daily weight gain from the four
replicates (1.0 g) was compared against zero (0).

Here,
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H0: Tilapia does not grow in cold climate (0
g·fish−1·day−1)

HA: Tilapia can grow even in cold climate (>0
g·fish−1·day−1)

Mean weight gain (X) = 1.0 g·fish−1·day−1 and SD (s) =
0.1 g·fish−1·day−1

Hypothetical mean (m) = 0 g·fish−1·day−1(no growth)
t-statistic = (x − m)/(s/√n) = (1.0 − 0.0)/(0.1/√4) = 20.0

From the t-table, t0.05,3 = 3.182, which means P < 0.05

Decision: Reject H0

This means the daily weight of tilapia was significantly
higher than zero, or tilapia grew in cold climate.

Table 6.7 Results of a trial on
tilapia that used a one-sample t-test.

6.8.1.2 Z-test

This test compares a population mean (m) with a sample
mean (X) using population SD (s). For example,
productivity of pond culture (t·ha−1) obtained from a
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survey of 35 farms in a district is compared with the
national average recorded from the country’s census. The
method of analysis is given below, together with Student’s
t-test.

6.8.1.3 Student’s t-test for two-sample means

The Student’s t-test was developed by W. S. Gossett
(1876–1937), who considered and nicknamed himself
“Student” because he always felt that he was in the
learning phase. The test is used for the comparison of any
two means using sample SDs, especially when the number
of observations is less than 30. There are two types of
Student’s t-test:

• independent samples
• paired/matched samples

When performing a t-test, statistics is calculated and
compared with the tabulated value for “P” using pooled
variance. If the sample size is different, pooled variance is
calculated by taking the weighted average of the variance
as shown below.

For an example, suppose a fish nursing trial was conducted
using eight tanks for 1 month to compare two types of feed
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in the growth of fish. The final mean weights were
obtained as follows:

Homemade feed (G1) = 50.3 ± 10.1 g/fish (Mean ± 1 SD)

Commercial feed (G2) = 69.1 ± 9.2 g/fish

Difference in means = 69.1 − 50.3 = 18.8 g, i.e. 37%
bigger than the fish of G1, if it is statistically proved this
difference has biological meaning. But when compared
using a t-test, this difference is not statistically significant,
as shown below.

The result is “accept H0”, which means the final weights
of fish fed with two types of feed were not significantly
different (P > 0.05). The difference of 18.8 g is not
statistically significant because of high SD. Therefore,
either feed can be recommended.

Another example is a survey on aquaculture productivity
in two districts (Districts A and B), which distinguishes
between the two tests (Table 6.8). It was conducted using a
standard questionnaire. At the same time, the national
average for fish productivity 4.2 t·ha−1·year−1 with the
standard deviation (SDP) 0.6 t·ha−1·year−1 was obtained
from the statistical bureau. In this case, comparison can be
made between Districts A and B using the t-test and
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between District A or B against national average using the
Z-test, as described below.

Both data sets are presented in graphical form (Figure 6.4),
in which they look normally distributed. However, in order
to confirm this normal distribution, they can be tested
using the K–S test. First, they need to be grouped as shown
in Table 6.9.

Dmax 0.05, 11, 35 = 8 and Dmax 0.05, 12, 35 = 8

The maximum differences in cumulative frequency in both
distributions are lower than this value. Therefore, both data
sets are in normal distribution, so we can proceed with
comparisons.

a) Comparison between the national average and District
A:

b) Comparison between the national average and District
B:

Z=(5.24−4.20)/(0.6)=1.7

c) Comparison between Districts A and B:
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Table 6.10 presents the results of the Student’s t-test and
the Z-test. The Z-test was performed by using the variance
of national average only. But to compare between the two
districts (i.e. A and B), their pooled variance was used.
Notes on writing results: Statistical analysis only assists
in writing results and making conclusions and
recommendations or in other words, making decisions.

Table 6.8 Data collected from the
survey of fish production in Districts
A and B, and frequency
distributions.

Farm No. District A District B

1 4.1 6.5

2 3.2 5.5

3 2.1 4.5

4 3.0 4.4

5 3.6 4.5

6 3.6 4.6

7 4.3 5.6

8 4.3 5.5

9 4.4 5.4

10 4.9 5.5

11 3.6 5.4

12 3.1 4.3

13 1.2 4.1

14 2.3 4.6

15 3.2 5.6

16 2.3 5.6
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17 3.3 5.4

18 2.3 5.0

19 2.1 6.8

20 5.1 6.5

21 1.3 5.4

22 2.1 5.4

23 2.6 5.2

24 2.2 4.8

25 2.3 4.5

26 3.2 4.4

27 4.3 3.4

28 3.2 3.9

29 3.3 4.8

30 3.1 4.9

31 2.3 6.9

32 3.3 6.8

33 2.3 5.4

34 2.2 6.5

353.2 5.8

Mean 3.05 5.24

SD 0.95 0.86

Variance 0.90 0.74

Skew 0.236 0.218

Kurtosis −0.354 −0.315

However, interpretation and presentation of the results
largely depend on the degree of skills possessed by
individual researchers. While writing results, many
researchers often miss important information obtained
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from statistical analysis, thus resulting in inadequate
explanation, whereas others may misuse them by saying
higher or lower even though they are not statistically
different. The following points should be helpful for using
the results of the survey:

Figure 6.4 Frequency distribution of fish farms based on
productivity (t·ha−1·year−1)
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• Beginners may write, “Two districts have significantly different
(P < 0.05) fish productivity” or “they differ significantly (P <
0.05) in fish productivity.” These statements are neutral as these
do not specify which district has higher productivity and by how
much or what percentage. Therefore, these sentences do not
adequately state or communicate the result.

• Results might also be written as, “District B has significantly
higher (P < 0.05) fish productivity compared with District A.”
This specifies which district has higher productivity; however, it
still does not compare and quantify the difference in terms of
the amount or percentage.

• A better way of stating the result is, “District B has 2.19
t·ha−1·year−1 (5.24 − 3.05) or 72% (2.19/3.05 × 100) higher fish
productivity than District A.”

Table 6.9 Grouping of fish farms
based on their productivity for K–S
test.
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• The best way of stating the result is, “Fish productivity in
District B is 5.24 t·ha−1·year−1, which is 72% higher (P < 0.05)
than in District A, wherein productivity is only 3.05
t·ha−1·year−1. This statement provides the productivity of both
districts, specifies which district has higher productivity, and
also points out by what percentage that amount is higher.

• Similarly, comparison of Districts A and B against the national
average should not be forgotten. Based on the results, it can be
concluded that “productivity of Districts A and B differs
significantly (P < 0.10; as it is a social survey research, 10%
significance level can be used instead of 5%) compared with the
national average.” District A has 27.4%[(4.2 − 3.05)/4.2 × 100]
lower, whereas District B has 24.8% [(5.24 − 4.2)/4.2 × 100]
higher productivity than the national average.
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Table 6.10 Results of Z- and t-test
using Microsoft ® Excel.

Z-test District A National Average

Mean 3.05 4.20

Known Variance 0.9 0.36

Observations 35 1

Z 1.845

P(Z≤z)two-tail 0.065

Z-test: District B National Average

Mean 5.24 4.20

Known Variance 0.74 0.36

Observations 35 1

Z 1.68

P(Z≤z)two-tail 0.092

t-test: District A District B

Mean 3.054 5.24

Variance 0.902 0.74

Observations 35 35

Df 67

t-statistics 10.084

P(T ≤ t) two-tail 4.57E-15

6.8.1.4 Paired-sample t-test

A paired-sample t-test is used to compare sample means of
paired data sets generated from the same or related
subjects over time or in differing circumstances. In order
to be paired, the samples of all the treatments should be
drawn simultaneously (Figure 6.5). For example,
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temperature and dissolved oxygen (DO) recorded at certain
intervals of time, such as every morning/afternoon,
weekly, monthly, and so on. Several examples of paired
samples can be found in research, but most of the time it is
ignored. The t-statistics are computed as:

t = mean difference between pairs/SE of mean difference =
d/s √n

Where

n = number of pairs

The data shown in Figure 6.5 can be compared using a
paired-sample t-test. Another aspect of these data is to
determine whether they have any correlation (see Section
8.4 for details). In order to make these clear, it can be
described as:

1. Data sets A and B are most likely to have both
significant difference and correlation.

2. Data sets A and C are most likely to have difference but
no correlation.

3. Data sets B and C are most likely to have neither
correlation nor difference.

Figure 6.5 Weekly temperatures (or DO, pH levels) of
three ponds measured at the same time on the same day of
each week.
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There is a chance of having significant difference between
data sets A and B when analyzing them by using a
paired-sample t-test on the basis that all of the data points
of Pond A show higher compared with the corresponding
data points for Pond B. If these two ponds were compared
by using an independent sample t-test, results would show
no difference between them because it would mess up the
data of whole Pond A while comparing with the pooled
data of Pond B, rather than comparing for each
corresponding point. When pooled, lowest points of Pond
A are compared with the highest points of Pond B, which
do not differ. The overlap paired t-test would not pool
them; instead, it measures the differences and compares all
points separately. Therefore, it is appropriate.

For example (data are presented in Table 6.11), a breeding
trial with tilapia was conducted over a period of 13 weeks
using normal and prestunted broodstock to compare their
reproductive performance. Broodfish were fed at 3%
biomass. Seed (number of eggs or post-larvae) was
harvested on a weekly basis. Considering the weekly
harvesting as pairs, they can be analyzed by using a
pair-sample t-test.

167



SD can be computed from variance, e.g. SD for the mean
egg output for stunted tilapia

The two-tail probability (**0.002048) shows that P < 0.01;
therefore, the difference in seed output is highly
significant. Therefore, the result can be written as,
“Average seed output from stunted tilapia (1,345 ± 950) is
about 275% (1,345/490 × 100) higher (P < 0.01) than that
produced from normal tilapia in this trial.”

Table 6.11 Seed output (no. of eggs
or post-larvae) per week from
normal and stunted Nile tilapia
broodfish.

Table 6.12 Results of paired-
sample t-test performed with
Microsoft ® Excel using the data
analysis function.

t-test: paired two-sample for means Normal Tilapia Stunted Tilapia

Mean 490 1345

Variance 238430.4 902847.6

Observations 13 13

Pearson correlation 0.561859

Hypothesized mean difference 0

Df 12
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t-statistic −3.916572

P(T ≤ t) one-tail 0.001024

t-critical one-tail 1.782288

P(T ≤ t) two-tail ** 0.002048

t-critical two-tail 2.178813

6.8.2 Nonparametric tests: Mann-Whitney and Wilcoxon’s
tests

As described in earlier sections, nonparametric tests are
alternative tests to be used only when data are not
normally distributed. These tests use ranks for analysis
rather than the actual values. Therefore, ranking is
performed on the original values before analyzing the data.
For the purpose of describing this method, an example is
used (Table 6.13) in which two carps, Rohu and Catla, are
compared based on weight (g) after growing together for 1
year.

Mean weights of Rohu (g): 292, 287, 267, 282, 279, 286

Mean weights of Catla (g): 276, 272, 261, 266, 263, 255

Sorting data by either ascending or descending order is the
prerequisite for ranking. Ranking is done for all of the data
or observations of all the groups together, if data are not
paired. For the data set arranged in ascending order, rank 1
is given to the lowest value, rank 2 to the second lowest,
and so on. Opposite will be the case if data are arranged in
descending order.
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Table 6.13 Simple ranking of
unpaired data on the weight of
carps.

Table 6.14 Tied ranking of fish
weight data with repeated values.

If some of the observations are repeated, then they are
called tied, and the repeated observations get the average
of their ranks. For example, in Table 6.14, there are two
values of 235, which should be ranked 3 and 4; instead,
they are averaged and their rank is then 3.5. Similarly,
three values of 245 with ranks 10, 11, and 12 are assigned
their average rank, i.e. 11.

6.8.2.1 Mann-Whitney test (U-test)
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Although it was originally developed by Wilcoxon, Mann
and Whitney further developed the method; therefore, it is
commonly known as the Mann-Whitney test (Zar 1996).
This method is used to compare two independent samples,
similar to the Student’s t-test for two independent samples
in parametric testing. The Mann-Whitney statistic (U) is
calculated as:

U =(n1 ×n2)+[n1 ×(n1 +1)/2]−R1

Where,

n1 is the number of samples in the first group,

n2 is the number of samples in the second group, and

R1 is the sum of the ranks of the first group.

Here, it is assumed that n1 > n2, but if n2 > n1, then the
equation should be:

U =(n1 ×n2)+[n2 ×(n2 +1)/2]−R2

Where,

R2 is the sum of the ranks of the second group.

An example of nominal data for the comparison between
Rohu and Catla (Table 6.15) is given to demonstrate this
method.

H0: There is no difference between the total weights of
Rohu and Catla.
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Table 6.15 Ranking of weights of
Rohu and Catla.

Here,

n1 = 7

n2 = 7

U ={n1 ×n2 +[n1 ×(n1 +1)/2]}−R1

U =[7×7+(7×8)/2]−32

= 45

U0.05,7,7 = 41 (from U table, Appendix A5)

Therefore, “reject H0,” which means the mean weight of
Rohu is significantly higher than that of Catla (P < 0.5).
This method is specifically used for ordinal data as shown
in Table 6.16, where the H0 claims that there is no
difference between the tastes of farmed and wild catfish.
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Here,

n1 = 9

n2 = 8

U =[9×8+(9×10)/2−69.5

= 47.5

U0.05,8,9 = 57 (from U table, Appendix A5)

Therefore, “accept H0,” which means there is no difference
between scores given for the taste of farm-reared and wild
catfish; in other words, there is no difference in taste.

Table 6.16 Ranking of taste of wild
and farm-reared catfish collected
from wild and farmed.

6.8.2.2 Wilcoxon’s test for paired samples
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This test is also called “Rank Sum,” “Matched pair,” and
“Signed Rank” test; it is analogous to the paired t-test but
with low power, which is true for all nonparametric tests.

An example is the comparison of the growth of two types
of tilapia after rearing together in 10 tanks. Their initial
weights were similar. After rearing for 120 days with 3%
body weight of feeding, final mean weights were obtained,
as shown in Table 6.17.

Here,

H0 is that there is no difference in mean final weights (g)
between two types of tilapia.

Here,

T+ = 7 + 4.5 + 2 + 4.5 + 7 + 9.5 + 7 + 9.5 = 51.0

T− = 1 + 3 = 4

Table 6.17 Comparison of growth
between Nile and Red tilapias.
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T0.05,10 = 8 (from Appendix A6) and P < 0.05. Therefore,
“reject H0,” which means the final mean weight of Nile
tilapia is higher than that of Red tilapia.

6.9 Questions

Q1. Why is hypothesis testing important?

Q2. Why are errors important and how can you avoid
them?

Q3. Why is the selection of appropriate statistical tools
important?

Q4. What are the differences between statistical and
biological significance?

Q5. In what ways are nonparametric tests useful?

6.10 Practical exercises

Ex. 1. Table 6.18 shows the results of five pairs of
cross-breeding using Nile tilapia (Oreochromis niloticus)
and Java tilapia (O. mossambicus). The expected ratio of
progeny is 3:1 (black-to-red). Test whether each ratio and
the combined ratios are similar to the expected one.

Ex. 2. In your study area, there are 3,900 men and 4,000
women. Test whether the ratio of women-to-men is
significantly higher or not.

Ex. 3. A feed company claims that a newly formulated
commercial feed can reduce feed conversion ratio (FCR)
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in catfish by almost 25%. An average of 1.8 is commonly
obtained with the existing feed. Believing this claim, 10
farmers used the new feed. Collected FCR data were as
follows: 1.5, 1.6, 1.8, 1.2, 1.3, 1.2, 1.2, 1.3, 1.2, and 1.3.
Test whether the feed company’s claim is supported by
these data and statistical analysis.

Ex. 4. DO levels (mg·L−1) were measured from two ponds
at early morning (6 a.m.) over a period of 9 weeks (Table
6.19). Pond A is located close to a few trees that give some
shade, but Pond B is in a more open area. Test whether
these two ponds differ in terms of DO level by using the
data provided.

Ex. 5. Two strains of Nile tilapia (local and improved)
were compared for their reproductive performance. Four
groups of similar sizes were used as replicates. The
average numbers of eggs produced per spawning over the
3-month period are shown in Table 6.20. Test whether
these two types of tilapia broodstock differ significantly in
reproductive performance.

Table 6.18 Number of fry produced
by five pairs of crosses.

Table 6.19 Weekly DO levels of
two ponds.
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Table 6.20 Average seed output of
local and an improved strain of
tilapia.
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Chapter 7

Experimental designs and analysis of variance

7.1 Background

When a hypothesis is tested by comparing variances after
partitioning, the method is called analysis of variance
(ANOVA). More specifically, the effect of any factor is
considered significant if the variance of a treatment is
higher than the variance among the replicates. Various
experimental designs are used to separate these variances.
Application and explanation of these designs are presented
in this chapter.

7.2 Completely randomized design

Completely randomized design (CRD) is the basic
experimental design that is used to study the effects of one
factor, i.e. treatment or fixed factor, keeping others
constant; therefore, it is often called a single-factor
experiment. The selected factor (e.g. feed) is varied to
form at least three types of different treatments, e.g.
commercial feed, farm-made feed with fish meal,
farm-made feed without fish meal, etc. The changes in
response variable(s) caused by the different factors are
observed/measured, e.g. survival, growth, net fish yield,
etc. For CRD, all of the experimental units should be
uniform, and the types of selected factors (treatments) are
randomly assigned to the experimental units. Allocation of
the treatments and replications can be done by using a
lottery system, random numbers/table, or any other
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method. Before randomizing, we need to determine the
required total number of experimental units (n). If there are
“t” different treatments of a single factor and the
treatments are replicated “r” times, then:

Total experimental units (n) = t × r

For example, if we want to compare 4 feed types with 5
replications, we will need 4 × 5 = 20 uniform tanks (Figure
7.1), or any other experimental units. Treatments are coded
as T1, T2, T3, and T4, and similarly replicates are R1, R2,
R3, R4, and R5. The combination of treatments and
replicates is coded as T1R1, T1R2,…, T4R5, as shown in
Table 7.1. All of the tanks are assigned with a number
(1–24) for randomization. With the lottery method, all of
these treatment–replication combinations are written on 20
uniform pieces of paper and kept in one bag. Similarly,
tank numbers are written on another set of 20 uniform
pieces of paper and kept in another bag. Assigning the tank
for each treatment-replication combination can be done by
randomly picking the treatment–replications (with one
hand) and the tank numbers (with the other hand) from
both bags simultaneously. An example of treatment
randomization is shown in Figure 7.1.

Once randomization is complete, the researcher can start
the experiment and collect required data depending on the
specific objectives of the research. Some examples of
response variables include:

• fish survival (record any dead fish observed over the period of
the experiment)
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• fish growth and yield (batch weights, individual weights of
sampled fish from each tank or experimental unit)

• differences in body composition; samples need to be taken from
muscles, bones, blood, etc.

Table 7.1 Treatment combinations or experimental design
for CRD.

Figure 7.1 Complete randomization of treatments in all of
the experimental units.
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Figure 7.2 Separation of effects of treatment and
experimental or random error.

There are several factors, especially environmental and
water chemistry, e.g. temperature, DO, pH, alkalinity,
ammonia levels, nitrite levels, etc., that can’t be controlled,
but their levels may vary due to the treatments or other
external factors. However, these factors have direct
impacts on the main response variables, such as survival,
growth/yield, and the body composition of fish. Therefore,
these factors should also be measured or recorded. They
can be used as covariates (see Section 9.2), which will
assist in interpreting the results.

The following equation represents the mathematical model
for CRD:
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Where,

Yi,j is any observation for which X1 = i

i is the level of the factor

j is the replication within the level of the factor

m is the general location parameter

Ti is the effect of having treatment level i Ri is the random
error at treatment level i

Basically, in order for the treatment effect to be
statistically significant, the increment in treatment B
(Figure 7.2) due to treatment needs to be higher than the
experimental or random error.

7.2.1 Parametric test

Normally distributed data are analyzed by using a simple
one-way ANOVA. The steps are as follows:

Table 7.2 ANOVA table for CRD.
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1. Group the data by treatments and calculate the treatment
totals (T), grand total (G), grand mean, and coefficient of
variation (CV).

2. Using the number of treatments (t) and the number of
replications (r), determine the df for each source of
variation.

3. Construct an outline/table of ANOVA as shown in
Table 7.2.

4. Using Xi to represent the measurement of the ith plot, Ti
as the total of the ith treatment, and n as the total number
of experimental plots [i.e. n = rt], calculate the correction
factor (CF) and the various sums of square (SS).

5. Calculate the mean square (MS) for each source of
variation by dividing SS by their corresponding df.

6. Calculate the F-value (R.A. Fisher) for testing
significance of the treatment difference, i.e. mean square
of treatment divided by the mean square error (F = MST/
MSE).

7. Enter all of the computed values in the ANOVA table.

8. Obtain the tabular F-values using:

f1 = treatment df = (t − 1)

f2 = error df = t (r − 1)

and compare, as shown in Table 7.3.
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CRD is very important because it has a high proportion of
df; therefore, it is suitable for smaller trials with fewer
experimental units. ANOVA is done before performing
multiple range tests, as it is stronger than multiple range
tests to see the effects of a factor, but ANOVA does not
compare means, nor does it locate differences. On the
other hand, if experimental units are not homogenous,
there will be an increased experimental error. In such a
case, other designs must be applied as described in the
following sections.

Table 7.3 Basis of conclusions to be made.

Table 7.4 Data collected from a trial to compare four
feeds.

An example of analysis for CRD is presented here. Four
iso-protein commercial catfish pellets differing in lipid
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levels were compared by stocking 50 fish in each of the
cages installed in a single large pond. Data shown in Table
7.4 are the mean final weights (g) of fish (fish from a cage
in replicate 5 assigned for Feed 3 escaped during
handling). Now we can test whether these four feeds
(treatment) show any differences in terms of fish growth.

Here, H0 = m1 = m2 = m3 = m4

Step 1: Calculate sum squares.

Correction factor (C) = (Grand total)2/n = (1,748)2/19 =
160,816 Total SS = (86)2 + (88)2 + ··· + (97)2 – C

= 161,609 – 160,816 = 793

Treatment SS = ∑ [(Treatment total)2/n] – C

= (431)2/5 + (444)2/5 + (410)2/4 + (463)2/5 – 160,816 =
665

Error SS = Total SS – Treatment SS = 793–665 = 128

Step 2: Prepare an ANOVA table as shown in Table 7.5.

From the F-Distribution table shown in Appendix A7,
F3,15,0.01 = 5.42

Table 7.5 ANOVA table of fish growth comparison based
on data from Table 7.4.
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Note: Numerator df = 3; Denominator df = 15.

Reject H0 (P < 0.01) which means that the treatment (feed)
has highly significant (P < 0.01) effect on fish growth.
However, ANOVA does not show which feed is the best
among all or which ones are better than others. In order to
compare among the means for each feed, multiple
comparisons are necessary. On the other hand, if an
ANOVA shows that there is no effect of the factor (feed),
then there is no need to compare among means; multiple
comparisons are unnecessary.

Multiple Comparison Tools: Multiple comparisons are
used to compare all possible combinations of means
simultaneously and are often called pairwise comparisons,
based on which ranking among the means is possible.
There are several methods for multiple comparisons. The
most commonly used methods are least significant
difference (LSD), Newman-Keuls test, Duncan’s multiple
range test (DMRT), Tukey’s honestly significant
difference (HSD) Test, and Scheffe test (Zar 1996). LSD is
not suggested for multiple comparisons, although it was
used by many researchers. Scheffe test is best for multiple
contrasts. Therefore, DMRT and Tukey’s HSD are most
popular for multiple comparisons. Tukey’s HSD is better if
data are less normal. Nevertheless, results of these tests are
more reliable and robust when the data sets are more
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normal and equal in sample sizes. If there is doubt that
data are not in normal distribution, then nonparametric
multiple comparisons are suggested (discussed in later
sections).

The basic principle in multiple comparisons or pairwise
comparisons is that a common value for difference using
pooled variance is calculated. Different methods have been
devised for specific purposes and situations. Most
statistical software include these options and can be easily
used. With a view to describing the method, comparisons
among means have been made. First of all, a value for
comparison has to be computed from the pooled SE
multiplied by the critical value for the given significance
level. The common value of 4.0 has been obtained for the
comparison between two means at time as follows:

t0.05,15 df = 2.131, 95% CI = 1.9 × 2.131 = 4.0 g

Results can be presented either in tabular form (Table 7.6)
or in graphical form (Figure 7.3). Just one form would be
enough; however, for the purpose of describing, both are
shown here.

As a rule of thumb, if the difference between any two
means is higher than 4.0, then those means are considered
significantly (P < 0.05) different. However, the researcher

187



should specify which means are higher or lower than
which ones. Using this example, the following conclusions
can be drawn:

Table 7.6 Table showing comparisons among the means.

Figure 7.3 Final graphical presentation of result using
error bars for variability.

• Feed 3 resulted in the highest (P < 0.05) growth (mean weight)
of fish.

• Feed 4 resulted in the higher (P < 0.05) fish growth compared
with Feed 1.

• Feed 4 and Feed 2 didn’t differ (P > 0.05) in terms of fish
growth.

• Feed 1 and Feed 2 didn’t differ (P > 0.05) in terms of fish
growth.
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While making recommendation, it should be mentioned
that “based on the results of the trial, Feed 3 should be
recommended for highest growth. However, economic
value of using this feed or its price as compared with
others needs to be considered.” As a basic principle, the
additional cost of using this feed should be less than the
economic value of the added yield in the fish production
over others. This is generally neglected by most
researchers, and they may directly recommend the feed
that gives the highest growth and biological significance.
Economic analysis is beyond the scope of this book, so
researchers who need further explanation should refer to
relevant books or consult relevant economists.

7.2.2 Nonparametric test: Kruskal-Wallis test (H-test)

Nonparametric tests are similar to parametric tests for
ANOVA; but, they use ranks rather than the original data
for analysis. Therefore, they are also called “ANOVA by
ranks.” When the samples are not from normally
distributed data or the variances are heterogeneous, ranks
are assigned to the observation for analysis. The method of
ranking is done in the same way as described in Section
6.8.2. As in parametric tests, the Kruskal-Wallis test only
determines whether there is an effect by a factor, but it
doesn’t compare among the means. A nonparametric
method has also been developed for the purpose of
multiple comparisons.

To describe these steps, an example has been taken from
Zar (1996) in which pH data from eight samples in four
ponds (Table 7.7) are collected by a limnologist with the
aim of comparing four different ponds in terms of pH.
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Whether there are any pH differences among pH values
among ponds is tested.

Table 7.7 Data on pH values of water sampled from four
ponds.

Here,

H0 is pH of four ponds are not different

HA is the four ponds differ in pH

As pH is the negative logarithmic value of the hydrogen
ion (H+) concentration, it is not an absolute number;
therefore, it shouldn’t be averaged as such. These values
can be converted to absolute numbers for analysis, but it is
a cumbersome task. Instead, a nonparametric test can be
performed by using ranks.

Here,

Total no. of data (N) = 8 × 4 = 32

Number of treatments (n) = 4 (ponds as treatment)
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Rank totals (values in parentheses are ranks):

R1 (Pond 1) = 1 + 2 + 3.5 + 3.5 + 8 + 10 + 10 + 17 = 55
R2 (Pond 2) = 132.5

R3 (Pond 1) = 176.5 R4 (Pond 1) = 164

H =12/[N(N+1)]× ∑ R2/n−3(N+1)

= 12/(32 × 33) × [552 + 132.52 + 1452 + 1642]/4 – 3 × (32
+ 1)

= 12.69

Correction factor (C) = 1 – ∑T/(N3 – N)

T-tied group, check no.of tied groups:

3.5(3,4),6(5,6,7),10(9,10,11),13.5(12,13,14,15)

20(19,20,21),23.5(23,24),26(25,26,27),31.5(31,32)

Sum of tied groups (∑T)

= (t3 – t)

= (23 – 2) + (33 – 3) + (33 – 3) + (43 – 4) + (33 – 3) + (23 –
2) + (33 – 3) + (23 – 2)

= 174

Table 7.8 Pair-wise comparisons between two ponds at a
time.
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Correction factor (C) = 1 – ∑T/(N3 – N)

=1−174/(323 −N)

= 0.995

Hc = H/C = 12.69/0.995 = 12.76 (Check the table of x 2)

Tabulated value = 7.815

Calculated x 2 values (12.76) are higher than the standard
value (7.815) for 3 df at 5% level of significance.
Therefore, H0 is rejected, which means pH values are
significantly (P < 0.05) different among the ponds.
However, it does not indicate which ponds differ with
which ones. For this purpose, as in parametric test,
multiple comparisons among ponds need to be performed
by using mean ranks rather than original data. The same
data set is used for multiple comparisons. The basic
principle is that the difference between two pairs of means
is converted to the standard difference as d = (A – B)/SE.

For the Kruskal-Wallis test, SE is calculated as:

192



As with the parametric test, the final result can be
presented either in tabular form (Table 7.9) or in graphical
form as mentioned/shown above.

Based on the results, it can be concluded that the pH of
Pond 1 was significantly lower than in Ponds 3 and 4.
Ponds 2, 3, and 4 had no significant differences (P
>0.05)in pH. Similarly, Ponds 1 and 2 had no significant
difference in pH. In this case, it can’t be stated that Pond 3
had the highest pH, nor can be said Pond 1 had the lowest
pH.

Table 7.9 Comparison of means based on their ranks.

7.3 Randomized complete block design

The randomized complete block design (RCBD) is
probably the most widely used design because, in reality, it
is difficult to find all identical or uniform experimental
units in the field of aquaculture, especially in outdoor
ponds. Some of them are closer to or separated by canals,
roads, shade, etc. Even when using cages, some of them
are closer to dikes, whereas others can be far away.
Similarly, few rows of indoor tanks can be in a darker area,
whereas others can be in brighter areas. These factors can
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have large effects on response variables, but these effects
can neither be avoided nor even minimized to negligible
levels. In such cases, the only option is to separate their
effects while designing the experiment by blocking. The
experimental units that are thought to be uniform are
considered one block. Blocking minimizes the random
error by separating the experimental/random error, thereby
maximizing the chance of treatment effects becoming
significant. However, care should be taken while designing
the experiment. All of the treatments have to be included
in each block. Therefore, each block needs to be
subdivided into the experimental units equal to the number
of treatments. Treatments are completely randomized in
each block, which means that a block is a single replication
of the experiment. Using the RCBD, the resulting ANOVA
can separate variations due to treatments, blocks, and
residual error. Appropriate blocking is to minimize the
variance among experimental units within blocks while
maximizing the variation among blocks. Precision usually
decreases as the number of experimental units/treatments
and the size of units per block increase. Therefore, block
size or the number of treatments should be kept as small as
possible. The following steps are followed for
randomization:

1. Determine the total number of experimental units, n =
treatments (t) × blocks (b), as an example shown in Table
7.10.

2. Assign all of the treatments randomly (e.g. Figure 7.4)
in each block by using a lottery or random table as
described for CRD.
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Model for a RCBD:

Yij = m+ Ti + Bj + Rij

Table 7.10 Experimental design for 6 treatments × 3
blocks.

Figure 7.4 All six treatments are randomized within each
block.

Where,

Yij is the observed value for the jth replicate of the ith
treatment (where i = 1 to t and j =1 to n)

m is the grand mean

Ti is the treatment effect for the ith treatment; the
treatment effects may be either fixed or random.

Bj is the block effect for the jth block; the block effect may
be either fixed or random; however, if treatments are fixed,
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then random blocks are required for exact tests of
treatment hypotheses.

Rij is the random error associated with the Yij experimental
unit

If Ti > Rij, then treatment effect is significant after
separation of block effects.

It is clear from Figure 7.5 that two null hypotheses (H0)
are tested in this design, i.e. there is no effect of block and
no effect of treatments; therefore, it is called a two-way
ANOVA.

7.3.1 Parametric test using ANOVA

1. Group the data by treatments and calculate the treatment
totals (T), block totals (B), and grand total (G), grand
mean, and coefficient of variation (CV), etc.

2. Using the number of treatments (t) and the number of
blocks (b), determine the df for each source of variation.

3. Construct an outline/table of the ANOVA, as shown in
Table 7.11.

4. Using Xi to represent the measurement of the ith plot, Ti
as the total of the ith treatment, and n as the total number
of experimental plots [i.e. n = rt], calculate the correction
factor (CF) and the various sums of square (SS).

5. Calculate the mean square (MS) for each source of
variation by dividing SS by their corresponding df.
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6. Calculate the F-values (R.A. Fisher) for testing
significance of the treatment and block differences, i.e.
mean square of treatment divided by the mean square of
the error (F = MST/MSE) and mean square of block
divided by the mean square of the error (MSB/MSE).

7. Enter all of the computed values in the ANOVA table.

8. If there is an effect of block, then treatment effects need
to be compared within each block separately.

9. If there is no significant block effect, data can be
analyzed using one-way ANOVA and then t-test to
compare two means and multiple range tests to compare
among means at a given time. DMRT is the most common,
although Tukey’s HSD has been suggested as middle path
as other tests are considered either too conservative or too
moderate.

10. If ANOVA shows no significant difference, then
multiple range tests are not necessary.

Figure 7.5 Separation of effects of treatment, block, and
random error.
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Table 7.11 ANOVA table for RCBD.

For the purpose of ease of describing the method, the same
example for CRD (Table 7.4) is used here, assuming that
the feeds were tested in five different ponds instead of a
single large pond as in CRD. For example, 4 iso-protein
commercial catfish pellets differing in lipid levels were
compared, stocking 50 fish in each of the cages installed in
5 ponds. Data shown below are the mean final weights (g)
of fish (fish from a cage in Pond 5 assigned for Feed 3
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escaped during handling). Test whether these feeds
(treatment) and ponds show any significant differences in
terms of fish growth.

Here, H0 = m1 = m2 = m3 = m4 and there is no effect of
pond (block).

Step 1: The missing value can be either estimated or left
empty. Researchers have been known to use zero (0) in
place of the missing value, which is wrong. Zero value
means there is no production at all, or all fish have died in
the case of survival data. A zero value drastically lowers
the mean and increases the variance, leaving little space
for detecting the treatment effects, i.e. increased chance of
committing Type II error. It is better to leave the missing
value as blank and use one less df. This could be done here
as well, but for the sake of describing the method, the
missing value has been estimated as:

Table 7.12 Mean final weights of fish with an estimated
value for Feed 3 in Pond 5.

Missing value = [(t× treatment total + b× block total) –
grand total]/(t – 1) (b – 1)
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= [(4 × 410 + 5 × 273) – 1748]/(3 × 4) = 105

After filling in the estimated missing value in Table 7.4 for
the purpose of ANOVA, Table 7.12 has been presented.

If there are more than two missing values, one of them
should be guessed and the other is estimated by using the
guessed value. Then, the guessed value is estimated back
by using the estimated value. Closer values can be
obtained by iterating until both of them become stable.
Although it is difficult, more than two missing values are
possible to estimate. However, as a general rule, missing
values should not be more than 10%, and they should be
used only when data are lost due to unavoidable
circumstances, not as an escape for proper management of
the research trial or survey.

Step 2: Calculate sum of squares.

Correction factor (C) = (grand total)2/n = (1853)2/20 =
171,680

Total SS = (86)2 + (88)2 + ··· + (97)2 – C = 954

Treatment SS = ∑ (treatment total)2/t – C = (431)2/5 +
4442/5 + 5152/5 + 4632/5 – 172,634 = 821

Block SS = ∑ (block total)2/n – C = (374)2/4 + (365)2/4 +
(376)2/4 + (361)2/4 + (378)2/4 – 172,634 = 57

Error SS = total SS – SST – SSB = 954–821 – 57 = 76

Table 7.13 ANOVA table for RCBD.
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Note: Numerator df = 3; denominator df. = 12 for
treatment F and 4 and 12, respectively, for block F. In
most statistical packages, correction factor is called as
“intercept.”

Step 3: Prepare an ANOVA table as shown in Table 7.13.

Here, statistical inference is “reject H0”for treatment but
“accept H0” for block, which means the type of feed has a
highly significant (P < 0.01) effect, but pond has no effect
(P > 0.05) on fish growth. Therefore, the analysis can
actually be done as in the case of CRD, and further
comparison among means is done by using multiple
comparisons as shown in CRD (Section 7.2.1). However,
if the pond (block) had significant effects, multiple
comparisons couldn’t be performed on pooled means of all
five ponds. Instead, the five ponds used for the trial would
be compared by using the multiple comparison method in
order to locate the pairs of ponds having differences. It
could even be possible to determine which pond had the
best fish growth and which one had the lowest. Therefore,
if there was a need to select the best ponds for growth, it
could be possible.

Other examples of RCBD
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1. Efficacy of different drugs on different age or strain
groups of fish in which age or strain is considered as
block.

2. Effects of feeding rate on tilapia seed output harvested
weekly, where time should be considered as block and
feeding rate as treatment.

3. Fish growth trial in cages or hapas in ponds, where
ponds can be blocks.

4. Comparison among organic, inorganic, and their
combination on the fish productivity in different
agroecological contexts.

7.3.2 Nonparametric test: Friedman test for RCBD

As an example, a data set of daily weight gain of fish has
been used to describe the method of Friedman test as
shown in Tables 7.14 and 7.16. With this method,
treatment effect and block effect are tested separately
because ranking must be done separately.

7.3.2.1 Testing treatment effect

Table 7.14 Daily weight gain (g) of fish, obtained from a
trial.
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Where,

a is treatment,

b is block,

x2 =12/[5×4(4+1)][12.52+102+102+182+9.52]−3 ×5(4 +
1)] = 12.6

v=a−1=4−1=3

= 7.815 (From x2 table, Appendix A2)

Reject H0 (P < 0.05), which means weight gain of fish was
significantly different or diet has a significant effect; then,
proceed to multiple comparisons test.

SE = ba(a + 1)/12 = 5 × 4 × (4 + 1)/12 = 2.89

From table, Q0.05, 3 = 2.639

Therefore, critical difference (d) = 2.89 × 2.394 = 6.9
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Multiple comparison results, presented in Table 7.15,
showed that Diets 2 and 3 gave significantly higher daily
weight gain of fish as compared with Diets 1 and 4. But
there was no significant difference between Diets 1 and 4
and between Diets 2 and 3.

7.3.2.2 Testing block effect

For the test of block effect, ranking is done within the
treatment for each diet, as shown in Table 7.16.

Table 7.15 Multiple comparison among treatments.

Table 7.16 Daily weight gain (g) of fish, obtained from a
trial.

Where,

a is treatment,
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b is block

x2 =12/[5×4(4+1)][12.52+102+102+9.52+182]−3×5(4+1)]
= 17.46

v =a−1=5−1=4

= 9.49 (from table)

Reject N0 (P< 0.05), which means the block has significant
effect. Comparisons among the blocks are done as follows:

SE = ab(b + 1)/12 = 4 × 5 × (5 + 1)/12 = 3.1

From table, Q0.05, 4 = 2.639

Therefore, critical difference (d) = 3.16 × 2.639 = 8.3

Multiple comparison results are presented in Table 7.17.

Multiple comparison results showed that Block 5 had a
significantly higher daily weight gain of fish as compared
with Block 4, but there was no difference with Blocks 1, 2,
and 3. Similarly, there were no significant differences
among Blocks 1, 2, 3, and 4.

Table 7.17 Multiple comparison among blocks.
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7.4 Latin square design

Latin square design is used where there are two distinct
nuisance factors affecting from different directions.
However, testing is done for a single factor of primary
interest. The design is often called two-way block design
and is less common in biological research. In this design,
the number of blocks (both sides), number of units within
each block, and number of treatments need to be equal.
The main benefit of this design is that it reduces the size of
the experiment by including one more factor in the
two-factor design. For example, if a design has two factors
(f1 and f2) with 5 levels each, then the total number of
experimental units required will be 25. Without increasing
the experimental units, another factor (f3) can be included
by assigning its levels randomly in each column and row.
Otherwise, addition of the third factor would increase the
number of experimental units by 5-fold, i.e. 25 × 5 = 125,
which is not easy to manage. However, this design is still
restricted to few treatments only, normally four to eight.
All of the observations are indispensable for analysis in
this design; losing a single observation can cause an error.
If this occurs due to unavoidable circumstances, the
missing value (lost observation) has to be estimated before
performing ANOVA, as described in Section 7.3. Three
hypotheses are tested by comparing the variation;
therefore, it is called multifactor ANOVA. Three null
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hypotheses would mean there are no effects of Block 1,
Block 2, and the treatment.

As it is a unique design, randomization and layout are
quite difficult. All of the treatments have to be randomly
allocated to each block of both factors. In other words, all
the treatments in every block, from both sides, need to be
allocated randomly; an example is shown in Figure 7.6.

A model for Latin square block design is below, and the
partition of errors or variations is shown in Figure 7.7.

Yij = m+ Ti + B1 + B2 + Ri

Figure 7.6 Design and layout of treatments in a Latin
square design.
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Table 7.18 Layout and data arrangement in Latin square
design.

Where,

Yij is the observed value

m is the grand mean

Ti is the treatment effect

B1 is the effect of first block

B2 is the effect of second block

Ri is the random error

Figure 7.7 Division of variability in a Latin square design.

208



The following steps are used in estimating and testing a
model using ANOVA:

1. Group the data by blocks and treatments and calculate
the treatment totals (T), block totals (B), grand total (G),
grand mean, and the coefficient of variation (CV), etc. as
shown in Table 7.18.

2. Using the number of treatments (t) and the number of
blocks (b), determine the df for each source of variation.

3. Construct an outline/table of the ANOVA as shown in
Table 7.19.

4. Using Xi to represent the measurement of the ith plot, Ti
as the total of the ith treatment, and n as the total number
of experimental plots (i.e. n = rt), calculate the correction
factor (CF) and the various sums of square (SS).

5. Calculate the mean square (MS) for each source of
variation by dividing SS by their corresponding df.
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6. Calculate the F-values (R.A. Fisher) for testing
significance of the treatment difference (F = MST/MSE
and MSB/MSE).

7. Enter all of the values computed in the ANOVA table.

8. If there is effect of a block, treatment effects need to be
compared within each block of that particular factor.

9. If there are no significant effects of any block, data can
be analyzed by using one-way ANOVA and go for t-test
and multiple range tests to compare treatments (DMRT
and Tukey’s HSD are the most common choices,
depending on the situation).

10. Note: as in other designs, if ANOVA shows no
significant difference, then multiple range tests are not
necessary.

Latin square design helps when there are two nuisance
factors that either can’t be combined into a single factor or
we wish to keep separate. However, it has limited use as it
allows for a relatively small number of treatments.
Sometimes it is quite difficult to have the number of levels
of each blocking variable equal to the number of levels of
the treatment factor. The Latin square model normally
assumes that there are no interactions between the
blocking variables or between the treatment variable and
the blocking variable.

Table 7.19 ANOVA table for Latin square design.
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Variances can be computed as described in RCBD. The
only difference is that there is more block in this design,
which means “error” variance is further split. All of the
methods are the same, including the computation; F-values
for treatment, Block 1 and Block 2, and their SS are
divided by “error MS” separately, as shown in the Table
7.19.

As the manual calculations of variances are quite
complicated and time consuming, and because there are
several statistical software packages readily and easily
available, we suggest that researchers use them. The
following example is given to describe the method for the
guidance purpose:

An experiment was conducted to compare growth
performance of four strains (A, B, C, and D) of Nile tilapia
being fed four types of feeds (Feed 1, 2, 3, and 4) in four
ponds (Ponds 1, 2, 3, and 4). All of the fish were from a
uniform population randomly drawn and allocated to each
tank for the trial. Fish were grown for 3 months and fed at
2% biomass per day. Table 7.20 presents a summary of the
data collected.
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Here,

H01 → there is no difference among the tilapia strains.

H02 → there is effect of feed types.

H03 → there is no effect of pond.

As the treatment factor is randomized in both directions,
treatment means must be computed separately, as shown in
Table 7.20. Statistical analysis can be performed by using
various statistical software programs, which are readily
available. Data arrangement is similar in most of the
programs; shown in Table 7.21. If data have been arranged
taking only one variable, the method is called univariate
analysis. More columns can be added on the right if more
variables have been collected for analysis. For description
purposes, we have used only one variable.

Table 7.22 shows the results of univariate ANOVA. Out of
the three sources of variations (strain, feed, and pond),
only the first two have statistically significant effects on
the final weight of the fish, which is confirmed from P
(Sig.) values. As it was tested using 0.05 level of
significance, the factors which have less than

Table 7.20 Final weights (g) of Nile tilapia at harvest.

212



Table 7.21 Data arrangement for statistical analysis using
computer software.

0.05 (5%) P value (Sig.) are significantly affecting the
dependent variable (final weight of fish). This means that
the probability of these factors affecting the weight of fish
by chance is less than 5%, or it is 95% sure that the effect
is due to these factors. Although pond (block) was also
thought to be a random factor while designing the trial, it
did not actually make any significant impact as the P value
(Sig. = 0.296) is higher than 0.05. This means that only
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100–29.6 = 70.4% of the variation in fish weight is due to
the pond, not 95%. Therefore, the effect of the pond is
insignificant.

After pointing out which factors affect the dependent
variable (fish weight), it is necessary to compare among
the levels of each factor by using multiple comparisons,
especially when researchers need to find the best ones. For
example, the best strain of fish or feed has to be selected to
make a recommendation. For this purpose, multiple
comparisons, often called post-hoc test, are performed,
which are available with most statistical software.
Examples are shown in Tables 7.23 and 7.24.

Table 7.22 Tests of Between-Subjects Effects: dependent
variable: weight.

a Computed using alpha = 0.05.

b 1.200 MS(Pond) – 0.200 MS(Error).

c MS(Error).

Table 7.23 Multiple comparisons using Tukey’s HSD
post-hoc tests for dependent variable: weight.
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Based on observed means.

∗ The mean difference is significant at the 0.05 level.

Multiple comparisons show the combination of each pair
and their probabilities (P = Sign.). At the same time, most
statistical software shows homogeneous subsets (Table
7.25), which makes it easier to understand. For example,
the mean weights of fish weight appearing in the same
subset are not significantly different, e.g. Feeds 1 and 2 do
not differ. Similarly, Feeds 3 and 4 appearing in Subset 2
also did not differ. Feeds 3 and 4 produce significantly
weightier fish than Feeds 1 and 2. In the case of strain
(Table 7.26), results show that the weight of Strain 4,
which appear in the third subset alone, is considered the
highest. Strain 3 appeared with Strain 2 in Subset 2, which
means they do not differ; but Strain 3 differs from Strain 1.
Strains 1 and 2 do not differ as they appear together in
Subset 1. In this case, Strain 2 appears both in Subset 1 as
well as in Subset 2, which means the weight of Strain 2
does not differ from all of the weights appearing in both
subsets.
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Table 7.24 Multiple comparisons using Tukey’s HSD
post-hoc tests for dependent variable: strain.

Based on observed means.

∗ The mean difference is significant at the 0.05 level.

Table 7.25 Homogeneous subsets of weight using feed as
factor (Tukey’s HSD test).

Notes: means for groups in homogeneous subsets are
displayed;. based on Type III SS; the error term is
MS(Error) = 26.229 and the level of Significance (Sig.) i.e.
Alpha = 0.05.
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These results can also be presented in graphical form,
presented in a more attractive and clear way, using error
bars (SD or SE) and alphabetical notations. These error
bars show the variations of the means, which means they
can go up and down up to those levels. They roughly tell
us that, if the error bars created from standard errors of two
means are overlapping, the two means do not significantly
differ. At the same time, if the two means do not have
overlapping error bars, there is a chance of them being
significantly different. Therefore, it is a good method of
presenting means with some statistical sense. More
importantly, alphabets are used to show the confirmation
of the statistical differences. The bars or the means with
the same alphabetical notations are not significantly
different. Conversely, the means or the bars not having the
same alphabets are significantly different, which is shown
in Figures 7.8 and 7.9.

Table 7.26 Homogeneous subsets of weight using fish
strain as factor (Tukey’s HSD test).

Notes: means for groups in homogeneous subsets are
displayed; based on Type III SS; the error term is
MS(Error) = 26.229 and the level of Significance (Sig.) i.e.
Alpha = 0.05.
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Figure 7.8 Comparison among feeds for the weight of fish.

Figure 7.9 Comparison among strains based on the growth
of fish.

7.5 Factorial experiments
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In actual biological systems, organisms are exposed to
many factors simultaneously. Response to one factor may
vary with the response to the levels of other factors. A
single-factor experiment is the simplest method of carrying
out research, but this alone can’t explain complicated
biological systems where there are many factors
interacting. Therefore, factorial designs are particularly
useful in which two or more than two fixed factors
(treatment factors), which have graded levels, are tested at
one time. Depending on the number of factors and their
levels, there are several types of factorial experiments,
which are shown in Table 7.27.

Table 7.27 Types of factorial design.

2 × 2 factorial designs

The simplest factorial design is 2 × 2 (two factors with two
levels), in which this design effect of main factors (e.g.
effects of Factor A and Factor B separately) as well as
effect due to the interactions between factors (e.g. A × B or
N × P) are tested. The interactions between two factors are
shown in Figures 7.10 and 7.11. 3 × 2 factorial designs are
shown in Figure 7.12.
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Figure 7.10 Positive interaction between nitrogen and
phosphorous fertilization.

Figure 7.11 Negative interaction between nitrogen and
phosphorous fertilization.

Figure 7.12 Positive interactions between nitrogen and
phosphorous fertilization for three application levels of
nitrogen.
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The ANOVA model for a two-factor model is shown in
Figures 7.13 and 7.14 and Table 7.28:

Yi = m+ A+ B + (A× B) + Ri

There are three types of models, depending on the type of
factors involved, which is shown in Table 7.29. In Model
I, only treatment or fixed factors are involved, whereas in
Model II, only random or blocks are involved. Model III
includes both factors. The method of analysis differs
slightly as the mean squares are divided by either the error
MS or interaction MS. Table 7.29 summarizes the
computation of F-values.

Three-factor factorial design:

Layout and randomization for a three-factor factorial
design is done similarly to the CRD and RCBD shown in 2
× 2 factorial designs in Figure 7.13 by adding more factors
and interactions among themselves, for example: H0: Null
hypotheses
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1. There is no effect of factor A.

2. There is no effect of factor B.

3. There is no effect of factor C.

4. There is no interaction effect of A & B.

5. There is no interaction effect of A & C.

6. There is no interaction effect of B & C.

7. There is no interaction effect of A, B, & C.

8. There is no effect of block (if designed with block).

ANOVA models (Table 7.30)

Without Block:

Yi = m+ A+ B + C + AB + AC + BC + ABC + Ri

Figure 7.13 Layout and randomization of treatments in
CRD (left) and RCBD (right).
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With Block:

Yi = m+ A+ B + C + AB + AC + BC + ABC + Block + Ri

Factorial design is quite common in aquaculture, and an
understanding of interaction is important. A following
simple example follows.

Effects of vitamin C (mg·kg−1 diet) and crude protein (%)
levels were tested to determine the effects on the weight of
fish using factorial design (Table 7.31). Five levels of
vitamin C and three levels of crude protein are considered,
which forms a 5 × 3 factorial design, resulting in 15
treatments. These treatments are randomly allotted in each
of the three different ponds. The resulting factorial
experiment in RCBD is shown in Table 7.31.

Figure 7.14 Separation variability in factorial design.
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Table 7.28 Two-factor ANOVA table.

Table 7.29 ANOVA models.
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Notes: if there is no interaction, AB MS and the Error MS
will be the same.

Table 7.30 ANOVA table for factorial design with three
factors.

Note: The F -values are calculated as corresponding MS
values divided by either Error MS (MSE) of Interaction
MS (e.g. AB MS, AC MS or BC MS) depending upon the
model type as shown in Table 7.29. Their corresponding
P-values can be determined using standard tables or
software to confirm whether their effects are significance
or not.

Table 7.31 A trial with vitamin C and crude protein on the
growth of fish.
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Where,

Crude protein levels: 20, 30, and 40

Vitamin levels: 1 i.e. control (100 mg·kg−1), 2 (80
mg·kg−1), 3 (60 mg·kg−1), 4 (50 mg·kg−1), and 5 (40
mg·kg−1) All of these treatment combinations are
randomized in each pond, which means that each pond will
receive all of the treatment combinations, as shown in
Figure 7.15.

For the purpose of analysis, Table 7.32 needs to be
reconstructed into three two-way tables (Table 7.33a, b,
and c).

Figure 7.15 Experimental lay-out for a factorial design in
three blocks (ponds).
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Table 7.32 Final weight of fish (g) at the end of trial.

Calculations are shown below:
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1. Grand total = 15,567

2. Sum of squares of all observations = 6482 + 4832 +···+
1622 = 6,714,259

3. Sum of squared totals for pond/sample size = (7,4462 +
4,9762 + 3,1452)/ (3 × 5) = 6,006,526

4. Sum of squared totals for vitamin C/sample size =
(4,9662+ 3,2742+ 2,7042+ 2,5992 + 2,0232)/(3 × 3) =
5,949,866

5. Sum of squared totals for protein/sample size =(4,6202 +
5,2702 + 5,6782)/(5 × 3) = 5,423,355

6. Sum of squared cell totals/sample size (Pond × vitamin
C, two-way table) = (2,3132 + 1,5592+…+ 4812 + 4062)/3
= 6,611,724

7. Sum of squared cell totals/sample size (pond × protein,
two-way table) = (2,2842 + 2,5322+…+ 1,0372 + 1,2492) =
6,045,354

8. Sum of squared cell totals/sample size (protein ×
vitamin C, two-way table) = (1,2902 + 1,0122+…+ 8462 +
7112) = 6,041,024

9. If there were replications, sums of squared for each
replicate totals would have to be computed. But in this
case, there are no replications; therefore, there is no within
the group variation.
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10. Correction factor (C) = (Grand total)2/n = 15,5672/(3 ×
3 × 5) = 5,385,440

11. SS of Pond = 3 – C = 6,006,526 – 5,385,440 = 621,086

12. SS of vitamin C = 4 – C = 5,949,866 – 5,385,440 =
564,426

13. SS of Protein = 5 – C = 5,423,355 – 5,385,440 =
37,915

14. SSPond × VitC (interaction) = 6–3 – 4 + C = 6,611,724 –
6,006,526 − 5,949,866 + 5,385,440 = 40,772

15. SSPond × Protein (interaction) = 7–3 – 5 + C = 6,045,354
– 6,006,526 − 5,423,355 + 5,385,440 = 914

16. SSProtein × VitC (interaction) = 8–4 – 5 +C = 6,041,024
– 5,949,866 − 5,423,355 + 5,385,440 = 53,243

17. SSPond × Protein × VitC (interaction) = 2 – (6 + 7 + 8) +
(3 + 4 + 5) – C = 6,714,259 – (6,611,724 + 6,045,354 +
6,041,024 + (6,006,526 + 5,949,866 + 5,423,355) –
5,385,440 = 10,464

Table 7.33 Two-way ANOVA tables for factorial design.

229



Now, these parameters are summarized in an ANOVA
table (Table 7.34) in which MS values are obtained from
SS dividing by their respective df, and F-values are
obtained by dividing the MS values by
SSpond-vitC−protein.

Table 7.34 ANOVA table for factorial design.
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Table 7.35 Multiple comparisons (post-hoc tests) based on
each factor.
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Once the ANOVA is completed, multiple comparisons can
be done among the treatments within each factor.
However, if a factor has three or more than three graded
levels, regression analysis can be done for trend analysis,
as described in Section 8.2. Results of multiple
comparisons are presented (Table 7.35) for each factor as
in Section 7.4.

Multiple comparisons show that all three ponds differ
significantly (P <

0.05). The first pond produced the largest fish followed by
the second pond, and the third pond produced the smallest
fish. Similarly, feed with the third level of protein (40%)
gave the highest followed by the second (30%), and the
lowest level of protein (20%) produced the smallest fish.
However, all of the levels of vitamin C differ, except the
third and fourth. The first level of vitamin C gave the
highest followed by second, and the level 5 produced the
smallest fish.

Most the researchers have problems with interpreting data
when two factors have interactions. Use of graphs would
make this clearer. For example, instead of parallel lines,
the final weights of fish are shown closer to higher levels
(lower mg·kg−1 diet) of vitamin C tested in three different
ponds (Figure 7.16). A similar trend can be seen between
protein and vitamin C levels (Figure 7.17).

Figure 7.16 Interaction effects of Pond and vitamin C
levels.
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Figure 7.17 Interaction effects of protein and vitamin C
levels.

7.6 Questions
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1. In what way are experimental designs important?

2. Which design is more suitable for an experiment in a
pond system and why?

3. What are the differences between Latin square and
factorial designs?

4. If you have a limited number of experimental units, how
do you replicate your treatments?

7.7 Practical exercises

Ex. 1. Table 7.36 shows the final mean weights (g) of
fingerlings of different fish species after nursing for 2
weeks in polyculture in four ponds. Analyze the following
data using the appropriate statistical tools, present the
results in graphical form, and write the results and
discussion.

Table 7.36 Final mean weights (g) of fingerlings.

Ex. 2. Data in Table 7.37 of fish productivity
(t−1·ha−1·year−1) were obtained from an experiment in
which four types of culture systems were compared. Write
possible null hypotheses, analyze the data using
appropriate statistical tools, and present the data using
superscripts to show the comparisons among the means.
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Ex. 3. Scores shown in Table 7.38 were given by the three
members of a taste panel for the taste of meat from
different species of fish. Test whether there are any
differences among the six species of fish. Present results in
tabular and graphical forms (using lines and superscripts)
and write conclusions.

Ex. 4. A fertilization trial was conducted to evaluate the
effects of chicken manure (100 and 200
kg−1·ha−1·week−1) and urea (0 and 30 kg−1·ha−1·week−1)
on the growth of tilapia in ponds. Treatments were
randomly allocated to 16 ponds assumed to be uniform in
every aspect. Final mean weights (g) of fish are recorded
(Table 7.39) after 150 days. Analyze the data and present
the results (table and graph) and conclusions.

Table 7.37 Productivity of fish in polyculture
(t−1·ha−1·year−1).

Table 7.38 Taste scores of different fish species.
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Table 7.39 Mean individual weights of tilapia (g) obtained
from the fertilization trial.
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Chapter 8

Testing and exploring relationships

8.1 Background

Chapter 7 covered basic methods of designing experiments
and analyzing the results in which only one or a few
factors and few levels of these factors were included.
However, as mentioned earlier, in an actual biological
system, an attribute or variable can be influenced by many
factors and their levels simultaneously. These factors may
vary themselves in different situations or locations and
affect the attributes of others differently. Although
factorial design and multifactor ANOVA help us
investigate the relationships or interactions among the
factors, it assumes that effects are linear, which means they
increase or decrease at a constant rate. But in biological
systems, there can be three or more fixed or independent
factors, which produce a range of values with certain
trends. The values may follow increasing or decreasing
trends at varying rates. In addition, when a factor is acting
upon one variable, there might be several other factors
affecting the same variable; and, at the same time, these
factors might affect many variables that might interact
with each other. Some of these factors can be controlled
and tested, whereas others are impossible to control but
their effects can be separated by considering them as
blocks. There can be even more factors that are completely
out of control but still vary with time, season, or any other
factor; these are called covariates.
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In aquaculture production systems, a number of factors
could bring about desired changes. Identifying these
factors, exploring the nature of these relationships, and
measuring them could benefit the people who depend on
this. Therefore, in this chapter, attempts have been made to
describe methods of hypothesis testing on relationships,
which include proper designing and conducting of
experimental or survey research and use of appropriate
statistical methods for analysis (Figure 8.1). This should
serve as one step further in explaining or solving the
problems of complexity of the real world or nature.

Figure 8.1 Types of factor-variable relationship.

8.2 Single-factor regression

Whether there is any cause and effect or dependency of
one factor (effect) on the other (cause factor) is confirmed
and/or measured by regression analysis. The factor (cause)
brings a significant change (effect) on certain
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characteristics, often called dependent or response
variables. For example, an increase in the level of nitrogen
fertilizer in fish ponds increases fish yield, increased
feeding rate increases growth rate, and so on. While
designing survey or experimental research, it is very
important for the researchers to identify the factor and the
response variable. The levels of the factor should be
sufficiently low as well as high so that an actual complete
relationship can be established. Although the minimum
numbers of level is three, more is better. In some cases,
due to a lack of sufficient experimental units, researchers
use fewer levels. There is some confusion about whether a
level should be replicated. For regression analysis, it is
better to increase the level of the factor rather than have
replication for the levels. For example, if a researcher has
six ponds for a trial, it is better to have six treatment levels,
e.g. 0, 1, 2, 3, 4, and 5 kg N·ha–1·day–1, than to have three
treatment levels, such as 0, 3, and 6 kg N·ha–1·day–1, with
two replications.

8.2.1 Simple linear regression

Exploring relationships starts with a simple regression
analysis, in which only one factor is considered to affect
the variable, keeping or assuming the other potential
factors constant. Preliminary regression analysis starts with
drawing a scattered diagram to see the nature of data
points followed by deciding the appropriate analysis. By
looking at the distribution of data points in Figure 8.2
(left), anyone can guess that there is a linear relationship
between fish production and level of nitrogen where cause
(level of nitrogen) and effect (fish production) are very
clear. If a factor brings a constant increase or decrease in a
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variable, the relationship is linear; therefore, linear
regression analysis has to be performed. In linear
regression analysis, attempts are made to find a straight
line, which represents the trend that the data points depict.
The best fitted line is drawn through the points in such a
way that the sum of squared deviations to the points from
the line is minimal. Therefore, it is often called the least
square deviations (LSD) method. Once the straight line is
found, its slope or gradient is calculated, computing the
change in response variable (ΔY) per unit change in factor
(ΔX), i.e. b =ΔY/ΔX (Figure 8.3).

Figure 8.2 Scatter diagram (left) and a line drawn to
represent data points (right).

When the trend or slope (b) is positive, it means that there
is an increase in response variable with the increase in
factor. When the slope is negative, it means the response
variable declines when the factor increases (Figure 8.4).

Figure 8.3 Slope of the line as relationship between factor
X and response variable Y.
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Figure 8.4 Relationship between factor and variable can
be either positive (+) or negative (−) depending upon the
situation.
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The simple linear relationship is expressed mathematically
as shown below, the coefficients of which are shown in
Figure 8.3.

Y=a+bX

Where,

Y is a response variable that depends on factor X

X is a fixed or independent factor that affects variable Y

a is the constant or intercept, i.e. the level of Y at 0 level of
X.

bis the slope of line or change in Y per unit change in
factor X, i.e. b=ΔY/ΔX

To describe simple linear regression, an example is given
here. A simple data set is given in Table 8.1 in which
weights of fish from 0 to 12th week were found in a trial.
Table 8.2 shows the detailed calculations for the working
equation.

Here,

Age of fish (wks) is an independent factor “X”

Weight of fish (g) is dependent factor “Y”

Total age (å X) = 78, n = 13, and mean age ( ) = 6 wks
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Total weight (å Y) = 568, n = 13, and mean weights ( ) =
43.7 g

The linear model: Y = a + b ×

Where regression coefficient (b) is computed as:

Table 8.1Weekly mean weights (g) of fish reared in a
pond.

Table 8.2 Rearrangement of table for the computation of
slope (b).

Here,
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The linear model is = a + b ×

Using values of b, ,and ,constant (a) can be computed as:

a= −b =43.7−(5.44×6)=11.03g

R-square value can be computed as:

Here, the strength of the relationship between the weight
of fish and the growth period (week) is 0.998, which
means 99.8% variation is explained by the fitted straight
line. Only 0.2% is the residual variance, which is
explained by unknown factors.

Here,

Intercept or the constant (a) = 11.03 g

Slope or growth rate (b) = 5.44 g/wk

Linear model: Y = a + b

Y=11.03+5.44X
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Based on the results, it can be concluded that the estimated
weight of fish at stocking (0 week age), i.e. intercept, a =
11.03 g, although observed data have been reported as 10.3
g. They grew by 5.44 g every week. Using this equation,
prediction for any week, assuming that growth rate is
constant, can be made. For example, what would be the
weight of fish at the 20th week?

Here,

a=11.03, b=5.44, and X=20

Substituting these in the equation, we get

Y20wk = 11.03 + (5.44 × 20) = 119.8 g

This shows that, at the end of the 20th week, fish will
reach about 120 g.

8.2.2 Hypothesis testing

In regression, an attempt is made whether any trend or
relationship between the factor and the response variable is
tried, rather than comparing the output of two levels. Many
researchers get confused about whether they should use
factorial ANOVA followed by t-test or multiple range test
or regression. Whenever possible, regression analysis
should be performed rather than the use of factorial
ANOVA. The well-fitted trend line or the model allows
intrapolation, and every level of factor produces different
outputs.
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Before performing hypothesis testing, it is necessary to
know about the degree of representation of data points or
variability by the fitted line, i.e. r-square (r2) value. It is
also known as the coefficient of determination, which
serves as an indicator of how well the data points are fitted
in the model. It is measured on a scale of 0.0 to 1.0. When
r2 is 1.0, 100% variability is represented or explained by
the model. In other words, the two variables have perfect
association. If a model has an r2 value of 0.75, it represents
about three-fourths (75%) of the original variability. The
remaining 25% is called residual variance, which means
that there are other factors attributed to the remaining
variation. Therefore, the higher the r2 value, the better the
model and the prediction made based on the model. In
regression models or equations, coefficients such as a, b, c,
etc. are used to signify their contributions to the variable. It
is very important to know whether these coefficients are
significant or not, and no matter whether they are small or
large. This will be described with an example in the next
section.

There are three main points while testing hypothesis for
linear regression:

1. There is no significant relationship between the response
variable and the factor, which means slope (b) = 0.

2. There is no significant difference between slopes of two
lines, i.e. b1 = b2.

3. Intercept is not significant, which means constant (a) =
0.
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Figure 8.5 Comparison of slopes with x-axis (left) and
between two slopes (right).

On the left of Figure 8.5, the slope of a line is not much
different from 0, which means it is almost parallel to the
x-axis. Therefore, it needs to be tested statistically against
zero value. Similarly, on the right of Figure 8.5, the slopes
(b1 and b2) of the two lines (dotted and solid) look
different. In order to confirm whether they differ or not,
they need to be tested. Their slopes can also be tested
against zero value. To test these hypotheses for slopes,
mainly two methods are used: ANOVA and Student’s
t-test. In this section, both of these are described using the
data given in Tables 8.1 and 8.2, and a summary of the
ANOVA table is shown in Table 8.3.

Here,

First, to test the null hypothesis (H0): b = 0

Regression SS = [∑(X− )(Y− )]2/ ∑(X- )2

=(990.8)2/182=5,394
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Total SS = ∑(Y − )2 = 5,404

Error or residual SS = Total SS – Reg. SS = 5,404 − 5,394
= 10

F0.05,1,11 = 4.84, P < 001, reject H0, which means the
relationship between the dependent variable and the factor
is highly significant. The slopes can also be tested using
Student’s t-test, similar to the testing of two treatment
means:

t=(b−0)/SEb

From the previous example: n = 13, b = 5.44 g/wk

Table 8.3 ANOVA table for regression.

Here, t0.05,11 = 2.201. Therefore, reject H0, which means
the slope of the line is significantly higher than zero (0). In
other words, the weekly growth rate of fish (5.44 g) is
significantly higher than zero (0). Therefore, the fish in
question show a significant growth every week, i.e. at the
rate of 5.44 g.
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Similarly, two slopes can be compared as in the case of
two treatment means using Student’s t-test with the null
hypothesis (H0): b1 = b2,as shown below:

t0.05·n−2 = (b1 − b2)/SEb1−b2

As in the multiple comparisons for means, it is possible to
test multiple regression slopes, which is expressed as

(H0): b1 = b2 = b3 =… = bn

In a similar way, coefficients of each factor obtained from
nonlinear regression analysis can also be tested against
hypothetic values (e.g. 0) and can also be compared
between two of their corresponding coefficients.

8.2.3 Nonlinear regression

In well-controlled production systems, e.g. laboratories or
factories, a linear relationship continues between the factor
and the response variable, which means that every unit of
additional input adds the same amount of output
indiscriminately, regardless of the scale. However, in most
biological systems, there are other factors acting at the
same time which can’t be controlled, but they can limit the
production or the response variables. Therefore, the linear
relationship no longer remains, and nonlinear regression
analysis is necessary to explain such types of relationships.
For example, when we increase the level of nitrogen
fertilizer to 3 kg·ha–1·day–1 or more, then the production
per unit may not increase at the same rate afterward.
Further addition of the fertilizer even might reduce the
production due to toxicity or excessive growth of plankton,
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which causes oxygen depletion. This type of relationship is
called a quadratic relationship. In Figure 8.6, it can be
clearly seen that the extended straight line does not
represent the points for 4 kg·ha–1·day–1, but the curved
(quadratic) line looks better representative or better fitted
with the points.

In many cases, an additional amount of nitrogen fertilizer
used at the lower levels might give higher additional
production than its previous unit, i.e. increasing at
increasing rate. This type of relationship is called an
exponential relationship. This is quite common in growth
at younger stages of fish and other animals. Figure 8.7
presents three of the most common types of relationships
between a response variable and a factor.

Quadratic and exponential are the most common nonlinear
relationships in the biological system, including
aquaculture production system. Although there are other
types of relationships, e.g. cubic, growth, logarithmic, etc.,
they are not as common; therefore, these relationships are
not covered in this book.

Figure 8.6 Relationship between nitrogen fertilizer and
fish production.
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As in the case of linear relationship, other types of
relationships can also be expressed in mathematical
equations or models, viz.:

Quadratic:

Y=b0 +b1 +b2X2

Exponential:

Y=a×ebx

Where,

Y is the response variable that depends on factor X

X is the fixed or independent factor that affects variable Y
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Figure 8.7 Types of relationship or trend that a data set of
data may follow.

Figure 8.8 Polynomial relationships.

e is the natural logarithm
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a is the constant or intercept, i.e. the level of Y at 0 level of
X

b is the slope of the line or the change in Y per unit change
in factor X

c is the coefficient of the second-degree term of factor X

Figure 8.8 shows the model of polynomial relationship
(cubic and so on); however, this is rarely found in the
biological system. If this exists, it can also be expressed in
mathematical term by adding terms in the quadratic model:

Y=b0 +b1X+b2X2 +b3X3

Y=b0 +b1X+b2X2 +b3X3 +b4X4

Where, d and f are coefficients of the third- and
fourth-degree terms of factor X.

8.2.4 Model formulation and selection

In many cases, it may not be clear whether linear,
quadratic, or any other types of line can best represent all
of the data points. Preliminary model selection starts by
drawing a scattered plot of the data generated or collected
by the researcher. By looking at the points, their
distribution, and trend, an experienced person can judge or
guess the type of relationship that suits them best.
However, regression analysis can assist in choosing the
best model based on certain criteria or computed values,
such as significance of the model or probability and the
strength of the relationship (r2). Therefore, in order to
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choose the best model, a scatter plot is needed to see the
trend and outliers. The outliers are those data points that
are far away from most of the others, which need special
attention as a single outlier can change the trend line. They
can be discarded with adequate justification to improve the
model. However, without any reasonable justification, they
shouldn’t be discarded. Once potential models are
developed, selection of the best model is complete. The
first criterion is that the model should be significant. If
more than one model is significant, then selection is done
based on the r2 value. If r2 values are very close, select the
simplest model, i.e. linear, for easier explanation and
understanding. The determinants or the coefficients, i.e. a,
b, c, etc., are tested for their statistical significance,
meaningful or higher than zero. Hypothesis can also be
tested whether there are two lines and whether their slopes
are significantly different. Prediction for the values of Y
can be made for given values of X once the model is valid
or significant. The example below explains the selection
steps.

Table 8.4 Summary of main regression models with CM
as an independent variable.

Table 8.4 is the summary of outputs of regression analysis
using one of the statistical packages in which the
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relationship between chicken manure (CM), i.e. X, and net
fish yield (NFY), i.e. Y, was analyzed.

Here,

Dependent variable names appear in the first column as
“Dep.,” e.g. NFY.

Types of model appear in the second column as “Models,”
e.g. linear quadratic, cubic, exponential, and logarithmic.

r2 values for the models appear in the third column named
“Rsq.”

df is in the fourth column

The F-value appears in the fifth and probability (P) values
appear under the “Sigf” column.

Intercept (a) values appeared in the seventh column,
followed by the coefficients of X values, respectively, in
other columns.

Based on the results, mathematical models can be
formulated as follows:

Linear: Y = 2321.18 + 5.06X (n = 27, P = 0.00, r2 =
0.654)

Quadratic: Y = 1029.14 + 18.04X − 0.0135X 2 (n = 27, P
= 0.00, r2 = 0.914)
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Cubic: Y = 774.282 + 22.1247X − 0.0241X2 +
0.0000069X3 (n = 27, P = 0.00, r2 = 0.919)

Exponential: Y = aebx = 2207.95e0.0013

Or

Ln Y = Ln (2207.95) + 0.0013X (n = 27, P = 0.00, r2 =
0.652)

Logarithmic: Y = a + b LogX (n = 27, P = 0.00, r2 =
0.832)

Y=−4179.0+1582.98LogX

Selection of the appropriate model is a very important part
of nonlinear regression analysis. The following steps
should be followed:

Figure 8.9 Quadratic relationship between chicken manure
and net fish yield.
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Step I: Select significant models only (i.e. F Sigf or P <
0.05).

Step II: If there is more than one significant model, select
the one with higher r2.

Step III: If r2 values are quite close, select the simplest
model, which is easier to describe or justify based on the
constant and the trend line, e.g. linear should be preferred
to quadratic and exponential, and they all should be
preferred to the cubic model.

Step IV: Once a model is selected, results should be
presented by plotting a graph along with its equation,
number of samples taken, and the coefficient of
determination (r2).

In this particular example, all types of models obtained
from a single set of data and presented in Table 8.4 are
significant (P = 0.000). Now we have to determine which
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model represents or explains the highest variability. In
other words, the model which has higher r2 should be
selected. For example, the cubic model has the highest, i.e.
0.919. That means about 92% of the variability is
explained by the factor (chicken manure). Similarly, the
quadratic model has 0.914 (91%), which is very close to
the r2 of the cubic model. In this case, the quadratic model
is simpler and makes more sense than the cubic model. A
cubic relationship is quite difficult to explain and normally
is not applicable in most biological systems. Therefore, the
quadratic model should be selected (Figure 8.9). ANOVA
of regression (Tables 8.5 and 8.6) shows the coefficients of
the model and their significance.

Results of the regression are presented below:

Dependent variable: NFY Method: Quadratic

Multiple R 0.95616

R2 0.91424

Table 8.5 ANOVA table for quadratic regression.

Table 8.6 Variables in the equation.
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Adjusted R2 0.90709

Standard Error 644.72240

The selected quadratic model can be mathematically
expressed as:

Y=1029.14+18.04X−0.0135X2

Where, n = 27, P = 0.000, r2 = 0.91.

The model shows that it is highly significant with high
coefficient of determination as 91% of the variability is
explained by the model. Only 9% is residual variance,
which can be due to other unknown factors. Statistical
outputs are not shown in the main text of any report or
publication, but they should either be in an appendix or
kept with the researcher so that they can be checked or
traced back, if necessary. Conclusion from the analysis
should be summarized as:

• About 1.0 ton of fish can be produced without chicken manure.
• About 18 kg of fish·ha–1·year–1can be increased (P < 0.05) by

adding 1 kg·ha–1·week–1 = 52 kg·ha–1·year–1 chicken manure
up to 600 kg·ha–1·week–1.

• Use of excess chicken manure (>600 kg·ha–1·week–1) reduces
the fish yield.

• Maximum production level (x) = −b/2a, i.e. 18.04/(2 × −0.0135)
= 668 kg.
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Regression analysis can also be used for interpolation or
extrapolation. Predicting or estimating a value of response
variable (Y) for a level factor/input within the range is used
to determine the relationship. For example, finding the
value for X2 as shown in Figure 8.10, where data used for
determining the trend were between X1 and X4, is called
interpolation, whereas predicting a value for a level of
factor/input outside the range used to determine the
relationship is called extrapolation, e.g. Y value for X5 as
shown in Figure 8.10. Normally, it is dangerous and
should not be done except for the specific purpose of
prediction.

Figure 8.10 Interpolation and extrapolation using the best
fitted model.

8.3 Multiple regression

In reality, response variables are affected by many
independent factors simultaneously. Therefore, any study
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of impacts of a factor in isolation may not represent the
true picture of the actual phenomenon, unless there is a
well-controlled environment. Especially if a researcher is
carrying out a trial in outdoor conditions and even
collecting data from a survey of a wide range of
environments, multiple regression analysis is necessary.
For example, fish growth is affected by pond fertilization
(N, P, K, etc.), feeding rate, temperature, DO, and several
other factors. In a biological system, the relationships
between these independent factors and dependent variables
are not necessarily linear. However, as nonlinear
relationships are quite complicated to deal with, they are
beyond the scope of this book. In this section, methods of
linear multiple regression are described with an example.

Multiple linear regression model is represented by the
equation:

Y=a+b1 ×X1 +b2 ×X2 +…+bn ×Xn

8.3.1 Methods

Multiple regression identifies a model initially and
iteration is carried out repeatedly, altering the model by
adding or removing a predictor variable based on
“stepping criteria.” Iteration or the search for a new
predictor is terminated when stepping is no longer possible
with the stepping criteria, or when a specified maximum
number of steps has been reached. In the resulting model,
if ANOVA shows significance, that means at least one
factor has significant effect, but it does not indicate which
factors have significant effects; therefore, we must consult
the table for coefficients for each factor. The best-fitted or
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most appropriate model is the one that includes all of the
factors whose coefficients are significant.

There are main two methods of multiple regression
analysis:

1. Forward selection or stepwise method

2. Backward elimination method

The forward selection method selects the most important
variables serially. Therefore, it is possible to identify or
rank variables based on their importance as it quickly
determines the most important variable first, followed by
the others serially. For example, if there are six variables
from X1 to X6, the forward selection method would show
the following results:

Model 1: Y = a + b2 X2

Model 2: Y = a + b2 X2 + b1 X1

Model 3: Y = a + b2 X2 + b1 X1 + b5 X5

Variables X3, X4, and X6 were discarded because their
coefficients were not significant, i.e. P > 0.05. The final
selected model is Model 3, as it includes all of the
significant variables.

The backward selection method starts by including all of
the variables at first, then iterates by discarding
insignificant variables step-by-step and keeps only
significant ones at the final model. This method quickly

262



identifies the least important factors easily. For example,
with the six variables, X1 to X6, the backward selection
method shows the following results:

Model 1: Y = a + b2 X2 + b1 X1 + b5 X5 + b3 X3 + b4 X4 +
b6 X6

Model 2: Y = a + b2 X2 + b1 X1 + b5 X5 + b4 X4 + b3 X3

Model 3: Y = a + b2 X2 + b1 X1 + b5 X5 + b4 X4

Model 4: Y = a + b2 X2 + b1 X1 + b5 X5

As in the forward selection method, the variables X3, X4,
and X6 are discarded because they are insignificant (P >
0.05). The final model chosen is Model 4.

8.3.2 Example

For the purpose of demonstrating the method, an example
of air pollution is described here, hoping that aquaculture
researchers will also be able to analyze some
environmental data.

Table 8.7 shows the data on air pollution in 20 selected
American cities (Sokal and Rohlf 1969). The dependent
variable (Y) recorded is the annual arithmetic mean
concentration of sulfur dioxide (μg·m–3) as an indicator of
air pollution. Among the six predictor variables, two are
human-related, and the remaining are ecological variables
which are as follows:

Y–SO2 inair(μg·m–3)
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X1 – temperature (°F)

X2 – no. of enterprises (>20 workers)

X3 – population (‘000)

X4 – wind speed (m·hr–1)

X5 – precipitation/rainfall (inch)

X6 – no. of rainy days·year–1

Table 8.7 Human and ecological variables of 20 American
cities (Sokal and Rohlf 1969).

Analyzing the data, Y as the dependent variable and X1 −
X6 as independent factors or predictors in multiple
regression, the results obtained are presented in Tables 8.8
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and 8.9 using forward and backward selection methods,
respectively.

Y−SO2 in air(μg·m–3)

Factors: X1, X2, X3, X4, X5, and X6

Table 8.8 Results from stepwise or forward selection
method.

a Dependent Variable: Y

Table 8.9 Results from backward selection method.
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a Dependent Variable: Y

8.3.3 Interpretation of results

Table 8.10 shows a summary of three models obtained
from the forward selection method. The first Model selects
the most important factor, i.e. X2, Model 2 adds the next
important and significant factor, i.e. X1, and Model 3 again
adds X5 as it is also significant; then it stops, as there are
no other significant factors in the factor list. Model 3 is the
one to select as it includes all of the possible significant
factors and excludes all the factors that have no significant
effect. The r2 value increases with the increase in number
of significant factors. Similarly, it increases as the number
of insignificant variables are excluded from the model.

266



It does not matter which method we use as both of the
methods ultimately give the same results, e.g. the third
model obtained from the forward selection method (Table
8.8) and the fourth model from the backward selection
method (Table 8.9). Both methods stop and produce the
final model when all of the factors that have significant
effects are included.

Table 8.10 R2 values of the models from the forward
selection method.

a Predictors: (Constant), X2

b Predictors: (Constant), X2, X1

c Predictors: (Constant), X2, X1, X5

d Dependent Variable: Y

The model is expressed as using the coefficients appearing
in a column under “B” in Tables 8.8 or 8.9 as:

Y=83.963− 1.823X1 +0.02715X2 +0.854X5

Where, n = 20, P = 0.000, r2 = 0.793

The description of the model is summarized as follows:
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• Per unit increase in temperature (X1) decreases 1.823 g SO2·m–3

as there is negative partial correlation.
• Increase of 1 enterprise (X2) can increase 0.0275 μg SO2·m–3.
• Increase of 1 inch of rainfall per year can increase 0.854 μg

SO2·m–3.
• Based on the model, predictions can be made (described in

Section 8.3.4).

8.3.4 Prediction

What would be the minimum and maximum SO2 levels in
a city where annual temperature ranges from 45 to 75°F, if
there are 2,000 enterprises and the average annual
precipitation is 50 inches?

Solution:

For minimum temperature: 45°F

Y=83.963− 1823X1 +0.02715X2 +0.854X5

= 83.963− 1823(×45) + 0.02715(×2000) + 0.854(×50)

= 99 μg SO2·m–3

For maximum temperature: 75°F

Y=83.963− 1.823X1 +0.02715X2 +0.854X5

= 83.963 − 1.823(×75) + 0.02715 × (2000) + 0.854(×50)

= 44 μg SO2·m–3

The range is 44–99 μg SO2·m–3
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Figure 8.11 Description of selection of model in multiple
regression.

8.3.5 Selection of method

It is a question whether a researcher should use the
forward selection or backward elimination method. The
basic principle is that, if we have many variables in the list
but expect only a few variables to have significant effects,
then we would use forward selection. However, on the
other hand, if we expect many variables to have significant
effects and only a few will be discarded, then the backward
elimination method is suitable. For example, if there are 20
variables/factors and we think that only 5 factors will have
effects, then it’s better to go from the front (Figure 8.11).
However, if we think 16 factors have significant effects, or
only 4 factors will needed to be discarded, then start from
the back and use the backward selection method. This is
very similar to selecting a path of low distance to reach
your destination faster.

8.4 Correlation and parametric test

Correlation is a measure of association between or among
variables. The basic assumption of correlation is that there
is no dependency of one variable on the other. The two
variables go together, caused by one or more other factors
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showing some sort of association. The degree of
association is expressed as the correlation coefficient (r).
Correlation can be either positive or negative. Positive
correlation means that an increase in one variable is paired
with the increase in the other, e.g. length and weight of
fish. Whereas in the case of negative correlation, increased
value of the first variable is coupled with decreased value
of the second variable. Fish survival and daily weight gain
normally have negative correlation because high survival
means more fish remained in the system and share limited
space and food, which results in smaller fish, i.e. low daily
weight gain.

The correlation coefficient (r) can be computed by using
the following formula:

As with other statistical parameters, the correlation
coefficient can also be computed using a working formula
without means, such as:

Where,
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N is the number of data pairs

∑XY is the sum of the products of data pairs

∑X is the sum of the first variable, i.e. X

∑Y is the sum of the second variable, i.e. Y

∑X2 is the sum of the squared observations of variable X

åY2 is the sum of the squared observations of variable Y

The correlation coefficient is measured within ±1 scale or
−1 ≥ r ≥ +1. If two variables have a correlation value of
+1, that means they have perfect (100%) positive
correlation; similarly, if they have a correlation value of
−1, that means perfect (100%) negative correlation.
Similarly, correlation of zero (0) means the two variables
have no association at all. However, in reality these
conditions do not occur.

The squared correlation coefficient, i.e. r2, represents the
proportion of common variation between two variables;
therefore, it is also called the coefficient of determination
(see also Section 8.2.3). It is normally expressed in
percentage, e.g. 92%, which means 92% of the variation is
due to their association and the remaining 8% is due to
other factors or conditions, also called residuals.

For the sake of understanding this in qualitative terms,
correlation (r) has been crudely categorized as high
(0.8–1.0), medium (0.6–0.8), fair (0.4–0.6), and low
(<0.4); however, the reliability of correlation has to be
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tested for its significance, which depends mainly on the
size of sample. In linear correlation, it is assumed that the
residuals are distributed normally. If the size of sample is
at least 50, data are most likely normal, and if it reaches
100 or over, then a researcher need not worry about
meeting normality assumptions.

As in regression, correlation coefficients can also be tested
as to whether they are significantly higher than zero (0) or
compared between themselves. The significance of
correlation coefficients depends on their magnitudes as
well as the size of the samples. Although a low correlation
coefficient from a large sample size can be significant,
reliability or the significance of the correlation coefficient
increases with its magnitude. A difference of 0.10 between
two correlation coefficients may not be significant if the
two coefficients are 0.10 and 0.20, but the same degree of
difference, i.e. 0.10, can be highly significant when the
two coefficients are 0.80 and 0.90 in the same data sets.

For the purpose of describing the method, an example is
given. From a trial of length (L) and weight (W),
measurements of 29 male tilapias were recorded
simultaneously (Table 8.11) to see the correlation. For this,
the crossproducts of L and W and their squares need to be
calculated as shown in Table 8.11.

Table 8.11 Total length (L) and net weight (W) of 29 male
tilapia.

272



Here,

N=29

∑LW = 74,956.0

∑L=566.3

∑W=3,727

∑L2 = 11,186.9
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åW2 = 519,787

Therefore, correlation coefficient (r):

This shows that length and weight of tilapia had high
correlation (0.95), or in other words, it can be explained
that there is 95% chance of increasing weight when there
is an increase in length or vice versa.

Table 8.12 Correlation between X1 and X5 factors shown
in Table 8.7.

∗∗ Correlation is significant at the 0.01 level

Most of the statistical packages designed for correlation
analysis also show whether the correlation coefficient is
significant, as shown in Table 8.12; e.g. taking X1 and X5
factors used in multiple regression (Table 8.7). The table
shows that variables X1 and X5 have highly significant (P
< 0.01) medium positive correlation (r = 0.686).
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8.5 Nonparametric tests for regression and correlation

Relationship between two variables can also be tested
nonparametrically. Two tests are particularly popular.
They are Spearman’s rank correlation and Kendall’s
coefficient of concordance. Both of them are described
briefly with examples.

8.5.1 Spearman’s rank correlation

This is also called the nonparametric bivariate correlation
(also regression) method, in which Spearman’s rank
correlation coefficient (rs) is computed by using the
following equation:

rs = 1 − [(6åd2)/(n3 − n)]

For example, data sets of viability (%) of tilapia eggs and
ammonia nitrogen are shown in Table 8.13. The data are
ranked separately, then differences in ranks of these
corresponding values of the two variables are computed.
The differences are squared to obtain åd2, then the
coefficient of Spearman’s rank correlation is computed,
which is compared with the value in Appendix A10.

Here,

Spearman’s Rank correlation coefficients (rs)

=1−6 åd2/(n3− n)

=1−6×(533)/(123 –12)
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= −0.864

Table 8.13 Calculation of Sspearman’s correlation.

From the table in Appendix A10, rs0.05,12 = 0.587

Reject H0; therefore, the conclusion is that there is
significant negative correlation (as the coefficient is
negative) between the variables of egg viability and the
ammonia nitrogen of the water of breeding ponds.

8.5.2 Kendall’s rank correlation or Kendall’s coefficient of
concordance

This is a nonparametric method for a data set that has three
or more variables to be tested. It is also called the
nonparametric multivariate correlation method. An
example from one of our trials is shown in Table 8.14 for
the purpose of describing this method.

In this example, three variables were measured from the
same groups of fish which were fed with varying feeding
rates. Feeding has obvious effects on the three variables,
such as weight of the female, gonadosomatic index (GSI),
and the seed output. As one of the data, such as GSI, was
percent data, nonparametric test was performed.
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Here,

Null hypothesis (H0): There is no association among the
three variables.

M=3,n=18, ∑R=171, ∑R2 =513.0

Kendall’s coefficient of concordance (W) can be computed
as:

W=[∑R2 −(∑R2/n)]/[M2(n3 −n)/12]

= [513.0 − (171/18)]/[32(183 − 18)/12] = −0.2549

This shows that the combined association among the three
variables, as indicated by Kendall’s coefficient of
concordance, is negative. However, it needs to be
determined whether it is significant (higher than zero or
not) by converting it

Table 8.14 Association among mean weight of female
tilapia (g), mean GSI, and average egg output (g) per
spawning.
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into a x 2 value as shown below:

x2 =W×M(n–1)

= (−0.2549) × 3(18–1) = –13.0

(from table in Appendix A2). As the
computed value is lower than the value in the table, we
have to accept H0,which means that there is no significant
(P > 0.05) association among the three variables.

However, researchers should be careful because there can
also be interactions among the three variables. Two of
them might have positive association, whereas the other
two might have negative association due to which the
combined coefficient is sometimes confusing and difficult
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to explain. In this case, it is better to check pairwise
correlations between possible pairs of two variables. This
can be easily performed by choosing suitable tools,
available in most statistical packages. For an example,
results are shown in Table 8.15 for which data from Table
8.14 were used.

The results showed that weight of female and the GSI have
highly significant negative association (P = 0.01), but egg
output and the GSI have no significant association (P >
0.05). Similarly, weight of female and egg output have no
significant association (P > 0.05). The combined
association among all of these variables might have been
affected by their potential positive and negative (as seen in
their coefficients) associations in Table 8.15, possibly
resulting in nonsignificant combined association.

Table 8.15 Statistical test for correlation coefficients using
non-parametric methods.

* Correlation is significant at the 0.05 level (2-tailed) – but
there is none in this particular case.

* Correlation is significant at the 0.01 level (2-tailed).
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8.6 Multiple correlations

In real biological systems, there are a number of variables
associated with others. The number of variables to be
considered is completely dependent on the situation. It is
not easy to fix which variables are needed to select for the
collection of data. It is itself a research and basically
guided by the objectives of the research. A researcher
needs to identify those variables and explore and
determine correlation among them. While designing any
research and selecting the variables for relationship,
researchers should be very careful. Some of the variables
are intermediate in nature, which might be affected by
other variables or factors. These variables might even be at
different levels one after another caused by the same factor
or many others. Wherever possible, instead of dealing with
the intermediate variables, attempts should be made to
identify the actual causal factor(s). Correlation analysis is
only to see the association between two variables which
might be affected by the same factors or different ones.
Once the factors that are causing changes in one or many
variables are identified, regression analysis is needed to
determine the rate of change with per unit change in factor
so that recommendation can be made based on the results.
Length and weight of fish can vary simultaneously, caused
by the amount or rate of feeding. In this case, it is clear
that length and weight of fish are variables that have high
correlation, and the rate or amount of feeding is a factor.
However, fish weight and length may show positive
correlation with intermediate variables, such as DO levels
and plankton growth, and negative correlation with
ammonia and nitrite levels. Correlation or regression
between two variables does not fully explain the
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phenomenon. For instance, correlation or regression
between fish survival and ammonia level, without taking
fertilization rate and phytoplankton growth into account, is
not complete research as it does not explain the actual
causes. This would be considered partial work. Therefore,
multiple correlation is extremely helpful in this case as
they can explain the actual phenomenon of fish growth and
survival, thereby yield, covering most variables involved.

Figure 8.12 Schematic diagram to represent the
complexity of factors in fertilized pond system.

Computing multiple correlation coefficients can be very
time-consuming and complex (Figure 8.12), but it can be
performed easily by using various statistical packages. In
presence of other variables together at the same time, the
correlation of any two variables can be estimated
separately assuming/keeping other variables constant; this
is called partial correlation. Table 8.16 shows that there are
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six variables and partial correlations between two
variables, which can be seen from crosstab analysis as
shown in Table 8.15.

Table 8.16 Partial correlation coefficients and their
significance.

(Coefficient / (df) / 2-tailed Significance)

” . ” is printed if a coefficient cannot be computed.

8.7 Questions

Q1. What are the differences between regression and
correlation?

Q2. Why is quadratic regression more important in
biological research?
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Q3. What are the applications of multiple regression?

Q4. In what ways are correlation analysis important?

8.8 Practical exercises

Ex. 1. After conducting an experiment and analyzing the
data, suppose you have the following relationship: Y =
1029 + 18.04X − 0.0135X2 (n = 27, P = 0.000, r2 = 0.91)
between chicken manure (kg·ha–1·wk–1) and fish yield
(kg·ha–1·wk–1). Answer the following questions asked by
a farmer who is planning to construct a fish farm with a
2-ha pond area:

a. What sort of effect does chicken manure have on fish
yield?

b. How much fish can he produce without using chicken
manure?

c. What is the maximum fish production he could get if
this relationship holds true?

d. If he has only 800 kg of chicken manure, how much fish
can he produce?

Ex. 2. Data in Table 8.17 were collected from an
experiment conducted to investigate the relationship
between the rate of chicken manure (CM) and net fish
yield (NFY). Test whether there is a linear, quadratic, or
exponential relationship between them, select the best
fitted model, and describe it.
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Table 8.17 Batch weights of tilapia cultured in ponds.
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Chapter 9

Advanced topics

9.1 Cluster analysis

Cluster analysis is an exploratory data analysis for
classification where each cluster represents a class in
which its members show close relationships or similar
characteristics. It is also considered an important tool of
discovery because it contributes to the definition of a
formal classification scheme, such as taxonomy for related
animals or plants, and also suggests statistical models to
describe populations or to indicate rules for assigning new
classes. Therefore, the purpose of cluster analysis is to
discover a system of organizing observations into groups
where members of the same groups share common
properties. The association among members within the
same cluster is stronger than between members of different
clusters.

Clustering is a basically method of combining similar
objects in a separate group. Simple grouping is possible by
a visual observation of the data and frequency polygon or
scatter plot in many cases. But if it involves complex
multivariate data, classification is not possible by simple
observation. Computer software is needed for classifying
the groups and assigning the values to them.

Cluster analysis starts with preparing a data matrix in
which objects are arranged in rows and observations are in
columns. A table of either relative similarities (proximities
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matrix) or differences is created between all objects, and
objects are combined into groups based on this. This
section describes the basic principle of clustering using a
single variable only.

9.1.1 Univariate cluster analysis

Clustering can also be done based on a single set of
observations, which is called univariate cluster analysis.
For example, fish can be grouped into high-value to
low-value fish based on their market prices using cluster
analysis. Table 9.1 shows the current price of six main
species in Thailand.

Table 9.1 Approximate market prices of most common fish
species in Thailand.

Fish Species Price per kg (US$)

1. Nile tilapia (NT) 0.59

2. Silver barb (SB) 0.88

3. Catfish (CF) 1.18

4. Snake head (SH) 2.65

5. Tiger prawn (TP) 4.41

6. Marble goby (MB) 10.29

Table 9.2 Proximities matrix of market prices of various
fish species in Thailand.
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Note: NT, Nile tilapia; SB, silver barb; CF, catfish; SH,
snake head; TP, tiger prawn; MB, marble goby.

The proximities matrices for these fish species are
computed from the price differentials in absolute value.
These are also called distances between two pairs. For
example, for the cell meeting NT and SB = 0.88 – 0.59 =
0.29 in Table 9.2.

These distances are called Euclidean distances. Clustering
can also be done using squares of those distances between
all the possible pairs of observations. These are called
squared Euclidean distances. For example, the same NT
and SB = (0.29)2 = 0.08. Squared distances give more
clear differences, and use of squared distances is similar to
other statistical tools, e.g. ANOVA and the least squares
criterion. Table 9.3 is the complete proximities matrix
based on the squared differences as the distance measure.

The next step is the preparation of dendogram based on
these matrices. These proximities matrices show a
symmetrical pattern if divided by a diagonal line from top
left to bottom right. As the numbers in row and column
entries are the same on each half of the matrix, only one
half can be used for preparation of the dendogram. For our
purpose, Table 9.4 has been drawn from Table 9.2 for
simplicity.
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Table 9.3 Squared proximities matrix of market prices of
various fish species in Thailand.

Using these distances, classification is done. A dendogram
(Figure 9.1) prepared based on the above method uses
average linkage between groups (rescaled distance cluster
combine).

Various statistical packages have options using other
distance measures, e.g. Cosine, Chebychev, Block,
Minkowski, customized, and so on. Some of these options
contain further options themselves.

As an example, a comprehensive classification of more
fish species as shown in Table 9.5 using the hierarchical
method based on their market prices (univariate cluster
analysis) is described. Proximity matrices are given in
Table 9.6, and a dendogram (Figure 9.2) has been prepared
by using computer software.

Table 9.4 Proximities matrix of market prices of various
fish species in Thailand (extracted from Table 9.2).
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Figure 9.1 Classification of six main fish species based on
their prices in Thailand.
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Table 9.5 Market prices of various fish species in
Thailand.

SN Fish Species Price (US$)

1 Carps 0.44

2 Nile tilapia 0.59

3 Silver barb 0.88

4 Catfish 1.18

5 Red tilapia 1.76

6 Giant gourami 2.21

7 Sea bass 2.35

8 Snake head 2.65

9 Crab 2.94

10 Tiger prawn 4.41

11 Giant prawn 7.35

12 Marble goby 10.29

Table 9.6 Proximity matrices.

Note: this is a dissimilarity matrix.

290



Figure 9.2 Classification of 12 fish species based on their
prices in Thailand.

9.1.2 Multivariate cluster analysis

If clustering is done by taking into account many
observations, it is called multivariate cluster analysis. The
main point in multivariate cluster analysis is that a
researcher has to decide which observations are relevant to
include for analysis. For example, level of income or farm
earning would be relevant for ranking the wealth of
farmers, but age of the farmers may not be relevant. In this
section, both types of cluster analysis are described.

In many cases, classification is done based on more than
one observation. In such cases, squared distances are
computed for each observation separately, then combined
to prepare a table of final proximities matrices. That means
squared distances of each cell for all the observations are
added in the cells of final proximities matrices. This will
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be the basis for classification. However, this method is
valid if the observations are in similar scales. But if scales
are different, the observation with higher values can
shadow the distances of the others, which have smaller
values. In such cases, observations are transformed first,
and then they are combined to standard scores before
computing the separated distance matrices. There is
difficulty in deciding whether to transform the data or not,
because the choice of metric distance can result in vastly
different proximities matrices. Researchers who need to
use multivariate cluster analysis should research this
further (see Bibliography and Webliography), as this is
beyond the scope of this book.

9.2 Analysis of Covariance

Analysis of covariance (ANCOVA) is a more sophisticated
method of ANOVA that further minimizes experimental
error, removing effects of unavoidable factors or
conditions other than the treatments that vary themselves
and affect response variables. If the factors causing
variabilities can’t be controlled through experimental
designs only, a statistical tool called analysis of covariance
(ANCOVA) is used while analyzing the data for further
partitioning of total variability attributable to those factors.
ANCOVA is done by using concurrent variables, which
are called covariates, with response or dependent variables.

In most biological research, it is quite difficult, sometimes
not even possible, to find all the experimental units
identical in all respects at the start of the trial, e.g.
chemistry or nutrients in pond sediment and water, size of
experimental animals, and so on. Measurement or analysis
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of pond water and bottom soil at the beginning of the
experiment is important as effects due to the difference in
these variables might be considerable but can be adjusted
using ANCOVA (Schefler 1969). ANCOVA can also be
useful in adjusting the values distracted by natural
calamities or unavoidable circumstances, e.g. fish death
due to unexpected diseases, floods, or others. It is
necessary to test whether the significance of changes in
covariates has resulted in any changes on the dependent
variables, in other words, whether any significant
correlation exists.

Similarly, while conducting a trial in outdoor conditions,
there are several variables other than the ones considered
in the design that may vary with time; these other factors
are called changing covariates, e.g. water temperature, DO,
pH, levels of ammonia, nitrite, and so on. Although these
changing variables or factors cannot be controlled,
especially in outdoor trials or in the real fields, they can be
measured or recorded simultaneously at all the points
when the dependent variables are measured repeatedly,
e.g. daily, weekly, biweekly, monthly, and so on.
ANCOVA helps us to determine whether these changing
variables have any effects on dependent variable, such as
fish growth over the experimental period. Therefore,
ANCOVA is an analysis of variance on the residuals of the
dependent variable after removing the influence of the
covariate rather than on the original values themselves.
ANCOVA is considered a combined method of ANOVA
with regression. As in regression, covariance analysis
determines whether any treatments show different
responses with fluctuations of these changing variables. If
there is any relation, covariance removes the effects of
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external factors by adjusting their influence on the
dependent variables. The method of covariance analysis as
described by Schefler (1969) has been applied to an
example of data generated from an aquaculture research in
this section.

Table 9.7 shows data on reproductive output (no. of eggs
per female) of two groups of tilapia (normal and
previously stunted), collected along with their mean
weights. The objective was to determine whether stunting
has any effects on seed output as compared with the
normal group. It is obvious that weight of females has an
impact on the seed output. Therefore, in order to separate
the effect of female weight, a regression coefficient (b), i.e.
regression of all the weights (Xs) on all egg outputs (Ys),
has been computed as described in Section 8.2 and was
found to be 0.28. Original egg output data are adjusted
using the following equation:

Table 9.7 Egg output from normal and previously stunted
tilapia.
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For example, for the first row data, adjusted seed output
was (Y′) = (72.4 – 123.6)(0.28 – 18) = 32.

Egg output can be compared after adjusting the egg output
data. The result obtained is the actual effect of treatment
(stunting). For comparison purposes, t-test has been
performed on the data (Table 9.8).

The t-test result showed that there was no significant (P >
0.05) difference in egg output between normal and stunted
tilapia when using original data; however, after adjustment
for covariance, egg output was found to be significantly
different (P < 0.05), more due to stunting (Table 9.9). This
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is mainly because error variance is reduced after
adjustment.

As the sizes of females in each group are different, data
should be analyzed using covariance rather than simply
t-test. Most researchers compare the size of female groups
and the seed output using a simple t-test. For example,
using t-test, we get the results as shown in Table 9.10.

Table 9.8 Two-sample t-test comparing egg output of Nile
tilapia.

Table 9.9 Detail of ANCOVA for the reproductive output
(no. of eggs per female) of two groups of tilapia are given
along with their mean weights.
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Table 9.10 shows that the sizes of the females are not
different and the egg output is also not different (P > 0.05).
As size of female has obvious relation with seed output,
we need to analyze the data using covariance. For
ANCOVA, all of the data are squared separately and factor
and variable are multiplied to get the sum of crossproducts
of each parameter, which is shown in Table 9.11.

Here,

ΣXY = 47,519 + 87,477 = 134,996

ΣX=1,111.2+1,113.0=2,224.2

ΣY=368+622=990

ΣX2 = 153,256 + 162,754 = 316,010

ΣY2 = 17,764 + 54,524 = 72,288

ΣXA = 1,111.2
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Table 9.10 Results of the Student’s t-test; comparison of
weights.

ΣXB = 1,113.0

ΣYA = 368

ΣYB = 622

N=18

n1 = 9

n2 = 9

Now, partitioning of sum of squares is done as follows:

1. For weight of female, i.e. variable X:
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Table 9.11 Data from Table 9.9 arranged for ANCOVA.

Table 9.12 Table for sum of squares.

2. For egg output, i.e. variable Y:
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3. Partition of SS for crossproducts (SSCP), i.e. XY:

4. Summary of SS partitioning is shown in Table 9.12.

5. Now regression coefficients, X on Y (b1) and Y on X
(b2), can be computed as:

6. Covariance can be calculated as:

7. ANCOVA table is prepared as shown in Table 9.13.
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In conclusion, although the t-test shows that there was no
significant difference between the two groups of tilapia in
terms of seed output, ANCOVA shows that the difference
is significant. This is because the variation in weight has
an impact on the seed output, which was masked when
seed output was compared by using Student’s t-test,
neglecting the potential impact of weight of the fish. This
clearly shows the importance ANCOVA. In fact, there can
be other variables that might be associated with the egg
output, e.g. gonad weight or GSI, nutritional conditions,
water temperature, ammonia and DO, levels, and so on.
The usefulness and the power of ANCOVA have not been
used and realized by most aquaculture researchers because
it is tedious and quite complex to understand and interpret.
However, various computer software programs can
perform ANCOVA very easily. It is therefore suggested to
be familiar with the method as it would greatly strengthen
the capacity of researchers on data analysis and reduce the
chance of committing Type II error.

Table 9.13 Final table of ANCOVA.

9.3 Multivariate ANOVA

As described in previous sections, two means are
compared by using Student’s t-test, taking only one
dependent variable at a time. Similarly, ANOVA is used if
many means are involved; however, it is only for a single
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dependent variable. In reality. several response variables
are affected simultaneously by treatment factor(s). Instead
of looking at just one response variable, measuring a few
other relevant variables normally makes it easier to explain
any given phenomenon. Table 9.14 briefly illustrates the
type of test to be performed based on the number of
variables involved.

Some of the variables might be the variables of
intermediate steps of the whole process or system. All of
the variables are associated with each other, i.e. change in
one response variable might bring about positive or
negative changes in other variables. All of the possible
variables should be measured so that it is easier to explain
and interpret the results. In other words, it is an attempt to
understand the whole system rather than a part of it. In
many cases, finding out the effects of only one response
variable without knowing the effects on other variables
means that the research actually remains incomplete. For
an example, if a trial is designed to determine the effects of
pond fertilization rate on fish yield per unit area, recording
final weights of whole batches of fish would not be
sufficient information for explanation, because yield is the
final product of individual growth, which is affected by
survival. All of these largely depend on the growth and
availability of natural food organisms, which have direct
relation with the levels of DO, ammonia, nitrite, and so on.
All of these variables should be measured wherever and
analyzed simultaneously so that actual direct effects of
fertilization on these parameters can be estimated. Due to
association among such variables, treatment effects can be
masked easily. It is essential to separate the variances due
to such associations. Therefore, multivariate analysis
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(MANOVA) is a must in such cases. It is possible that we
may get significant effects of treatments from MANOVA,
when we get marginally nonsignificant effects of the same
factors obtained from univariate analysis (ANOVA),
which means neither variable considered alone is
significantly affected by the factor. Therefore, the
MANOVA is more powerful than ANOVA. However,
researchers should understand that some of the
environmental parameters, such as water temperature
(which doesn’t depend on fertilization, but depends on
other factors such as season and sunlight condition),
should not be used as variables. Instead it should be used
as covariate while analyzing the data, as described in
Section 9.2.

Table 9.14 Types of statistical tests based on the number of
variables.

Groups One dependent variable
(univariate analysis)

Two or more dependent
variables (multivariate)

Two groups t-test Hotelling’s T2

More than
two groups

ANOVA and multiple
comparison tests MANOVA

As in the case of ANOVA, MANOVA may also show that
a factor has significant effects on the variables but still
does not point out which variables are particularly
affected. Therefore, after multivariate test, if significant
overall effect is shown, univariate ANOVA must be
performed for individual variables to identify the variables
that contribute to the significant overall effect.
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MANOVA is also capable of determining whether two or
more independent variables, and also their interactions,
affect two or more normally distributed dependent
variables, often called factorial MANOVA. As with
factorial ANOVA, normality and homogeneity of variance
are assumed. As in univariate factorial ANOVA, we can
also test whether there are any interaction effects between/
among the independent variables. As a preliminary step,
univariate interactions can be analyzed before moving on
to multivariate. However, results from MANOVA should
be used for the final conclusion.

The multivariate model is expressed as:

Where,

Y =n × p

X =n × k

b =k × p

e = n × p

p is dependent variables

k is parameters for each dependent variable

n is observations
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For univariate ANOVA, F-value is calculated as the ratio
of a treatment variance (mean square) to error variance,
whereas for MANOVA, treatment effect is tested by
calculating the ratio of the determinant (generalized
variance) of the error SSCP matrix to the determinant of
the sum of the treatment and error SSCP matrices. This
ratio is called Wilks’ Lambda (λ), i.e. error/(error +
treatment). In other words, it is the proportion of variance
in dependent variables that is not accounted for by the
independent variable. Although Wilks’ Lambda seems
smaller compared with the F-value for ANOVA, it raises
questions about the null hypothesis.

Table 9.15 Experimental design of the research.

MANOVA is described here in detail, using a data set
from a trial conducted in a commercial hatchery to
determine the effects of feeding levels and hapa exchange
interval on the reproductive performance of Nile tilapia.
The trial used a3×2factorialdesign, as shown in Table9.15.

Six treatments (3 levels of hapa exchange intervals × 2
levels of feeding) were randomly allocated in 18 hapas (24
m × 5 m) installed in a single pond (size 5,300 m2). Mature
broodfish were stocked at a density of 6 fish·m−2 of hapa
space with 1:1 sex ratio, which means 360 males and 360
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females were stocked in each hapa. Numbers and batch
weights (each replicate hapa) of males and females were
recorded at stocking and on days 10, 25, 30, 50, 65, 80, 95,
110, and 120. Seed was harvested manually from the
mouths of incubating females every 5 days and pooled to
coincide the period of batch-weighing intervals. Number
of seed was estimated based on the samples weights of 200
seed taken at each harvest. DO at 6 a.m. and temperature
3:30 p.m. inside each hapa were monitored a day before
each batch weight measurement. Effects of hapa exchange
and feeding levels on the reproductive outputs (weight of
seed and the number) were assessed by using MANOVA.

In this trial, our main objective of the research, or the
hatchery operator’s main interest, was to determine the
impacts of feeding rate and hapa exchange strategies
(factors) on the number of seed as final output. As there
are other intermediate variables associated with the seed
output, e.g. seed weight, number and weight of fish, water
temperature, and DO level, they were also collected and
used for analysis.

The main hypotheses tested were:

• Increased feeding level increases size of broodfish, especially
females, which helps increase seed output because larger
females normally produce more eggs.

• Frequent replacement of fouled hapas with cleaned ones
improves water exchange; therefore, it increases DO levels,
which have positive impacts on fish growth and then
reproductive performance.

• Frequency of hapa exchange increases the chance of broodfish
escape; therefore, it has negative impacts on the fish remaining
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in the hapa, which ultimately has a negative effect on seed
output.

• Water temperature and DO affect seed intermediate variables,
thereby seed output, but these two factors were considered as
covariates.

For statistical analysis purposes, data can be arranged
serial-wise, i.e. hapa numbers 1–18 (shown in Appendix
B1) and their corresponding data follow in other columns.
This would be the same for most survey research, e.g.
household numbers in the first column and their attributes
in others. Outcomes of the analysis (Appendix B) and
results are presented subsequently. The variable names are
coded as shown below:

1. FTWT – total weight of female (kg)

2. FNO – total number of females per hapa

3. FSURV – survival of females (%)

4. FMWT – mean weight of individual females (g)

5. MTWT – total weight of males (kg)

6. MNO – total number of males per hapa

7. MSERV – survival of males (%)

8. MMWT – mean weight of individual males (g)

9. DENSITY – no. of fish per square meter of hapa space
(no·m−2)
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10. BIOMASS – total weight of males and females
(kg·m−2)

11. SEEDNO – estimated number of seed at each harvest
(×100,000)

12. SEEDWT – weights of seed harvested at each harvest
(g)

13. DO6 – DO level measured at 6 a.m.

14. TEMP3 – water temperature measured at 3 p.m.

While analyzing the data, DO6 and TEMP3 were used as
covariates, whereas all others were as dependent variables.

9.4 Interpretation of results

The most difficult and important part is to interpret and
describe the results of the statistical analysis correctly and
concisely in various presentation forms, e.g. written
sentences, tables, and graphs. Almost all of the statistical
software produce various types of graphs that can help
interpret the results (e.g. Figure 9.3). However, the quality
is not always very good; therefore, it is advised that
graphical presentation be made using Microsoft○ Excel or
any other graphical software.

The General Linear Model (Appendix B4) lists all of the
dependent variables used, their sum of squares, mean
squares, F-values, Sig. (P), and partial eta squared values
(effect size) for a model, intercept, and each of the
variables. Sig. (P) is the main value that determines
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whether any variable is significant in the model, i.e. it
should be less than 0.05 (or another level if chosen
differently). For example, intercepts of SEEDNO and
SEEDWT are significant because their corresponding
P-values are 0.012 and 0.014; similarly, effects of feeding
on these variables are also significant (P = 0.02 and 0.001,
respectively), whereas effects of TEMP3 are
nonsignificant on FNO and FSURV (P = 0.504 and 0.551).
The strength of the relationship (r2-values) appears at the
bottom of the table, e.g. r2-value for FTWT is 0.774 or
77.4% and for SEEDNO is 0.929 or 92.9%. In this way,
significance of each variable and their strengths of
relationship can be indicated.

Figure 9.3 Significant interaction (P = 0.048) between
feeding rate and hapa exchange (feeding × hapaex,
Appendix B4) in mean weight of females.
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Results of the multivariate corrected model (Appendix B4)
can be summarized by saying that all of the variables used
for analysis are affected significantly (P <0.05) at least by
one or more factors when the association effects among
response variables were separated. Significant intercept in
mean and total weights of females and males and seed
outputs (seed weight and number) means that these values
could be higher than zero even when they were without
treatment factors, i.e. not fed and hapas were not
exchanged.

The feeding rate didn’t show any significant difference (P
= 0.330 and P =0.209) in seed outputs (SEEDNO and
SEEDWT, respectively) when they were analyzed for
univariate functions (Appendix B7) nor when compared
using direct pairwise comparisons (Appendix B5). But the
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effect of feeding rate was significant (P < 0.01) when
MANOVA was performed in the general linear model
(Appendix B4), as mentioned earlier. This might cause
confusion for the researchers about which results should be
reported. Those who do not perform MANOVA will
certainly report that there is no effect of feeding rate on the
seed outputs (SEEDNO and SEEDWT), but that is not the
case. After using MANOVA, it is found that feeding
actually has an effect on seed outputs but indirectly. It
affects other variables first, such as mean weights of fish,
e.g. FMWT and MMWT which have ultimate effects on
seed outputs. This shows the value of MANOVA.

MANOVA also allows for interaction effects e.g. in this
example, feeding and hapa exchange show significant
interaction effects on mean weights of females (P =0.048,
Appendix B4), which can also be shown in graphical form
(Figures 9.3 and 9.4).

All four multivariate test statistics obtained from analysis
are given in Appendices B6, B9, and B12. They are all
significant (P = 0.000) for all the factors in this particular
case. Tables from Appendices B13-B21 show the multiple
range test performed together with MANOVA. Tukey’s
HSD shows that 60-day hapa exchange treatment has
higher survival than 5 and 15 days (Appendix B19),
whereas Duncan’s test shows that all three treatments
differ (as they appear in different columns), showing
highest survival from 60-day exchange followed by 15-day
and then 5-day intervals. As mentioned in Section 7.2.1
Tukey’s test results should be selected if data are less
normal.
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Figure 9.4 Number of female fish with the increase in hapa
exchange interval for both the feeding levels (see Table
2.17).

9.5 Questions

Q1. Why is ANCOVA important?

Q2. What are the applications of cluster analysis?

Q3. MANOVA is the ultimate and highest level of
statistical analysis. Explain briefly.

9.6 Practical exercises
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Ex. 1. Data shown in Table 9.16 are the mean weights of
common carp and grass carp (g) from a 16-week trial.
They were raised in ponds (200 m2) at 1 fish·m−2 stocking
density and fed at 1%, 2%, and 3% biomass feeding rates
per day. Analyze the data using the appropriate statistical
tools.

Ex. 2. Data shown in Table 9.17 were from a trial with
tilapia broodfish. The fish were fed with pellet feeds mixed
with four different oils and the control feed. Muscle
samples were collected and lipid analyzed. Using
multivariate and covariance functions, analyze the data and
write results.

Table 9.16 Mean weights (g) of common carp and grass
carp.

313



Table 9.17 Lipid composition of muscle and water quality
parameters.

Oils: 1, control; 2, linseed; 3, soybean; 4, anchovy; and 5,
tuna.

Fertilization: 1, no fertilization; 2, fertilization with urea
and TSP (4 kg N and 2 kg P·day−1).
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Appendix A

Standard Statistical Tables

Appendix A1. Proportions of the normal curve
(one-tailed).

Appendix A2. Critical values of the chi-square
distribution.
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Appendix A3. Critical values of d max for the one-sample
Kolmogorov–Smirnov (K–S) test for testing goodness of
fit for discrete or grouped data (short version is provided
here; for more observations please consult Zar (1984) or
other statistical books.
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Appendix A4. Critical values of the t-distribution (t-table).
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Appendix A5. U-table for Mann–Whitney test.

318



319



Appendix A6. Critical values of the Wilcoxon
t-distribution.
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Appendix A7. Points for t bution (5%, light type; 1%, bold
face type).
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Appendix A8. Critical values of the Kruskal–Wallis
H-distribution.

Appendix A9. Critical values of the Friedman
distribution.
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Appendix A10. Critical values of the Spearman’s rank
correlation coefficient, rs.
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Appendix B

Data arrangement and analysis

Appendix B1. Three factors with 14 response variables
arranged for statistical analysis.
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Appendix B2. Descriptive statistics for each feeding level.
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Appendix B3. Descriptive statistics for ch hapa exchange
interval.
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Appendix B4. Outcome of MANOVA: General Linear
Model.
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a R2 = 0.774 (Adjusted R2 =0.637)

b R2 = 0.702 (Adjusted R2 =0.521)

c R2 = 0.708 (Adjusted R2 =0.531)

d R2 = 0.763 (Adjusted R2 =0.620)

e R2 = 0.715 (Adjusted R2 =0.542)

f R2 = 0.714 (Adjusted R2 =0.541)

g R2 = 0.869 (Adjusted R2 =0.789)
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h R2 = 0.832 (Adjusted R2 =0.730)

i R2 = 0.783 (Adjusted R2 =0.650)

j R2 = 0.822 (Adjusted R2 =0.713)

k R2 = 0.929 (Adjusted R2 =0.885)

l R2 = 0.934 (Adjusted R2 =0.894)

Appendix B5. Outcome of MANOVA for factor 1, i.e.
feeding level (pairwise comparisons).

Based on estimated marginal means

* The mean difference is significant at the 0.05 level.
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a Adjustment for multiple comparisons: LSD (equivalent
to no adjustments).

b An estimate of the modified population marginal mean
(J).

c An estimate of the modified population marginal mean
(I).

Appendix B6. Multivariate tests for factor 1, i.e. feeding
level.

Each F tests the multivariate effect of feeding. These tests
are based on the linearly independent pairwise
comparisons among the estimated marginal means.

a Exact statistic.

Appendix B7. Univariate tests for factor 1, i.e. feeding
level.
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The F tests the effect of feeding. This test is based on the
linearly independent pairwise comparisons among the
estimated marginal means.

Appendix B8. Outcome of MANOVA for factor 2, i.e.
hapa exchange interval.
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Based on estimated marginal means.

* The mean difference is significant at the 0.05 level.

a Adjustment for multiple comparisons: LSD (equivalent
to no adjustments).

b An estimate of the modified population marginal mean
(J).

c An estimate of the modified population marginal mean
(I).

Appendix B9. Multivariate tests for factor 2, i.e. hapa
exchange.
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Each F tests the multivariate effect of hapaex. These tests
are based on the linearly independent pairwise
comparisons among the estimated marginal means.

a Exact statistic

b The statistic is an upper bound on F that yields a lower
bound on the significance level.

Appendix B10. Univariate tests for factor 2, i.e. hapa
exchange.
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The F tests the effect of hapaex. This test is based on the
linearly independent pairwise comparisons among the
estimated marginal means.

Appendix B11. Outcome of MANOVA for factor 3, i.e.
sampling days.

Each F tests the multivariate effect of sampling. These
tests are based on the linearly independent pairwise
comparisons among the estimated marginal means.

a The statistic is an upper bound on F that yields a lower
bound on the significance level.

Appendix B12. Univariate tests for factor 3, i.e. sampling
day.
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The F tests the effect of sampling. This test is based on the
linearly independent pairwise comparisons among the
estimated marginal means.

Appendix B13. Post-hoc test or multiple comparisons for
the variable SEEDWT.
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Means for groups in homogeneous subsets are displayed.
Based on Type III SS.

The error term is MS(Error) = 8399.153.

a Uses harmonic mean sample size = 45.105.

b The group sizes are unequal. The harmonic mean of the
group sizes is used. Type I error levels are not guaranteed.

c Alpha = 0.05.

Appendix B14. Post-hoc test or multiple comparisons for
the variable SEEDNO.

Means for groups in homogeneous subsets are displayed.
Based on type III SS.

The error term is MS(Error) = 0.040.

a Uses harmonic mean sample size = 45.105.
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b The group sizes are unequal. The harmonic mean of the
group sizes is used. Type I error levels are not guaranteed.

c Alpha = 0.05.

Appendix B15. Post-hoc test or multiple comparisons for
the variable BIOMSS.

Means for groups in homogeneous subsets are displayed.
Based on Type III SS.

The error term is MS(Error) = 0.010.

a Uses harmonic mean sample size = 45.105.

b The group sizes are unequal. The harmonic mean of the
group sizes is used. Type I error levels are not guaranteed.

c Alpha = 0.05.
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Appendix B16. Post-hoc test or multiple comparisons for
the variable DENSITY.

Means for groups in homogeneous subsets are displayed.

Based on Type III SS.

The error term is MS(Error) = 0.097.

a Uses harmonic mean sample size =45.105.

b Alpha = 0.05.

Appendix B17. Post-hoc test or multiple comparisons for
the variable FMWT.
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Means for groups in homogeneous subsets are displayed.
Based on Type III SS.

The error term is MS(Error) = 588.801.

a Uses harmonic mean sample size = 45.105.

b Alpha = 0.05.

Appendix B18. Post-hoc test or multiple comparisons for
the variable MSURV.
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Means for groups in homogeneous subsets are displayed.
Based on Type III SS.

The error term is MS(Error) = 45.614.

a Uses harmonic mean sample size = 45.105.

b The group sizes are unequal. The harmonic mean of the
group sizes is used. Type I error levels are not guaranteed.

c Alpha = 0.05.

Appendix B19. Post-hoc test or multiple comparisons for
the variable FSURV.
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Means for groups in homogeneous subsets are displayed.
Based on Type III SS.

The error term is MS(Error) = 50.952.

a Uses harmonic mean sample size = 45.105.

b Alpha = 0.05.

Appendix B20. Post-hoc test or multiple comparisons for
the variable FNO.
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Appendix B21. Post-hoc test or multiple comparisons for
the variable FTWT.

a Uses harmonic mean sample size = 45.105.

b Alpha = 0.05.
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