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Κεφάλαιο 1

ΠΟΛΥΑΔΙΚΗ ΑΝΑΛΥΣΗ

«Οι νόμοι της φύσης είναι γραμμένοι στην γλώσσα των μα-
θηματικών [...] τα σύμβολα της είναι τρίγωνα κύκλοι και άλλα
γεωμετρικά σχήματα χωρίς τα οποία είναι αδύνατη η κατανόησή
της.» Galileo Galilei (1564-1642)

Η παραπάνω φράση που αποδίδεται στον Γαλιλαίο υποδηλώνει
μια αντικειμενική προσέγγιση της φύσης ανεξάρτητη από τον πα-
ρατηρητή. Όπως πολύ σωστά παρατήρησε η μελέτη της φύσης και
των νόμων της ανάγεται ουσιαστικά στην μελέτη της γεωμετρίας
(Ευκλείδειας και μη) πρωταρχικά στοιχεία της οποίας αποτελούν
σημεία στον χώρο και ο τρόπος που αυτά συνδέονται μεταξύ τους.
Η αντικειμενικότητα της φύσης απορρέει από το γεγονός ότι ιδιότη-
τες των στοιχείων, όπως για παράδειγμα το μήκος ενός ευθύγραμ-
μου τμήματος ή η γωνία μεταξύ δύο ευθειών παραμένουν ίδιες για
οποιονδήποτε παρατηρητή. Στο παρακάτω ορθογώνιο τρίγωνο ABΓ
για παράδειγμα η γωνιά Α παραμένει 90 μοίρες είτε την παρατηρώ
όρθιος είτε ανάποδα κάνοντας κατακόρυφο. Η ανεξαρτησία αυτή
μπορεί να μοιάζει προφανής είναι ωστόσο εξαιρετικά σημαντική
καθώς εξασφαλίζει ότι διαφορετικοί παρατηρητές αντιλαμβάνονται
με τον ίδιο τρόπο τα γεγονότα γύρω τους και συμφωνούν πάντοτε
ως προς τις εγγενείς ιδιότητές των φαινομένων που παρατηρούν.
Αυτός είναι ο λόγος που πολλές εξισώσεις στην Φυσική γράφονται
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Σχήμα 1.1: Οι ιδιότητες ενός ορθογωνίου τριγώνου είναι αντικειμενικές ποσότητες ανε-
ξάρτητες από τον τρόπο που κανείς το παρατηρεί. Δύο παρατηρητές με διαφορετικό
προσανατολισμό μεταξύ τους, ο καθένας εφοδιασμένος με το δικό του σύστημα ανα-
φοράς, θα συμφωνούν πάντοτε ως προς τις τιμές που παίρνουν οι γωνίες Α, Β και Γ
και ως προς τα μήκη των πλευρών α, β, και γ του τριγώνου.
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σε διανυσματική μορφή. Χαρακτηριστικά παραδείγματα αποτελούν
ο δεύτερος Νόμος του Νεύτωνα

F⃗ = ma⃗

που συνδέει την δύναμη F⃗ που ασκείται σε ένα υλικό σώμα με την
επιτάχυνση του a⃗, οι εξισώσεις του Maxwell

∇ · E⃗ =
ρ

ε0
, ∇ · B⃗ = 0

∇× E⃗ = −∂B⃗

∂t
, ∇× B⃗ = µ0(J⃗ + ε0

∂E⃗

∂t
)

που δίνουν το ηλεκτρικό E⃗ και το μαγνητικό πεδίο B⃗ μιας κατανο-
μής φορτίου ρ και πυκνότητας ρεύματος J⃗ στο κενό και η εξίσωση
Navier-Cauchy

µ∇ ·∇u⃗+ (λ+ µ)∇∇ · u⃗+ ρ⃗b = 0

που δίνει την μετατόπιση u⃗ των υλικών σημείων ενός ελαστικού σώ-
ματος παρουσία δυνάμεων μάζας b⃗ (το ρ σε αυτή την περίπτωση
είναι η πυκνότητα του σώματος). Οι συντελεστές ε0, µ0 και λ, µ που
εμφανίζονται στις εξίσωσεις του Maxwell και στην εξίσωση Navier-
Cauchy περιέχουν πληροφορία για τις ιδιότητες του χώρου μέσα
στο οποίο διαδίδονται τα ηλεκτρομαγνητικά κύματα και οι παρα-
μορφώσεις του ελαστικού μεσου αντίστοιχα.

1.1 Στοιχεία πολυαδικής ανάλυσης

Η αριθμητική μελέτη της Ευκλείδιας γεωμετρίας είναι το αντικεί-
μενο της Αναλυτικής Γεωμετρίας. Βασικό στοιχείο της αποτελεί η
έννοια του σημείου το οποίο μπορεί να οριστεί με την βοήθεια βαθ-
μωτών ποσοτήτων. Μια βαθμωτή ποσότητα περιγράφεται από έναν
πραγματικό αριθμό a ∈ R. Το σύνολο όλων των βαθμωτών ποσοτή-
των εφοδιασμένων με την πράξη της πρόσθεσης (+ : R×R → R) και
του πολλαπλασιασμού (· : R × R → R) ορίζει ένα αλγεβρικό σώμα
έτσι ώστε για κάθε a, β, γ ∈ R να ισχύουν οι εξής ιδιότητες:
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• Προσεταιριστική ιδιότητα των πράξεων

(α+ β) + γ = α+ (β + γ), (α · β) · γ = α · (β · γ)

• Μεταθετική ιδιότητα

α+ β = β + α, α · β = β · α

• Επιμεριστική ιδιότητα

α · (β + γ) = α · β + α · γ

• Ύπαρξη μηδενικού στοιχείου για την πρόσθεση

∃ 0 ∈ R : α+ 0 = 0 + α = 0

• Ύπαρξη ταυτοτικού στοιχείου για τον πολλαπλασιασμό

∃ 1 ∈ R : 1 · α = α · 1 = a

• Ύπαρξη αντίθετου στοιχείο για την πρόσθεση

∀ α ∃ α′ : α+ α′ = α′ + α = 0

• Ύπαρξη αντίστροφου στοιχείου για τον πολλαπλασιασμό

∀ α ∃ α−1 : α · α−1 = α−1 · α = 1

Κάθε βαθμωτή ποσότητα μπορεί να αναπαρασταθεί γεωμετρικά
πάνω σε βαθμονομημένο άξονα όπως στο Σχήμα 1.2.
Ορίζουμε τώρα ως διάνυσμα a⃗ την διάταξη τριών βαθμωτών a1,

a2 και a3
a⃗ = (a1, a2, a3).

Δύο διανύσματα a⃗ και b⃗ είναι ίσα μεταξύ τους αν και μόνο αν
a1 = b1, a2 = b2 και a3 = b3. Παρατηρούμε λοιπόν ότι η σειρά με την
οποία διατάσσουμε τα ai έχει σημασία έτσι ώστε διαφορετικές δια-
τάξεις να δίνουν εν γένει διαφορετικά διανύσματα. Το σύνολο όλων
των διανυσμάτων ορίζει τον διανυσματικό χώρο R3, ο οποίος είναι
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Σχήμα 1.2: Γεωμετρική εικόνα του συνόλου των πραγματικών αριθμών. Κάθε αριθμός
a μπορεί να αναπαρασταθεί με μία μοναδική θέση πάνω στον άξονα. Παρατηρήστε
ότι η βαθμονόμηση του άξονα εξαρτάται από την μονάδα μέτρησης a0. Με αυτόν τον
τρόπο είναι δυνατή η αναπαράσταση μεγεθών με διαστάσεις όπως για παράδειγμα
χρόνος, μήκος, μάζα κ.τ.λ.

εφοδιασμένος με την πράξη της πρόσθεσης μεταξύ διανυσμάτων
+ : R3×R3 → R3 και του πολλαπλασιασμού (ή βάθμωση) βαθμωτού
με διάνυσμα · : R×R3 → R3 έτσι ώστε για κάθε a⃗, b⃗, c⃗ ∈ R3 και λ, µ,
ν ∈ R αν ορίσουμε ως (a1, a2, a3)+(b1, b2, b3) = (a1+b1, a2+b2, a3+b3)

και λ · (a1, a2, a1) = (λ · a1, λ · a2, λ · a1) να ισχύουν οι εξής ιδιότητες:

• Προσεταιριστική ιδιότητα της πρόσθεσης

(⃗a+ b⃗) + c⃗ = a⃗+ (⃗b+ c⃗)

• Μεταθετική ιδιότητα

a⃗+ b⃗ = b⃗+ a⃗

• Ύπαρξη μηδενικού διανύσματος

∃ 0⃗ ∈ R3 : a⃗+ 0⃗ = 0⃗ + a⃗ = a⃗

• Ύπαρξη αντίθετου διανύσματος

∀ a⃗ ∃ (−a⃗) ∈ R3 : a⃗+ (−a⃗) = (−a⃗) + a⃗ = 0⃗

• Συμβατότητα της βάθμωσης με τον πολλαπλασιασμό βαθμω-
τών

λ · (µ · a⃗) = (λ · µ) · a⃗

• Επιμεριστική ιδιότητα της βάθμωσης και της πρόσθεσης

λ · (⃗a+ b⃗) = λ · a⃗+ λ · b⃗

(λ+ µ) · a⃗ = λ · a⃗+ µ · a⃗
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Ορίζοντας την καρτεσιανή βάση î, ĵ, k̂ ∈ R3 ως

î = (1, 0, 0), ĵ = (0, 1, 0), k̂ = (0, 0, 1)

μπορούμε να γράψουμε¹

a⃗ = a1î+ a2ĵ + a3k̂.

Γενικεύοντας την έννοια του διανύσματος ορίζουμε τώρα ως δυα-
δικό A την διάταξη τριών διανυσμάτων a⃗1, a⃗2 και a⃗3

A = (⃗a1, a⃗2, a⃗3)
= a⃗1î+ a⃗2ĵ + a⃗3k̂

ένα τριαδικό A ως την διάταξη τριών δυαδικών A1, A2 και A3

A = (A1, A2, A3)

= A1î+A2ĵ +A3k̂

ένα τετραδικό ως την διάταξη τριών τριαδικών και ούτω καθεξής.
Ένα τανυστικό γινόμενο² της μορφής a⃗⃗b ονομάζεται δυάδα έτσι ώστε
ένα δυαδικό να ισούται με ένα άθροισμα δυάδων, ένα τριαδικό με
ένα άθροισμα τριάδων κ.ό.κ. Ο αριθμός των διανυσμάτων που συμ-
μετέχουν στο τανυστικό γινόμενο ορίζει και την τάξη του πολυα-
δικού (ή τανυστή). Έτσι λοιπόν η τάξη μιας βαθμωτής ποσότητας
είναι 0, ενός διανύσματος 1 ενός δυαδικού 2 ενός τριαδικού 3 κ.ό.κ.
Αναπτύσσοντας τα διανύσματα a⃗1, a⃗2 και a⃗3 στην καρτεσιανή βάση

a⃗1 = a11î+ a21ĵ + a31k̂
a⃗2 = a12î+ a22ĵ + a32k̂
a⃗1 = a13î+ a23ĵ + a33k̂

¹Σε ότι ακολουθεί θα παραλείπουμε το σύμβολο του πολλαπλασιασμού βαθμωτής ποσότητας
λ με ένα διάνυσμα a⃗ και θα γράφουμε απλά λa⃗.

²Το τανυστικό γινόμενο μεταξύ δύο διανυσμάτων συμβολίζεται συνήθως ως a⃗⊗ b⃗ το οποίο θα
παραλείπουμε όμως σε ότι ακολουθεί χάριν ευκολίας.



ΚΕΦΑΛΑΙΟ 1. ΠΟΛΥΑΔΙΚΗ ΑΝΑΛΥΣΗ 7

μπορούμε να γράψουμε το δυαδικό στην nonion³ μορφή του

A = a11 î̂i+ a21ĵ î+ a31k̂î
+ a12îĵ + a22ĵĵ + a32k̂ĵ
+ a13îk̂ + a23ĵk̂ + a33k̂k̂.

Παρατηρούμε ότι για την περιγραφή ενός διανύσματος απαιτούνται
εν γένει 3 πραγματικοί αριθμοί, για την περιγραφή ενός δυαδικού 32

αριθμοί κ.ό.κ. Η γενίκευση ενός πολυαδικού σε χώρους μεγαλύτερης
τάξης είναι προφανής. Για την περιγραφή ενός πολυαδικού τάξης
m στον Rn απαιτούνται nm πραγματικοί αριθμοί⁴.

1.1.1 Γινόμενα μεταξύ πολυαδικών

Εισάγοντας τώρα τον ακόλουθο κανόνα εσωτερικού γινομένου
μεταξύ των διανυσμάτων της καρτεσιανής βάσης

î · î = ĵ · ĵ = k̂ · k̂ = 1

î · ĵ = ĵ · k̂ = k̂ · î = 0

μπορούμε να προβάλουμε ένα διάνυσμα a⃗ στην αντίστοιχη βάση και
να πάρουμε την συνιστώσα του

a1 = a⃗ · î, a2 = a⃗ · ĵ, a3 = a⃗ · k̂.

Το εσωτερικό γινόμενο δύο διανυσμάτων a⃗ και b⃗

a⃗ · b⃗ = a1b1 + a2b2 + a3b3 (1.1)

προκύπτει εύκολα εφαρμόζοντας την επιμεριστική ιδιότητα. Εάν
a⃗ · b⃗ = 0 τότε λέμε ότι τα διανύσματα είναι κάθετα μεταξύ τους. Το
μήκος ενός διανύσματος a⃗ προκύπτει από το εσωτερικό γινόμενο
με τον εαυτό του

∥⃗a∥2 = a⃗ · a⃗ = a21 + a22 + a33 (1.2)
³Από τα Αγγλικά για το εννέα.
⁴Στο σώμα των μιγαδικών αριθμών ένα πολυαδικό τάξης m στο Cn θα περιγράφεται από

2nm πραγματικούς αριθμούς.
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a⃗

b⃗

‖a⃗×b⃗‖ a⃗

b⃗

a⃗

b⃗

‖a⃗×b⃗‖

c⃗

|⃗a⋅( b⃗× c⃗)|

Σχήμα 1.3: Το εξωτερικό γινόμενο των πλευρών ενός παραλληλόγραμμου ορίζει ένα
διάνυσμα, με φορά που δίνεται από τον κανόνα του δεξιού χεριού, το μέτρο του
οποίου ισούται με το εμβαδό του παραλληλογράμμου. Το μικτό γινόμενο μεταξύ τριών
διανυσμάτων που ορίζουν στον χώρο ένα παραλληλεπίπεδο ισούται με το εμβαδό του.

και αποτελεί την γενίκευση του Πυθαγορείου θεωρήματος στις τρεις
διαστάσεις. Με την βοήθεια τώρα του ακόλουθου κανόνα εξωτερι-
κού γινομένου μεταξύ των στοιχείων της καρτεσιανής βάσης

î× ĵ = −ĵ × î = k̂, ĵ × k̂ = −k̂ × ĵ = î, k̂ × î = −î× k̂ = ĵ

î× î = ĵ × ĵ = k̂ × k̂ = 0

μπορούμε να ορίσουμε επιφάνειες και όγκους στον χώρο έτσι ώστε
το μέτρο του διανύσματος

a⃗× b⃗

να δίνει την επιφάνεια του παραλληλογράμμου που σχηματίζεται
από τα διανύσματα a⃗ και b⃗ και το μικτό γινόμενο

a⃗ · (⃗b× c⃗)

τον όγκο του παραλληλεπιπέδου που σχηματίζουν τα a⃗, b⃗ και c⃗.
Τρία μοναδιαία διανύσματα ê1, ê2 και ê3 που ικανοποιούν τις ίδιες
σχέσεις εσωτερικού και εξωτερικού γινομένου με τα î, ĵ, k̂ θα λέμε
ότι αποτελούν ορθοκανονική βάση.
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Με την βοήθεια του εσωτερικού γινομένου μπορούμε να δρά-
σουμε μια δυάδα a⃗⃗b από τα αριστερά ή τα δεξιά πάνω σε ένα
διάνυσμα και να πάρουμε

a⃗⃗b · c⃗ = a⃗(⃗b · c⃗) (Αριστερή δράση δυάδας)

c⃗ · a⃗⃗b = (⃗a · c⃗)⃗b (Δεξιά δράση δυάδας).

Εφόσον ένα δυαδικό D αποτελεί άθροισμα δυάδων η δράση του
δίνεται εύκολα εφαρμόζοντας την επιμεριστική ιδιότητα του εσω-
τερικού γινομένου. Οι συνιστώσες Dij ενός δυαδικού σε μια τυχαία
ορθοκανονική βάση ê1, ê2, ê3 προκύπτουν από το διπλό εσωτερικό
γινόμενο

Dij = êi ·D · êj .

Με παρόμοιο τρόπο τώρα ορίζεται και το εξωτερικό γινόμενο με-
ταξύ δυάδας και διανύσματος

a⃗⃗b× c⃗ = a⃗(⃗b× c)

c⃗× a⃗⃗b = (c⃗× a⃗)⃗b

και κατ’επέκταση τυχαίου δυαδικού. Παρατηρήστε ότι το εσωτε-
ρικό γινόμενο δυαδικού με διάνυσμα έχει ως αποτέλεσμα διάνυσμα
ενώ το εξωτερικό δυαδικό. Οι πράξεις αυτές (που ορίζονται και με-
ταξύ δυαδικών) γενικεύονται περαιτέρω. Έτσι αν c⃗d⃗ μια δεύτερη
δυάδα μπορούμε να ορίσουμε τα ακόλουθα διπλά γινόμενα

(⃗a⃗b)··(c⃗d⃗) = (⃗a · d⃗)(⃗b · c⃗), (⃗a⃗b)×· (c⃗d⃗) = (⃗a · d⃗)(⃗b× c⃗)

(⃗a⃗b) ·
×(c⃗d⃗) = (⃗b · c⃗)(⃗a× d⃗), (⃗a⃗b)××(c⃗d⃗) = (⃗b× c⃗)(⃗a× d⃗)

όπου η σειρά των πράξεων από πάνω προς τα κάτω εφαρμόζε-
ται πρώτα μεταξύ των εσωτερικών διανυσμάτων των δύο δυαδικών
και έπειτα μεταξύ των εξωτερικών για να δώσουν ένα βαθμωτό
(στην περίπτωση του διπλού εσωτερικού γινομένου) ένα διανυσμα-
τικό (στην περίπτωση των εσωτερικών-εξωτερικών γινομένων) και
ένα δυαδικό (στην περίπτωση του διπλού εξωτερικού γινομένου)
μέγεθος αντίστοιχα. Η γενίκευση για τυχαία δυαδικά επιτυγχάνεται
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D⋅̂i
î

k̂

ĵ

D⋅ĵ

D⋅k̂

D

Σχήμα 1.4: Η δράση ενός δυαδικού D στον χώρο R3 αντιστοιχεί τα διανύσματα βάσης
î, ĵ και k̂ στα D · î, D · ĵ και D · k̂ παραμορφώνοντάς τον.

όπως και πριν από την επιμεριστική ιδιότητα των πράξεων μεταξύ
δυάδων.
Η δράση ενός δυαδικού μπορεί να αναπαρασταθεί γεωμετρικά

ως μία παραμόρφωση στον χώρο που ορίζεται από τα διανύσματα
D · î, D · ĵ και D · k̂ (Σχήμα 1.4). Ένα δυαδικό της μορφής

D = a⃗1⃗b1 + a⃗2⃗b2 + a⃗3⃗b3

θα ονομάζεται πλήρες όταν τα a⃗1, a⃗2, a⃗3 και b⃗1, b⃗2, b⃗3 είναι γραμ-
μικώς ανεξάρτητα (απεικονίζει δηλαδή ολόκληρο τον R3 στον R3),
επίπεδο όταν a⃗3 = 0 (σε αυτή την περίπτωση απεικονίζει το επίπεδο
που ορίζουν τα διανύσματα b⃗1 και b⃗2 στο επίπεδο που ορίζουν τα
διανύσματα a⃗1 και a⃗2) και γραμμικό όταν a⃗2 = a⃗3 = 0. Το δυαδικό

DT = b⃗1a⃗1 + b⃗2a⃗2 + b⃗3a⃗3

ονομάζεται ανάστροφο δυαδικό του D. Εάν DT = D το δυαδικό
ονομάζεται συμμετρικό και αντισυμμετρικό όταν DT = −D. Απο-
δεικνύεται ότι κάθε δυαδικό μπορεί να γραφεί μοναδικά ως το
άθροισμα ενός συμμετρικού δυαδικού S και ενός αντισυμμετρικού
δυαδικού A, όπου

S =
1

2
(D +DT ) και A =

1

2
(D −DT ).
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Το ταυτοτικό δυαδικό I δίνεται από την σχέση

I = ê1ê1 + ê2ê2 + ê3ê3,

όπου ê1, ê2 και ê3 ορθοκανονική βάση (Άσκηση 1.5). Έστω τώρα το
δυαδικό

D̃ = (⃗b1 × b⃗2)(⃗a1 × a⃗2) + (⃗b2 × b⃗3)(⃗a2 × a⃗3) + (⃗b3 × b⃗1)(⃗a3 × a⃗1).

Παίρνοντας το εσωτερικό γινόμενο του D με το D̃ προκύπτει

D · D̃ = b⃗1 · (⃗b2 × b⃗3) [⃗a1(⃗a2 × a⃗3) + a⃗2(⃗a3 × a⃗1) + a⃗3(⃗a1 × a⃗2)]

όπου χρησιμοποιήσαμε την κυκλική ιδιότητα του μικτού γινομένου

b⃗1 · (⃗b2 × b⃗3) = b⃗2 · (⃗b3 × b⃗1) = b⃗3 · (⃗b1 × b⃗2)

(Άσκηση 1.1). Όμως

a⃗1(⃗a2 × a⃗3) + a⃗2(⃗a3 × a⃗1) + a⃗3(⃗a1 × a⃗2) = a⃗1 · (⃗a2 × a⃗3)I

(Άσκηση 1.6) και επομένως τελικά

D · D̃ = [⃗a1 · (⃗a2 × a⃗3)][⃗b1 · (⃗b2 × b⃗3)]I.

Παρατηρούμε λοιπόν ότι το δυαδικό D̃ = adj(D) είναι ο συζυγο-
ανάστροφος του D και το det(D) = [⃗a1 · (⃗a2 × a⃗3)][⃗b1 · (⃗b2 × b⃗3)] η
ορίζουσά του. Όταν η ορίζουσα είναι διάφορη του μηδενός ορίζεται
το αντίστροφο δυαδικό

D−1 =
D̃

det(D)

έτσι ώστε να ισχύει D · D−1 = D−1 · D = I. Επισημαίνεται ότι η
ορίζουσα είναι μια αναλλοίωτη βαθμωτή ποσότητα (παίρνει δηλαδή
την ίδια τιμή σε οποιοδήποτε σύστημα συντεταγμένων), άλλη τέτοια
ποσότητα είναι το ίχνος του δυαδικού που ορίζεται από την σχέση

tr(D) = a⃗1 · b⃗1 + a⃗2 · b⃗2 + a⃗3 · b⃗3.
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1.1.2 Κύριες διευθύνσεις και συνιστώσες δυαδικού

Για κάθε συμμετρικό δυαδικό T υπάρχει διεύθυνση στον χώρο
τέτοια ώστε η δράση του δυαδικού πάνω σε οποιοδήποτε διάνυσμα
x⃗ στην ίδια διεύθυνση να ισούται με την βάθμωσή του κατά λ ∈ R

x⃗ · T = T · x⃗ = λx⃗.

Η διεύθυνση που ορίζει το x⃗ ονομάζεται κύρια διεύθυνση του T

και το λ κύρια συνιστώσα της. Αφαιρώντας την εξίσωση κατά μέλη
μπορούμε να την φέρουμε στην εξής μορφή

(T − λI) · x⃗

η οποία έχει μή μηδενικές λύσεις όταν ισχύει det(T − λI) = 0. Γρά-
φοντας

T = î⃗t1 + ĵ t⃗2 + k̂t⃗3

βρίσκουμε ότι

det(T − λI) = det
(
î(⃗t1 − λî) + ĵ(⃗t2 − λĵ) + k̂(⃗t3 − λk̂))

)
= [̂i · (ĵ × k̂)](⃗t1 − λî) · [(⃗t2 − λĵ)× (⃗t3 − λk̂)]

= (⃗t1 − λî) · (⃗t2 × t⃗3 − λt⃗2 × k̂ − λĵ × t⃗3 + λ2î)

= −λ3 + λ2(⃗t1 · î+ t⃗2 · ĵ + t⃗3 · k̂)
− λ[̂i · (⃗t2 × t⃗3) + ĵ · (⃗t3 × t⃗1) + k̂ · (⃗t1 × t⃗2)] + t⃗1 · (⃗t2 × t⃗3).

Παρατηρούμε όμως ότι

det(T ) = t⃗1 · (⃗t2 × t⃗3)

tr(T ) = t⃗1 · î+ t⃗2 · ĵ + t⃗3 · k̂

και
tr(adj(T )) = î · (⃗t2 × t⃗3) + ĵ · (⃗t3 × t⃗1) + k̂ · (⃗t1 × t⃗2)

επομένως οι κύριες συνιστώσες του δυαδικού T δίνονται από την
επίλυση της τριτοβάθμιας χαρακτηριστικής εξίσωσης

λ3 − λ2tr(T ) + λtr(adj(T ))− det(T ) = 0.
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Όταν οι λύσεις της εξίσωσης λ1, λ2, λ3 είναι διαφορετικές μεταξύ
τους ισχύει ότι

x⃗i · (T · x⃗j) = λjx⃗i · x⃗j

και
x⃗j · (T · x⃗i) = λix⃗j · x⃗i.

Τα αριστερά μέλη όμως για ένα συμμετρικό δυαδικό είναι ίσα με-
ταξύ τους (Άσκηση 1.7) και επομένως αν i ̸= j τα διανύσματα x⃗i και
x⃗j είναι ορθογώνια μεταξύ τους. Το δυαδικό σε αυτή την περίπτωση
μπορεί να γραφεί στην μορφή

T = λ1x̂1x̂1 + λ2x̂2x̂2 + λ3x̂3x̂3

όπου x̂i = x⃗/∥x⃗∥ ορθοκανονική βάση. Εάν λi = λj τότε οποιοδήποτε
διάνυσμα στο επίπεδο που ορίζεται από τα x̂i και x̂j αποτελεί κύρια
διεύθυνση. Στην ειδική περίπτωση όπου λ1 = λ2 = λ3 = λ τότε
T = λI.
Προκύπτει εύκολα ότι

T n = λn
1 x̂1x̂1 + λn

2 x̂2x̂2 + λn
3 x̂3x̂3,

και επομένως το ίδιο το δυαδικό ικανοποιεί την χαρακτηριστική του
εξίσωση

T 3 − T 2tr(T ) + Ttr(adj(T ))− det(T )I = 0.

Με την βοήθεια της παραπάνω εξίσωσης, που είναι γνωστή ως εξί-
σωση Cayley Hamilton, οποιαδήποτε δύναμη ενός δυαδικού T n προ-
κύπτει ως γραμμικός συνδυασμός των T 2, T και I με συντελεστές
που εξαρτώνται από τα

tr(T ) = λ1 + λ2 + λ3

tr(adj(T )) = λ1λ2 + λ2λ3 + λ3λ1

και
det(T ) = λ1λ2λ3.
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1.1.3 Ιδιόμορφη αναπαράσταση δυαδικών

Για τυχόν δυαδικό D παρατηρούμε ότι τα δυαδικά DT · D και
D ·DT είναι συμμετρικά. Εάν το D είναι πλήρες ισχύει ότι

D ·DT = D · (DT ·D) · (D)−1.

Τα δύο δυαδικά επομένως είναι όμοια μεταξύ τους και έχουν τις
ίδιες κύριες συνιστώσες (Άσκηση 1.9). Γράφοντας

D ·DT = λ2
1x̂1x̂1 + λ2

2x̂2x̂2 + λ2
3x̂3x̂3

και
DT ·D = λ2

1ŷ1ŷ1 + λ2
2ŷ2ŷ2 + λ2

3ŷ3ŷ3

παρατηρούμε ότι οι δύο εξισώσεις θα ικανοποιούνται πάντα εάν
θέσουμε

D = λ1x̂1ŷ1 + λ2x̂2ŷ2 + λ3x̂3ŷ3.

Ορίζοντας τώρα ως

R1 = x̂1ẑ1 + x̂2ẑ2 + x̂3ẑ3

την περιστροφή από μια τυχαία ορθοκανονική βάση ẑ1, ẑ2, ẑ3 στην
βάση x̂1, x̂2, x̂3 και

R2 = ẑ1ŷ1 + ẑ2ŷ2 + ẑ3ŷ3

την περιστροφή από την βάση ŷ1, ŷ2, ŷ3 στην ẑ1, ẑ2, ẑ3 παρατηρούμε
ότι οποιοδήποτε δυαδικό μπορεί να αναπαρασταθεί ως γινόμενο
περιστροφών με έναν συμμετρικό πίνακα M

D = R1 ·M ·R2

όπου M = λ1ẑ1ẑ1 + λ2ẑ2ẑ2 + λ3ẑ3ẑ3. Η αναπαράσταση αυτή που
ονομάζεται ιδιόμορφη δεν είναι μοναδική καθώς εξαρτάται από την
αυθαίρετη επιλογή της βάσης ẑi. Εφ’όσον ισχύει

D · ŷi = λiŷi, και x̂i ·D = λix̂i

τα ŷi ονομάζονται δεξιές κύριες διευθύνσεις του D και τα x̂i αρι-
στερές κύριες διευθύνσεις με ιδιόμορφες τιμές λi αντίστοιχα.
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x1 x2 x3 x4 x5 x6 x7 x8 x9

y1

y2

y3

u1 u2 u3 u4 u5 u6 u7 u8 u9

v1

v2

v3

v4

Σχήμα 1.5: Οποιοδήποτε σημείο στο επίπεδο μπορεί να αναπαρασταθεί είτε σε καρτε-
σιανές είτε σε καμπυλόγραμμες συντεταγμένες. Για να συμβαίνει αυτό κατά μοναδικό
τρόπο θα πρέπει από κάθε σημείο να περνά ένα και μόνο ζευγάρι συντεταγμένων
καμπυλών ui και νj . Σε αυτή την περίπτωση οι καρτεσιανές συντεταγμένες x και y
εκφράζονται ως συναρτήσεις των u και ν.

1.2 Καμπυλόγραμμα συστήματα συντεταγμένων

Έστω u, ν, w καμπυλόγραμμο σύστημα συντεταγμένων τέτοιο ώστε
οι καρτεσιανές συνιστώσες ενός διανύσματος r⃗ = xî = yĵ + zk̂ να
εκφράζονται σαν συναρτήσεις των u, ν, w

x = x(u, ν, w), y = y(u, ν, w), z = z(u, ν, w).

Ορίζουμε τώρα τα εφαπτομενικά διανύσματα

∂r⃗

∂u
=

∂x

∂u
î+

∂y

∂u
ĵ +

∂z

∂u
k̂

∂r⃗

∂ν
=

∂x

∂ν
î+

∂y

∂ν
ĵ +

∂z

∂ν
k̂

∂r⃗

∂w
=

∂x

∂w
î+

∂y

∂w
ĵ +

∂z

∂w
k̂

εάν ∂r⃗
∂u · ∂r⃗

∂ν = ∂r⃗
∂ν · ∂r⃗

∂w = ∂r⃗
∂w · ∂r⃗

∂u = 0, τότε τα αντίστοιχα μοναδιαία
διανύσματα

û =
1

hu

∂r⃗

∂u
, ν̂ =

1

hν

∂r⃗

∂ν
, ŵ =

1

hw

∂r⃗

∂w
,
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όπου hu =
∥∥ ∂r⃗
∂u

∥∥, hν =
∥∥ ∂r⃗
∂ν

∥∥ και hw =
∥∥ ∂r⃗
∂w

∥∥, αποτελούν ορθοκανονική
βάση στο σημείο r⃗.
Η στοιχειώδης μετατόπιση dr⃗ υπολογίζεται εύκολα από την σχέση

dr⃗ = dxî+ dyĵ + dzk̂

=

(
∂x

∂u
du+

∂x

∂ν
dν +

∂x

∂w
dw

)
î+

(
∂y

∂u
du+

∂y

∂ν
dν +

∂y

∂w
dw

)
ĵ

+

(
∂z

∂u
du+

∂z

∂ν
dν +

∂z

∂w
dw

)
k̂

=
∂r⃗

∂u
du+

∂r⃗

∂ν
dν +

∂r⃗

∂w
dw

= huduû+ hνdνν̂ + hwdwŵ

το μήκος της οποίας ισούται με

∥dr⃗∥2 = h2
u(du)

2 + h2
ν(dν)

2 + h2
w(dw)

2.

Παίρνοντας κατάλληλα εξωτερικά γινόμενα της στοιχειώδης μετα-
τόπισης στην διεύθυνση των û, ν̂ και ŵ προκύπτουν οι εξής στοι-
χειώδεις επιφάνειες

dSw = (huduû)× (hνdνν̂) = huhνdudνŵ (Στ. επ. στο επίπεδο û-ν̂)
dSu = (hνdνν̂)× (hwdwŵ) = hνhwdνdwû (Στ. επ. στο επίπεδο ν̂-ŵ)
dSν = (hwdwŵ)× (huduû) = hwhudwduν̂ (Στ. επ. στο επίπεδο ŵ-û),

και ο στοιχειώδης όγκος από το μικτό γινόμενο

dV = (huduû) · [(hνdνν̂)× ((hwdwŵ))] = huhνhwdudνdw.

1.2.1 Βάθμωση σε καμπυλόγραμμες συντεταγμένες

Έστω

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂
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η βάθμωση σε καρτεσιανή μορφή. Από τον κανόνα της αλυσίδας για
τις μερικές παραγώγους προκύπτει ότι

∂

∂u
=

∂x

∂u

∂

∂x
+

∂y

∂u

∂

∂y
+

∂z

∂u

∂

∂z
=

∂r⃗

∂u
· ∇

∂

∂ν
=

∂x

∂ν

∂

∂x
+

∂y

∂ν

∂

∂y
+

∂z

∂ν

∂

∂z
=

∂r⃗

∂ν
· ∇

∂

∂w
=

∂x

∂w

∂

∂x
+

∂y

∂w

∂

∂y
+

∂z

∂w

∂

∂z
=

∂r⃗

∂w
· ∇.

Εφ’όσον όμως I = ûû+ ν̂ν̂ + ŵŵ

∇ = I · ∇ = û(û · ∇) + ν̂(ν̂ · ∇) + ŵ(ŵ · ∇)

=
û

hu

∂

∂u
+

ν̂

hν

∂

∂ν
+

ŵ

hw

∂

∂w

που δεν είναι τίποτα άλλο παρά η έκφραση της βάθμωσης σε καμπυ-
λόγραμμες συντεταγμένες. Στην γενική περίπτωση τα διανύσματα
βάσης δεν είναι σταθερά αλλά μεταβάλλονται από σημείο σε ση-
μείο, ο υπολογισμός της απόκλισης και του στροβιλισμού σε τυχαίο
διάνυσμα απαιτεί επομένως την γνώση της απόκλισης και του στρο-
βιλισμού στα διανύσματα της βάσης έτσι ώστε αν f⃗ = fuû+fν ν̂+fwŵ

∇ · f⃗ = (û · ∇)fu + (ν̂ · ∇)fν + (ŵ · ∇)fw

+ (∇ · û)fu + (∇ · ν̂)fν + (∇ · ŵ)fw

και

∇× f⃗ = (∇fu)× û+ (∇fν)× ν̂ + (∇fw)× ŵ

= fu∇× û+ fν∇× ν̂ + fw∇× ŵ.

Αντικαθιστώντας το f⃗ με ∇ στον τύπο της απόκλισης βρίσκουμε
την έκφραση της Λαπλασιανής σε καμπυλόγραμμες συντεταγμένες

∆ = [(û · ∇) + (∇ · û)](û · ∇) + [(ν̂ · ∇) + (∇ · ν̂)](ν̂ · ∇)

+ [(ŵ · ∇) + (∇ · ŵ)](ŵ · ∇).
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1.3 Ασκήσεις

Άσκηση 1.1. Από τους κανόνες εσωτερικού και εξωτερικού γινομέ-
νου προκύπτει εύκολα ότι

î · (ĵ × k̂) = ĵ · (k̂ × î) = k̂ · (̂i× ĵ).

Με βάση αυτό αποδείξτε την ιδιότητα της κυκλικής μετάθεσης του
μικτού γινομένου τριών διανυσμάτων a⃗, b⃗, c⃗

a⃗ · (⃗b× c⃗) = b⃗ · (c⃗× a⃗) = c⃗ · (⃗a× b⃗).

Μπορείτε να δώσετε μια γεωμετρική εξήγηση για την παραπάνω
σχέση; (Συμβουλευτείτε το Σχ. 1.3).

Άσκηση 1.2. Αποδείξτε ότι αν τρία διανύσματα a⃗, b⃗ και c⃗ είναι
γραμμικώς εξαρτημένα τότε ισχύει

a⃗ · (⃗b× c⃗) = 0.

Τσεκάρετε κατά πόσο τα διανύσματα

a⃗ = 3̂i+ ĵ − 2k̂

b⃗ = 4̂i− ĵ − k̂

c⃗ = î− 2ĵ + k̂

είναι γραμμικώς εξαρτημένα, εάν ναι εκφράστε το ένα συναρτήσει
των άλλων.

Άσκηση 1.3. Δείξτε ότι οποιοδήποτε δυαδικό D μπορεί πάντα να
γραφεί ισοδύναμα ως

D = a⃗1ê1 + a⃗2ê2 + a⃗3ê3 και D = ê1b⃗1 + ê2b⃗2 + ê3b⃗3,

οπου ê1, ê2 και ê3 τυχαία ορθοκανονική βάση.

Άσκηση 1.4. Υπολογίστε τα διπλά γινόμενα F ··D, F×·D, F ·×D και
F××D για τα δυαδικά

F = 4̂ik̂ + 6ĵĵ − 3k̂ĵ + k̂k̂

και
D = 3̂îi+ 2ĵĵ − ĵk̂ + 5k̂k̂.
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Άσκηση 1.5. Αποδείξτε ότι αν τα διανύσματα ê1, ê2 και ê3 απο-
τελούν ορθοκανονική βάση τότε το δυαδικό που ορίζεται από την
σχέση

I = ê1ê1 + ê2ê2 + ê3ê3

είναι ο ταυτοτικός τελεστής. Ισχύει δηλ I · I = I και I · Σ = Σ, I · a⃗
για κάθε δυαδικό Σ και διάνυσμα a⃗.

Άσκηση 1.6. Αποδείξτε την ακόλουθη σχέση

a⃗ · (⃗b× c⃗)d⃗ = a⃗ · d⃗(⃗b× c⃗) + b⃗ · d⃗(c⃗× a⃗) + c⃗ · d⃗(⃗a× b⃗).

(Χρησιμοποιείστε τον τύπο για το τριπλό εξωτερικό γινόμενο και
υπολογίστε το a⃗ × [(⃗b × c⃗) × d⃗] δύο φορές, μία κάνοντας πρώτα τις
πράξεις που βρίσκονται μες στην αγκύλη και μία θέτοντας το b⃗× c⃗

ως ένα ξεχωριστό διάνυσμα u⃗). Δείξτε τώρα ότι

a⃗ · (⃗b× c⃗)I = a⃗(⃗b× c⃗) + b⃗(c⃗× a⃗) + c⃗(⃗a× b⃗).

Άσκηση 1.7. Εαν T συμμετρικό δυαδικό, αποδείξτε την ακόλουθη
σχέση

a⃗ · T · b⃗ = b⃗ · T · a⃗.

Άσκηση 1.8. Αποδείξτε την ακόλουθη σχέση για την ορίζουσα του
γινομένου δύο τυχαίων δυαδικών F και D

det(F ·D) = det(F )det(D).

Άσκηση 1.9. Εάν F πλήρες δυαδικό τότε λέμε ότι τα δυαδικά D και
F ·D·F−1 είναι όμοια μεταξύ τους. Αποδείξτε ότι οι κύριες συνιστώ-
σες ενός συμμετρικού δυαδικού T και του δυαδικού F ·T ·F−1 είναι
οι ίδιες. (Αρκεί να δείξετε ότι οι συντελεστές της χαρακτηριστικής
εξίσωσης και στις δύο περιπτώσεις είναι οι ίδιοι.)

Άσκηση 1.10. Αποδείξτε τις ακόλουθες σχέσεις για το διάνυσμα
θέσης r⃗

∇ · r⃗ = 3, ∇× r⃗ = 0, ∇r⃗ = I.
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Άσκηση 1.11. Δείξτε ότι για συνάρτηση f και διάνυσμα a⃗

∇ · (f a⃗) = f(∇ · a⃗) + (∇f) · a⃗

και
∇× (f a⃗) = f(∇× a⃗) + (∇f)× a⃗.

Χρησιμοποιείστε αυτές τις σχέσεις για να αναπαράγετε τους τύπους
της απόκλισης και του στροβιλισμού διανύσματος καθώς επίσης και
της Λαπλασιανής σε καμπυλόγραμμες συντεταγμένες.

Άσκηση 1.12. Εφαρμόστε τους τύπους της απόκλισης, στροβιλισμού
και της Λαπλασιανής σε σφαιρικές και κυλινδρικές συντεταγμένες.



Κεφάλαιο 2

Η ΕΝΝΟΙΑ ΤΗΣ ΤΑΣΗΣ

Οι νόμοι που περιγράφουν την συμπεριφορά μακροσκοπικών συ-
στημάτων, στο πλείστον των περιπτώσεων, είναι ανεξάρτητοι από
την μικροσκοπική τους δομή. Για να περιγραφεί η θερμοδυναμική
συμπεριφορά ενός ιδανικού αερίου για παράδειγμα απαιτούνται
μόνο τρεις αριθμοί: η πίεση, ο όγκος που αυτό καταλαμβάνει στον
χώρο και η θερμοκρασία του αερίου. Παρά το γεγονός ότι το αέ-
ριο αποτελείται από άτομα η χωρική και χρονική κλίμακα για την
οποία ενδιαφερόμαστε είναι κατά πολλές τάξεις μεγέθους μεγαλύ-
τερη από τις αντίστοιχες κλίμακες της ατομικής φυσικής έτσι ώστε
να μπορούμε να αγνοούμε με ασφάλεια φαινόμενα όπως τις πυρη-
νικές δυνάμεις που συγκρατούν τα κουάρκ στον πυρήνα ενός ατό-
μου ή τις διεγέρσεις και αποδιεγέρσεις των ηλεκτρονίων του. Με
παρόμοιο τρόπο όταν οι διαστάσεις ενός υλικού είναι κατά πολύ
μεγαλύτερες από το τυπικό μέγεθος ενός ατόμου μπορούμε να συ-
μπεριφερθούμε σε αυτό σαν να αποτελείται από ένα συνεχές και
απείρως διαιρέσιμο κομμάτι. Η παραδοχή αυτή είναι η βασική πα-
ραδοχή της μηχανικής του συνεχούς μέσου. Οι φυσικές ποσότητες
που περιγράφουν το υλικό σε αυτή την περίπτωση αποτελούν πεδία
με διαφορετικές, εν γένει, τιμές στα διάφορα σημεία του χώρου.
Ένα υλικό στο οποίο οι φυσικές ποσότητες είναι ανεξάρτητες

της θέσης ονομάζεται ομογενές ενώ ένα υλικό στο οποίο οι ποσό-
τητες έχουν την ίδια τιμή σε κάθε διεύθυνση ονομάζεται ισότροπο.
Η ομογένεια δεν συνεπάγεται απαραίτητα την ισοτροπία. Το ηλε-
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κτρικό πεδίο το οποίο αναπτύσσεται ανάμεσα στις πλάκες ενός
πυκνωτή για παράδειγμα είναι ομογενές καθώς έχει το ίδιο μέτρο
και διεύθυνση σε κάθε σημείο μεταξύ των πλακών του δεν είναι
όμως ισότροπο (έχει προτιμητέα διεύθυνση κάθετη στις πλάκες).

+ + + + + + + + + + + + ++ + + + + + + + + + + + +

_ _ _ _ _ _ _ _ _ _ _ _ _

Σχήμα 2.1: Το ομογενές πεδίο που αναπτύσσεται στα άκρα ενός πυκνωτή είναι ένα
παράδειγμα μιας ομογενούς αλλά μη ισότροπης ποσότητας.

Οι δυνάμεις που ασκούνται σε τυχόν υλικό σώμα χωρίζονται σε
δύο κατηγορίες. Τις δυνάμεις μαζας b⃗, με μονάδες μέτρησης δύνα-
μης ανά μονάδα μάζας [F ]/[M ], και τις επιφανειακές δυνάμεις, με
μονάδες μέτρησης δύναμης ανά μονάδα επιφάνειας [F ]/[L]2, (Σχήμα
2.2). Παραδείγματα δυνάμεων μάζας αποτελούν η δύναμη της βα-
ρύτητας και οι δυνάμεις αδράνειας. Η πίεση και η διατμητική τάση
που ασκείται σε μία στοιχειώδη επιφάνεια αποτελούν παραδείγ-
ματα επιφανειακών δυνάμεων.

2.1 Ο τανυστής τάσης

Οι επιφανειακές δυνάμεις που ασκούνται στις έδρες ενός στοι-
χειώδους όγκου γύρω από κάποιο σημείο P του χώρου ορίζουν την
κατάσταση τάσης του υλικού στο σημείο αυτό (Σχήμα 2.3). Αναλύ-
οντας τις επιφανειακές δυνάμεις t⃗x, t⃗y και t⃗z στην καρτεσιανή βάση
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x

y

z
b⃗

f⃗
n̂

Σχήμα 2.2: Δυνάμεις που ασκούνται σε ένα συνεχές σώμα. Δυνάμεις μάζας, b⃗ και
επιφανειακές δυνάμεις f⃗ .

Ρ

t⃗ x

t⃗ y

t⃗ z

σ xx
σ xy

σ xz

σ yz

σ yx

σ yy

σ zy
σ zx

σ zz

x

y

z

Σχήμα 2.3: Η κατάσταση τάσης στις έδρες ενός στοιχειώδους όγκου.

î, ĵ, k̂ έχουμε
t⃗x = σxxî+ σxy ĵ + σxzk̂
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t⃗y = σyxî+ σyy ĵ + σyzk̂

t⃗z = σzxî+ σzy ĵ + σzzk̂.

Ορίζουμε τώρα τον ακόλουθο τανυστή τάσης

Σ = î⃗tx + ĵ t⃗y + k̂t⃗z.

Οι επιφανειακές δυνάμεις προκύπτουν από την δεξιά δράση του
τανυστή τάσης επάνω στο αντίστοιχο επιφανειακό διάνυσμα

t⃗x = î · Σ, t⃗y = ĵ · Σ, t⃗z = k̂ · Σ.

Η τάση που ασκείται πάνω σε τυχαία στοιχειώδη επιφάνεια dS με
μοναδιαίο διάνυσμα n̂ κάθετο σε αυτήν δίνεται από την σχέση

t⃗n̂ = n̂ · Σ.

Αναλύουμε τώρα την τάση στην διεύθυνση του n̂ και σε μία, κάθετη,
διεύθυνση n̂⊥ εφαπτομενική στην επιφάνεια

t⃗n̂ = σN n̂+ σSn̂⊥.

Η προβολή της τάσης στο διάνυσμα n̂ δίνει την τιμή της πίεσης

σN = t⃗n̂ · n̂ = n̂ · Σ · n̂,

που ασκείται κάθετα στην στοιχειώδη επιφάνεια ενώ η προβολή
στην διεύθυνση n̂⊥ την διατμητική τάση

σS = t⃗n̂ · n̂⊥ = n̂ · Σ · n̂⊥

που ασκείται παράλληλα στην επιφάνεια στο σημείο αυτό. Τα δια-
γώνια στοιχεία του τανυστή τάσης επομένως δίνουν την πίεση που
ασκείται στην αντίστοιχη διεύθυνση ενώ τα μη διαγώνια στοιχεία
τις συνιστώσες της διάτμησης.

2.2 Εξισώσεις ισορροπίας

Για ένα υλικό μέσο που ισορροπεί το άθροισμα των δυνάμεων
που του ασκούνται και των ροπών που αυτές προκαλούν θα πρέπει
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να ισούται με μηδέν. Από τον δεύτερο νόμο του Νεύτωνα για τις
μεταφορικές κινήσεις προκύπτει∮

∂V

t⃗n̂dS +

∫
V

ρ⃗bdV = 0

όπου ρ η πυκνότητά του υλικού, V ο όγκος του και ∂V το σύνορο
που καθορίζει την επιφάνειά του. Εφόσον t⃗n̂ = n̂ · Σ μπορούμε να
εφαρμόσουμε το θεώρημα του Gauss και να μετατρέψουμε το κλει-
στό επιφανειακό ολοκλήρωμα σε ολοκλήρωμα όγκου για το ∇ · Σ.
Προκύπτει λοιπόν ∫

V

(∇ · Σ+ ρ⃗b)dV = 0.

Εφόσον η εξίσωση αυτή ισχύει για κάθε δυνατό όγκο V θα πρέπει

∇ · Σ+ ρ⃗b = 0,

που είναι η διαφορική μορφή της εξίσωσης ισορροπίας για την με-
ταφορική κίνηση του υλικου.
Εφαρμόζοντας τώρα τον δεύτερο νόμο του Νεύτωνα για τις πε-

ριστροφικές κινήσεις θα πρέπει∮
∂V

r⃗ × (n̂ · Σ)dS +

∫
V

r⃗ × (ρ⃗b)dV = 0.

Όμως r⃗ × (n̂ · Σ) = −n̂ · (Σ× r⃗) και

−∇ · (Σ× r⃗) = r⃗ × (∇ · Σ) + 1

2
I ·
× (Σ− ΣT ).

Μετατρέποντας το επιφανειακό ολοκλήρωμα σε ολοκλήρωμα όγκου
προκύπτει∫

V

r⃗ × (∇ · Σ+ ρ⃗b)dV +
1

2

∫
V

I ·
× (Σ− ΣT )dV = 0.

Το πρώτο ολοκλήρωμα όμως από τις εξισώσεις ισορροπίας για τις
μεταφορικές κινήσεις ισούται με μηδέν και επομένως∫

V

I ·
× (Σ− ΣT )dV = 0
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που συνεπάγεται την συμμετρικότητα του τανυστή τάσης

Σ = ΣT .

Στο ίδιο συμπέρασμα μπορούμε να καταλήξουμε και από το Σχήμα
2.3. Για να μηδενίζεται η ροπή που ασκείται στον στοιχειώδη κύβο
θα πρέπει οι διατμητικές τάσεις

σxy = σyx, σxz = σzx, σyz = σzy

να είναι ίσες μεταξύ τους.

2.3 Τετραγωνική επιφάνειας τάσης του Cauchy

Έστω τετραγωνική επιφάνεια που περιγράφεται από την σχέση

r⃗ · Σ · r⃗ = ±k2

όπου Σ η τιμή του τανυστή τάσης στο σημείο P . Λύνοντας την εξί-
σωση ως προς μία συντεταγμένη, έστω z, προκύπτει μια συνάρτηση
της μορφής z = z(x, y) (με κατάλληλη επιλογή του προσήμου στο
δεξί μέλος έτσι ώστε αυτή να βγαίνει πάντα πραγματική). Η πα-
ραπάνω εξίσωση ορίζει μια οικογένεια από όμοιες επιφάνειες με
κέντρο το P , μία για κάθε διαφορετική τιμή του k. Χαρακτηρι-
στικό παράδειγμα αποτελεί η εξίσωση μιας σφαιρικής επιφάνειας
r⃗·I·r⃗ = R2 (η οποία προκύπτει θέτοντας Σ = I) όπου μεταβάλλοντας
το R παίρνουμε μια οικογένεια από σφαιρικά κελύφη.
Αντικαθιστώντας r⃗ = rr̂, βρίσκουμε ότι η πίεση στο σημείο P που

ασκείται κάθετα στην στοιχειώδη επιφάνεια με μοναδιαίο διάνυσμα
το r̂ είναι αντιστρόφως ανάλογη της απόστασης του P από το σημείο
της επιφάνειας στην διεύθυνση του r⃗

σN = ±k2

r2
.

Η εξίσωση
r⃗ · Σ · r⃗ = σNr

2

είναι γνωστή ως η τετραγωνική επιφάνεια τάσης του Cauchy.
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2.4 Κύριες συνιστώσες τανυστή τάσης

Όταν ο τανυστής τάσης είναι συμμετρικός μπορεί να γραφεί στην
μορφή

Σ = σ1n̂1n̂1 + σ2n̂2n̂2 + σ3n̂3n̂3

όπου σi και n̂i, με i = 1, 2, 3, οι κύριες συνιστώσες και διευθύνσεις
του. Είναι εύκολο να δειχθεί ότι εφόσον

σN = n̂ · Σ · n̂ = σ1(n̂ · n̂1)
2 + σ2(n̂ · n̂2)

2 + σ3(n̂ · n̂3)
2

θα ισχύει

σN ≤ max(σ1, σ2, σ3)
[
(n̂ · n̂1)

2 + (n̂ · n̂2)
2 + (n̂ · n̂3)

2
]

και
σN ≥ min(σ1, σ2, σ3)

[
(n̂ · n̂1)

2 + (n̂ · n̂2)
2 + (n̂ · n̂3)

2
]
.

Το διάνυσμα

n̂ = (n̂ · n̂1)n̂1 + (n̂ · n̂2)n̂2 + (n̂ · n̂3)n̂3

όμως είναι μοναδιαίο και άρα

n̂ · n̂ = (n̂ · n̂1)
2 + (n̂ · n̂2)

2 + (n̂ · n̂3)
2 = 1.

Προκύπτει τελικά

min(σ1, σ2, σ3) ≤ σN ≤ max(σ1, σ2, σ3).

Η πίεση επομένως που ασκείται κάθετα σε τυχαία στοιχειώδη επι-
φάνεια με μοναδιαίο διάνυσμα n̂ βρίσκεται πάντα μεταξύ της ελά-
χιστης και της μέγιστης κύριας συνιστώσας του τανυστή τάσης στο
σημείο P .
Για την τάση στην στοιχειώδη επιφάνεια με μοναδιαίο n̂ έχουμε

t⃗n̂ = n̂ · Σ = σ1(n̂ · n̂1)n̂1 + σ2(n̂ · n̂2)n̂2 + σ3(n̂ · n̂3)n̂3

απ’ όπου προκύπτει

t⃗n̂ · n̂1 = σ1(n̂ · n̂1), t⃗n̂ · n̂2 = σ2(n̂ · n̂2), t⃗n̂ · n̂3 = σ3(n̂ · n̂3).
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σ 1

σ 2

σ 3

n̂

t⃗ n̂

Σχήμα 2.4: Το ελλειψοειδές τάσης του Lamé.

Οι συνιστώσες της τάσης σε μια τυχαία στοιχειώδη επιφάνεια, στην
βάση που ορίζεται από τις κύριες διευθύνσεις του τανυστή τάσης
ικανοποιούν την εξίσωση

(⃗tn̂ · n̂1)
2

σ2
1

+
(⃗tn̂ · n̂2)

2

σ2
2

+
(⃗tn̂ · n̂3)

2

σ2
3

= 1.

Ο γεωμετρικός τόπος των πιθανών τάσεων σε ένα σημείο λοιπόν
σχηματίζει ένα ελλειψοειδές με ημιάξονες τα σ1, σ2 και σ3 όπως
στο Σχήμα 2.4 γνωστό ως το ελλειψοειδές τάσης του Lamé.

2.5 Μέγιστα και ελάχιστα μέτρα διατμήσεων

Το μέτρο της τάσης σε μια τυχαία στοιχειώδη επιφάνεια με μο-
ναδιαίο διάνυσμα n̂ ισούται με∥∥t⃗n̂∥∥2 = σ2

1n
2
1 + σ2

2n
2
2 + σ2

3n
2
3

όπου n1 = n̂ · n̂1, n2 = n̂ · n̂2 και n3 = n̂ · n̂3 οι συνιστώσες του n̂

στο τρισορθογώνιο σύστημα συντεταγμένων που ορίζεται από τις
κύριες διευθύνσεις. Όμως∥∥t⃗n̂∥∥2 = σ2

N + σ2
S
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και
σ2
N = (σ1n

2
1 + σ2n

2
2 + σ3n

2
3)

2

από τις οποίες προκύπτει η ακόλουθη σχέση για το μέτρο της διά-
τμησης

σ2
S = σ2

1n
2
1 + σ2

2n
2
2 + σ2

3n
2
3 − (σ1n

2
1 + σ2n

2
2 + σ3n

2
3)

2.

Εφαρμόζουμε τώρα την μέθοδο πολλαπλασιαστών του Lagrange για
να βρούμε τα ακρότατα της σS (ως προς τα κατευθύνοντα συνημί-
τονα n1, n2 και n3) από τα ακρότατα της συνάρτησης

σ2
S + λ(n2

1 + n2
2 + n2

3 − 1)

υπό τον περιορισμό ότι n2
1 + n2

2 + n2
3 = 1. Μηδενίζοντας τις μερικές

παραγώγους ως προς n1, n2 και n3

n1[σ
2
1 − 2σ1(σ1n

2
1 + σ2n

2
2 + σ3n

2
3) + λ] = 0,

n2[σ
2
2 − 2σ2(σ1n

2
1 + σ2n

2
2 + σ3n

2
3) + λ] = 0,

n3[σ
2
3 − 2σ3(σ1n

2
1 + σ2n

2
2 + σ3n

2
3) + λ] = 0

βρίσκουμε ότι για

n̂ = ±n̂1, n̂ = ±n̂2 και n̂ = ±n̂3

η διάτμηση μηδενίζεται, σS = 0. Αυτές δεν είναι τίποτα άλλο παρά οι
κύριες διευθύνσεις του τανυστή τάσης στις οποίες το διάνυσμα της
τάσης ταυτίζεται με την πίεση. Θέτοντας n1 = 0 και απαλείφοντας
το λ από τις άλλες δύο εξισώσεις προκύπτει

n2
2 = n2

3 =
1

2
=⇒ σ2

S =
(σ2 − σ3)

2

4
.

Ομοίως αν n2 = 0

n2
1 = n2

3 =
1

2
=⇒ σ2

S =
(σ1 − σ3)

2

4

ενώ αν n3 = 0

n2
1 = n2

2 =
1

2
=⇒ σ2

S =
(σ1 − σ2)

2

4
.
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Υποθέτοντας χωρίς βλάβη της γενικότητας ότι σ1 ≥ σ2 ≥ σ3 η μέγι-
στη διάτμηση θα έχει μέτρο

σS =
|σ1 − σ3|

2

με διεύθυνση που τέμνει το τεταρτημόριο που σχηματίζουν οι κύριες
διευθύνσεις n̂1 και n̂3.

2.6 Οι κύκλοι του Mohr

Οι σχέσεις
σN = σ1n

2
1 + σ2n

2
2 + σ3n

2
3,

σ2
N + σ2

S = σ2
1n

2
1 + σ2

2n
2
2 + σ2

3n
2
3,

n2
1 + n2

2 + n2
3 = 1

ορίζουν ένα σύστημα εξισώσεων που μπορεί να λυθεί ως προς τα
κατευθύνοντα συνημίτονα n1, n2 και n3. Αντικαθιστώντας την τιμή
n2
3 = 1− n2

1 − n2
2 στις δύο πρώτες προκύπτει

σN − σ3 = (σ1 − σ3)n
2
1 + (σ2 − σ3)n

2
2,

σ2
N + σ2

S − σ2
3 = (σ2

1 − σ2
3)n

2
1 + (σ2

2 − σ2
3)n

2
2.

Πολλαπλασιάζοντας την πρώτη εξίσωση με σ2 + σ3 και αφαιρώντας
την δεύτερη βρίσκουμε την ακόλουθη σχέση για το n1

n2
1 =

(σN − σ2)(σN − σ3) + σ2
S

(σ1 − σ2)(σ1 − σ3)
.

Εφόσον το αρχικό σύστημα εξισώσεων παραμένει αναλλοίωτο κάτω
από εναλλαγές των δεικτών οι λύσεις για τα κατευθύνοντα συνημί-
τονα n2 και n3 προκύπτουν από κυκλικές μεταθέσεις των 1, 2, 3

n2
2 =

(σN − σ3)(σN − σ1) + σ2
S

(σ2 − σ3)(σ2 − σ1)
,

n2
3 =

(σN − σ1)(σN − σ2) + σ2
S

(σ3 − σ1)(σ3 − σ2)
.
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Θέτοντας

R2
1 =

(
σN − σ2 + σ3

2

)2

+ σ2
S

R2
2 =

(
σN − σ1 + σ3

2

)2

+ σ2
S

και

R2
3 =

(
σN − σ1 + σ2

2

)2

+ σ2
S

μπορούμε να φέρουμε τις λύσεις στην μορφή

n2
1 =

R2
1 −

(
σ2−σ3

2

)2
(σ1 − σ2)(σ1 − σ3)

n2
2 =

R2
2 −

(
σ1−σ3

2

)2
(σ2 − σ1)(σ2 − σ3)

n2
3 =

R2
3 −

(
σ1−σ2

2

)2
(σ3 − σ1)(σ3 − σ2)

.

Χωρίς βλάβη της γενικότητας μπορούμε να υποθέσουμε ότι σ1 ≥
σ2 ≥ σ3. Εφόσον n2

i ≥ 0 για i = 1, 2, 3 προκύπτει ότι

R1 ≥
σ2 − σ3

2

R2 ≤
σ1 − σ3

2
και

R3 ≥
σ1 − σ2

2
.

Οι εξισώσεις για τα Ri ορίζουν κύκλους στον χώρο σN -σS με κέντρα
στα σημεία(

σ2 + σ3

2
, 0

)
,

(
σ1 + σ3

2
, 0

)
,

(
σ1 + σ2

2
, 0

)
και επιτρεπτές ακτίνες R1, R2, R3 που καθορίζονται από τις ανισώ-
σεις. Οι πιθανές τιμές της πίεσης και της διάτμησης καταλαμβάνουν
την σκιασμένη περιοχή του Σχήματος 2.5. Η μέγιστη τιμή της διά-
τμησης (σ1−σ3)/2 που βρήκαμε στην προηγούμενη ενότητα προκύ-
πτει εύκολα από την δεύτερη ανίσωση και αντιστοιχεί σε εκείνο το
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σημείο του εξωτερικού κύκλου που βρίσκεται ακριβώς πάνω από
το κέντρο του.
Το σημείο (σN , σS) που αντιστοιχεί σε μία συγκεκριμένη τιμή του

επιφανειακού διανύσματος n̂ στην βάση των κύριων συνιστωσών
του τανυστή τάσης προκύπτει από την τομή του πρώτου και τρίτου
κύκλου με ακτίνες

R2
1 = n2

1(σ1 − σ2)(σ1 − σ3) +

(
σ2 − σ3

2

)2

και

R2
3 = n2

3(σ1 − σ3)(σ2 − σ3) +

(
σ1 − σ2

2

)2

.

Αξίζει να σημειωθεί ότι η ανάλυση των κύκλων του Mohr δεν
περιορίζεται στον τανυστή της τάσης μόνο αλλά σε οποιονδήποτε
συμμετρικό τανυστή.

2.6.1 Καταστάσεις επίπεδης τάσης

Για έναν επίπεδο τανυστή τάσης κάποια από τις κύριες συνι-
στώσες του μηδενίζεται. Το χαρακτηριστικό πολυώνυμο σε αυτή
την περίπτωση ισούται με

λ2 − λtrΣ+ detΣ = 0

και η εξίσωση Cayley-Hamilton παίρνει την μορφή

Σ2 − ΣtrΣ+ IdetΣ = 0.

Σε σύστημα συντεταγμένων που περιλαμβάνει την κύρια διεύθυνση
του τανυστή τάσης με μηδενική κύρια συνιστώσα η ανάλυση των
κύκλων του Mohr απλοποιείται αρκετά. Έστω για παράδειγμα τα-
νυστής τάσης της μορφής

Σ = σxx î̂i+ σxy îĵ + σxy ĵ î+ σyy ĵĵ

με trΣ = σxx + σyy και detΣ = σxxσyy − σ2
xy (η διεύθυνση μηδε-

νικής συνιστώσας σε αυτή την περίπτωση είναι το k̂). Παίρνοντας
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σ 2 σ 1σ 3 σ N

σ S

R1

R3

Σχήμα 2.5: Οι κύκλοι του Mohr για τον τανυστή τάσης. Σημειώνεται το μέγιστο μέτρο
διάτμησης με × καθώς επίσης και οι κύκλοι σταθερής ακτίνας R1 και R3 από την τομή
των οποίων προκύπτουν οι τιμές της πίεσης και διάτμησης για δεδομένες τιμές του n1

και n3.

σ 1σ 2 σ N

σ S

σ xy

σ xx σ yy

Ρ

σ xy

σ xx

σ xy

σ yy

z

x

y

Σχήμα 2.6: Κύκλος του Mohr για κατάσταση επίπεδης τάσης.
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το εσωτερικό γινόμενο της εξίσωσης Cayley-Hamilton με το τυχόν
μοναδιαίο διάνυσμα n̂ από δεξιά και από αριστερά προκύπτει(

σN − σxx + σyy

2

)2

+ σ2
S =

(
σxx − σyy

2

)2

+ σ2
xy

όπου χρησιμοποιήσαμε τις σχέσεις για το ίχνος και την ορίζουσα του
Σ που βρήκαμε προηγουμένως και το γεγονός ότι n̂·Σ = σN n̂+σSn̂⊥.

Οι τιμές τις πίεσης και της διάτμησης σε μία κατάσταση επίπεδης
τάσης βρίσκονται επάνω στον κύκλο ακτίνας√(

σxx − σyy

2

)2

+ σ2
xy

με κέντρο το (
σxx + σyy

2
, 0

)
.

Για n̂ = î, σN = σxx ενώ για n̂ = ĵ, σN = σyy. Και στις δύο περι-
πτώσεις με απλή αντικατάσταση προκύπτει σ2

S = σ2
xy. Η κατάσταση

τάσης για τον στοιχειώδη όγκο με επιφανειακά διανύσματα τα î, ĵ
και k̂ καθώς και το σημείο επάνω στον κύκλο του Mohr που αντι-
στοιχεί στις τιμές των σN και σS που μόλις βρήκαμε δίνεται στο
Σχήμα 2.6. Παρατηρούμε ότι στην διεύθυνση k̂ δεν ασκούνται κα-
θόλου δυνάμεις. Σε αυτή την περίπτωση λέμε ότι η αντίστοιχη επι-
φάνεια είναι ελεύθερη. Παρόμοια διαγράμματα συναντώνται πολύ
συχνά σε βιβλία αντοχής υλικών.
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2.7 Ασκήσεις

Άσκηση 2.1. Έστω τανυστής τάσης σε κάποιο σημείο P του χώρου
της μορφής

Σ = î(7̂i− 2k̂) + 5ĵĵ − 2k̂(̂i− 2k̂).

Να βρεθεί το διάνυσμα τάσης που ασκείται σε μία στοιχειώδη επι-
φάνεια με μοναδιαίο διάνυσμα

n̂ =
1

3
(2̂i− 2ĵ + k̂)

και η τιμή της πίεσης σN και της διατμητικής τάσης σS στο σημείο
αυτό.

Άσκηση 2.2. Τανυστής τάσης σε κάποιο σημείο P του χώρου έχει
την μορφή

Σ = σI+ σ[a(̂iĵ + ĵ î) + b(̂ik̂ + k̂î) + c(ĵk̂ + k̂ĵ)],

όπου σ σταθερά. Να βρεθούν οι τιμές των a, b και c έτσι ώστε η
τάση πάνω στην στοιχειώδη επιφάνεια με μοναδιαίο διάνυσμα

n̂ =
1√
3
(̂i+ ĵ + k̂)

να μηδενίζεται.

Άσκηση 2.3. Τανυστής τάσης έχει την μορφή

Σ = yî(3xî+ 5yĵ) + ĵ(5y2î+ 2zk̂) + 2zk̂ĵ

Να βρεθούν

α) Η τάση που ασκείται στην επιφάνεια που εφάπτεται με τον
κύλινδρο y2 + z2 = 4.

β) Το πεδίο δυνάμεων μάζας b⃗ που πρέπει να ασκείται σε σώμα
πυκνότητας ρ ώστε αυτό να ισορροπεί.

(Υπόδειξη: το κάθετο διάνυσμα στο εφαπτόμενο επίπεδο μια επι-
φάνειας της μορφής f(r⃗) = σταθ ισούται με την βάθμωση ∇f .)
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Άσκηση 2.4. Να δειχθεί ότι το διάνυσμα που είναι κάθετο στο
εφαπτόμενο επίπεδο της επιφάνειας τάσης του Cauchy στο r⃗ εί-
ναι παράλληλο στην τάση που ασκείται στην στοιχειώδη επιφάνεια
με μοναδιαίο διάνυσμα r̂ στο κέντρο της.

Άσκηση 2.5. Να δειχθεί ότι το μέτρο της διάτμησης στην στοιχειώδη
επιφάνεια με μοναδιαίο διάνυσμα

n̂ =
1√
3
(n̂1 + n̂2 + n̂3)

κάθετο σε αυτήν δίνεται από την σχέση

σ2
S =

1

9
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2],

όπου n̂i η κύρια διεύθυνση και σi η κύρια συνιστώσα του τανυστή
τάσης με i = 1, 2, 3.

Άσκηση 2.6. Οι κύριες συνιστώσες του τανυστή τάσης σε σημείο P

διατεταγμένες σε φθίνουσα σειρά έτσι ώστε σ1 ≥ σ2 ≥ σ3 ικανο-
ποιούν την σχέση

σ2 =
σ1 + σ3

2
.

Να βρεθούν οι συνιστώσες του μοναδιαίου επιφανειακού διανύσμα-
τος n̂ στο τρισορθογώνιο σύστημα συντεταγμένων που ορίζουν οι
κύριες διευθύνσεις του τανυστή τάσης έτσι ώστε οι τιμές της πί-
εσης και διάτμησης στο σημείο P να ισούνται με σN = σ2 και
σS = (σ1 − σ3)/4.

Άσκηση 2.7. Βρείτε τις κύριες συνιστώσες και διευθύνσεις του τα-
νυστή τάσης

Σ = 5̂îi− 6ĵ(ĵ + 2k̂) + k̂(−12ĵ + k̂)

και κατασκευάστε τους αντίστοιχους κύκλους του Mohr. Βρείτε τις
τιμές των ακτίνων R1 και R3, η τομή των οποίων δίνει τις τιμές της
πίεσης και διάτμησης στην στοιχειώδη επιφάνεια με μοναδιαίο διά-
νυσμα n̂, στις περίπτωσεις όπου το n̂ ταυτίζεται με τα καρτεσιανά
επίπεδα n̂ = î, n̂ = ĵ και n̂ = k̂.



Κεφάλαιο 3

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ

Έστω ότι την χρονική στιγμή t0 το σώμα καταλαμβάνει κάποιον
όγκο στον χώρο. Λόγω των δυνάμεων που του ασκούνται αυτό θα
αρχίσει να παραμορφώνεται και την χρονική στιγμή t1 θα βρεθεί
σε κάποιο άλλο σημείο του χώρου με διαφορετικό όγκο και σχήμα.
Για την περιγραφή της παραμόρφωσης απαιτούνται οι αρχικές και

x

y

z

r⃗ 0
r⃗ 1

u⃗

t=t 0 t=t 1

P0 P1

Σχήμα 3.1: Παραμόρφωση ενός υλικού σώματος.

τελικές θέσεις των υλικών σημείων που απαρτίζουν το σώμα. Η
μετατόπιση ενός σημείου που αρχικά βρίσκεται στο σημείο P0 και
καταλήγει στο σημείο P1 ισούται με

u⃗ = r⃗1 − r⃗0
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όπου r⃗0 και r⃗1 οι αποστάσεις των σημείων από την αρχή των αξό-
νων. Η γνώση του πεδίου μετατοπίσεων για ένα υλικό μας επιτρέπει
να βρούμε τον τρόπο με τον οποίο αυτό θα παραμορφωθεί. Στην
περίπτωση που η παραμόρφωση δεν οδηγεί στον σχηματισμό ιδιο-
μορφίας (πολλά αρχικά σημεία που να καταλήγουν στο ίδιο τελικό
σημείο) μπορούμε να θεωρήσουμε τις εξής ισοδύναμες περιγραφές:

• Περιγραφή Lagrange
όπου οι τελικές θέσεις δίνονται συναρτήσει των αρχικών

r⃗1 = r⃗1(r⃗0) = r⃗1(x0, y0, z0).

• Περιγραφή Euler
όπου οι αρχικές θέσεις δίνονται συναρτήσει των τελικών

r⃗0 = r⃗0(r⃗1) = r⃗0(x1, y1, z1).

Εάν υποθέσουμε ότι και οι δύο συναρτήσεις είναι συνεχείς με συ-
νεχείς πρώτες παραγώγους (ανήκουν δηλαδή στην κλάση C1) τότε
ικανή και αναγκαία συνθήκη για να αντιστρέψουμε την r⃗1 για να
βρούμε την r⃗0 είναι η Ιακωβιανή

∇0r⃗1 = î
∂r⃗1
∂x0

+ ĵ
∂r⃗1
∂y0

+ k̂
∂r⃗1
∂z0

να έχει ορίζουσα διάφορη του μηδενός.
Απόδειξη: Έστω dr⃗0 και dr⃗1 οι στοιχειώδεις αποστάσεις δύο ση-
μείων P , Q του υλικού πριν και μετά την παραμόρφωση όπως στο
Σχήμα 3.2. Για το στοιχειώδες διάνυσμα dr⃗1 προκύπτει

dr⃗1 =
∂r⃗1
∂x0

dx0 +
∂r⃗1
∂y0

dy0 +
∂r⃗1
∂z0

dz0

= dr⃗0 · ∇0r⃗1.

Για να βρούμε το dr⃗0 αρκεί να πάρουμε το εσωτερικό γινόμενο κάθε
μέλους από τα δεξιά με τον τανυστή (∇0r⃗1)

−1. Για να υπάρχει ο
αντίστροφος όμως θα πρέπει det(∇0r⃗1) ̸= 0.
Η διαφορά των στοιχειωδών αποστάσεων πριν και μετά την πα-

ραμόρφωση αποτελεί ένα μέτρο του βαθμού παραμόρφωσης του
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d r⃗ 1

ΠαραμόρφωσηQ

d r⃗ 0

Q

x
y

z

d r⃗ 0

d u⃗

P P

Q

Σχήμα 3.2: Η παραμόρφωση ενός σώματος μεταβάλλει το μήκος και την διεύθυνση της
στοιχειώδους απόστασης μεταξύ δύο σημείων P και Q του υλικού. Απουσία παρα-
μόρφωσης το σημείο Q θα έπρεπε να απέχει απόσταση dr⃗0 από το P (διακεκομμένη).
Η διαφορά των δύο αποστάσεων ορίζει την στοιχειώδη μετατόπιση du⃗ = dr⃗1 − dr⃗0.

υλικού. Από την έκφραση του dr⃗1 συναρτήσει του dr⃗0 προκύπτει ότι
το τετράγωνο της στοιχειώδους απόστασης των σημείων P και Q
μετά την παραμόρφωση ισούται με

∥dr⃗1∥2 = dr⃗0 · [(∇0r⃗1) · (∇0r⃗1)
T ] · dr⃗0.

Ο τανυστής G = (∇0r⃗1) · (∇0r⃗1)
T που δίνει το μέτρο του στοιχειώ-

δους διανύσματος μετά την παραμόρφωση συναρτήσει του αρχικού
είναι γνωστός ως ο τανυστής παραμόρφωσης του Green.
Από τον ορισμό της μετατόπισης προκύπτει ότι ∇0u⃗ = ∇0r⃗1 − I

και επομένως
dr⃗1 = dr⃗0 · [I+∇0u⃗]

και άρα
G = [I+∇0u⃗] · [I+ (∇0u⃗)

T ].

3.1 Φυσική ερμηνεία τανυστή παραμόρφωσης

Έστω
n̂ =

dr⃗0
∥dr⃗0∥

το μοναδιαίο διάνυσμα στην διεύθυνση της στοιχειώδους απόστασης
του σημείου P από το σημείο Q πριν την παραμόρφωση. Διαιρώντας
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την σχέση που δίνει το μέτρο της στοιχειώδους απόστασης μετά την
παραμόρφωση με ∥dr⃗0∥ προκύπτει

∥dr⃗1∥
∥dr⃗0∥

=
√
n̂ ·G · n̂.

Τα διαγώνια στοιχεία του τανυστή παραμόρφωσης επομένως δίνουν
τον συντελεστή επιμήκυνσης της απόστασης μεταξύ δύο σημείων
στην αρχική διεύθυνση n̂.
Έστω τώρα σημεία Q και Q′ με αρχικές αποστάσεις κάθετες

μεταξύ τους από το σημείο P . Μετά την παραμόρφωση οι δύο απο-
στάσεις θα σχηματίζουν γωνία φ μεταξύ τους.

d r⃗ 0

d r⃗ '0

d r⃗ 1

d r⃗ '1

φ

Παραμόρφωση

P Q '

Q

Q '

Q

P

Σχήμα 3.3: Η παραμόρφωση ενός υλικού μεταβάλει την γωνία μεταξύ δύο κάθετων
αρχικά στοιχειωδών αποστάσεων.

Ισχύει ότι
dr⃗1 · dr⃗1′ = cosφ||dr⃗1||||dr⃗1′||

όμως dr⃗1 = dr⃗0 · [I+∇0u⃗] και επομένως

dr⃗1 · dr⃗1′ = dr⃗0 · [I+∇0u⃗] · [I+ (∇0u⃗)
T ] · dr⃗0′

= dr⃗0 ·G · dr⃗0′

Εξισώνοντας τα αριστερά μέλη και διαιρώντας με ||dr⃗0|| και ||dr⃗0′||
προκύπτει

sin
(π
2
− φ

)
=

n̂ ·G · n̂′
√
n̂ ·G · n̂

√
n̂′ ·G · n̂′

όπου χρησιμοποιήσαμε την σχέση για τα διαγώνια στοιχεία του G

που βρήκαμε προηγουμένως. Το ημίτονο της γωνίας παραμόρφωσης
μεταξύ δύο αρχικά κάθετων μεταξύ τους αποστάσεων στην διεύ-
θυνση n̂ και n̂′ εξαρτάται από τα διαγώνια και μη διαγώνια στοιχεία
του τανυστή παραμόρφωσης.
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3.2 Το όριο των μικρών παραμορφώσεων

Ορίζουμε τώρα τον τανυστή έντασης του Lagrange ως

L =
1

2
[∇0u⃗+ (∇0u⃗)

T + (∇0u⃗) · (∇0u⃗)
T ],

έτσι ώστε
G = I+ 2L.

Στο όριο των μικρών παραμορφώσεων μπορούμε να αγνοήσουμε
τους όρους δεύτερης τάξης ως προς παραγώγους της μετατόπισης
και επομένως

L =
1

2
[∇0u⃗+ (∇0u⃗)

T ].

Αντικαθιστώντας στην έκφραση για τον συντελεστή επιμήκυνσης
προκύπτει

∥dr⃗1∥
∥dr⃗0∥

=
√
1 + 2n̂ · L · n̂.

Αναπτύσσοντας την ρίζα κατά Taylor και κρατώντας όρους πρώτης
τάξης ως προς L βρίσκουμε

n̂ · L · n̂ =
∥dr⃗1∥ − ∥dr⃗0∥

∥dr⃗0∥
.

Το δεξί μέλος ισούται με τον συντελεστή γραμμικής διαστολής. Με
παρόμοιο τρόπο βρίσκουμε ότι (εφόσον και η γωνία παραμόρφωσης
στην περίπτωση αυτή θα είναι μικρή)

2n̂ · L · n̂′ ≃ π

2
− φ.

Στο όριο των μικρών παραμορφώσεων λοιπόν τα διαγώνια στοι-
χεία του τανυστή της έντασης δίνουν την σχετική επιμήκυνση της
στοιχειώδους απόστασης μεταξύ δύο σημείων του υλικού ενώ τα
μη διαγώνια την γωνία παραμόρφωσης.
Όταν η ορίζουσα της Ιακωβιανής είναι διάφορη του μηδενός τότε

ορίζεται ο τανυστής ∇1r⃗0. Ισχύει ότι

(∇1r⃗0) · (∇0r⃗1) = (I−∇1u⃗) · (I+∇0u⃗)

= I−∇1u⃗+∇0u⃗− (∇1u⃗) · (∇0u⃗)

= I−∇1u⃗+∇0u⃗− (∇1r⃗0) · (∇0u⃗)
2.
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Είναι εύκολο όμως να δειχθεί ότι (∇1r⃗0) · (∇0r⃗1) = I (Άσκηση 3.5)
και επομένως για μικρές παραμορφώσεις

∇0u⃗ = ∇1u⃗.

Ο τανυστής της έντασης γραμμένος στην μορφή

E =
1

2
[∇1u⃗+ (∇1u⃗)

T ]

είναι γνωστός ως ο τανυστής έντασης του Euler.

3.3 Η στοιχειώδης μετατόπιση

Αναλύοντας τον τανυστή ∇0u⃗ στο συμμετρικό και αντισυμμε-
τρικό του μέρος

∇0u⃗ =
1

2
[∇0u⃗+ (∇0u⃗)

T ] +
1

2
[∇0u⃗− (∇0u⃗)

T ]

παρατηρούμε ότι αυτός γράφεται σαν άθροισμα του τανυστή έντα-
σης του Lagrange και ενός αντισυμμετρικού τανυστή

W =
1

2
[∇0u⃗− (∇0u⃗)

T ]

που ονομάζεται τανυστής στροφής του Lagrange. Η στοιχειώδης
μετατόπιση du⃗ προκύπτει από την δράση του τανυστή ∇0u⃗ με το
στοιχειώδες διάνυσμα dr⃗0 από τα δεξιά

du⃗ = dr⃗1 − dr⃗0

= dr⃗0 · (∇0r⃗1 − I)
= dr⃗0 · (∇0u⃗)

και επομένως

du⃗ = dr⃗0 · L+ dr⃗0 ·W.
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d r⃗d r⃗ '

d u⃗

θ

n̂

Σχήμα 3.4: Στοιχειώδη περιστροφή κατά γωνία θ γύρω από τον άξονα n̂.

Αποδεικνύεται ότι

dr⃗0 · W⃗

= −dr⃗0
2

·
[(

∂u⃗

∂x0
î− î

∂u⃗

∂x0

)
+

(
∂u⃗

∂y0
− ĵ

∂u⃗

∂y0
ĵ

)
+

(
∂u⃗

∂z0
k̂ − k̂

∂u⃗

∂z0

)]
= −1

2

[
dr⃗0 ×

(
î× ∂u⃗

∂x0

)
+ dr⃗0 ×

(
ĵ × ∂u⃗

∂y0

)
+ dr⃗0 ×

(
k̂ × ∂u⃗

∂z0

)]
= −1

2
dr⃗0 × (∇0 × u⃗).

Θέτοντας
w⃗ =

1

2
∇0 × u⃗

η στοιχειώδης μετατόπιση ισούται με την δράση του τανυστή έντα-
σης του Lagrange επάνω στο διάνυσμα dr⃗0 από τα δεξιά και με μία
στοιχειώδης στροφή που καθορίζεται από το διάνυσμα ŵ

du⃗ = dr⃗0 · L+ w⃗ × dr⃗0.

Όταν η ορίζουσα της Ιακωβιανής είναι διάφορη του μηδενός η
στοιχειώδη μετατόπιση μπορεί να γραφεί ισοδύναμα ως

du⃗ = dr⃗1 · E + dr⃗1 · Ω
= dr⃗1 · E + ω⃗ × dr⃗1

όπου
ω =

1

2
∇1 × u⃗
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και Ω ο τανυστής στροφής του Euler. Για να δούμε γιατί οι τα-
νυστές W και Ω συνδέονται με στροφές αρκεί να μελετήσουμε την
στοιχειώδη μετατόπιση ενός διανύσματος όταν αυτό περιστρέφεται
κατά μία απειροστή γωνία θ γύρω από έναν άξονα στην διεύθυνση
n̂. Από το Σχήμα 3.4 προκύπτει

dr⃗′ = dr⃗ + du⃗.

Όταν το θ << 1 το μέτρο του du⃗ είναι περίπου ίσο με θ∥dr⃗∥ με
διεύθυνση κάθετη στο n̂ και dr⃗, επομένως

du⃗ ≃ w⃗ × dr⃗

όπου w⃗ = θn̂.

3.4 Κύριες διευθύνσεις τανυστή έντασης

Εφόσον ο τανυστής της έντασης είναι συμμετρικός υπάρχει τρι-
σορθογώνια βάση x̂1, x̂2 και x̂3 όπου αυτός παίρνει την απλή μορφή

L = ℓ1x̂1x̂1 + ℓ2x̂2x̂2 + ℓ3x̂3x̂3.

Έστω dx1, dx2 και dx3 οι στοιχειώδεις αποστάσεις των σημείων Q1,
Q2 και Q3 από το κέντρο του συστήματος συντεταγμένων x1, x2

και x3 όπως στο Σχήμα 3.5. Για μία παραμόρφωση με μηδενικό
τανυστή στροφής, W = 0, το στοιχειώδες διάνυσμα μετατόπισης
για κάθε απόσταση θα ισούται με

du⃗1 = ℓ1dx1x̂1, du⃗2 = ℓ2dx2x̂2, du⃗3 = ℓ3dx3x̂3.

Εφόσον οι μετατοπίσεις είναι στην ίδια διεύθυνση με τις αποστάσεις
συνεπάγεται ότι μετά την παραμόρφωση τα σημεία Q1, Q1 και Q3 θα
καταλαμβάνουν τα σημεία Q′

1, Q′
2 και Q′

3 αντίστοιχα με αποστάσεις

dX1 = (1 + λ1)dx1, dX2 = (1 + λ2)dx2, dX3 = (1 + λ3)dx3.

από το κέντρο. Στο όριο των μικρών παραμορφώσεων, κρατώντας
όρους πρώτης τάξης ως προς τις κύριες συνιστώσες του τανυστή
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Q1

Q2

Q3

dx2

x1

x2

x3

Q1
'

Q3
'

Q2
'

dx3

dx1

Σχήμα 3.5: Η παραμόρφωση ενός στοιχειώδους όγκου στις κύριες διευθύνσεις του
τανυστή έντασης.

έντασης ο παραμορφωμένος όγκος που ορίζουν τα Q′
1, Q′

2 και Q′
3

θα ισούται με

dX1dX2dX3 = (1 + ℓ1)(1 + ℓ2)(1 + ℓ3)dx1dx2dx3

≃ (1 + ℓ1 + ℓ2 + ℓ3)dx1dx2dx3.

Από την παραπάνω σχέση προκύπτει ότι ο συντελεστής κυβικής
διαστολής κ ισούται με το ίχνος του τανυστή έντασης L

κ =
dX1dX2dX3 − dx1dx2dx3

dx1dx2dx3
= tr(L).

3.5 Συνθήκες συμβατότητας

Έστω ότι μας δίνεται η ένταση και θέλουμε να βρούμε το πεδίο
μετατόπισης από την οποία αυτή προέρχεται. Από τον ορισμό της
έντασης προκύπτει ότι

∇0 × L =
1

2
∇0 × (∇0u⃗)

T .
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Ισχύει όμως

(∇0 × L)T =
1

2
∇0(∇0 × u⃗)

και επομένως
∇0 × (∇0 × L)T = 0,

αυτές είναι οι ικανές και αναγκαίες συνθήκες που πρέπει να ικα-
νοποιεί ο τανυστής της έντασης για να μπορεί να βρεθεί το πεδίο
μετατοπίσεων. Παρόμοιες συνθήκες ικανοποιεί και ο τανυστής έντα-
σης του Euler

∇1 × (∇1 × E)T = 0.
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3.6 Ασκήσεις

Άσκηση 3.1. Η θέση r⃗1 ενός υλικού σημείου μετά την παραμόρφωση
ισούται με

r⃗1 = x0î+ (y0 +Az0)ĵ + (z0 +Ay0)k̂

όπου r⃗0 = x0î + y0ĵ + z0k̂ η αρχική του θέση και A σταθερά. Να
βρεθεί η έκφραση του διανύσματος μετατόπισης u⃗ στην περιγραφή
Euler και Lagrange.

Άσκηση 3.2. Παραμόρφωση περιγράφεται από πεδίο μετατοπίσεων
της μορφής

u⃗(r⃗0) = (3y0 − 4z0)̂i+ (2x0 − z0)ĵ + (4y0 − x0)k̂

στην περιγραφή Lagrange. Να βρεθεί η σχετική απόσταση μεταξύ
δύο σημείων P και Q μετά την παραμόρφωση εάν αυτά αρχικά
βρίσκονται στις θέσεις

r⃗P = î+ 3k̂ και r⃗Q = 3̂i+ 6ĵ + 6k̂.

Άσκηση 3.3. Ομογενής παραμόρφωση περιγράφεται από πεδίο με-
τατοπίσεων της μορφής

u⃗(r⃗0) = A · r⃗0

στην περιγραφή Lagrange όπου A τανυστής με σταθερές συνιστώ-
σες. Αποδείξτε ότι η παραμόρφωση ενός επιπέδου της μορφής

r⃗0 = λa⃗+ µ⃗b

με λ, µ ∈ R και a⃗, b⃗ σταθερά παραμένει επίπεδη. Δείξτε το ίδιο για
μια ευθεία.

Άσκηση 3.4. Οι τελικές θέσεις των σημείων ενός σώματος μετά την
παραμόρφωση δίνονται από την σχέση

r⃗1(r⃗0) = r⃗0 +A(z0ĵ + y0k̂)

όπου r⃗0 = x0î+y0ĵ+z0k̂ οι αρχικές θέσεις των σημείων. Να βρεθούν
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α) Ο τανυστής παραμόρφωσης του Green.

β) Το μέτρο των στοιχειωδών αποστάσεων dyĵ και dzk̂ μετά την
παραμόρφωση.

γ) Το μέτρο της στοιχειώδους απόστασης dyĵ + dzk̂ μετά την πα-
ραμόρφωση.

δ) Οι συντελεστές επιμήκυνσης των περιπτώσεων β) και γ).

ε) Ο τανυστής έντασης του Lagrange.

Άσκηση 3.5. Αποδείξτε την ακόλουθη σχέση

(∇1r⃗0) · (∇0r⃗1) = I

για το αρχικό και το μετατοπισμένο διάνυσμα θέσης μετά την πα-
ραμόρφωση.
(Υπόδειξη: αρκεί να δείξετε ότι ∂r⃗0

∂x1
· ∇0 = ∂

∂x1
και ομοίως για τα

y1 και z1.)

Άσκηση 3.6. Συνάγετε κατά πόσο η ακόλουθη έκφραση για τον
τανυστή έντασης του Euler

E = î[3y2î+(3xy+ z)ĵ− y

2
k̂]+ ĵ[(3xy+ z)̂i+

x

2
k̂]+ k̂(−y

2
î+

x

2
ĵ+2zk̂)

είναι φυσικά αποδεκτή.



Κεφάλαιο 4

ΚΙΝΗΣΗ ΚΑΙ ΡΟΗ

4.1 Τροχιές και γραμμές ροής

Η κίνηση και η ροή ενός συνεχούς μέσου είναι έννοιες που ανα-
φέρονται στην συνεχή μεταβολή της θέσης και του σχήματος ενός
υλικού. Έστω r⃗ = r⃗(t) το διάνυσμα θέσης ενός υλικού σημείου που
κινείται μέσα στον χώρο. Διακρίνουμε τώρα δύο ειδών καμπύλες
τις τροχιές και τις γραμμές ροής.

• Τροχιά ενός υλικού σημείου ονομάζουμε το σύνολο των ση-
μείων του χώρου που αυτό καταλαμβάνει κατά την διάρκεια
της κίνησης του.

• Γραμμή ροής ονομάζουμε εκείνη την καμπύλη που σε κάθε
σημείο της η ταχύτητα είναι εφαπτομενική σε αυτήν.

Στην γενική περίπτωση οι δύο καμπύλες δεν ταυτίζονται. Οι γραμ-
μές ροής εξαρτώνται από το πεδίο ταχυτήτων υ⃗(t) και αναφέρονται
σε συγκεκριμένη χρονική στιγμή t. Για ένα υλικό στο οποίο το πεδίο
ροής αλλάζει η μορφή των γραμμών θα μεταβάλλεται από στιγμή
σε στιγμή ενώ η τροχιά ενός σημείου θα ακολουθεί την στιγμιαία
κατεύθυνση της ροής όπως στο Σχήμα 4.1. Στην περίπτωση όπου
∂υ⃗/∂t = 0 οι δύο καμπύλες ταυτίζονται και το υλικό σημείο κι-
νείται με κατεύθυνση εφαπτομενική στο πεδίο ροής. Σε αυτή την
περίπτωση λέμε ότι η ροή είναι σταθερή.
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υ⃗(t1)

υ⃗(t2)

Ροή την χρονική στιγμή t1

Ροή την χρονική στιγμή t2

Τροχιά

Σχήμα 4.1: Γραμμές ροής και τροχιά υλικού σημείου. Η ροή στην γενική περίπτωση
είναι χρονοεξαρτώμενη και μεταβάλλεται όσο περνάει ο χρόνος. Η ταχύτητα ενός υλι-
κού σημείου είναι εφαπτομενική στο εκάστοτε πεδίο ροής. Το σύνολο των σημείων του
χώρου που αυτό καταλαμβάνει ορίζει την τροχιά του.
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4.2 Η μεταφορική παράγωγος

Έστω h(r⃗, t) φυσικό μέγεθος που περιγράφει τις συνθήκες που
επικρατούν στο υλικό σημείο r⃗(t) καθώς αυτό κινείται στον χώρο.
Η στοιχειώδης μεταβολή του h ισούται με

dh = dr⃗ · (∇h) +
∂h

∂t
dt.

Ο ρυθμός μεταβολής της ποσότητας στο σημείο r⃗(t) εξαρτάται από
την ταχύτητα υ⃗(t) = dr⃗/dt με την οποία κινείται το υλικό σημείο
επάνω στην τροχιά του και από τον τρόπο που αυτή μεταβάλλεται
σε σχέση με τον χρόνο. Από την παραπάνω σχέση προκύπτει

dh
dt = υ⃗ · (∇h) +

∂h

∂t
.

Ο τελεστής
d
dt = υ⃗ · ∇+

∂

∂t

εξαρτάται από το πεδίο ταχυτήτων υ⃗ και είναι γνωστός ως η με-
ταφορική ή ολική χρονική παράγωγος. Ο τελεστής ∂/∂t δίνει την
τοπικό ρυθμό μεταβολής της ποσότητας και είναι γνωστός ως η το-
πική χρονική παράγωγος.

4.3 Ρυθμός παραμόρφωσης

Η χωρική μεταβολή της ταχύτητας στην περιγραφή Euler δίνεται
από τον τανυστή ∇υ⃗. Αναλύοντας τον τανυστή αυτόν στο συμμε-
τρικό και στο αντισυμμετρικό του μέρος προκύπτει

∇υ⃗ = D + V

όπου
D =

1

2
[∇υ⃗ + (∇υ⃗)T ]

και
V =

1

2
[∇υ⃗ − (∇υ⃗)T ].
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Ο τανυστήςD είναι γνωστός ως ο τανυστής ρυθμού παραμόρφωσης
και ο τανυστής V ως ο τανυστής στροβίλωσης ή σπιν. Υπολογίζο-
ντας την μεταφορική παράγωγο της χωρικής μεταβολής του πεδίου
u⃗ βρίσκουμε

d(∇u⃗)

dt = υ⃗ · ∇(∇u⃗) +
∂(∇u⃗)

∂t

όμως
υ⃗ · ∇(∇u⃗) = ∇[(υ⃗ · ∇)u⃗]− (∇υ⃗) · (∇u⃗)

και
∂(∇u⃗)

∂t
= ∇∂u⃗

∂t

και επομένως εφόσον υ⃗ = du⃗/dt

d(∇u⃗)

dt = ∇
[
∂u⃗

∂t
+ (υ⃗ · ∇)u⃗

]
= ∇υ⃗ − (∇υ⃗) · (∇u⃗).

Στο όριο των μικρών παραμορφώσεων ο δεύτερος όρος είναι αμελη-
τέος. Συνεπάγεται ότι ο τανυστής ρυθμού παραμόρφωσης ισούται
με την μεταφορική παράγωγο του τανυστή έντασης του Euler και
η στροβίλωση με την παράγωγο του τανυστή στροφής

D =
dE
dt και V =

dΩ
dt .

4.4 Μεταφορικές παράγωγοι όγκου και ολοκλη‐
ρώματος

Έστω r⃗ = r⃗(r⃗0, t) η θέση ενός υλικού σημείου στην περιγραφή
Lagrange. Η στοιχειώδης μεταβολή του αρχικού διανύσματος θέσης
ισούται με

dr⃗0 = dx0î+ dy0ĵ + dz0k̂

με στοιχειώδη όγκο
dV0 = dx0dy0dz0.
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Σε μία συγκεκριμένη χρονική στιγμή t = σταθ η χωρική μεταβολή
του διανύσματος θέσης r⃗ ισούται με

dr⃗ =
∂r⃗

∂x0
dx0 +

∂r⃗

∂y0
dy0 +

∂r⃗

∂z0
dz0.

Ο στοιχειώδης όγκος που αυτή ορίζει δίνεται από το μικτό γινόμενο

dVt =

(
∂r⃗

∂x0
dx0

)
·
[(

∂r⃗

∂y0
dy0

)
×

(
∂r⃗

∂z0
dz0

)]
=

∂r⃗

∂x0
·
(

∂r⃗

∂y0
× ∂r⃗

∂z0

)
dV0

όμως

∇0r⃗ = î
∂r⃗

∂x0
+ ĵ

∂r⃗

∂y0
+ k̂

∂r⃗

∂z0

η Ιακωβιανή και

J = det(∇0r⃗) =
∂r⃗

∂x0
·
(

∂r⃗

∂y0
× ∂r⃗

∂z0

)
.

Συνεπάγεται ότι ο στοιχειώδης όγκος την χρονική στιγμή dVt ισούται
με τον αρχικό όγκο dV0 επί την ορίζουσα της Ιακωβιανής

dVt = JdV0.

Παίρνοντας την μεταφορική παράγωγο μπορούμε να βρούμε πως
μεταβάλλεται ο στοιχειώδης όγκος γύρω από το υλικό σημείο r⃗(t)

καθώς αυτό κινείται στον χώρο. Θα ισχύει

d(dVt)

dt =
dJ
dt dV0

όπου

dJ
dt =

∂υ⃗

∂x0
·
(

∂r⃗

∂y0
× ∂r⃗

∂z0

)
+

∂υ⃗

∂y0
·
(

∂r⃗

∂z0
× ∂r⃗

∂x0

)
+

∂υ⃗

∂z0
·
(

∂r⃗

∂x0
× ∂r⃗

∂y0

)
.

Αντικαθιστώντας

∂υ⃗

∂x0
=

∂r⃗

∂x0
· ∇υ⃗,

∂υ⃗

∂y0
=

∂r⃗

∂y0
· ∇υ⃗ και ∂υ⃗

∂z0
=

∂r⃗

∂z0
· ∇υ⃗
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στην έκφραση από πάνω προκύπτει
dJ
dt = (∇υ⃗) :

[(
∂r⃗

∂y0
× ∂r⃗

∂z0

)
∂r⃗

∂x0
+

(
∂r⃗

∂z0
× ∂r⃗

∂x0

)
∂r⃗

∂y0

+

(
∂r⃗

∂x0
× ∂r⃗

∂y0

)
∂r⃗

∂z0

]
= J∇ · υ⃗

όπου χρησιμοποιήσαμε τον τύπο

a⃗ · (⃗b× c⃗)I = a⃗(⃗b× c⃗) + b⃗(c⃗× a⃗) + c⃗(⃗a× b⃗)

= (⃗b× c⃗)⃗a+ (c⃗× a⃗)⃗b+ (⃗a× b⃗)c⃗

και ότι
(∇υ⃗) : I = tr(∇υ⃗) = ∇ · υ⃗.

Η μεταφορική παράγωγος του στοιχειώδους όγκου στην περιγραφή
Euler επομένως ισούται με

d(dVt)

dt = (∇ · υ⃗)dVt.

Οποιοδήποτε μέγεθος Q που δίνεται από το ολοκλήρωμα μιας πε-
διακής ποσότητας q(r⃗, t) στον όγκο Vt

Q(t) =

∫
Vt

q(r⃗, t)dVt

μπορούμε να το παραγωγίσουμε ως προς τον χρόνο και να πάρουμε
dQ
dt =

∫
Vt

(
dq
dt dVt + q

d(dVt)

dt

)
=

∫
Vt

(
∂q

∂t
+ υ⃗ · ∇q + q∇ · υ⃗

)
dVt

=

∫
Vt

[
∂q

∂t
+∇ · (qυ⃗)

]
dVt.

Χρησιμοποιώντας τον νόμο του Gauss αντικαθιστούμε το δεύτερο
ολοκλήρωμα με ένα κλειστό επιφανειακό ολοκλήρωμα επάνω στην
συνοριακή επιφάνεια St για να βρούμε

dQ
dt =

∫
Vt

∂q

∂t
dVt +

∮
St

n̂ · (qυ⃗)dSt.
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Η χρονική μεταβολή ενός φυσικού μεγέθους επομένως εξαρτάται
από δύο παράγοντες. Τον τοπικό ρυθμό μεταβολής της ποσότητας
στον όγκο Vt (ο οποίος κατά την διάρκεια της ροής μεταφέρεται και
αλλάζει σχήμα) και στην ροή της ποσότητας διαμέσου της συνορια-
κής επιφάνειας St.
Από τον τρόπο που έχει οριστεί, ο όγκος Vt αποτελείται πάντα

από τα ίδια σημεία τα οποία κινούμενα επάνω στις τροχιές τους
προκαλούν αλλαγές στην θέση και στο σχήμα της συνοριακής του
επιφάνειας St. Συνεπάγεται ότι η συνολική μάζα

m =

∫
Vt

ρ(r⃗, t)dVt

παραμένει πάντα σταθερή όπου ρ(r⃗, t) η πυκνότητα του υλικού.
Παραγωγίζοντας ως προς τον χρόνο βρίσκουμε

dm
dt =

∫
Vt

[
∂ρ

∂t
+∇ · (ρυ⃗)

]
dVt = 0.

Από την οποία προκύπτει η εξίσωση συνέχειας

∂ρ

∂t
+∇ · (ρυ⃗) = 0.

4.5 Εξισώσεις κίνησης

Η συνολική ορμή P⃗ ενός όγκου πυκνότητας ρ(r⃗, t) υπολογίζεται
από την σχέση

P⃗ (t) =

∫
υ⃗ dm =

∫
Vt

ρυ⃗dVt.

Από τον δεύτερο νόμο του Νεύτωνα η συνολική δύναμη που ασκεί-
ται στο υλικό ισούται με τον ρυθμό μεταβολής της ορμής. Προκύπτει
λοιπόν

dP⃗
dt =

∮
St

t⃗n̂dSt +

∫
Vt

ρ⃗bdVt

=

∫
Vt

(∇ · Σ+ ρ⃗b)dVt.
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Όμως

dP⃗
dt =

∫ dυ⃗
dt dm+

∫
υ⃗
dm
dt

=

∫
Vt

ρ
dυ⃗
dt dVt

και επομένως
∇ · Σ+ ρ⃗b = ρ

dυ⃗
dt .

Αυτή είναι η μορφή των εξισώσεων κίνησης σε διαφορική μορφή.
Για ένα στατικό μέσο όπου dυ⃗/dt = 0

∇ · Σ+ ρ⃗b = 0

από την οποία ανακτάμε την μορφή των εξισώσεων ισορροπίας που
βρήκαμε σε προηγούμενο κεφάλαιο.
Από τον δεύτερο νόμο του Νεύτωνα για τις περιστροφικές κινή-

σεις γνωρίζουμε ότι η συνισταμένη τον ροπών που ασκούνται στο
εσωτερικό του όγκου Vt ισούται με τον ρυθμό μεταβολής της στρο-
φορμής

d
dt

∫
(r⃗ × υ⃗)dm =

∮
St

r⃗ × (n̂ · Σ)dSt +

∫
Vt

r⃗ × (ρ⃗b)dVt.

Σε προηγούμενο κεφάλαιο αποδείξαμε ότι για έναν συμμετρικό τα-
νυστή τάσης το δεξί μέλος μπορεί να γραφτεί στην μορφή∫

Vt

r⃗ × (∇ · Σ+ ρ⃗b)dVt.

Όμως
d
dt

∫
(r⃗ × υ⃗)dm =

∫
Vt

(r⃗ × dυ⃗
dt )ρdVt.

Εξισώνοντας τα δύο μέλη καταλήγουμε πάλι στην εξίσωση κίνησης.

4.6 Αρχή διατήρησης μηχανική ενέργειας

Η κινητική ενέργεια που περιέχεται στον όγκο Vt ισούται με

K =
1

2

∫
υ2dm.
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Παραγωγίζοντας ως προς τον χρόνο προκύπτει ότι ο ρυθμός μετα-
βολής της κινητική ενέργειας ισούται με

dK
dt =

∫
ρυ⃗ · dυ⃗dt dVt.

Από τις εξισώσεις κίνησης όμως

ρ
dυ⃗
dt = ∇ · Σ+ ρ⃗b

και

(∇ · Σ) · υ⃗ = ∇ · (Σ · υ⃗)− (∇υ⃗) : Σ

= ∇ · (Σ · υ⃗)−D : Σ

όπου χρησιμοποιήσαμε την έκφραση για την βάθμωση της ταχύτητας
που βρήκαμε προηγουμένως, την συμμετρία του τανυστή τάσης και
το γεγονός ότι το διπλό εσωτερικό γινόμενο ενός συμμετρικού και
ενός αντισυμμετρικού τανυστή ισούται πάντα με μηδέν. Ορίζοντας
ως

dU
dt =

∫
Vt

(D : Σ)dVt

τον ρυθμό μεταβολής της εσωτερικής ενέργειας που περικλείεται
στον όγκο Vt καταλήγουμε σε μία σχέση της μορφής

d(K + U)

dt =

∮
St

t⃗n̂ · υ⃗dSt +

∫
Vt

ρ⃗b · υ⃗dVt

όπου χρησιμοποιήσαμε τον νόμο του Gauss για να μετατρέψουμε
το ολοκλήρωμα όγκου για το ∇ · (Σ · υ⃗) σε επιφανειακό. Ο ρυθμός
μεταβολής της μηχανική ενέργειαςK+U ισούται με τον ρυθμό μετα-
βολής του έργου που προκαλούν οι δυνάμεις μάζας στο εσωτερικό
του όγκου Vt και οι επιφανειακές δυνάμεις στο σύνορό St.
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4.7 Ασκήσεις

Άσκηση 4.1. Αποδείξτε ότι η εξίσωση συνέχειας μπορεί να γραφεί
εναλλακτικά στην μορφή

d(ρJ)
dt = 0,

όπου J η ορίζουσα της Ιακωβιανής. (Χρησιμοποιείστε την συνήθη
μορφή της εξίσωσης συνέχειας και το γεγονός ότι dJ/dt = J∇ · υ⃗).

Άσκηση 4.2. Δείξτε ότι για το ακόλουθο πεδίο ταχυτήτων

υ⃗ =
A

(x2 + y2)2

[
(x2 − y2)̂i+ 2xyĵ

]
η πυκνότητα ρ είναι σταθερή.

Άσκηση 4.3. Έστω δισδιάστατο πεδίο ταχυτήτων της μορφής

υ⃗ = − Ay

(x2 + y2)2
î+ υy ĵ.

Να βρεθεί η μορφή της συνιστώσας υy συναρτήσει των μεταβλητών x
και y έτσι ώστε η πυκνότητα να είναι σταθερή. Δείξτε ότι οι γραμμές
ροής σε αυτή την περίπτωση σχηματίζουν ομόκεντρους κύκλους.



Κεφάλαιο 5

ΓΡΑΜΜΙΚΗ ΕΛΑΣΤΙΚΟΤΗΤΑ

Η γραμμική ελαστικότητα αποτελεί περίπτωση μικρών παραμορ-
φώσεων. Σε ένα γραμμικό υλικό η σχέση που συνδέει την τάση Σ

με την ένταση E δίνεται από τον γενικευμένο νόμο του Hooke

Σ = C̃ : E

όπου C̃ ο τανυστής ελαστικότητας. Από την παραπάνω σχέση έπε-
ται ότι ο C̃ είναι τανυστής τάξης 4. Οι 34 = 81 σταθερές συνιστώσες
του διαφέρουν από υλικό σε υλικό και είναι χαρακτηριστικές του
μέσου. Για έναν συμμετρικό τανυστή τάσης θα ισχύει

(C̃ : E)T = C̃ : E

ενώ για έναν συμμετρικό τανυστή έντασης (όπως στην περίπτωση
των μικρών παραμορφώσεων που εξετάζουμε εδώ)

C̃ : E = C̃ : ET .

Οποιονδήποτε τανυστή 4ης τάξης μπορούμε πάντα να τον φέρουμε
στην μορφή

C̃ =
∑
ij

Cij êiêj

όπου êi ορθοκανονική βάση και Cij τανυστές τάξης 2. Αντικαθιστώ-
ντας στην πρώτη ισότητα προκύπτει ότι∑

ij

CT
ij(êiêj : E) =

∑
ij

Cij(êiêj : E)
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που ικανοποιείται όταν CT
ij = Cij. Από την δεύτερη ισότητα βρί-

σκουμε ∑
ij

Cij(êiêj : E) =
∑
ij

Cij(êiêj : E
T )

και εφόσον êiêj : ET = êj êi : E θα πρέπει να ισχύει Cij = Cji. Ο
τανυστής ελαστικότητας θα περιγράφεται πλέον από 6 ανεξάρτη-
τους, συμμετρικούς τανυστές δεύτερης τάξης ρίχνοντας τον συνο-
λικό αριθμό ανεξαρτήτων συνιστωσών από 81 σε 36.
Στο προηγούμενο κεφάλαιο βρήκαμε ότι ο ρυθμός μεταβολής της

εσωτερικής ενέργειας ισούται με

dU
dt =

∫
Vt

(D : Σ)dVt

όπου D = dE/dt. Για γραμμικά υλικά

dU
dt =

∫
Vt

(
dE
dt : C̃ : E

)
dVt

=
d
dt

(
1

2

∫
Vt

E : C̃ : EdVt

)
+

1

2

∫
Vt

(
dE
dt : C̃ : E − E : C̃ :

dE
dt

)
dVt.

Η εσωτερική ενέργεια λοιπόν δίνεται από την σχέση

U =
1

2

∫
Vt

(E : C̃ : E)dVt +

∫ t

U(t′)dt′

όπου
U(t′) = 1

2

∫
V ′
t

(
dE
dt′ : C̃ : E − E : C̃ :

dE
dt′

)
dV ′

t .

Ο όρος U(t′) περιέχει όρους τρίτης τάξης ως προς παραγώγους της
μετατόπισης. Στο όριο των μικρών παραμορφώσεων επομένως αυ-
τός μηδενίζεται που σημαίνει ότι

dE
dt : C̃ : E = E : C̃ :

dE
dt .

Αντικαθιστώντας όπου

E =
∑
ij

εij êiêj
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προκύπτει ότι∑
ijkl

(êiêj) : Ckl
dεij
dt εkl =

∑
ijkl

(êkêl) : Cij
dεij
dt εkl

που ικανοποιείται όταν

(êiêj) : Ckl = (êkêl) : Cij .

Η παραπάνω ισότητα μειώνει περαιτέρω τον αριθμό ανεξαρτήτων
συνιστωσών του τανυστή ελαστικότητας. Καθώς η έκφραση είναι
συμμετρική ως προς την εναλλαγή των ζευγαριών δεικτών ij και kl
συνεπάγεται ότι στην γραμμική περίπτωση ο C̃ θα περιγράφεται
από 21 το πολύ ανεξάρτητες ελαστικές σταθερές.

5.1 Ισότροπα υλικά

Έστω S συμμετρία του χώρου και Σ′ = S ·Σ · ST , E′ = S ·E · ST

η τάση και η ένταση που προκύπτει από την δράση της συμμετρίας
επάνω στους τανυστές Σ και E. Εφόσον το υλικό παραμένει γραμ-
μικό ανεξάρτητα από την αλλαγή συντεταγμένων ο γενικευμένος
νόμος του Hooke θα ισχύει πάντα και επομένως

Σ′ = C̃ ′ : E′

όπου C̃ ′ ο νέος τανυστής ελαστικότητας. Εάν C̃ ′ = C̃ τότε λέμε ότι ο
τανυστής ελαστικότητας παραμένει αναλλοίωτος ως προς τη δράση
του S. Το σύνολο των συμμετριών που αφήνουν αναλλοίωτες τις
ελαστικές ιδιότητες ενός υλικού ικανοποιούν την σχέση

S · (C̃ : E) · ST = C̃ : (S · E · ST )

και επιβάλουν επιπλέον περιορισμούς για το C̃ μειώνοντας ακόμη
περισσότερο τον αριθμό των ανεξαρτήτων συνιστωσών που τον πε-
ριγράφουν.
Ένα υλικό για το οποίο ο τανυστής ελαστικότητας παραμένει

αναλλοίωτος κάτω από οποιαδήποτε συμμετρία του τριδιάστατου
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χώρου (που περιλαμβάνει ανακλάσεις ως προς οποιοδήποτε επί-
πεδο που περνάει από την αρχή των αξόνων και περιστροφές ως
προς τυχαίο άξονα) ονομάζεται ισότροπο. Σε αυτή την περίπτωση
υπάρχουν μόνο δύο ανεξάρτητες ελαστικές σταθερές λ και µ γνω-
στές ως οι σταθερές του Lamé. Ο γενικευμένος νόμος του Hooke
για ισότροπα υλικά είναι της μορφής

Σ = λtr(E)I+ 2µE

όπου tr(E) το ίχνος του τανυστή έντασης. Ισχύει ότι

tr(Σ) = (3λ+ 2µ)tr(E)

και άρα

tr(E) =
tr(Σ)

3λ+ 2µ
.

Αντικαθιστώντας στον γενικευμένο νόμο του Hooke μπορούμε να
βρούμε την ένταση που προκαλεί μια τάση από την σχέση

E =
1

Y
[(1 + ν)Σ− νtr(Σ)I]

όπου
Y =

µ(3λ+ 2µ)

λ+ µ

το μέτρο Young και

ν =
λ

2(λ+ µ)

ο συντελεστής Poisson.

Παράδειγμα 5.1. (Μονοαξονική τάση.)
Έστω τάση της μορφής

Σ = σî̂i

που ασκεί μια πίεση σ στην διεύθυνση του άξονα x. Η ένταση που
αυτή προκαλεί θα ισούται με

E =
σ

Y
[̂îi− ν(ĵĵ + k̂k̂)].
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Παρατηρούμε ότι η τάση προκαλεί μια διαστολή του υλικού στην
διεύθυνση x ενώ συστέλλει ομοιόμορφα τις κάθετες διευθύνσεις y

και z. Παράδειγμα τέτοιας παραμόρφωσης αποτελεί ένας κύλιν-
δρος στον οποίο ασκούνται αντίθετες δυνάμεις στις δύο βάσεις του
παράλλες στον άξονα συμμετρίας.

Παράδειγμα 5.2. (Απλή διάτμηση)
Σε αυτή την περίπτωση ο τανυστής τάσης έχει μόνο μη διαγώνιες
συνιστώσες

Σ = σ(̂iĵ + ĵ î).

Συνεπάγεται ότι tr(Σ) = 0 και επομένως

E =
1 + ν

Y
Σ.

Η παραμόρφωση που αντιστοιχεί σε αυτή την ένταση δεν μεταβάλ-
λει τα μήκη παρά μόνο την γωνία μεταξύ των αξόνων x και y κατά
γωνία ίση με (1 + ν)/2Y . Παραμόρφωση αυτού του είδους επιτυγ-
χάνεται συστρέφοντας τις βάσεις ενός κυλίνδρου με αντίθετη φορά.

Παράδειγμα 5.3. (Ομοιόμορφη υδροστατική πίεση)
Σε αυτή την περίπτωση ο τανυστής της τάσης είναι ισότροπος

Σ = σI

και
E =

1− 2ν

Y
σI.

5.2 Ελαστοστατική και ελαστοδυναμική

Αντικαθιστώντας την τιμή της τάσης από τον γενικευμένο νόμο
του Hooke στην εξίσωση κίνησης

∇ · Σ+ ρ⃗b = ρ
dυ⃗
dt

προκύπτει μια διαφορική εξίσωση για το πεδίο μετατόπισης u⃗ η
λύση της οποίας δίνει τον τρόπο με τον οποίο θα παραμορφωθεί το
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υλικό όταν σε αυτό ασκηθούν τάσεις, υπό την παρουσία εξωτερικών
δυνάμεων μάζας b⃗. Για την επίλυσή της απαιτούνται αρχικές και
συνοριακές συνθήκες. Οι αρχικές συνθήκες επιβάλλουν την γνώση
της αρχικής μετατόπισης και του πεδίου ταχυτήτων την χρονική
στιγμή t0

u⃗0 = u⃗(r⃗, t0) και υ⃗0 = υ⃗(r⃗, t0).

Για τις συνοριακές συνθήκες διακρίνουμε τις εξής περιπτώσεις

i) Δοσμένη μετατόπιση u⃗ = g⃗ στο σύνορο S.

ii) Δοσμένη πίεση n̂ · Σ = T επάνω στην συνοριακή επιφάνεια S.

iii) Δοσμένη μετατόπιση u⃗ = g⃗ σε ένα υποσύνολο Ω ⊂ S της συνο-
ριακής επιφάνειας και δοσμένη πίεση n̂ · Σ = T στο συμπλή-
ρωμα Ωc ⊂ S.

Εάν η μετατόπιση επάνω στην συνοριακή επιφάνεια ισούται με μη-
δέν (g⃗ = 0) τότε λέμε ότι η επιφάνεια είναι σκληρή. Αν η τιμή της
τάσης μηδενίζεται στο σύνορο (T = 0) τότε η επιφάνεια ονομάζεται
ελεύθερη. Για ένα ομογενές και ισότροπο υλικό όπου οι συντελεστές
λ και µ έχουν την ίδια τιμή σε όλα τα σημεία του μέσου

∇ · Σ = λ∇[tr(E)] + 2µ∇ · E

όμως
∇ · E =

1

2
[∆u⃗+∇(∇ · u⃗)]

και
tr(E) = ∇ · u⃗.

Επομένως
∇ · Σ = µ∆u⃗+ (λ+ µ)∇(∇ · u⃗).

Αντικαθιστώντας στην εξίσωση κίνησης βρίσκουμε

µ∆u⃗+ (λ+ µ)∇(∇ · u⃗) + ρ⃗b = ρ
d2u⃗
dt2 .

Η εξίσωση αυτή είναι γνωστή ως η εξίσωση Navier-Cauchy. Εάν
d2u⃗/dt2 = 0 τότε έχουμε ένα πρόβλημα ελαστοστατικής. Σε αντί-
θετη περίπτωση το πρόβλημα είναι ελαστοδυναμικό.
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5.3 Εγκάρσια και διαμήκη κύματα

Έστω ότι οι δυνάμεις μάζας είναι αμελητέες σε σχέση με την τάση
και μπορούν να αγνοηθούν σε πρώτη προσέγγιση. Αντικαθιστώντας
b⃗ = 0 στην εξίσωση Navier-Cauchy και διαιρώντας με την πυκνότητα
βρίκουμε

µ

ρ
∆u⃗+

λ+ µ

ρ
∇(∇ · u⃗) = d2u⃗

dt2 .

Αναλύουμε τώρα την μετατόπιση ως το άθροισμα ενός αστρόβιλου
πεδίου u⃗P και ενός πεδίου u⃗S με μηδενική απόκλιση

u⃗ = u⃗P + u⃗S

όπου ∇× u⃗P = 0 και ∇ · u⃗S = 0. Όμως

∇× (∇× u⃗P ) = ∇(∇ · u⃗P )−∆u⃗P = 0

από το οποίο προκύπτει ότι ∇(∇ · u⃗P ) = ∆u⃗P . Τελικά

µ

ρ
∆u⃗S +

λ+ 2µ

ρ
∆u⃗P =

d2u⃗S

dt2 +
d2u⃗P

dt2

που ικανοποιείται όταν
µ

ρ
∆u⃗S =

d2u⃗S

dt2 και λ+ 2µ

ρ
∆u⃗P =

d2u⃗P

dt2 .

Παρατηρούμε ότι οι μετατοπίσεις ικανοποιούν και οι δύο κυματι-
κές εξισώσεις με φασικές ταχύτητες c2S = µ/ρ και c2P = (λ + 2µ)/ρ.
Η μετατόπιση u⃗P έχει ακτινική διεύθυνση με κέντρο την πηγή του
κύματος ενώ η μετατόπιση u⃗S είναι εφαπτομενική, κάθετη στην u⃗P .
Τα κύματα P ταλαντώνονται στην διεύθυνση διάδοσης του κύμα-
τος και είναι διαμήκη ενώ τα κύματα S εγκάρσια. Παρατηρούμε
ότι cP > cS. Αυτός είναι ο λόγος που σε έναν σεισμό το έδαφος
πρώτα δονείται και μετά αρχίζει να κουνιέται δεξιά και αριστερά.
Η χρονική απόσταση ∆t μεταξύ των δύο κυμάτων εξαρτάται από
το εστιακό βάθος r από το κέντρο του σεισμού και ισούται με

∆t = r

√
ρ
λ+ µ

λ+ 2µ
.
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5.4 Ασκήσεις

Άσκηση 5.1. Δείξτε ότι η απόκλιση του τανυστή έντασης του Euler
E ισούται με

∇ · E =
1

2
[∆u⃗+∇(∇ · u⃗)]

και το ίχνος του με
tr(E) = ∇ · u⃗.

Άσκηση 5.2. Δείξτε ότι απουσία δυνάμεων μάζας το ακόλουθο πε-
δίο μετατοπίσεων

u⃗ =
1

µ

[
λ+ 2µ

λ+ µ
∆F⃗ −∇∇ · F⃗

]
για ένα ομογενές και ισότροπο υλικό ικανοποιεί την εξίσωση Navier-
Cauchy εάν

∆2F⃗ = 0 και dυ⃗
dt = 0.

Άσκηση 5.3. Δείξτε ότι η εσωτερική ενέργεια U για ένα γραμμικό
και ισότροπο υλικό δίνεται από την σχέση

U =
1

2Y

∫
[(1 + ν)Σ : Σ− ν(trΣ)2]dV

όπου Y το μέτρο Young και ν ο συντελεστής Poisson.

Άσκηση 5.4. Έστω κύλινδρος ύψους L και ακτίνας a. Βρείτε την
εσωτερική ενέργεια του κυλίνδρου για έναν τανυστή τάσεων της
μορφής

Σ = G(−yî+ xĵ)k̂

όπου G σταθερά.



Κεφάλαιο 6

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ

Για ένα ρευστό σε ισορροπία ο τανυστής της τάσης έχει την
μορφή

Σ = −pI

όπου p η υδροστατική πίεση (το αρνητικό πρόσημο υποδηλώνει ότι
αυτή συμπιέζει το ρευστό). Εάν το ρευστό κινείται θα ασκούνται
σε αυτό επιπλέον δυνάμεις λόγω τριβής. Σε αυτή την περίπτωση ο
τανυστής τάσεων θα ισούται με

Σ = −pI+ Γ.

Ο τανυστής Γ είναι χαρακτηριστικός του ρευστού και ονομάζεται
τανυστής ιξώδους τάσης. Ένα ρευστό με μηδενικό ιξώδες (Γ = 0)
ονομάζεται ιδανικό. Στην γενική περίπτωση η πίεση είναι συνάρ-
τηση της πυκνότητας ρ και της θερμοκρασίας T του ρευστού και
δίνεται από μία καταστατική εξίσωση της μορφής p = p(ρ, T ). Χα-
ρακτηριστικό παράδειγμα το ιδανικό αέριο για το οποίο

p = ρRT

όπου R η σταθερά των ιδανικών αερίων. Όταν η πίεση είναι συ-
νάρτηση της πυκνότητας μόνο p = p(ρ) τότε το ρευστό ονομάζεται
βαροτροπικό.
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6.1 Νευτώνεια ρευστά

Ο τανυστής ιξώδους τάσης Γ συνδέεται με τον τανυστή ρυθμού
παραμόρφωσης D με μία σχέση της μορφής

Γ = f(D).

Ένα ρευστό για το οποίο η σχέση είναι μη γραμμική ονομάζεται
μη-Νευτώνειο. Σε αντίθετη περίπτωση ισχύει

Γ = K̃ : D

και το ρευστό ονομάζεται Νευτώνειο. Ο τανυστής τέταρτης τάξης
K̃ περιέχει ως συνιστώσες τους συντελεστές ιξώδους του ρευστού
και αποτελεί το ανάλογο του τανυστή ελαστικότητας C̃. Για ένα
ομογενές και ισότροπο ρευστό ο τανυστής των τάσεων ισούται με

Σ = −pI+ λ∗tr(D)I+ 2µ∗D

όπου λ∗ και µ∗ σταθερές. Υπολογίζοντας το ίχνος στα δύο μέλη
προκύπτει ότι

p = −1

3
tr(Σ) + κ∗tr(D)

όπου
κ∗ = λ∗ +

2µ∗

3

ο συντελεστής ιξώδους μάζας.

6.2 Η εξίσωση Navier‐Stokes

Η απόκλιση του τανυστή τάσεων για ένα ομογενές και ισότροπο
ρευστό ισούται με

∇ · Σ = −∇p+ λ∗∇(trD) + 2µ∗∇ ·D

όπου trD = ∇ · υ⃗ και

∇ ·D =
1

2
[∆υ⃗ +∇(∇ · υ⃗)].
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Αντικαθιστώντας στην εξίσωση κίνησης

∇ · Σ+ ρ⃗b = ρ
dυ⃗
dt

προκύπτει

−∇p+ (λ∗ + µ∗)∇(∇ · υ⃗) + µ∗∆υ⃗ + ρ⃗b = ρ
dυ⃗
dt .

Για ένα ασυμπίεστο ρευστό (dρ/dt = 0) από την εξίσωση συνέχειας
προκύπτει ότι ∇ · υ⃗ = 0 και επομένως

−∇p+ µ∗∆υ⃗ + ρ⃗b = ρ
dυ⃗
dt .

Η εξίσωση αυτή είναι γνωστή ως η εξίσωση Navier-Stokes. Μαζί με
την εξίσωση συνέχειας

dρ
dt + ρ∇ · υ⃗ = 0

αποτελεί ένα σύστημα τεσσάρων μερικών διαφορικών εξισώσεων
με αγνώστους τα p και υ⃗ για την επίλυσή του οποίου απαιτείται η
γνώση των συνοριακών και αρχικών συνθηκών. Για ένα ιξώδες ρευ-
στό η ταχύτητα μηδενίζεται επάνω στο σύνορο (υ⃗ = 0). Η συνοριακή
αυτή συνθήκη έχει εξαχθεί πειραματικά καθώς έχει παρατηρηθεί ότι
ένα ιξώδες ρευστό παραμένει ακίνητο στα τοιχώματα του. Για ένα
ιδανικό ρευστό μονάχα η κάθετη στην συνοριακή επιφάνεια ταχύ-
τητα μηδενίζεται n̂·υ⃗ (ώστε να μη υπάρχει διαρροή του ρευστού δια
μέσω του τοιχώματος). Η ύπαρξη ή μη φυσικά αποδεκτών λύσεων
(που να μην απειρίζονται για μεγάλους χρόνους και αποστάσεις)
της εξίσωσης Navier-Stokes αποτελεί ανοιχτό πρόβλημα η λύση του
οποίου συνοδεύεται από βραβείο ενός εκατομμυρίου δολαρίων από
το ινστιτούτο Clay.

6.3 Ιδανικά ρευστά

Για ιδανικά ρευστά µ∗ = 0 και η εξίσωση Navier-Stokes ανάγεται
στην εξίσωση Euler

ρ⃗b−∇p = ρ
dυ⃗
dt .
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Για ένα βαροτροπικό ρευστό ρ = ρ(p) υπό την παρουσία διατηρη-
τικού πεδίου δυνάμεων μάζας, b⃗ = −∇Ω ισχύει ότι

dυ⃗
dt = −∇(Ω + P )

όπου
P (p) =

∫
dp

ρ

συνάρτηση πίεσης για την οποία ισχύει

∇P =
∇p

ρ
.

Όμως
dυ⃗
dt =

∂υ⃗

∂t
+ υ⃗ · ∇υ⃗

όπου
υ⃗ · ∇υ⃗ =

1

2
∇υ2 − υ⃗ × (∇× υ⃗)

και επομένως

∇
(
Ω+ P +

υ2

2

)
+

∂υ⃗

∂t
= υ⃗ × (∇× υ⃗).

Το επικαμπύλιο ολοκλήρωμα της σχέσης αυτής ως προς dr⃗ ισούται
με ∫

d

(
Ω+ P +

υ2

2

)
+

∫
C

∂υ⃗

∂t
· dr⃗ =

∫
C

υ⃗ × (∇× υ⃗) · dr⃗

όπου η ολοκλήρωση υπολογίζεται κατά μήκος της καμπύλης C που
δίνεται από μία εξίσωση της μορφής r⃗ = r⃗(s). Για μία γραμμή ροής
ισχύει ότι

υ⃗ =
dr⃗
ds

και επομένως
υ⃗ × (∇× υ⃗) · dr⃗ = 0.

Σε αυτή την περίπτωση η ποσότητα

Ω+ P +
υ2

2
+

∫
C

∂υ⃗

∂t
· dr⃗
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παίρνει την ίδια τιμή σε όλα τα σημεία της γραμμής ροής και εξαρ-
τάται μόνο από τον χρόνο η εξίσωση

Ω+ P +
υ2

2
+

∫
C

∂υ⃗

∂t
· dr⃗ = β(t)

είναι γνωστή ως η εξίσωση Bernoulli. Για ένα αστρόβιλο πεδίο ταχυ-
τήτων (∇× υ⃗ = 0) η εξίσωση Bernoulli παίρνει την ίδια τιμή επάνω
σε οποιαδήποτε καμπύλη C. Στην περίπτωση σταθερού πεδίου τα-
χυτήτων ∂υ⃗/∂t = 0 η σταθερά β(t) είναι ανεξάρτητη του χρόνου.
Ορίζουμε τώρα ως κυκλοφορία της ταχύτητας γύρω από μία

κλειστή καμπύλη την ποσότητα

C =

∮
C

υ⃗ · dr⃗.

Παραγωγίζοντας ως προς τον χρόνο προκύπτει ότι

dC
dt =

∮
C

[
dυ⃗
dt · dr⃗ + υ⃗ · dυ⃗

]
.

Για ένα βαροτροπικό ιδανικό ρευστό υπό την επήρεια διατηρητικών
δυνάμεων μάζας η κυκλοφορία είναι σταθερή

dC
dt = −

∮
C

∇(Ω + P ) · dr⃗ + 1

2

∮
dυ2

=

∮
d

(
υ2

2
− Ω− P

)
= 0.

Αυτό είναι γνωστό ως το θεώρημα Kelvin.

6.4 Εφαρμογές εξίσωσης Bernoulli

Για σταθερή ροή και αστρόβιλο πεδίο ταχυτήτων η εξίσωση Bernoulli
παίρνει την μορφή

Ω+ P +
υ2

2
= σταθερά.

Για ένα βαρυτικό πεδίο δυνάμεων Ω = gh όπου g η επιτάχυνση της
βαρύτητας και h το ύψος σε σχέση με κάποια στάθμη αναφοράς.
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Δh

Α

Β

Σχήμα 6.1

Εάν η πίεση είναι ανεξάρτητη της πυκνότητας ισχύει ότι P = p/ρ.
Σε αυτή την περίπτωση

gh+
p

ρ
+

υ2

2
= σταθερά.

Έστω τώρα δοχείο από το οποίο ρέει ιδανικό ρευστό μέσω μίας
οπής στο κάτω μέρος του όπως στο Σχήμα 6.1. Για τα σημεία A

και B θα ισχύει

ghA +
pA
ρ

+
υ2
A

2
= ghB +

pB
ρ

+
υ2
B

2
.

Οι πιέσεις στα σημεία αυτά είναι και οι δύο ίσες με την ατμοσφαι-
ρική. Υπό την προσέγγιση ότι η ροή είναι τέτοια ώστε στο σημείο A

η ταχύτητα του ρευστού να ισούται με μηδέν, μπορούμε να λύσουμε
την ισότητα ως προς υB και να βρούμε το μέτρο της ταχύτητας του
ρευστού κατά την έξοδό του από το δοχείο

υB =
√

2g∆h

όπου ∆h η απόσταση της οπής από την πάνω επιφάνεια.
Ας θεωρήσουμε τώρα ρευστό που ρέει οριζόντια δια μέσω σω-

λήνα με μεταβαλλόμενη διατομή στην κατεύθυνση της ροής όπως
στο Σχήμα 6.2. Για τα σημεία A και B θα ισχύει

pA
ρ

+
υ2
A

2
=

pB
ρ

+
υ2
B

2
.
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SA

SB

Σχήμα 6.2

Για ένα ασυμπίεστο ρευστό ∇ · υ⃗ = 0. Εφαρμόζοντας τον νόμο του
Gauss στον όγκο που περικλείεται από τα τοιχώματα του σωλήνα
και τις διατομές SA και SB προκύπτει ότι∫

V

∇ · υ⃗dV =

∮
n̂ · υ⃗dS = υBSB − υASA = 0.

Το γινόμενο της ταχύτητας επί το εμβαδό της διατομής του σωλήνα
παραμένει πάντα σταθερό. Στα σημεία όπου ο σωλήνας στενεύει η
ροή αυξάνεται ενώ σε σημεία με πιο μεγάλη διατομή η ροή ελατ-
τώνεται. Αντικαθιστώντας στην εξίσωση του Bernoulli βρίσκουμε

pA − pB =
ρυ2

A

2

S2
A − S2

B

S2
B

.

Η πίεση στο σημείο A επομένως είναι μεγαλύτερη από την πίεση στο
σημείο B. Στα σημεία όπου η ταχύτητα της ροής είναι μεγαλύτερη
η πίεση μειώνεται και αντίστροφα.

6.5 Προβλήματα ρευστομηχανικής

6.5.1 Κίνηση στερεάς σφαίρας σε ιδανικό ρευστό

Έστω τώρα ιδανικό ασυμπίεστο ρευστό που ρέει γύρω από σφαίρα
ακτίνας a όπως στο Σχήμα 6.3. Εκμεταλλευόμενοι την συμμετρία
του προβλήματος θα χρησιμοποιήσουμε σφαιρικές συντεταγμένες
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α
z

Σχήμα 6.3

για να μελετήσουμε αυτή την περίπτωση. Για ένα αστρόβιλο πεδίο
ταχυτήτων θα ισχύει

υ⃗ = −∇φ.

όπου φ δυναμικό ταχύτητας. Εφόσον ∇ · υ⃗ = 0 προκύπτει ότι το
δυναμικό θα ικανοποιεί την εξίσωση του Laplace

∆φ = 0.

Επειδή η ροή έχει αζιμουθιακή συμμετρία γύρω από οριζόντιο άξονα
που περνάει από το κέντρο της σφαίρας το δυναμικό θα εξαρτάται
μόνο από την απόσταση r από το κέντρο και την πολική γωνία θ. Η
γενική λύση της εξίσωσης Laplace σε σφαιρικές συντεταγμένες έχει
την μορφή

φ(r, θ) =

∞∑
ℓ=0

(
Aℓr

ℓ +
Bℓ

rℓ+1

)
Pℓ(cos θ)

όπου Aℓ, Bℓ συντελεστές και

Pℓ(x) =
1

2nn!

dn

dxn
(x2 − 1)n

τα πολυώνυμα Legendre. Από την βάθμωση του δυναμικού σε σφαι-
ρικές συντεταγμένες βρίσκουμε ότι η ταχύτητα ισούται με

υ⃗(r, θ) = −r̂
∂φ

∂r
− θ̂

r

∂φ

∂θ

= −
∞∑
ℓ=0

(
ℓAℓr

ℓ−1 − (ℓ+ 1)
Bℓ

rℓ+2

)
Pℓ(cos θ)r̂
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+
∑
ℓ=0

(
Aℓr

ℓ−1 +
Bℓ

rℓ+2

)
sin θdPℓ(x)

dx θ̂.

Στην επιφάνεια της σφαίρας η κάθετη συνιστώσα της ταχύτητας
r̂ · υ⃗(a, θ) μηδενίζεται. Συνεπάγεται ότι

∞∑
ℓ=0

(
ℓAℓa

ℓ−1 − (ℓ+ 1)
Bℓ

aℓ+2

)
Pℓ(cos θ) = 0

από την οποία προκύπτει

Bℓ =
ℓAℓ

ℓ+ 1
a2ℓ+1.

Για να είναι πεπερασμένη η ταχύτητα σε μεγάλη απόσταση από το
κέντρο της σφαίρας (r → ∞) θα πρέπει

Aℓ = 0 για ℓ ≥ 2

και επομένως

υ⃗(r, θ) = −A1k̂ +
A1a

3

2r3
(2 cos θr̂ + sin θϕ̂)

όπου χρησιμοποιήσαμε την σχέση P1(x) = x και αντικαταστήσαμε
όπου cos θr̂−sin θθ̂ = k̂. Μακριά από την σφαίρα η ροή του ρευστού
είναι ομογενής στην διεύθυνση του άξονα z

υ⃗∞ = υ(t)k̂

από την οποία προκύπτει η τιμή A1 = −υ(t) για τον συντελεστή A1.

6.5.2 Ακουστικά κύματα σε ιδανικά ρευστά

Απουσία εξωτερικών δυνάμεων η εξίσωση Navier-Stokes ενός
ιδανικού ρευστού έχει την μορφή

−∇p = ρ
dυ⃗
dt .

Από την απόκλιση των δύο μελών προκύπτει

∆p = −∇ ·
(
ρ
∂υ⃗

∂t

)
−∇ · [ρ(υ⃗ · ∇)υ⃗]
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όπου χρησιμοποιήσαμε τον ορισμό για την μεταφορική παράγωγο
της ταχύτητας. Όμως

∇ ·
(
ρ
∂υ⃗

∂t

)
=

∂

∂t
[∇ · (ρυ⃗)]−∇ ·

(
υ⃗
∂ρ

∂t

)
και από την εξίσωση συνέχειας

∂ρ

∂t
= −∇ · (ρυ⃗).

Συνεπάγεται ότι

∆p =
∂2ρ

∂t2
−∇ · [υ⃗∇ · (ρυ⃗) + ρ(υ⃗ · ∇)υ⃗].

Στο όριο των μικρών παραμορφώσεων η ποσότητα εντός της αγκύ-
λης είναι δεύτερης τάξης ως προς παραγώγους της ταχύτητας και
επομένως μπορεί να αγνοηθεί σε πρώτη προσέγγιση. Τελικά προ-
κύπτει

∆p =
∂2ρ

∂t2
.

Για ένα βαροτροπικό υλικό p = p(ρ) και

∆p =

(
∇dp
dρ

)
· (∇ρ) +

dp
dρ∆ρ.

Ομοίως μπορεί να δειχθεί ότι

∂2ρ

∂t2
=

∂

∂t

(
dρ
dp

)
∂p

∂t
+
dρ
dp

∂2p

∂t2

Για αμελητέες μεταβολές της ποσότητας dp/dρ ως προς τον χώρο και
τον χρόνο ο πρώτος όρος στο δεξί μέλος των παραπάνω εξισώσεων
μπορεί να αγνοηθεί και επομένως

∆p =
1

dp/dρ

∂2p

∂t2
και ∆ρ =

1

dp/dρ

∂2ρ

∂t2

δύο κυματικές εξισώσεις με φασική ταχύτητα

c =
dp
dρ.
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Κάτω από αυτές τις συνθήκες σε ένα ιδανικό ρευστό μπορούν να
διαδοθούν κύματα πίεσης και πυκνότητας. Η ταχύτητα c σε αυτή
την περίπτωση είναι η ταχύτητα του ήχου. Σε ένα ιδανικό αέριο

p = bργ

όπου γ = cP/cV ο λόγος των ειδικών θερμοτήτων και b σταθερά.
Αντικαθιστώντας βρίσκουμε

c = γbργ−1 = γ
p

ρ
.

6.5.3 Νευτώνεια ρευστά σε κίνηση

Ρευστό ανάμεσα από κινούμενες πλάκες

Έστω ιξώδες ρευστό μεταξύ δύο απείρων πλακών, σε απόσταση
d μεταξύ τους, παράλληλων στο επίπεδο xy. Ας υποθέσουμε τώρα
ότι η κάτω πλάκα παραμένει ακίνητη και ότι η πάνω κινείται με
μια σταθερή ταχύτητα υ⃗0. Απουσία εξωτερικών δυνάμεων μάζας η
εξ. Navier-Stokes έχει την μορφή

µ∗∆υ⃗ −∇p = ρ
dυ⃗
dt .

Για αμελητέα μεταβολή της πίεσης,∇p = 0. Εάν η ροή είναι σταθερή
τότε dυ⃗/dt = 0. Σε αυτή την περίπτωση

∆υ⃗ = 0.

Από την γεωμετρία του προβλήματος είναι προφανές ότι η ταχύτητα
μεταβάλλεται μόνο κατά την διεύθυνση του άξονα z και επομένως

d2υ⃗
dz2 = 0 =⇒ υ⃗(z) = a⃗z + c⃗

όπου a⃗ και c⃗ σταθερά διανύσματα. Η ταχύτητα του ρευστού στην
κάτω πλάκα θα μηδενίζεται ενώ στην πάνω θα ισούται με υ⃗0. Προ-
κύπτει ότι a⃗ = υ⃗0/d και c⃗ = 0 και άρα

υ⃗ =
υ⃗0
d
z.

Στο Σχήμα 6.4 δίνεται το πεδίο των ταχυτήτων σε έναν άξονα κά-
θετο στις πλάκες.
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υ0

d

Σχήμα 6.4

Σταθερή ροή ανάμεσα από ακίνητες πλάκες.

Έστω τώρα ότι οι πλάκες είναι ακίνητες και το ρευστό ρέει ανά-
μεσά τους. Σε αυτή την περίπτωση λαμβάνουμε υπόψιν την βαθμίδα
της πίεσης και επομένως

µ∗∆υ⃗ = ∇p.

Εάν η ροή εκτελείται στην διεύθυνση του άξονα x θα ισχύει

µ∗d2υ(z)
dz2 =

∂p

∂x

και
∂p

∂y
= 0,

∂p

∂z
= 0.

Συνεπάγεται ότι η πίεση θα εξαρτάται μονάχα από την μεταβλητή
x. Εφόσον όμως οι συντεταγμένες x και z είναι ανεξάρτητες μεταξύ
τους θα πρέπει να ισχύει

dp
dx = a και µ∗d2υ(z)

dz2 = a

για κάποια σταθερά a από τις οποίες προκύπτει

p(x) = ax+ p0 και υ(z) =
a

2µ∗ z
2 + bz + υ0.
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d

Σχήμα 6.5

Οι συνοριακές συνθήκες επιβάλουν στην κάτω και στην πάνω πλάκα
η ταχύτητα να μηδενίζεται και επομένως υ0 = 0 και b = −ad/2µ∗.
Τελικά

υ(z) =
az

2µ∗ (z − d).

Το πεδίο ταχυτήτων επάνω στον άξονα z δίνεται στο Σχήμα 6.5.

6.6 Υδροστατική

Στην υδροστατική το πεδίο ταχυτήτων ισούται με μηδέν. Σε αυτή
την περίπτωση η εξίσωση Navier-Stokes γίνεται

ρ⃗b−∇p = 0

την οποία μπορούμε να λύσουμε ως προς την πίεση για να βρούμε
τις συνθήκες κάτω από τις οποίες ισχύει η ισορροπία.

6.6.1 Παραδείγματα ισορροπίας ρευστών

Απουσία εξωτερικών δυνάμεων

Σε αυτή την περίπτωση b⃗ = 0 και επομένως η πίεση είναι σταθερή
σε όλα τα σημεία του ρευστού. Η διαπίστωση αυτή είναι γνωστή
ως ο νόμος του Pascal.
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Ρευστό σε ομογενές πεδίο βαρύτητας

Στο πεδίο βαρύτητας της γης

b⃗ = −gk̂

και επομένως
∂p

∂x
= 0,

∂p

∂y
και ∂p

∂z
= −ρg.

Προκύπτει ότι
p(z) = −ρgz + c.

όπου c σταθερά. Θέτοντας την πίεση ίση με την ατμοσφαιρική p(z) =
p0 συνεπάγεται ότι η ελεύθερη επιφάνεια ενός στατικού ρευστού
στο βαρυτικό πεδίο της Γής είναι επίπεδη

z =
c− p0
ρg

.

Ομογενές ρευστό σε δοχείο που επιταχύνεται προς μία διεύθυνση

Ας θεωρήσουμε ότι το δοχείο που περιέχει το ρευστό επιταχύ-
νεται στην διεύθυνση του άξονα x με επιτάχυνση a. Η εξωτερική
δύναμη σε αυτή την περίπτωση θα ισούται με το άθροισμα της βα-
ρυτικής δύναμης και της δύναμης αδράνειας

b⃗ = −gk̂ − aî

και άρα
∇p = −ρ(gk̂ + aî)

που ικανοποιείται για

p(x, z) = −ρ(gz + ax) + c.

Η εξίσωση της ελεύθερης επιφάνειας θα δίνεται από την σχέση

z = −a

g
x+

c− p0
ρg

που σχηματίζει ευθεία με κλίση που μειώνεται όσο αυξάνεται η
επιτάχυνση όπως στο Σχήμα 6.6.
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g

a

Σχήμα 6.6

Ρευστό σε δοχείο που περιστρέφεται γύρω από κατακόρυφο άξονα

Σε αυτή την περίπτωση η δύναμη αδράνειας ισούται με την φυ-
γόκεντρο ω2ρr⃗ όπου r⃗ = xî+ yĵ η κάθετη απόσταση από τον άξονα
περιστροφής και ω η γωνιακή ταχύτητα. Παρουσία βαρυτικού πε-
δίου

∇p = ρ[ω2(xî+ yĵ)− gk̂]

που ικανοποιείται για

p =
ρω2r2

2
− ρgz + c.

Η εξίσωση της ελεύθερης επιφάνειας δίνεται από την σχέση

z =
ω2r2

2g
+

c− p

ρg

που σχηματίζει παραβολή όπως στο Σχήμα 6.7.
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g

z

ω

Σχήμα 6.7

6.7 Ασκήσεις

Άσκηση 6.1. Βρείτε την μορφή του τανυστή τάσης στην περίπτωση
όπου ο συντελεστής ιξώδους μάζας κ μηδενίζεται.

Άσκηση 6.2. Έστω ότι η ατμόσφαιρα της Γής αποτελεί ιδανικό αέ-
ριο η θερμοκρασία T του οποίου μεταβάλλεται σε σχέση με το ύψος
z από την επιφάνειά της σύμφωνα με την σχέση

T (z) = T0 − az

όπου T0 και a σταθερές. Δείξτε ότι η πίεση σε αυτή την περίπτωση
θα δίνεται από την σχέση

p(z) = p0

(
1− az

T0

)g/Ra

όπου g η επιτάχυνση της βαρύτητας, R η σταθερά των ιδανικών
αερίων και p0 η τιμή της ατμόσφαιρας στην επιφάνεια της Γής.

Άσκηση 6.3. Η πίεση ενός βαροτροπικού ρευστού είναι της μορφής

p = λρk

όπου λ και k σταθερές. Να βρεθεί η μορφή της πίεσης συναρτήσει
της απόστασης z από την επιφάνεια της Γής και της τιμής της στο
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ύψος z = 0 υπό την παρουσία βαρυτικών δυνάμεων της μορφής −gk̂

όπου g η επιτάχυνση της βαρύτητας.
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