Φυσική και Τεχνολογία Υλικών και Διατάξεων Στερεάς Κατάστασης

Δρ Χρήστος Τσάμης

Ινστιτούτο Νανοεπιστήμης και Νανοτεχνολογίας ΕΚΕΦΕ «Δημόκριτος»

c.tsamis@inn.demokritos.gr

Πάτρα, 2024

Η Επαφή p-n

 D. A. Neamen, Semiconductor Physics and Devices McGraw-Hill, 4th Ed. (2012) Ενότητες 7.1-7.3, 7.5.1, 8.1 (εκτός 8.1.7), 8.2, 8.5

E_v

Τι θα συμβεί αν φέρουμε τους δύο ημιαγωγούς σε «επαφή»

Τι θα συμβεί αν φέρουμε τους δύο ημιαγωγούς σε «επαφή»

Εξαιτίας της διαφοράς συγκέντρωσης των φορέων θα υπάρξει:

Ροή ηλεκτρονίων από την περιοχή η στην περιοχή ρ

Ροή οπών από την περιοχή ρ στην περιοχή η

E (Electric field)

Σε Θ.Ι η διάχυση φορέων λόγω βαθμίδας συγκέντρωσης θα εξισορροπείται από την ολίσθηση των φορέων λόγω του ηλεκτρικού πεδίου

Σε κατάσταση Θ.Ι το σύστημα πρέπει να έχει μία Στάθμη Fermi

Συγκέντρωση φορέων

Αναλυτική επίλυση εξισώσεων για επαφή p-n

- Απότομη επαφή (Abrupt junction)
 - One sided junction

• Linearly graded junction

$$E_{x} \equiv -\frac{d\phi_{i}}{dx}$$

$$\phi_i = -\frac{E_i}{q}$$

$$\vec{E} = -\vec{\nabla}\,\varphi_{\rm i}(\vec{r})$$

р n E_c eV_{bi} E_{Fi} $e\phi_{Fp}$ E_F E_F $e\phi_{Fn}$ E_{ν} E_{Fi} н. 1

Από τον ορισμό του δυναμικού έχω:

$$\phi_i = -\frac{E_i}{q}$$

Θεωρώ σαν στάθμη αναφοράς του δυναμικού τη στάθμη Fermi

$$\varphi_{E_F}=0$$

Ποια περιοχή έχει υψηλότερο δυναμικό?

$$\mathbf{V}_{\mathrm{bi}} = \left| \Phi_{F_p} \right| + \left| \Phi_{F_n} \right|$$

Built in potential

Υπολογισμός V_{bi}

Περιοχή p

$$p = n_i \exp\left(\frac{E_i - E_F}{kT}\right)$$

$$n = n_i \exp\left(\frac{(-q\varphi_i) - (-q\varphi_{E_F}(x))}{kT}\right)$$

Θεωρώντας ότι
$$\varphi_{E_F} = 0$$
 $p = n_i \exp\left(-\frac{q\varphi_i(x)}{kT}\right)$

Μακριά από την επαφή ισχύει

Τελικά

$$p = N_A$$

$$N_A = n_i \exp\left(-\frac{q\varphi_{F_p}}{kT}\right)$$

$$\varphi_i(x) = \varphi_{F_p}$$

$$\varphi_{F_p} = -\frac{\mathrm{kT}}{q} \ln\left(\frac{\mathrm{N}_A}{n_i}\right)$$

Υπολογισμός V_{bi}

Περιοχή n

$$n = n_i \exp\left(\frac{\mathbf{E}_{\mathrm{F}} - E_i}{\mathrm{kT}}\right) \qquad \qquad n = n_i \exp\left(\frac{\left(-q\varphi_{\mathrm{E}_F}\right) - \left(-q\varphi_i(x)\right)}{\mathrm{kT}}\right)$$

Θεωρώντας ότι
$$\varphi_{E_F} = 0$$
 $n = n_i \exp\left(\frac{q\varphi_i(x)}{kT}\right)$

Μακριά από την επαφή ισχύει

Τελικά

$$n = N_D$$
$$N_D = n_i \exp\left(\frac{q\varphi_{F_n}}{kT}\right)$$
$$\varphi_i(x) = \varphi_{F_n}$$

$$\varphi_{F_n} = +\frac{\mathrm{kT}}{q} \ln\left(\frac{\mathrm{N}_D}{n_i}\right)$$

Παρατηρούμε ότι **Περιοχή ρ** $\frac{kT}{kT} (N_A) = \frac{kT}{kT} (N_D)$

Αυτό είναι λογικό καθώς το ηλεκτρικό πεδίο έχει κατεύθυνση από την περιοχή η προς την περιοχή ρ

Τελικά

$$V_{\rm bi} = \left| \Phi_{F_p} \right| + \left| \Phi_{F_n} \right|$$

$$V_{bi} = \frac{\mathrm{kT}}{q} \ln\left(\frac{\mathrm{N}_{A}\mathrm{N}_{D}}{n_{i}^{2}}\right) = \mathrm{V}_{T} \ln\left(\frac{\mathrm{N}_{A}\mathrm{N}_{D}}{n_{i}^{2}}\right)$$

 V_T : Thermal voltage

Αναλυτική επίλυση εξισώσεων για επαφή p-n

• Abrupt junction

$$\frac{d^2\varphi(x)}{d^2x} = -\frac{\rho(x)}{\varepsilon_s} = -\frac{dE(x)}{dx}$$

$$ho(x) = -eN_A$$
 , $-x_P < x < 0$

Ηλεκτρικό πεδίο

p-region $E(x) = \int \frac{\rho(x)}{\varepsilon_c} dx = -\int \frac{-eN_A}{\varepsilon_c} dx = -\frac{eN_A}{\varepsilon_c} x + C_1$ $\mathbf{E} = -\frac{eN_A}{\varepsilon_s}(x+x_p)$ Από την συνοριακή συνθήκη $E(x=-x_p)=0$, βρίσκω το C_1 $-x_P \leq x \leq 0$ n-region $E(x) = \int \frac{\rho(x)}{\varepsilon_c} dx = -\int \frac{eN_D}{\varepsilon_c} dx = \frac{eN_A}{\varepsilon_c} x + C_2$ $\mathbf{E} = -\frac{eN_D}{\varepsilon_s}(x_n - x)$ $0 \leq x \leq x_P$ Από την συνοριακή συνθήκη E(x=x_n)=0, βρίσκω το C₁

Για x=0 οι δύο σχέσεις για το Ε δίνουν το ίδιο αποτέλεσμα και ισχύει: $N_A x_p = N_{\rm D} x_n$

Ηλεκτρικό δυναμικό

p-region

n-region

$$\varphi(\mathbf{x}) = -\int \mathbf{E}(\mathbf{x}) \, d\mathbf{x} = \int \frac{eN_D}{\varepsilon_s} ((x_n - x)) d\mathbf{x} = \frac{eN_D}{\varepsilon_s} \left(x_n x - \frac{x^2}{2} \right) + D_2$$

$$\varphi(\mathbf{x}) = \frac{eN_D}{\varepsilon_s} \left(x_n x - \frac{x^2}{2} \right) + \frac{eN_A}{2\varepsilon_s} x_p^2$$
Από τη συνέχεια του δυναμικού στη θέση x=0, βρίσκω το D₂

$$0 \le x \le x_n$$

Ισχύει ότι:
$$\varphi(x=x_n)-\varphiig(x=-x_pig)=V_{bi}$$

V=0 (συνθήκες Θ.Ι) V_R<0 (Vp<Vn) – Όχι συνθήκες Θ.Ι

Ε_{pp}: Εφαρμοζόμενο πεδίο
 Ε: Πεδίο στη περιοχή φορτίου χώρου (SCR)

Μπορούμε να θεωρήσουμε ότι το ηλεκτρικό πεδίο στις ουδέτερες η και ρ περιοχές είναι πρακτικά μηδέν ή πολύ μικρό

Αυτό σημαίνει ότι το πεδίο Ε στην SCR θα αυξηθεί σε σχέση με τη Θ.Ι.

Αλλά το πεδίο προέρχεται από την κατανομή φορτίων στη SCR. Οπότε ο αριθμός των φορτίων πρέπει να αυξηθεί.

Αυτό μπορεί να γίνει μόνο αν αυξηθεί το εύρος της SCR.

$$W = \left\{ \frac{2\varepsilon_s (V_{bi} + V_R)}{e} \left[\frac{N_A + N_D}{N_A N_D} \right] \right\}^{\frac{1}{2}}$$

Ε: Πεδίο στη περιοχή φορτίου χώρου (SCR)

Το ηλεκτρικό πεδίο αυξάνει όσο αυξάνει η ανάστροφη πόλωση

Η μέγιστη τιμή του ηλεκτρικού πεδίου εξακολουθεί να είναι στη μεταλλουργική επαφή και δίνεται από τις σχέσεις

$$\mathbf{E}_{max} = \frac{-eN_D x_n}{\varepsilon_s} = \frac{-eN_A x_p}{\varepsilon_s}$$

Μπορούμε να δείξουμε ότι

$$\mathbf{E}_{max} = -\left\{\frac{2e(V_{bi} + V_R)}{\varepsilon_s} \left[\frac{N_A N_D}{N_A + N_D}\right]\right\}^{\frac{1}{2}} \qquad \mathbf{E}_{max} = \frac{-2N_D(V_{bi} + V_R)}{W} \\ \mathbf{E}_{max} : \mathsf{Au}\xi \acute{a} \mathsf{vel} \mathsf{v} \mathsf{pappink} \acute{a} \mathsf{pero} \mathsf{V}_R$$

ANT (17

1 T7 \

Χωρητικότητα επαφής (Junction Capacitance)

Junction breakdown (Reverse bias)

Μηχανισμός Zener

Avalanche breakdown

Ροή e από την n στην p: Τα e διαχέονται στην p (minority carrier)

Ροή h από την p στην n: Οι h διαχέονται στην n (minority carrier)

Έχουμε υποθέσει ότι το Ε στις περιοχές n, p είναι αμελητέο

Δείξαμε οτι Θεωρώντας πλήρη ιονισμό και στατιστική Boltzmann, σε Θ.Ι ισχύει Περιοχή p Περιοχή η $\frac{n_{po}}{n_{no}} = exp\left(-\frac{eV_{bi}}{kT}\right)$ $n_{no} = N_D$ $p_{po} = N_A$ $p_{no} = \frac{n_i^2}{N_D}$ $n_{po} = \frac{n_i}{N_A}$ $n_{po} = n_{no} \cdot exp\left(-\frac{eV_{bi}}{V_{T}}\right)$

Οταν εφαρμόζουμε μία εξωτερική τάση V_a

$$n_{po} = n_{no} \cdot exp\left(-\frac{eV_{bi}}{kT}\right) \qquad n_{p} = n_{no} \cdot exp\left(-\frac{e(V_{bi} - V_{a})}{kT}\right) \qquad n_{p} = n_{po} \cdot exp\left(\frac{eV_{a}}{kT}\right) \qquad n_{p} = n_{po} \cdot exp\left(\frac{eV_{a}}{kT}\right) \qquad n_{p} = n_{po} \cdot exp\left(\frac{eV_{a}}{kT}\right) \qquad n_{p} = p_{no} \cdot exp\left(\frac{eV_{a}}{kT}\right)$$

Υπολογισμός ρεύματος διαχύσης οπών στην περιοχή n (minority carriers)

$$\frac{\partial p(\mathbf{x}, \mathbf{t})}{\partial \mathbf{t}} = -\frac{1}{q} \cdot \frac{\partial J_{p,x}(\mathbf{x}, \mathbf{t})}{\partial \mathbf{x}} + \left[G_{p}(\mathbf{x}, \mathbf{t}) - R_{p}(\mathbf{x}, \mathbf{t}) \right]$$

$$J_{p,x}^{dif} = -q \cdot D_{p} \cdot \frac{dp(\mathbf{x})}{d\mathbf{x}}$$

$$U = \frac{p(\mathbf{t}) - p(\mathbf{0})}{\tau_{p}}$$

$$\Sigma \tau \eta \nu \mu \delta \nu \iota \eta \kappa \alpha \tau \dot{\alpha} \sigma \tau \alpha \sigma \eta$$

$$\frac{d^{2}(\delta p_{n})}{dx^{2}} - \frac{\delta p_{n}}{L_{p}^{2}} = 0$$

$$\delta p_{n}(x) = p_{n}(x) - p_{no}$$

$$L_{p}^{2} = D_{p} \tau_{po}$$

Από την επίλυση των εξισώσεων για τις **οπές** βρίσκω ότι

$$\delta p_n(x) = p_n(x) - p_{no} = p_{no} \left[exp\left(\frac{eV_a}{kT}\right) - 1 \right] exp\left(\frac{x_n - x}{L_p}\right) \qquad x > x_n$$

L_p: Μήκος διάχυσης των οπών στην περιοχή η

Ρεύμα διάχυσης οπών

Αντίστοιχα για τα ηλεκτρόνια βρίσκω ότι

$$\delta n_p(x) = n_p(x) - n_{po} = n_{po} \left[exp\left(\frac{eV_a}{kT}\right) - 1 \right] exp\left(\frac{x_p + x}{L_n}\right) \qquad x < x_p$$

L_n: Μήκος διάχυσης των ηλεκτρονίων στην περιοχή p

Ρεύμα διάχυσης ηλεκτρονίων

Ρεύμα διόδου pn

$$J = J_p(x_n) + J_n(-x_p) = \left[\frac{eD_p p_{no}}{L_p} + \frac{eD_n n_{po}}{L_n}\right] \left[exp\left(\frac{eV_a}{kT}\right) - 1\right]$$
$$J = J_S\left[exp\left(\frac{eV_a}{kT}\right) - 1\right]$$
$$J_S = \left[\frac{eD_p p_{no}}{L_p} + \frac{eD_n n_{po}}{L_n}\right]$$

ΠΡΟΒΛΗΜΑ 1

Linearly Graded Junctions

Ρεύμα διόδου pn

ΠΡΟΒΛΗΜΑ 2

Short diode approximation

Να υπολογίσετε το ρεύμα της διόδου, όταν το μηκος της περιοχής n (Wn) είναι μικρότερο από το μήκος διάχυσης των οπών Lp.

Ρεύμα Γέννησης- Επανασύνδεσης Φορέων (Περιοχή SCR)

Ρεύμα Γέννησης Ανάστροφης Πόλωσης (Reverse-Biased Generation Current)

Στην ανάστροφη πόλωση έχουμε γέννηση φορέων στη SCR

$$G = -\frac{n_i^2}{\tau_{no}[p + p_T] + \tau_{po}[n + n_T]}$$

Θεωρώ ότι η στάθμη των παγίδων είναι στην Ε_{Fi}

$$p_T = n_T = n_i$$

Ορίζω $\tau_o = \frac{\tau_{no} + \tau_{po}}{2}$ $J_{gen} = \int_o^W eGdx \qquad \longrightarrow \qquad J_{gen} = \frac{en_iW}{2\tau_o}$

Πυκνότητα ρεύματος διόδου σε ανάστροφη πόλωση: $J_R = J_S + J_{gen}$

$$E_{F_n} - E_{F_p} = eV_a \qquad (E_{F_n} - E_{F_i}) + (E_{F_i} - E_{F_p}) = eV_a$$

At the center of the space charge region $(E_{F_n} - E_{F_i}) = (E_{F_p} - E_{F_i}) = \frac{eV_a}{2}$

$$n = n_i \exp\left(\frac{E_{F_n} - E_{F_i}}{kT}\right)$$

$$n = n_i \exp\left(\frac{eV_a}{2kT}\right)$$

$$p = n_i \exp\left(\frac{E_{F_i} - E_{F_p}}{kT}\right)$$

$$p = n_i \exp\left(\frac{eV_a}{2kT}\right)$$

$$R = \frac{\mathbf{n} \cdot \mathbf{p} - \mathbf{n}_{i}^{2}}{\tau_{no}[\mathbf{p} + \mathbf{p}_{T}] + \tau_{po}[\mathbf{n} + \mathbf{n}_{T}]}$$

$$R_{max} = \frac{n_{i}}{2\tau_{o}} \frac{\left[\exp\left(\frac{eV_{a}}{kT}\right) - 1\right]}{\left[\exp\left(\frac{eV_{a}}{2kT}\right) + 1\right]}$$

$$R_{max} = \frac{n_{i}}{2\tau_{o}} \exp\left(\frac{eV_{a}}{2kT}\right)$$

$$R_{max} = \frac{n_{i}}{2\tau_{o}} \exp\left(\frac{eV_{a}}{2kT}\right)$$

$$R_{max} = \frac{n_{i}}{2\tau_{o}} \exp\left(\frac{eV_{a}}{2kT}\right)$$

Ρεύμα επανασύνδεσης

$$J_{rec} = \int_{o}^{W} eRdx$$
$$R_{max} = \frac{n_i}{2\tau_o} \exp\left(\frac{eV_a}{kT}\right)$$

$$J_{rec} = \mathrm{e}x'\frac{n_i}{2\tau_o}\exp\left(\frac{eV_a}{\mathrm{kT}}\right)$$

X' is a length over which the maximum recombination rate is effective

$$J_{rec} = \frac{eWn_i}{2\tau_o} \exp\left(\frac{eV_a}{kT}\right) = J_{r0} \exp\left(\frac{eV_a}{kT}\right)$$

$$J_{rec} = J_{r0} \exp\left(\frac{eV_a}{kT}\right)$$

$$J_D = J_S \left[exp\left(\frac{eV_a}{kT}\right) - 1 \right] \approx J_S exp\left(\frac{eV_a}{kT}\right)$$

$$I = I_s \left[exp\left(\frac{eV_a}{nkT}\right) - 1 \right]$$

n:ideality factor

Ρεύμα σε συνθήκες υψηλής έγχυσης φορέων (High-Level Injection)

Τι ισχύει σε συνθήκες υψηλής έγχυσης φορέων (High-Level Injection)

Ρεύμα σε συνθήκες υψηλής έγχυσης φορέων (High-Level Injection)

$$n = n_{i} \exp\left(\frac{E_{F_{n}} - E_{F_{i}}}{kT}\right)$$

$$p = n_{i} \exp\left(\frac{E_{F_{i}} - E_{F_{p}}}{kT}\right)$$

$$np = n_{i}^{2} \exp\left(\frac{E_{F_{n}} - E_{F_{p}}}{kT}\right) = n_{i}^{2} \exp\left(\frac{eV_{a}}{kT}\right)$$

$$V_{T} = \frac{kT}{e}$$

$$np = n_{i}^{2} \exp\left(\frac{V_{a}}{V_{T}}\right)$$

Ρεύμα σε συνθήκες υψηλής έγχυσης φορέων (High-Level Injection)

$$n = n_{o} + \delta n$$

$$p = p_{o} + \delta p$$

$$(n_{o} + \delta n)(p_{o} + \delta p) = n_{i}^{2} \exp\left(\frac{V_{a}}{V_{T}}\right)$$

$$High-Level Injection$$

$$\delta n \gg n_{o} \qquad \delta p \gg p_{o}$$

$$\delta n \delta p = n_{i}^{2} \exp\left(\frac{V_{a}}{V_{T}}\right)$$

Ισχύει ότι

$$\delta n = \delta p$$
 $\delta n = \delta p = n_i^2 \exp\left(\frac{V_a}{2V_T}\right)$

Το ρεύμα της διόδου είναι ανάλογο της συγκέντρωσης της περίσσειας των φορέων

$$\mathbf{I} \propto \exp\left(\frac{V_a}{2V_T}\right)$$

Ρεύμα διόδου pn

I (leg Scale) –

THE TUNNEL DIODE (Esaki diode)

Tunnel diode: είναι μίας δίοδος pn στην οποία και οι δύο περιοχές n,p είναι υψηλά νοθευμένες (degenerately doped).

THE TUNNEL DIODE

Ορθή Πόλωση

THE TUNNEL DIODE

