J. Parallel Distrib. Comput. 74 (2014) 2561-2573

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

Trends in big data analytics

CrossMark

Karthik Kambatla®*, Giorgos Kollias b Vipin Kumar €, Ananth Grama*?

2 Department of Computer Science, Purdue University, United States
b IBM T. J. Watson Research Center, United States
¢ Department of Computer Science, University of Minnesota, United States

HIGHLIGHTS

An overview of the state-of-the-art in big-data analytics.
Trends in scale and application landscape of big-data analytics.

Current and future trends in hardware that can help us in addressing the massive datasets.
Discussion of software techniques currently employed and future trends to address the applications.

ARTICLE INFO ABSTRACT

Article history:

Received 25 September 2013
Received in revised form

11 January 2014

Accepted 14 January 2014
Available online 2 February 2014

Keywords:

Big-data

Analytics

Data centers
Distributed systems

One of the major applications of future generation parallel and distributed systems is in big-data analytics.
Data repositories for such applications currently exceed exabytes and are rapidly increasing in size.
Beyond their sheer magnitude, these datasets and associated applications’ considerations pose significant
challenges for method and software development. Datasets are often distributed and their size and privacy
considerations warrant distributed techniques. Data often resides on platforms with widely varying
computational and network capabilities. Considerations of fault-tolerance, security, and access control are
critical in many applications (Dean and Ghemawat, 2004; Apache hadoop). Analysis tasks often have hard
deadlines, and data quality is a major concern in yet other applications. For most emerging applications,
data-driven models and methods, capable of operating at scale, are as-yet unknown. Even when known
methods can be scaled, validation of results is a major issue. Characteristics of hardware platforms and the
software stack fundamentally impact data analytics. In this article, we provide an overview of the state-
of-the-art and focus on emerging trends to highlight the hardware, software, and application landscape

of big-data analytics.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

With the development of critical Internet technologies, the vi-
sion of computing as a utility took shape in the mid 1990s [19].
These early efforts on Grid computing [35] typically viewed hard-
ware as the primary resource. Grid computing technologies fo-
cused on sharing, selection, and aggregation of a wide variety of
geographically distributed resources. These resources included su-
percomputers, storage, and other devices for solving large-scale
compute-intensive problems in science, engineering, and com-
merce. A key feature of these frameworks was their support for

* Corresponding author.
E-mail addresses: kkambatl@cs.purdue.edu (K. Kambatla), gkollias@us.ibm.com
(G. Kollias), kumar@cs.umn.edu (V. Kumar), ayg@cs.purdue.edu (A. Grama).

http://dx.doi.org/10.1016/j.jpdc.2014.01.003
0743-7315/© 2014 Elsevier Inc. All rights reserved.

transparent domain-crossing administration and resource man-
agement capability.

The concept of ‘data as a resource’ was popularized by peer-
to-peer systems [65]. Networks such as Napster, Gnutella, and
BitTorrent allowed peer nodes to share content - typically multi-
media data - directly among one another in a decentralized man-
ner. These frameworks emphasized interoperability and dynamic,
ad-hoc communication and collaboration for cost reduction,
resource sharing, and aggregation. However, in many of these plat-
forms, considerations of anonymity or privacy issues and scalabil-
ity were secondary.

More recently, Cloud computing environments [95] target
reliable, robust services, ubiquitously accessible (often through
browsers) from clients ranging from mass-produced mobile de-
vices to general purpose computers. Cloud computing generalizes
prior notions of service from infrastructure-as-a-service (comput-
ing resources available in the cloud), and data-as-a-service (data

http://dx.doi.org/10.1016/j.jpdc.2014.01.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.01.003&domain=pdf
mailto:kkambatl@cs.purdue.edu
mailto:gkollias@us.ibm.com
mailto:kumar@cs.umn.edu
mailto:ayg@cs.purdue.edu
http://dx.doi.org/10.1016/j.jpdc.2014.01.003

2562 K. Kambatla et al. / J. Parallel Distrib. Comput. 74 (2014) 2561-2573

available in the cloud) to software-as-a-service (access to pro-
grams that execute in the cloud). This offers considerable benefits
from points-of-view of service providers (cost reductions in hard-
ware and administration), overall resource utilization, and better
client interfaces. The compute back-end of cloud environments
typically relies on efficient and resilient data center architectures,
built on virtualized compute and storage technologies, efficiently
abstracting commodity hardware components. Current data cen-
ters typically scale to tens of thousands of nodes and computations
in the cloud often span multiple data centers.

The emerging landscape of cloud-based environments with dis-
tributed data-centers hosting large data repositories, while also
providing the processing resources for analytics strongly motivates
need for effective parallel/distributed algorithms. The underlying
socio-economic benefits of big-data analytics and the diversity of
application characteristics pose significant challenges. In the rest of
this article, we highlight the scale and scope of data analytics prob-
lems. We describe commonly used hardware platforms for execut-
ing analytics applications, and associated considerations of storage,
processing, networking, and energy. We then focus on the soft-
ware substrates for applications, namely virtualization technolo-
gies, runtime systems/execution environments, and programming
models. We conclude with a brief discussion of the diverse appli-
cations of data analytics, ranging from health and human welfare
to computational modeling and simulation.

1.1. Scale and scope of data analytics

Recent conservative studies estimate that enterprise server sys-
tems in the world have processed 9.57 x 10%! bytes of data in 2008
[83]. This number is expected to have doubled every two years
from that point. As an example, Walmart servers handle more than
one million customer transactions every hour, and this informa-
tion is inserted into databases that store more than 2.5 petabytes
of data—the equivalent of 167 times the number of books in the Li-
brary of Congress [94]. The Large Hadron Collider at CERN will pro-
duce roughly 15 petabytes of data annually—enough to fill more
than 1.7 million dual-layer DVDs per year [60]. Each day, Face-
book operates on nearly 500 terabytes of user log data and sev-
eral hundreds of terabytes of image data. Every minute, 100 h of
video are uploaded on to YouTube and upwards of 135,000 h are
watched [98]. Over 28,000 multi-media (MMS) messages are sent
every second [3]. Roughly 46 million mobile apps were down-
loaded in 2012, each app collecting more data. Twitter [87] serves
more than 550 million active users, who produce 9100 tweets ev-
ery second. eBay systems process more than 100 petabytes of data
every day [64]. In other domains, Boeing jet engines can produce
10 terabytes of operational information for every 30 min of opera-
tion. This corresponds to a few hundred terabytes of data for a sin-
gle Atlantic crossing, which, if multiplied by the 25,000 flights each
day, highlights the data footprint of sensor and machine-produced
information.

These examples provide a small glimpse into the rapidly ex-
panding ecosystem of diverse sources of massive datasets cur-
rently in existence. Data can be structured (e.g., financial, electronic
medical records, government statistics), semi-structured (e.g., text,
tweets, emails), unstructured (e.g., audio and video), and real-time
(e.g., network traces, generic monitoring logs). All of these applica-
tions share the potential for providing invaluable insights, if orga-
nized and analyzed appropriately.

Applications requiring effective analyses of large datasets are
widely recognized today. Such applications include health care
analytics (e.g., personalized genomics), business process opti-
mization, and social-network-based recommendations. However,
projections suggest that data growth will largely outpace foresee-
able improvements in the cost and density of storage technologies,

the available computational power for processing it, and the as-
sociated energy footprint. For example, between 2002 and 2009
data traffic grew 56-fold, compared to a corresponding 16-fold in-
crease in computing power (largely tracking Moore’s law). In com-
parison, between 1998 and 2005 data centers grew in size by 173%
per year [68]. Extrapolating these trends, it will take about 13 years
for a 1000-fold increase in computational power (or theoretically
1000x more energy). However, energy efficiency is not expected
to increase by a factor of over 25 over the same time period. This
generates a severe mismatch of almost a 40-fold increase in the
data analytics energy footprint [88,54].

Workload characteristics. A comprehensive study of big-data work-
loads can help understand their implications on hardware and
software design. Inspired by the seven dwarfs of numerical compu-
tation [11], Mehul Shah et al. [82] attempt to define a set of “data
dwarfs” — meaning key data processing kernels — that provide cur-
rent and future coverage of data-centric workloads. Drawing from
an extensive set of workloads, they establish a set of classifying
dimensions (response time, access pattern, working set, data type,
read vs write, processing complexity) and conclude that five work-
load models could satisfactorily cover data-centric workloads as of
2010: (i) distributed sort at petabytes scale, (ii) in-memory index
search, (iii) recommendation system, featuring high processing
load and regular communication patterns, (iv) sequential-access-
based data de-duplication and (v) video uploading and streaming
server at interactive response rates. While Online Analytic Process-
ing (OLAP) workloads can readily be expressed as a combination of
(i), (iii) and (iv), Online Transaction Processing (OLTP) workloads
can only be partially captured and might require another category
in the future; in-memory index and query support captures some
facets of these workloads, but the working sets can become too
large to fit in memory.

1.2. Design considerations

The scale, scope and nature (workload characteristics) of big-
data analytics applications, individually, provide interesting in-
sights into the design and architecture of future hardware and
software systems.

Impact on hardware. The data access patterns and more specifically
the frequency of how data is accessed (cold versus hot data) can
drive future memory hierarchy optimizations: data generally starts
being hot; however as time progresses, it becomes archival, cold,
most suitable for storage in NVMs. However, there are notable ex-
ceptions of periodicity or churn in access patterns (season-related
topics, celebrity headlines) and concurrently hot massive datasets
(comparative genomic calculations) that should be taken into con-
sideration. Furthermore, latent correlations among dimensions can
arise with hardware stack projections: a single video, due to mul-
tiple formats or language subtitles, results in many versions. These
could either be generated offline and stored (thus needing ample
storage) or generated on the fly (transcoding and translation on-
demand) putting pressure on the computing infrastructure of the
data-center, or alternatively on the user’s device (client-side com-
puting). Alternatively, one might have to rethink the relative prior-
itization of advances in processor designs over the performance of
the I/O subsystem—a common assumption in current architecture
design. At the extreme of such an alternative, an option would be
the consideration of a possible “inversion”: a hierarchy of compute
elements supporting the data store instead of today’s designs of
memory hierarchies to serve the compute element. Gradually col-
lapsing existing storage hierarchies would smoothen such a tran-
sition and further provide savings in energy consumption.
Understanding the workloads could also identify opportunities
for implementing special purpose processing elements directly

K. Kambatla et al. / J. Parallel Distrib. Comput. 74 (2014) 2561-2573 2563

in hardware. GPUs, field-programmable gate arrays (FPGAs),
specialized application-specific integrated circuits (ASICs), and
dedicated video encoders/decoders warrant consideration. Such
hardware accelerators drastically reduce the energy consumption,
compared to their general-purpose processing counterparts. These
could be integrated on-chip, leading to families of data-centric
asymmetric multiprocessors [66].

Impact on software. Software systems, storage, and computing need
to cater to a rather large problem space resulting from the data
scale, nature of workloads, and other application requirements
like consistency, availability, and partition tolerance.! Large data
scales demand highly-scalable distributed storage systems that
can accommodate and serve large volumes of data, with efficient
ingress and egress mechanisms; Apache Flume [34] is one such
system that facilitates data movement. Further, these storage
systems should support in-memory caching for efficient querying
and other OLTP workloads; even HDFS [44] recently added support
for caching.

Varied workload characteristics demand a variety of compute
engines—batch-processing for pure analytic workloads, stream-
processing for more online processing of data, query-processing
with transactional support.

Big-data analytics generally allows relaxed accuracy constraints
on its quantitative output and this can influence aspects of
algorithm design. Randomized algorithms project input data into
their sketching approximations of reduced size before applying
the original, expensive computing kernels and finally project
back at the expense of provable bounds for accuracy loss (data
size/accuracy tradeoff) [41]. Energy-aware computing kernels
can reduce the energy footprint of the analytics calculations
while retaining performance with minimal accuracy degradation
(energy/accuracy tradeoff) [15].

2. Hardware platforms for data analytics

We now consider current hardware platforms for data analytics,
and how these platforms are likely to evolve in the future.

2.1. Memory/storage

In traditional system designs, disks are used for persistent data
storage and DRAM memory for faster access/disk caching purposes.
However conventional disks have moving parts, largely constrain-
ing their lifetime and establishing bounds on their access times.
DRAM chips, on the other hand, require static refreshing circuits
consuming energy independent of whether there is data read/write
activity or not. Non-volatile memory (NVM) technologies address
these shortcomings and are expected to play major roles in future
designs.

There are several NVM-based proposals for data-centric appli-
cations [75]. Flash-based NVMs can be exposed as block devices
either through Serial Attached SCSI (SAS) and Serial Advanced
Technology Attachment (SATA) or PCI express interfaces or even
combined with dis-aggregated memory to provide cost-effective
solutions [61]. Other types of NVM such as phase-change mem-
ory (PCRAM) and memristors have been proposed to be integrated
as byte-addressable memory on the memory bus or stacked di-
rectly on the chip (3D-stacking) [73,59,74]. NVM could also be
used to implement additional caching levels [96,84], or to replace
the persistent store [27], thus facilitating the collapse of memory
hierarchies—a single memory type to be used at various levels.

1 The CAP theorem [17] states that any distributed system needs to compromise
at least one of consistency, availability and partition tolerance.

The common denominator of these proposals is the steady shift to
memory-like interfaces for persistent data storage for reasons of
performance and simplification through homogeneity.

Moving computations closer to data is also motivated by the
general structure of many of large-scale data management tasks,
as subsequently espoused by related frameworks. For example
in the frequently-used MapReduce paradigm, data is partitioned
across available nodes and tasks are scheduled so that they are
collocated with their data operands (to the extent possible).
Collocation of tasks and their related data also results in important
energy savings. The recent nanostore proposal [74] advocates the
collocation of computation with the persistent data store. This is
reminiscent of ideas from the past like Active Storage — enhanced
disk controllers handling special computation tasks - however of
limited application scope at the time of the original proposal [79].

From an evolutionary point of view, disks remain highly cost
effective. Consequently, they are unlikely to be totally replaced
any time soon. NVM-based technologies should be viewed as
attractive components of near-term future designs. In this respect
we should also take into account the change NVMs will trigger
in the overall software stack. As an example, current file systems
are optimized for latencies on the order of milliseconds. NVMs
offer latency reduction of approximately three orders of magnitude
(microseconds) over this time. There are proposals for using
flash-based solid-state-disks (SSDs) to support key-value store
abstractions, for workloads that favor it. Yet others propose to
organize SSDs as caches for conventional disks (hybrid design).
Ideally the persistence of NVMs should be exposed at the
instruction-set level (ISA), so that the operating systems can utilize
them efficiently (e.g., by redesigning parts that assume memory
volatility or provide, to the upper layers, an API for placing archival
data on energy-efficient NVM modules). On the other hand, the
capability of durable memory writes reduces isolation; this issue
could be addressed via durable memory transactions [93,24]. From
the perspective of algorithm design and related data structures,
non-volatility could push towards alternate, optimized designs and
implementations of index structures, [22], key-value stores [91],
database and file systems [27,12], all integral components of big-
data analytics.

2.2. Processing landscape for data analytics

Chip multiprocessors (CMPs) are expected to be the computa-
tional work-horses for big data analytics. It seems however that
there is no consensus on the specifics of the core ensemble hosted
on a chip. Basically there are two dimensions of differentiation,
namely the performance characteristics of each core and the de-
gree of homogeneity of their ensemble.

Assembling chips out of low-power “wimpy” cores, interfac-
ing small amounts of local flash storage, balances energy efficiency
requirements with typical computation and I/O profiles in data-
centric workloads [7]. The practicality of the approach (FAWN, Fast
Array of Wimpy Nodes) was demonstrated by co-designing and
building a datastore software system infrastructure aimed at high-
rate, key-value lookup queries, achieving 330 queries per joule.
This represents two orders of magnitude improvement over corre-
sponding disk-based clusters. This approach is rooted in request-
level parallelism of many of the target applications and their data
I/O intensive traces best served by NVMs. For example, a dual in-
line memory module with two DRAMSs although faster than their
flash-based counterparts can consume as much energy as a ter-
abyte of disk (energy/performance tradeoff). Flash-based memo-
ries, on the other hand, currently cost an order of magnitude lower.
However, they are about 100 times slower than DIMMs (perfor-
mance/cost tradeoff).

2564 K. Kambatla et al. / J. Parallel Distrib. Comput. 74 (2014) 2561-2573

Contrary to this, studies [49] have argued that brawny cores still
beat wimpy cores most of the time. The cost of additional software
optimizations needed when moving to low-performance cores is
emphasized, but more importantly, the role of Amdahl’s law with
the inherently serial part of a user’s task putting a hard limit to the
overall execution time. This is obviously exacerbated in the case of
wimpy nodes. There are also concerns on sharing the cost of non-
CPU infrastructure, the degradation of overall response time to
parallelized requests with an increasing number of threads, lower
utilization due to sub-optimal “fat” task allocation to “thin” cores
(bin packing), and performance loss due to the conservative local
heuristics employed for termination detection in some parallel
runs.

Targeting the consolidation trend, common in virtualization de-
signs, datacenter-on-chip (DoC) architectures have recently been
proposed [55]. The authors identify four DoC usage models based
on whether consolidated applications are homogeneous and coop-
erating or not. They identify key challenges related to scalability,
addressed mainly by cache hierarchies and lack of performance
isolation, since multiple virtual machines may contend for criti-
cal shared platform resources, mitigated by the application of QoS
techniques.

An interesting line of future research for hardware improve-
ments is presented by Tang et al. [86]. Garbage collection (GC) can
take approximately 10% of the total execution time of a Java Vir-
tual Machine (JVM) and can be implemented through different al-
gorithms. After profiling and abstracting their common hotspots,
these were implemented in hardware, achieving a 7% improve-
ment on the total JVM execution time. This idea is expected to ap-
ply to general data-centric loads: after identifying shared hotspots,
one could implement these in hardware, where possible, and thus
provide hardware-assisted acceleration of bottleneck virtualiza-
tion subtasks (in the same spirit as GC).

2.3. Network resources for data analytics

The link, network, and transport layers of standard communi-
cation stack were designed with interoperability of components of
different technologies and manufacturers as a primary design con-
sideration. In this design the link layer is not reliable, so conges-
tion or unreliable communication channels can cause packet drops.
To remedy this, the transport layer is then required to back off of
transmission, thus compromising the bandwidth. However, a typ-
ical data center network environment is radically different from
wide area networks [57]. To begin with, its channels can be consid-
ered lossless and this assumption should ideally reflect in the flow
mechanisms it implements. It is mostly homogeneous and under a
single administrative control, so backward compatibility to already
deployed protocols is not an issue. Load balancers and application
proxies separate internal traffic from external so there are no fair-
ness concerns with conventional TCP. Round trip times (RTTs) can
be less than 250 microseconds, in the absence of queuing. Applica-
tions concurrently need extremely high bandwidths and very low
latencies. Also, there is little statistical multiplexing, so a single
flow can dominate a particular path.

A particular performance bottleneck in data center networks is
caused by the extensive use of partition/aggregate design pattern
in many large scale web applications: requests from higher layers
of the application are broken into pieces and farmed out to
workers at lower layers; the responses of these workers are then
aggregated to produce a result. It follows that data transmitted
back will traverse a bottleneck link in a many-to-one fashion.
As the number of concurrent senders increases, the application-
level throughput at the receiver collapses to orders of magnitude
lower than the link capacity (incast pattern problem [23]). For
example, this can happen in MapReduce jobs during the “shuffle”

stage, when intermediate key-value pairs from many mappers
are transferred to appropriate reducers. A recent variant of TCP,
Data Center TCP (DCTCP) [6], addresses this artifact of the fork-
join structure of network traffic, by leveraging the ECN protocol
extension implemented in most modern commodity switches,
allowing end-to-end notification of network congestion without
dropping packets. Conversely, future performance problems could
drive the customization of switching equipment.

Note that the details of dealing with particular network short-
comings are fundamentally related to the protocol chosen. The
basic contenders are Ethernet and Infiniband. Infiniband is an
energy-proportional network and this property definitely gives
this technology an edge, since energy efficiency is a primary design
objective for future data centers. It is expected that both options
will be available in the imminent future and selecting between the
two will be application-based.

With respect to interconnect technologies, optical and electri-
cal-optical designs offer significant advantages. However, since
electrical-to-optical conversions represent energy efficiency bot-
tlenecks, the goal is to use an all-optical switching fabric. This
transition will be paved by first eliminating the network inter-
face controller (NIC), so the processor will talk directly to the net-
work; also processor-to-memory paths can be made optical. The
recent announcement of the first parallel optical transceiver pro-
totype to transfer one terabit per second by IBM clearly identifies
big data analytics as a target market and emphasizes the energy
efficiency of the device [52]. Intel also plans to introduce a cost-
effective optical interconnect cable in later versions of Thunderbolt
interface (already available over copper wire in Apple products). As
an example of a hybrid electrical/optical switch, Helios [32] is an
architecture promising significant reductions in the number of
switching elements, cabling, cost, and power consumption. It is
a two-level multi-rooted tree of pod switches and core switches,
where the core consists of both traditional electrical packet
switches and MEMS-based optical circuit switches. The reason for
including electrical packet switches is justified by the need to han-
dle burstiness in aggregated traffic demand between different pairs
of pods [39,5]: the number of (optical) circuits required to sup-
port this type of traffic would be prohibitive, and electrical packet
switching would be desirable.

2.4. Energy considerations in big-data analytics

Energy proportionality is a key objective in the design of cloud
systems and components [10]. Most data centers operate at less
than half the peak load, although their efficiency is maximized
at peak loads. Energy proportionality implies a linear relation
between power consumption and load. This can be achieved by
explicitly using energy proportional devices, or powering only the
absolutely necessary components in the course of a computation.
More specifically, work consolidation is usually applied to coarse-
grained components like individual server machines. Nevertheless,
the applicability of the approach heavily depends on the type of
computation: batch processing yields desirable power reductions
but online or parallel applications do not permit such an energy
saving scheme. Note that energy proportionality is not a nominal
feature of optical networking technologies (static laser power
consumption).

Energy optimizations however are correlated with system
scale; it is easier to save power in larger deployments, especially
in the energy pipeline prior to feeding the electronic devices
processing, moving, or storing the data. Cooling and power
delivery are, in most cases, amenable to energy savvy design and
implementation. André et al. [10] factor a datacenter’s efficiency
into three terms—a facility term, a server energy conversion term,
and the efficiency of the electronic components in performing the

K. Kambatla et al. / J. Parallel Distrib. Comput. 74 (2014) 2561-2573 2565

computation itself. Although the third term is most relevant to
our discussion, the first two factors account for an unsatisfactory
2.2 Watts of energy per “productive” Watt, on average. In a more
holistic approach to optimizing the third term, Baliga et al. [14]
consider optimizing energy consumption in global cloud systems
by first analyzing the energy consumption profiles for transport,
storage, and servers in a variety of scenarios drawn from storage as
a service, software as a service, and processing as a service facets
of cloud computing.

At a finer-grain, techniques such as dynamic voltage and fre-
quency scaling (DVFS), shutting down functional units selectively,
have been proposed to reduce CPU power consumption (which ac-
counts for roughly one third of the energy to the hardware sub-
system) [46]. However, static power dissipation and performance
requirements impose basic limits. Energy considerations have mo-
tivated proposals for asymmetric designs (specialized chip multi-
processors, CMPs); Hardavellas et al. [42] populate the dice with
a large, diverse array of application-specific heterogeneous cores
that can achieve peak performance and energy efficiency by dy-
namically disabling all but the most application specific cores (re-
sulting in dark silicon spots).

3. Virtualization technologies

Virtualization is a key concept underlying Cloud deployments
reconciling the natural divide between software and hardware.
Its basic component is the virtual machine monitor (VMM),
a software-abstraction layer enabling the partitioning of the
underlying hardware platform into one or more virtual machines
[80]. Most importantly (i) existing software should run unmodified
within each of the virtual machines, (ii) a “statistically” dominant
subset of the instructions must be executing directly on the CPU
and (iii) VMM has complete control over the system resources
(classical virtualization) [71].

Virtualization is a technique initially developed in the context
of mainframes in the late 1960s. With the proliferation of
cost-effective machines that followed, the need for resource
sharing that dictated virtualization, seized to exist, to the extent
that modern hardware does not inherently support this mode.
However, the advantages it provides, especially in terms of
reliability, security and administration—hardware becomes a pool
of resources to run arbitrary services on demand—make its use
for data-centric, multi-tenancy environments of big data analytics
highly desirable. Specifically, VMMs offer encapsulation of a virtual
machine’s state, thus facilitating the tasks of load balancing, virtual
machine replication, storage and transport, suspend/resume
scenarios, hardware and software/configuration failure handling.
Additionally, VMMs provide strong isolation between virtual
machines, so multiplexing of multiple virtual machines over
the same hardware becomes transparent, thus yielding dramatic
cost benefits. Security and reliability advantages follow naturally
since a malfunctioning program either due to bugs or security
compromises is isolated in its virtual machine, problems do not
propagate to machines executing under the same VMM.

All hardware subsystems (CPU, memory, 1/O, and network)
could, in principle, be virtualized. Currently, CPU virtualization is
relatively mature, followed by interesting improvements, innova-
tions and research proposals for virtualizing memory management
unit (MMU), I/O subsystems, and networks.

A CPU architecture is virtualizable if it supports the basic VMM
technique of direct execution: the virtual machine executes on
the real machine; however the VMM has the ultimate control
of the CPU. This is typically implemented by running the virtual
machine’s privileged and unprivileged code in CPU’s unprivileged
mode and reserving its privileged mode for the VMM; when the
virtual machine attempts to perform a privileged operation the

CPU traps into the VMM, which in turn emulates it by updating
the state of the virtual machine. However, the ubiquitous x86
architecture does not provide safe and transparent trap semantics
for all its privileged operations. Consequently, various techniques
have been proposed. In para-virtualization, the operating system
(0S) executing in the virtual machine is patched to replace non-
virtualizable operations with suitably engineered, virtualization-
friendly equivalents. However, altering the source code of an
operating system can be problematic due to licensing issues, and it
potentially introduces incompatibilities. In an alternate approach,
a binary translator runs the non-virtualizable, privileged parts and
dynamically patches the “offending” instructions, also retaining in
a trace cache the translated blocks for optimization purposes.

For memory management, VMM maintains a shadow of each
virtual machine’s memory-management data structure, its shadow
page table. VMM updates these structures reflecting operating
system’s changes and establishes the mapping to actual pages
in the hardware memory. Challenges here include enabling the
VMM to leverage the operating system'’s internal state for efficient
paging in/out and sharing identical physical pages across multiple
virtual machines monitored by a single VMM. This sharing
will be particularly important for homogeneous pools (in terms
of software configuration) of virtual machines executing, over
multicore multiprocessors on-a-chip, the workloads of big data
analytics in the future.

I/O virtualization, at least for x86-based architectures, would
demand the direct inclusion of code that talks to each of the
devices currently in existence into the VMM layer. One solution
to this is the hosted architecture: VMM runs as an application
atop a host OS and essentially forwards any I/O requests from
the guest OS. The hosted architecture might not scale in the
server environments with the high-performance network and disk
subsystems. Consequently, a VMM executing over bare-metal,
reusing certified open source device drivers would be the solution
of choice.

The obvious advancement in addressing is to turn to hardware-
assisted virtualization [33]. This is already happening—for exam-
ple, Intel VT-x and AMD-V technologies provide new execution
modes for the processor that lets a VMM safely and transparently
use direct execution for running virtual machines; the number of
related traps and the time to serve them are also reduced. For
memory virtualization, extended page tables and virtual-processor
identifier tagged (VPID) TLBs are proposed. I/O proposals range be-
tween hardwired tables for specifying access control between de-
vices and memory pages to DMA remapping and interrupt virtual-
izations to supporting virtual functions, each giving an illusion of
an entirely separate physical device (a capability already existing in
Infiniband); the evolution in this front will also be largely shaped
by the rate of transition to channel-like I/O devices like USB and
SCSI, simplifying developments.

Virtualization is a broad concept, not limited to system
virtualization, the topic of the previous discussion. For big data
analytics, high-level language virtualization is a related concept.
Recent times have witnessed the broad adoption of virtual
machines (like JVM or CLR) as compilation targets for many
programming languages. The obvious advantage is the immediate
sharing of optimizations in the virtual machine and libraries across
an extensive set of languages. Interestingly, these optimizations
include the introduction of new (software) ISA opcodes [8],
mainly to serve the need of high-productivity languages ported to
these runtimes, e.g., dynamically typed scripting languages or the
use of just-in-time (JIT) techniques, respectively, reminiscent of
hardware-assisted virtualization and binary translation mentioned
above. Considering the fact that programmer’s productivity in
developing future big-data-analytics software is an important cost
factor, advances in this direction are important.

2566 K. Kambatla et al. / J. Parallel Distrib. Comput. 74 (2014) 2561-2573

4. Software stack for analytics applications

In addition to hardware enhancements, big-data analytics
on yotta-scale datasets require a complete re-evaluation of the
software stack. Improved software solutions should (i) scale to
accommodate large datasets, (ii) efficiently leverage the hardware
platforms, and (iii) bridge the increasing gap between the growth
of data and computing power [88]. While storage systems must
evolve to host these large-scale datasets, data-processing systems
need to efficiently process data on these datastores. The use of
datacenters with very large clusters of commodity hardware for
big-data analytics and the advent of cloud computing have already
revolutionized software. Distributed software running in these
datacenters must tolerate hardware failures, scale with the amount
of data, and be able to elastically leverage additional resources as
and when they are provided.

In this section, we discuss the recent advances in both storage
and computing fronts, and outline future research directions
adopted by several research groups.

4.1. Storage systems

Big-data storage is essential to any form of analytics. The
amount of data and the advances in hardware require storage
platforms to be distributed, scalable, elastic and fault-tolerant.
In addition to these highly-desirable features, applications have
their respective demands of the underlying storage. Client-facing
applications demand high-availability, even in the presence of
node failures or network partitions. Depending on the required
amounts of fault-tolerance and availability, current storage
systems appropriately replicate data across multiple machines
within and across datacenters. Replication involves the overhead of
preserving consistency across the replicas; this overhead increases
with the number of replicas. Even though archival systems are
efficient for storing large amounts of data, random access or the
need to preserve meta-data (tags) requires more sophisticated
storage models. Big-data is often unstructured and does not fit
the strict relational model. This has motivated NoSQL distributed
datastores—multi-column key-value stores.

4.1.1. Effects of CAP theorem

An ideal storage platform supports efficient data accesses in
the presence of failures (node failures and network partitions),
high-availability, and offers a consistent view of data to its clients.
However, Brewer, through his famous CAP theorem [17], showed
that such an ideal system cannot exist, as it is impossible to
guarantee consistency along with high-availability in the presence
of partitions. Consequently, distributed storage systems are forced
to relax at least one of these constraints.

Applications often drive the design of the underlying storage
systems. For instance, if an application does not require strong
consistency guarantees, the underlying storage system can provide
high-availability in the presence of failures. E.g. Amazon’s Dynamo
[30] is a classic example here—the shopping cart application should
be highly-available but can tolerate weaker consistency; Dynamo
is a highly-available key-value store that backs this application and
offers eventual consistency guarantees.

Future big-data applications might lead to similar innovations
in storage. On the other hand, for applications that require all three
features, their constituent kernels might be more accommodating;
this can result in using multiple storage platforms to serve a single
application. Here, we examine a few alternatives and discuss future
research directions.

Availability. Most cloud applications that do not directly interface
with the client, typically, do not need high-availability; all back-
end processes fall under this category of applications. By sacrificing

high-availability, the storage platforms that serve these kinds of
applications promise strong consistency in the presence of node
failures and network partitions. The Google File System (GFS) [36]
is a highly-scalable and consistent distributed file system. Google’s
Bigtable [21] and Megastore [13] are key-value stores that replicate
data within and across data-centers respectively. Google’s storage
systems use Chubby [18] locking service to synchronize accesses to
shared resources. The open-source equivalents of these systems,
HDFS [44]*> and HBase [43], use Zookeeper [51] for consistency;
Zookeeper uses the Zab protocol [78] to propagate the incremental
state updates from primary node to backup nodes. These
storage systems tolerate node/disk failures through duplication
mechanisms—replication, coding (e.g. erasure coding), etc.

Consistency. Client-facing applications typically relax consistency
guarantees to realize high-availability and performance require-
ments. While the strong consistency model guarantees that all
clients see the same data, weaker consistency models relax this
requirement. The weakest model of no consistency, where each
replica has a different version of the data without any recon-
ciliation, is less useful. Eventual consistency promises that all
replicas would eventually reach a consistent state; note that recon-
ciliation of the different states across replicas can take arbitrarily
long depending on the work load, node-failures, and network par-
titions. Eventual consistency is sufficient for applications deal-
ing with non-sensitive information. For instance Amazon uses
Dynamo [30] for its shopping cart, and Facebook stores user infor-
mation (posts, messages and pictures) in Cassandra [58].

Not all applications requiring high-availability can afford even-
tual consistency; popular examples include storage of electronic
medical records and bank accounts. Inconsistencies in such sensi-
tive information can lead to severe problems. Recent efforts have
proposed alternate consistency models. PNUTS [28] proposes per-
record consistency, where all replicas apply updates to a row in
the same order. Though this is a stronger guarantee than eventual
consistency, it does not fully support serializability. COPS [62], scal-
able causal consistency model, enforces causal dependencies be-
tween keys across the entire cluster; all operations on the datastore
are ordered and hence inconsistencies due to out-of-order execu-
tion are avoided. Microsoft’s Windows Azure Storage (WAS) [20]
promises a highly-available storage service with strong consis-
tency within a storage stamp; a storage stamp can host only a lim-
ited amount of data (100 TB). WAS achieves all three characteristics
within a storage stamp by decoupling the nodes that promise high
availability in the presence of partitions from those that guarantee
strong consistency. This decoupling is achieved by adopting a two-
layered model where the lower layer addresses network partition-
ing and the upper layer ensures consistency. Decoupling of nodes
and the use of two-layers, however, entail performance overheads
associated with a higher number of replicas and inter-layer com-
munication. Birman et al. [16] propose a consistency model for
soft-state replication that does not require durability. They achieve
order-based consistency through in-memory logging of updates,
resulting in strongly consistent model albeit with weak durability.
They argue that the unavoidable delays the CAP theorem prescribes
stem from the durability aspect of C in CAP; hence, by relaxing the
durability guarantees, they achieve strong consistency.

2 Recently, HDFS added redundancy in the master through a pair of Ac-
tive-Standby masters. If the Active master fails, the Standby takes over the role of
master. However, there is a failover period during which the system is unusable.

K. Kambatla et al. / J. Parallel Distrib. Comput. 74 (2014) 2561-2573 2567

4.1.2. Resource utilization

The performance and resource-usage of above-mentioned
distributed storage platforms are as important as the features
of high-availability, consistency and tolerance to partitions. The
increasing gap between data size and compute power makes a case
for improved resource-usage. While users tend to ignore slow- or
ill-performing applications, increased resource-usage can lead to
prohibitive energy cost. For instance, high-availability translates to
more replicas, entailing storage overhead for extra replicas, per-
update network overhead, and the energy overhead associated
with storage and transfer of data.

Recent research efforts have attempted to improve the perfor-
mance and resource-usage of these storage platforms. Techniques
such as erasure-coding help reduce the size of the data trans-
ferred to replicas and stored. Even though erasure-coding adds
a coding/decoding cost, the space reduction reduces network la-
tency and disk space. In fact, Google’s next generation file sys-
tem Colossus uses Reed-Solomon encoding to reduce its storage
footprint. The advent of SSDs also greatly reduces the disk access
latencies, but comes with a different failure model—the wear-
leveling in flash storage devices requires checking for storage
errors through checksums. Erasure-coding techniques would auto-
matically correct disk errors as well. Network usage within a dat-
acenter can be improved using techniques like TCP Nice [90] and
Dr. Multicast [92]. TCP Nice improves network usage by using spare
bandwidth for asynchronous, background communication to avoid
interfering regular demand traffic. Dr. Multicast enables IP-
multicast in datacenters to reduce the sender/receiver latencies.
By mapping traditional IP-multicast operations to either use UDP-
multisend or send to traditional IP-multicast address, Dr. Multi-
cast makes multicast in datacenters manageable by limiting the
number of IP-multicast groups. With user-clouds spanning mul-
tiple datacenters, there is a need for similar or better techniques
for inter-datacenter communication.

4.2. Data processing considerations

Big-data analytics applications differ in the kind of input, data
access patterns and the kind of parallelism they exhibit. Appli-
cations with online (streaming) input process each input/request
individually incurring significant latency costs, while those with
large datasets as inputs can batch I/O and avoid these latencies.
Client-facing applications (e.g., querying) randomly access the un-
derlying storage, while back-end processes that run on entire
datasets have a more sequential access pattern. While most web-
applications exhibit data-parallelism, scientific applications often
exhibit task parallelism. Even among data-parallel applications,
some use iterative algorithms with each iteration operating on the
same data. Different applications require different data-processing
techniques and optimizations. However, all the models used for
big-data analytics in datacenters need to be fault-tolerant, scale
with data, and elastically utilize additional resources.

4.2.1. Data-parallel models

Typical analytics applications are data-parallel, involving com-
putations on independent data-items. This data-parallelism can be
extracted using the simple SPMD technique; the single operation
is applied to each individual data-item potentially in parallel. The
data can be distributed across different compute nodes to be op-
erated on concurrently. Here, we consider three different models,
depending on the kind of input.

Batch processing. Batch-processing applies to processing large
datasets, where (I/O) operations on multiple data-items can be
batched for efficiency. In the context of big-data analytics, Google’s
MapReduce [29] is the first major data-processing paradigm. Dean

and Ghemawat proposed MapReduce [29] to facilitate develop-
ment of highly-scalable, fault-tolerant, large-scale distributed ap-
plications. The MapReduce runtime system divests programmers
of low-level details of scheduling, load balancing, and fault toler-
ance. The map phase of a MapReduce job takes as input a list of key-
value pairs, (key, value):list, and applies a programmer-specified
(map) function, independently, on each pair in the list. The out-
put of the map phase is a list of keys and their associated value
lists — (key, value:list):list, referred to as intermediate data. The re-
duce phase of the MapReduce job takes this intermediate data as
input and applies another programmer-specified (reduce) function
on each pair of key and value list. The MapReduce runtime sup-
ports fault-tolerance through a deterministic replay mechanism,
where a failed map/reduce task is simply re-executed. The MapRe-
duce programming model and its open-source version Hadoop [40]
have been widely adopted in the big-data analytics community for
their simplicity and ease-of-programming. Hadoop is expected to
touch half of the world’s data by 2015 [50].

A number of research efforts have targeted improving both
the systems and applications aspects of MapReduce. The MapRe-
duce programming model has been validated on diverse applica-
tion domains like data-analytics and data-mining. Pig [67] offers
a high-level SQL like language for easier analysis of large-scale
data, while HadoopDB [2] builds a distributed database by using
Hadoop for (storage and analysis) distribution over single-node
databases. While MapReduce restricts the data-flow to map and
reduce phases in favor of simplicity, Dryad [53] supports a more
general data-flow model expressed as directed acyclic graphs for
more advanced developers. To extend the applicability of MapRe-
duce, MapReduce Online [25] supports online aggregation and con-
tinuous queries, while Kambatla et al. [56] extend MapReduce to
support asynchronous algorithms efficiently through relaxed syn-
chronization semantics. Other performance optimizations target
performance in different environments [47,76].

Bulk synchronous parallel processing. Even though MapReduce ap-
plies to broad classes of batch-processing applications, it may
not be the optimal paradigm in every case. For instance, itera-
tive algorithms (e.g., graph algorithms) operate on the same in-
put (e.g., graph) in each iteration. Having to reload data in every
iteration from distributed storage is expensive and unnecessary.
In these cases, bulk-synchronous parallel processing (BSP) [89] of
the data works well. In the BSP model, computation proceeds in
supersteps (iterations); in each iteration, concurrent computations
are executed in parallel on participating nodes (cluster-nodes), fol-
lowed by a global synchronization step where tasks communicate
if necessary. Each computation operates on the data local to that
node, the input can be cached at various levels and does not need
reloading.

Adopting this BSP model, Google proposed Pregel [63] for it-
erative graph algorithms. Pregel holds the entire graph in mem-
ory distributed across nodes, thus avoiding disk-access latencies.
The primary overhead is the communication at the end of each
superstep, which is essential to application semantics. The open
source implementations of Pregel—Java-based implementations
GoldenOrb [38], Apache Giraph [37], and the Erlang-based imple-
mentation Phoebus [69]—are being increasingly used in analyzing
social networks (LinkedIn, Facebook, etc.) and other scientific ap-
plications.

Pregel and related models store entire graphs in memory for
improved performance. This is likely not feasible in the future,
given the anticipated growth in data. Consequently, techniques for
efficiently caching and processing graphs need to be developed.
One approach loads smaller partitions into memory and performs
local communications in memory itself. This requires effective
partitioning techniques; most existing partitioning techniques

2568 K. Kambatla et al. / J. Parallel Distrib. Comput. 74 (2014) 2561-2573

cannot be readily used for large-scale data in a distributed setting
on graphs with specific characteristics (for e.g., power law).

Event processing. Event-driven applications require continuous and
timely processing of events; the tight latency constraints disal-
low batching events together for efficiency. Event-driven appli-
cations typically involve processing, monitoring, and notification
of events. These applications, involving complex event process-
ing, read as input a stream of events and either (i) independently
process individual data items (stream-processing) or (ii) detect
complex event patterns (e.g., credit-card fraud detection). While
operations on data are independent in stream-processing applica-
tions, detecting complex events requires maintaining a state cor-
responding to past events; i.e., stream-processing is context-free
whereas complex event detection is context-sensitive. Prior re-
search (Aurora [1], Borealis [4], Publish/Subscribe systems [31])
addresses both stream-processing and complex event detection in
depth, albeit for different input rates and hardware.

Stream—processing systems operate on continuous data streams:

e.g., click streams on web pages, user request/query streams,
monitoring events, notifications, etc. The importance of stream-
processing systems increases as more modern applications impose
tighter time constraints on a particular event’s propagation along
the pipeline. For instance, Google, Facebook and other advertising
companies analyze user-data (e.g., wall post or status change) to
display specific ads corresponding to the user’s search query. As
they aim reduce the time it takes for ads related to the particular
event to be displayed, more data would go through the stream-
processing pipelines.

The progress of stream-processing systems, in the cloud
(datacenters), has been relatively slow. Efforts [26] have gone
into supporting streaming-inputs in batch-oriented systems like
MapReduce, but as expected, suffer from high latencies. Though
several concepts used in previous stream-processing systems like
Borealis [4] and IBM’s System S [9] still hold, they lack support for
elasticity and hence do not readily lend themselves to the utility
computing model of the cloud. Furthermore, the cost model of the
cloud is very different from the fixed-size distributed clusters these
systems were proposed for. Recently, systems like Apache S4 [81]
and Twitter’s Storm [85] have been designed particularly for use
in datacenters to operate on big-data. However, these systems
have limited support for elasticity and dynamic load-balancing. In
addition to this, the fault-tolerance mechanisms used by all the
above-mentioned systems require dedicated backup nodes leading
to significant resource costs in the cloud.

In order to elastically use additional resources, computing
nodes need to dynamically off-load some of their work to the newly
added nodes. Such load-balancing requires the migration of PEs
(processing elements—compute elements of a stream-processing
engine) across compute nodes. PE migration can also be used
to tolerate node-failures, by migrating the PEs running on the
failed node to other nodes. Indeed, existing stream-processing
systems [4] tolerate failures by migrating PEs from the failed node
to a dedicated stand-by node. The migration is typically achieved
through active or passive stand-by. The active stand-by approach
duplicates work on the dedicated backup node, thus using twice
the amount of resources. The passive stand-by approach employs
checkpointing the internal state and downstream messages to re-
construct state in case of failures. Recovery involves reading the
checkpoint and replaying the messages upstream, thus leading to
relatively long recovery times.

Detecting complex events, on the other hand, is a different
problem; it involves pattern matching on event content. Tradi-
tionally, content-based publish/subscribe systems were used for
this. Publish/subscribe systems for emerging datacenter architec-
tures continue to be actively investigated. The main challenge
here is to integrate the pub/sub system with other storage and

computation platforms, particularly their fault-tolerance mecha-
nisms. Apache HedWig [45], the state-of-the-art in this space, of-
fers guaranteed-delivery, high-availability, incremental scalability
and supports topic-based matching on a limited number of topics
(108) and subscriptions (10 per topic). Clearly, this is not enough
to serve future anticipated workloads.

4.2.2. Data-dependent parallelism

The application scope of data-centric (data-parallel) pro-
gramming models can be significantly improved by allowing
communication/ data-sharing across concurrent computations.
Data-sharing through shared address space (e.g., a shared disk-
resident key-value store) enables speculation and task-parallelism.
Speculative-parallelism (or amorphous data-parallelism) [70] is
where parallel execution of tasks can lead to potentially conflicting
concurrent computations. Though non-conflicting computations
can be executed in parallel, these conflicts can only be detected at
runtime. Exploiting this form of parallelism requires communica-
tion across computations to detect and resolve potential conflicts.

Traditionally, message-passing/shared-memory models have
been used to solve these problems as they allow explicit commu-
nication. Running elastic, scalable and fault-tolerant equivalent of
MPI in the cloud would suffice; however, it is not trivial to build
such equivalents and active work is going on in the area. Apache
Yarn and other resource-scheduling efforts (Mesos [48]) might
help in defining resource abstractions which can be used to realize
this objective. Meanwhile, researchers have considered communi-
cating over distributed key-value stores as shared address-spaces.
Piccolo [72] allows distributed computations to store mutable state
through the abstraction of a distributed in-memory key-value ta-
ble. TransMR [77] proposes transactional execution of computa-
tions over key-value stores; map and reduce tasks are transaction-
ally executed over Bigtable. The conflicts are detected when con-
flicting transactions are validated and re-executed. While Piccolo
suffers from memory overheads, TransMR involves not-so-scalable
distributed transactions.

4.3. Integration of different models

As application requirements and underlying platforms change,
modern applications must often use multiple programming
models in their workflow. Stream-processing (counting) of click
streams followed by batch-processing (analytics: e.g., correlation
of clicks) is one such example. There is a need for tighter
integration of the programming models not only with each other,
but also with the underlying storage. For instance, an efficient
pub/sub system can be built by co-locating a stream-processing
system over a distributed key-value store; the subscriptions can
be stored in a table (partitioned on topic) distributed across the
cluster-nodes, and the published events can be sent to those nodes
which have the related subscriptions where topic- and content-
based matching can be performed.

Apache YARN (Yet Another Resource Negotiator) [97] is one
step closer to achieving the first goal; it enables running multiple
programming models on the same cluster by scheduling resources
across models. Much work needs to be done to support an efficient
and usable composite programming model in support of emerging
applications.

5. Application scope of emerging big data analytics

The push towards collecting and analyzing large amounts of
data in diverse application domains is motivated by a variety of
factors:

K. Kambatla et al. / J. Parallel Distrib. Comput. 74 (2014) 2561-2573 2569

e In complex systems that do not lend themselves to intuitive
models, data-driven modeling and hypothesis generation is
key to understanding system behavior and interactions. Such
applications arise in natural environments (the sciences), social
interactions, and engineered systems, among others.

e In commercial and business enterprises, the role of big-data
analytics is well recognized in enhancing efficiencies and
guiding decision processes.

e In health and human welfare, big-data analytics offer tremen-
dous potential for prognostic interventions, novel therapies,
and in shaping lifestyle and behavior. Big-data analytics is also
key to cost efficiencies and sustainability of the healthcare in-
frastructure.

e Ininteractive or client-oriented environments, big-data analyt-
ics guide the systems interface with the clients. Examples of
businesses shaping their operational environment to optimize
client experience (and business outcomes) are well understood.
Ubiquitous environments such as smart homes are now emerg-
ing, simultaneously optimizing for living spaces as well as en-
ergy footprint and cost.

e In complex systems that lend themselves to shaping and
control, analytics enable controlled evolution and design.

The aforementioned application areas are, by no means,
exhaustive. Rather, they provide a sense of the vast scope and
impact of big-data analytics. In the rest of this section, we highlight
some of the important application domains in greater detail,
highlighting the tremendous socio-economic impact. In particular,
we discuss how the applications are likely to evolve in the future
and how they will fundamentally shape our environment.

5.1. Health and human welfare

One of the most compelling applications of big-data analytics
is in the domain of health and human welfare. In addition to the
self-evident benefits in terms of enhancing well-being, this area
also presents some of the largest and fastest growing datasets.
While it is difficult to estimate current size and growth rates,
by some estimates, the global size of clinical data stands at
roughly 150 Exabytes in 2011, increasing at a rate between 1.2
and 2.4 Exabytes per year.? Clinical data primarily corresponds to
electronic medical records (EMRs) and imaging data. This data is
rapidly increasing both in terms of size of records and coverage
in population. EMRs will contain personal genomic data, data
from other high-throughput screens, be linked to personalized
drug-response profiles.

In addition to clinical data, healthcare data also includes phar-
maceutical data (drug molecules and structures, drug targets, other
biomolecular data, high-throughput screening data (microarrays,
mass spec, sequencers), and clinical trials), data on personal prac-
tices and preferences (including dietary habits, exercise patterns,
environmental factors), and financial/activity records. Effectively
integrating all of this data holds the key to significant improve-
ments in interventions, delivery, and well-being.

The cost-benefits of big-data analytics in the healthcare domain
are also well-acknowledged. A recent study by the McKinsey
Global Institute* estimates that healthcare analytics could create
more than $300 billion in value every year. Similar cost efficiencies
could also be realized in Europe (estimated at $149 billion).

Data in healthcare poses some of the most challenging problems
to large-scale integration and analysis. Beyond its sheer volume

3 http://blogs.sas.com/content/hls/2011/10/21/how-big-is-big-data-in-
healthcare/.

4 http://www.mckinsey.com/Insights/MGI/Research/Technology_and_
Innovation/Big_data_The_next_frontier_for_innovation.

and heterogeneity, virtually all data is collected at point-of-care,
and is stored in widely distributed repositories with varying access
capacities. Data consumers (care providers, analytics with expert-
in-the-loop) are often not collocated with either point-of-care
or data repositories. For example, imaging data (MRI, fMRI) is
often accessed overseas by trained radiologists to render expert
opinion and diagnoses. Even if data interchange formats are fully
standardized, the multimodal nature of data poses challenges
for integration. While data volumes in healthcare are currently
dominated by imaging data, it is conceivable that in the foreseeable
future, personalized genomics and high-throughput screens would
influence data analysis. Several analysis tasks are also time-critical.
For example, patient diagnoses, progression of outbreaks, etc., all
have tight performance requirements.

Issues of data quality, privacy and security, and effectiveness
of analysis are critical in healthcare informatics. Clinical data han-
dling must be constrained not just be established laws and prac-
tices, but also by subjects’ expectations of privacy. Pharmaceutical
data represents valuable intellectual property, and its use (even in
a collaborative environment) is highly guarded.

Given its significance and technical complexity, there have
been significant investments in healthcare IT. With literally
hundreds of millions of computing devices from implanted
devices, patient sensors, in-home care devices, mobile devices, and
coarser compute elements higher in the abstraction, healthcare IT
represents one of the largest integrated distributed environments,
and its impact is likely to increase sharply in the imminent future.

5.2. Nature and natural processes

One of the pressing questions of our times relates to the changes
to our habitat and its long-term impact on our environment. A
wealth of data is being collected relating to our environmental
footprint and its observable impact. On one hand, we can now see,
at high spatio-temporal resolution, events such as deforestation
and urban encroachment. At the same time, we can also monitor
retreating polar ice caps, glaciers, and extreme weather events.
This data is typically collected from satellite imagery, weather
radar, and terrestrial monitoring and sensing devices. Recent
efforts have also targeted collection of data on the carbon footprint
of key sources. These datasets typically reside in larger data
centers, offering relatively high-throughput access.

In contrast to data in healthcare IT, analytics on these datasets
pose a different set of challenges. Considerations of security and
privacy are not as critical, although several datasets are consid-
ered proprietary or sensitive. The main challenges here derive from
the spatio-temporal scales, the magnitude of data, and the diffi-
culties associated with validation of long-term predictions based
on models. The scale of data makes it difficult to migrate; conse-
quently, novel distributed analyses are being deployed for such ap-
plications. Going forward, one may expect a deeper integration of
various datasets (land use, deforestation, carbon emissions, terres-
trial and satellite-based imaging, and computational modeling), to
comprehensively study global climate change and to assign specific
causality.

Other related problems include natural resource management,
including land- and water-resources management, sustainable
development, and environmental impact assessment. Data for
these analyses come from diverse sources—including sensors
monitoring environmental state, human activity (manufacturing,
economic output), and extraneous factors. While such analyses is
in relative infancy, it is likely that such models will be critical in
sustainability.

http://blogs.sas.com/content/hls/2011/10/21/how-big-is-big-data-in-healthcare/
http://blogs.sas.com/content/hls/2011/10/21/how-big-is-big-data-in-healthcare/
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation

2570 K. Kambatla et al. / J. Parallel Distrib. Comput. 74 (2014) 2561-2573

5.3. Government and the public sector

Government and the public sector are primary motivators for
big-data analytics. The Cloud First initiative, with the goal of
closing approximately 1,000 government data centers by 2015
and move 79 services to the cloud, as well as the more recent
(May 23, 2012) directive entitled “Building a 21st Century Digital
Government” issued by the President of USA clearly demonstrate
decisive steps towards addressing critical data handling and
analytics needs.> A number of US Federal agencies, including
the Department of Treasury, have moved their public websites
to Amazon'’s Elastic Cloud (EC2). Commercial services have been
created, such as AWS GovCloud, which specifically target moving
intensive workloads to the cloud.® USA.gov, US government’s
official Web portal - the go-to destination for anything related
to the government, run by the General Services Administration
(GSA) - is another notable example of this trend.” These projects
have drastically reduced operational costs, upgrade time, and
downtime.®

Significant new opportunities are on the horizon. In a world
where mobile broadband subscriptions are expected to grow from
nearly 1 billion in 2011 to over 5 billion globally in 2016, and
with the projection that by 2015, more Americans will access the
Internet via mobile devices than desktop machines, new models
of governance, such as mobile electronic voting will become
viable. The convenience of such models of governance motivates
stronger involvement of the public in government decisions
and processes. Fraud detection is another significant analytics
application. According to the Federal Bureau of Investigation (FBI),
just health-care fraud costs U.S. taxpayers over $60B each year.
Automated means of identifying such fraudulent transactions
and tax offenses hold the potential for significant financial
efficiencies. Accurate projections on the work-force dynamics,
based on the inferred, detailed profiles of the professional activity
of the population, can drive appropriate policy decisions and
measures. The use and management of public resources such
as transportation networks and fixed infrastructure could be
optimized by exploiting continually sensed data relating to usage
patterns. This is particularly relevant in times of emergency
planning and preparedness.

5.4. Commerce, business, and economic systems

Perhaps, the most visible application of big-data analytics has
been in business enterprises. It is estimated that a retailer fully
utilizing the power of analytics can increase its operating margin
by 60%. Utilizing new opportunities (for e.g., location-aware and
location-based services) leads to significant potential for new rev-
enues. A comprehensive analytics framework would require in-
tegration of supply chain management, customer management,
after-sales support, advertising, etc. Business enterprises collect
vast amounts of multi-modal data, including customer transac-
tions, inventory management, store-based video feeds, advertis-
ing and customer relations, customer preferences and sentiments,
sales management infrastructure, and financial data, among oth-
ers. The aggregate of all data for large retailers is easily estimated
to be in the exabytes, currently. With comprehensive deployment
of RFIDs to track inventory, links to suppliers databases, integra-
tion with customer preferences and profiles (through store loyalty

5 http://www.whitehouse.gov/sites/default/files/omb/egov/digital-
government/digital-government.html.
http://aws.amazon.com/govcloud-us/.
7 http://www.wired.com/insights/2012/08/5-coolest-gov-cloud-projects/.
8 http://www.frost.com/prod/servlet/cio/232651119.

programs), and fully integrated financial systems, the potential for
improved efficiencies is tremendous and is only just starting to be
realized.

Datasets in such applications are relatively well structured and
integrated. Since these analyses typically operate in closed systems
(i.e., much of the data, infrastructure, and analyses is performed
within the same security domain), issues of privacy and security in
analyses are easier to handle. Data quality is not a major concern
and resources are relatively easily available in state-of-the-art data
centers. The major bottleneck in this domain is the development of
novel analytics methods that scale to vast amounts of multimodal
data.

5.5. Social networking and the internet

“When a 5.9 Richter earthquake hit near Richmond, VA, on Au-
gust 23rd, 2011, residents in New York City read about the quake
on Twitter feeds 30 s before they experienced the quake them-
selves”. This extract from the recent US presidential directive for
digital government vividly describes the speed and impact of infor-
mation flow in social networks. Drawing parallels to the evolution
of search engines - one of the most successful big-data analytics
applications to date — one may expect a significant increase in the
personalization and real-time delivery of content to social network
users. This calls for effective, event-based algorithmic constructs,
featuring asynchronous approximations to information diffusion
in smaller (sparsified), versions of dynamically evolving link struc-
tures. Analyzing interactions as functions of time and other at-
tributes helps understand the emergence of patterns of collective
behaviors, enabling shaping of information flows, resource man-
agement, and prediction. Summarization of link representations
for marking substructures or nodes of interest present targets for
online marketing strategies.

The Internet itself serves as the infrastructure of a semantic
web. Since most of its information is currently unstructured, there
is a significant motivation for organizing it into structured forms
to infer related concepts and relations, in order to automate
reasoning. Text search and indexing technologies are relatively
mature; however novel graph mining techniques are in relative
infancy. Robust, offline, automatic image and video indexing and
searching capabilities provide new dimensions in the search for
entity correlations, putting additional strain on big-data analytics
infrastructure.

5.6. Computational and experimental processes

As computing platforms push the envelope to the exascale, sim-
ulations can be performed at scales and resolutions unimagin-
able in even the recent past. From quantum-mechanical model-
ing to astro-physical simulations, these model span spatial scales
from atoms to galaxies, and timescales from femtoseconds to eons.
Other experiments, such as the Large Hadron Collider, generate
large amounts of data from detectors sensing emissions from high
speed collision of sub-atomic particles. In each case, the exascale
datasets generated must be analyzed for generating and validating
scientific insights.

On emerging platforms, there is a need to inline analysis with
simulation/data acquisition. This is motivated by the fact that
often, data storage rates cannot match data generation. In yet other
applications/platforms, analyses must scale to large computing
platforms. Data is often available at one location, emphasizing
parallel analytics, as opposed to distributed techniques. Based
on the impending advances in processing, networking, and I/O
technologies, it is likely that datasets will change qualitatively and
quantitatively in the near future.

http://www.whitehouse.gov/sites/default/files/omb/egov/digital-government/digital-government.html
http://www.whitehouse.gov/sites/default/files/omb/egov/digital-government/digital-government.html
http://aws.amazon.com/govcloud-us/
http://www.wired.com/insights/2012/08/5-coolest-gov-cloud-projects/
http://www.frost.com/prod/servlet/cio/232651119

K. Kambatla et al. / J. Parallel Distrib. Comput. 74 (2014) 2561-2573 2571

6. Conclusion

The volume of data operated upon by modern applications is
growing at a tremendous rate, posing intriguing challenges for
parallel and distributed computing platforms. These challenges
range from building storage systems that can accommodate
these large datasets to collecting data from vastly geographically
distributed sources into storage systems to running a diverse set
of computations on data. Resource and semantic constraints, like
Brewer’s CAP theorem, require handling these problems on a per-
application basis, exploiting application-specific characteristics
and heuristics. Recent efforts towards addressing these challenges
have resulted in scalable distributed storage systems (file systems,
key-value stores, etc.) and execution engines that can handle a
variety of computing paradigms. In the future, as the data sizes
continue to grow and the domains of these applications diverge,
these systems will need to adapt to leverage application-specific
optimizations. To tackle the highly distributed nature of data
sources, future systems might offload some of the computation to
the sources itself to avoid the expensive data movement costs.

Recent hardware advances have played a major role in realizing
the distributed software platforms needed for big-data analytics.
Future hardware innovations — in processor technology, newer
kinds of memory/storage or hierarchies, network architecture
(software-defined networks) — will continue to drive software
innovations. Strong emphasis in design of these systems will be
on minimizing the time spent in moving the data from storage to
the processor or between storage/compute nodes in a distributed
setting.

References

[1] Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian
Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, Stan Zdonik,
Aurora: a new model and architecture for data stream management, VLDB].
12 (2)(2003) 120-139.

[2] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Alexander Rasin, Avi
Silberschatz, HadoopDB: an architectural hybrid of MapReduce and DBMS
technologies for analytical workloads, in: VLDB, 2009.

[3] http://agbeat.com/tech-news/how-carriers-gather-track-and-sell-your-
private-data/.

[4] Yanif Ahmad, Bradley Berg, Ugur Cetintemel, Mark Humphrey, Jeong-Hyon

Hwang, Anjali Jhingran, Anurag Maskey, Olga Papaemmanouil, Alexander

Rasin, Nesime Tatbul, Wenjuan Xing, Ying Xing, Stan Zdonik, Distributed

operation in the borealis stream processing engine, in: Proceedings of the 2005

ACM SIGMOD International Conference on Management of Data, SIGMOD’05,

ACM, New York, NY, USA, 2005, pp. 882-884.

Mohammad Al-Fares, Alexander Loukissas, Amin Vahdat, A scalable, commod-

ity data center network architecture, in: Victor Bahl, David Wetherall, Ste-

fan Savage, lon Stoica (Eds.), SIGCOMM, ACM, 2008, pp. 63-74.

Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, Murari Sridharan, Data

center TCP (DCTCP), in: Shivkumar Kalyanaraman, Venkata N. Padmanabhan,

K.K.Ramakrishnan, Rajeev Shorey, Geoffrey M. Voelker (Eds.), SIGCOMM, ACM,

2010, pp. 63-74.

David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,

Lawrence Tan, Vijay Vasudevan, FAWN: a fast array of wimpy nodes, Commun.

ACM 54 (7) (2011) 101-109.

[8] Rasmus Andersen, Brian Vinter, The scientific byte code virtual machine, in:
GCA, 2008, pp. 175-181.

[9] H. Andrade, B. Gedik, K.L. Wu, P.S. Yu, Processing high data rate streams in
system S,]. Parallel Distrib. Comput. 71 (2) (2011) 145-156.

[10] Luiz André Barroso, Urs Holzle, The Datacenter as a Computer: An Introduction
to the Design of Warehouse-Scale Machines, in: Synthesis Lectures on
Computer Architecture, Morgan & Claypool Publishers, 2009.

[11] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, Katherine A. Yelick, The Landscape of Parallel
Computing Research: A View from Berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley, 2006.

[12] M. Athanassoulis, A. Ailamaki, S. Chen, P. Gibbons, R. Stoica, Flash in a DBMS:
where and how? Bull. IEEE Comput. Soc. Tech. Committee Data Eng. (2010).

[13] Jason Baker, Chris Bond, James C. Corbett,].J. Furman, Andrey Khorlin, James
Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, Vadim Yushprakh,
Megastore: Providing Scalable, Highly Available Storage for Interactive
Services, in: CIDR'11, 2011.

[14] J.Baliga, RW.A. Ayre, K. Hinton, R.S. Tucker, Green cloud computing: balancing
energy in processing, storage, and transport, Proc. [EEE 99 (1) (2011) 149-167.

[5

6

(7

[15] Costas Bekas, Alessandro Curioni, A new energy aware performance metric,
Comput. Sci.-Res. Dev. 25 (3-4) (2010) 187-195.

[16] K.Birman, D. Freedman, Qi Huang, P. Dowell, Overcoming cap with consistent
soft-state replication, Computer 45 (2) (2012) 50-58.

[17] E.A. Brewer, Towards robust distributed systems, in: Proc. 19th Annual ACM
Symposium on Priniciples of Distributed Computing, PODC, 2000, pp. 7-10.

[18] Mike Burrows, The chubby lock service for loosely-coupled distributed
systems, in: Proceedings of the 7th Symposium on Operating Systems Design
and Implementation, OSDI'06, USENIX Association, Berkeley, CA, USA, 2006,
pp. 335-350.

[19] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, Ivona
Brandic, Cloud computing and emerging IT platforms: vision, hype, and reality
for delivering computing as the 5th utility, Future Gener. Comput. Syst. 25 (6)
(2009) 599-616.

[20] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam
McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev
Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman
Bedekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq,
Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand, Anitha
Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan, Leonidas
Rigas, Windows azure storage: a highly available cloud storage service with
strong consistency, in: Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP’11, ACM, New York, NY, USA, 2011,
pp. 143-157.

[21] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber,
Bigtable: a distributed storage system for structured data, in: OSDI, 2006.

[22] Shimin Chen, Phillip B. Gibbons, Suman Nath, Rethinking database algorithms
for phase change memory, in: CIDR, 2011, pp. 21-31. www.crdrdb.org.

[23] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, Anthony D. Joseph,
Understanding TCP incast throughput collapse in datacenter networks,
in: Jeffrey C. Mogul (Ed.), WREN, ACM, 2009, pp. 73-82.

[24] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K.
Gupta, Ranjit Jhala, Steven Swanson, NV-heaps: making persistent objects
fast and safe with next-generation, non-volatile memories, in: Proceedings of
the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems, 16th ASPLOS'11, ACM Press, Newport
Beach, CA, USA, 2011, pp. 105-118.

[25] Tyson Condie, Neil Conway, Peter Alvaro, Joseph Hellerstein, Khaled Elmele-
egy, Russell Sears, MapReduce online, in: NSDI, 2009.

[26] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled
Elmeleegy, Russell Sears, MapReduce online, in: NSDI, 2010.

[27] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin C. Lee, Doug Burger, Derrick Coetzee, Better 1/O through byte-
addressable, persistent memory, in: Proceedings of the 22nd Symposium
on Operating Systems Principles (22nd SOSP’09), Operating Systems Review
(OSR), ACM SIGOPS, Big Sky, MT, 2009, pp. 133-146.

[28] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, Ramana
Yerneni, Pnuts: Yahoo!’s hosted data serving platform, Proc. VLDB Endow. 1
(2)(2008) 1277-1288.

[29] Jeffrey Dean, Sanjay Ghemawat, MapReduce: simplified data processing on
large clusters, in: OSDI, 2004.

[30] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, Werner Vogels, Dynamo: Amazon’s highly available key-value store,
in: Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Sys-
tems Principles, SOSP’07, ACM, New York, NY, USA, 2007, pp. 205-220.

[31] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, Anne-Marie Kermarrec,
The many faces of publish/subscribe, ACM Comput. Surv. 35 (2) (2003)
114-131.

[32] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajab-
dolali Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, Amin
Vahdat, Helios: a hybrid electrical/optical switch architecture for modular
data centers, in: Shivkumar Kalyanaraman, Venkata N. Padmanabhan, K.K. Ra-
makrishnan, Rajeev Shorey, Geoffrey M. Voelker (Eds.), SIGCOMM, ACM, 2010,
pp. 339-350.

[33] J. Fisher-Ogden, Hardware support for efficient virtualization.

[34] Apache flume, http://flume.apache.org.

[35] 1. Foster, C. Kesselman (Eds.), The Grid: Blueprint for a New Computing
Infrastructure, Morgan-Kaufmann, 1999.

[36] Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung, The google file system,
in: Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP'03, ACM, New York, NY, USA, 2003, pp. 29-43.

[37] Apache giraph, http://incubator.apache.org/giraph.

[38] Goldenorb, http://www.raveldata.com/goldenorb.

[39] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, Songwu Lu, BCube: a high performance, server-
centric network architecture for modular data centers, in: Pablo Rodriguez,
Ernst W. Biersack, Konstantina Papagiannaki, Luigi Rizzo (Eds.), SIGCOMM,
ACM, 20009, pp. 63-74.

[40] Apache hadoop, http://hadoop.apache.org.

[41] Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp, Finding structure with
randomness: probabilistic algorithms for constructing approximate matrix
decompositions, SIAM Rev. 53 (2) (2011) 217-288.

[42] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, Anastasia Ailamaki,
Toward dark silicon in servers, IEEE Micro 31 (4) (2011) 6-15.

[43] Apache hbase, http://hadoop.apache.org/hbase.

[44] Apache hadoop hdfs, http://hadoop.apache.org/hdfs.

http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref1
http://agbeat.com/tech-news/how-carriers-gather-track-and-sell-your-private-data/
http://agbeat.com/tech-news/how-carriers-gather-track-and-sell-your-private-data/
http://agbeat.com/tech-news/how-carriers-gather-track-and-sell-your-private-data/
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref4
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref5
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref6
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref7
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref9
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref10
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref11
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref12
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref14
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref15
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref16
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref18
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref19
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref20
http://www.crdrdb.org
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref23
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref24
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref27
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref28
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref30
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref31
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref32
http://flume.apache.org
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref35
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref36
http://incubator.apache.org/giraph
http://www.raveldata.com/goldenorb
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref39
http://hadoop.apache.org
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref41
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref42
http://hadoop.apache.org/hbase
http://hadoop.apache.org/hdfs

2572 K. Kambatla et al. / J. Parallel Distrib. Comput. 74 (2014) 2561-2573

[45] Apache hedwig, https://cwiki.apache.org/BOOKKEEPER/hedwig.html.

[46] Andrew Herdrich, Ramesh Illikkal, Ravi R. Iyer, Donald Newell, Vineet
Chadha, Jaideep Moses, Rate-based QoS techniques for cache/memory in
CMP platforms, in: Proceedings of the 23rd International Conference on
Supercomputing, 23rd ICS’09, ACM Press. Intel, Yorktown Heights, NY, USA,
2009, pp. 479-488.

[47] Improving MapReduce Performance in Heterogeneous Environments, USENIX
Association, San Diego, CA, 2008, 12/2008.

[48] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, Ion Stoica, Mesos: a platform for fine-
grained resource sharing in the data center, in: Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, NSDI'11,
USENIX Association, Berkeley, CA, USA, 2011, p. 22.

[49] U. Holzle, Brawny cores still beat wimpy cores, most of the time, IEEE Micro
30(4)(2010).

[50] Hortonworks blog, http://hortonworks.com/blog/executive-video-series-the-
hortonworks-vision-for-apache-hadoop.

[51] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, Benjamin Reed, Zookeeper:
wait-free coordination for internet-scale systems, in: Proceedings of the 2010
USENIX Conference on USENIX Annual Technical Conference, USENIXATC'10,
USENIX Association, Berkeley, CA, USA, 2010, p. 11.

[52] Made in IBM labs: holey optochip first to transfer one trillion bits of
information per second using the power of light, 2012. http://www-03.ibm.
com/press/us/en/pressrelease/37095.wss.

[53] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly,
Dryad: distributed data-parallel programs from sequential building blocks, in:
EuroSys, 2007.

[54] The International Technology Roadmap for Semiconductors, 2010, http://
www.itrs.net/.

[55] R. lyer, R. Illikkal, L. Zhao, S. Makineni, D. Newell,]. Moses, P. Apparao,
Datacenter-on-chip architectures: tera-scale opportunities and challenges,
Intel Tech. J. 11 (3) (2007) 227-238.

[56] Karthik Kambatla, Naresh Rapolu, Suresh Jagannathan, Ananth Grama,
Asynchronous algorithms in MapReduce, in: IEEE International Conference on
Cluster Computing, CLUSTER, 2010.

[57] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken, The nature of
data center traffic: measurements & analysis, in: Proceedings of the 9th
ACM SIGCOMM Conference on Internet Measurement Conference, ACM, 2009,
pp. 202-208.

[58] Avinash Lakshman, Prashant Malik, Cassandra: a structured storage system on
a p2p network, in: SPAA, 2009.

[59] Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur
Mutlu, Doug Burger, Phase-change technology and the future of main memory,
IEEE Micro 30 (1) (2010) 143.

[60] http://public.web.cern.ch/public/en/LHC/Computing-en.html.

[61] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven
K. Reinhardt, Thomas F. Wenisch, Disaggregated memory for expansion and
sharing in blade servers, in: Proc. 36th International Symposium on Computer
Architecture, 36th ISCA’09, ACM SIGARCH, Austin, TX, 2009.

[62] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, David G. Andersen,
Don'’t settle for eventual: scalable causal consistency for wide-area storage
with cops, in: Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, PSOSP’11, ACM, New York, NY, USA, 2011, pp. 401-416.

[63] Grzegorz Malewicz, Matthew H. Austern, Aart].C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, Grzegorz Czajkowski, Pregel: a system for large-scale graph
processing, in: SIGMOD, 2010.

[64] http://www.information-management.com/issues/21_5/big-data-is-scaling-
bi-and-analytics-10021093-1.html.

[65] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne,
Bruno Richard, Sami Rollins, Zhichen Xu, Peer-to-peer Computing. Technical
Report HPL-2002-57R1, Hewlett Packard Laboratories, May 2, 1900.

[66] Tomer Y. Morad, Uri C. Weiser, A. Kolodnyt, Mateo Valero, Eduard Ayguadé,
Performance, power efficiency and scalability of asymmetric cluster chip
multiprocessors, Comput. Archit. Lett. 5 (1) (2006) 14-17.

[67] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew
Tomkins, Pig Latin: a Not-So-Foreign language for data processing, in: SIG-
MOD, ACM, 2008. ID: 1376726.

[68] Innovation at Google: The Physics of Data, 2009, http://www.parc.com/event/
936/innovation-at-google.html.

[69] Phoebus, https://github.com/xslogic/phoebus.

[70] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, Am-
ber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman
Manevich, Mario Méndez-Lojo, Dimitrios Prountzos, Xin Sui, The tao of par-
allelism in algorithms, in: PLDI, 2011.

[71] Gerald]. Popek, R.P. Goldberg, Formal requirements for virtualizable third
generation architectures, Commun. ACM 17 (7) (1974).

[72] Russell Power, Jinyang Li, Piccolo: building fast, distributed programs with
partitioned tables, in: OSDI, 2010.

[73] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, Jude A. Rivers, Scalable high
performance main memory system using phase-change memory technology,
in: Proc. 36th International Symposium on Computer Architecture, 36th
ISCA’09, ACM SIGARCH, Austin, TX, June 2009, IBM T.J. Watson RC.

[74] Parthasarathy Ranganathan, From microprocessors to nanostores: rethinking
data-centric systems, IEEE Comput. 44 (1) (2011) 39-48.

[75] Parthasarathy Ranganathan, Jichuan Chang, (Re)designing data-centric data
centers, IEEE Micro 32 (1) (2012) 66-70.

[76] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, Christos
Kozyrakis, Evaluating mapreduce for multi-core and multiprocessor system,
in: Proceedings of the 13th Intl. Symposium on High-Performance Computer
Architecture (HPCA), Phoenix, AZ, 2007.

[77] Naresh Rapolu, Karthik Kambatla, Suresh Jagannathan, Ananth Grama,
Transmr: data-centric programming beyond data parallelism, in: Proceedings
of the 3rd USENIX Conference on Hot Topics in Cloud Computing, HotCloud'11,
USENIX Association, Berkeley, CA, USA, 2011, pp. 19-19.

[78] Benjamin Reed, Flavio P. Junqueira, A simple totally ordered broadcast
protocol, in: Proceedings of the 2nd Workshop on Large-Scale Distributed
Systems and Middleware, LADIS'08, ACM, New York, NY, USA, 2008,
pp. 2:1-2:6.

[79] Erik Riedel, Garth Gibson, Christos Faloutsos, Active storage for large-scale
data mining and multimedia, in: Proceedings of the 24th International
Conference on Very Large Data Bases, VLDB'98, Morgan Kaufmann, East
Sussex, San Francisco, 1998, pp. 62-73.

[80] Mendel Rosenblum, Tal Garfinkel, Virtual machine monitors: current technol-
ogy and future trends, IEEE Comput. 38 (5) (2005) 39-47.

[81] Apache s4, http://incubator.apache.org/s4.

[82] Mehul Shah, Parthasarathy Ranganathan, Jichuan Chang, Niraj Tolia, David
Roberts, Trevor Mudge, Data dwarfs: Motivating a Coverage Set for Future
Large Data Center Workloads, Technical Report HPL-2010-115, Hewlett
Packard Laboratories, November 8, 2010.

[83] J.E. Short, R.E. Bohn, C. Baru, How much information? 2010-report on
enterprise server information. UCSD Global Information Industry Center, 2011.

[84] Clinton Wills Smullen IV, Vidyabhushan Mohan, Anurag Nigam, Sudhanva
Gurumurthi, Mircea R. Stan, Relaxing non-volatility for fast and energy-
efficient STT-RAM caches, in: HPCA, IEEE Computer Society, 2011, pp. 50-61.

[85] Twitter storm, https://github.com/nathanmarz/storm.

[86] Jie Tang, Shaoshan Liu, Zhimin Gu, Xiao-Feng Li, Jean-Luc Gaudiot, Achieving
middleware execution efficiency: hardware-assisted garbage collection oper-
ations, J. Supercomput. 59 (3) (2012) 1101-1119.

[87] http://www.statisticbrain.com/twitter-statistics/.

[88] Scalable, Energy-Efficient Data Centers and Clouds, 2012, http://iee.ucsb.edu/
Data_Center_Report.

[89] Leslie G. Valiant, A bridging model for parallel computation, Commun. ACM 33
(8)(1990) 103-111.

[90] Arun Venkataramani, Ravi Kokku, Mike Dahlin, Tcp nice: a mechanism for
background transfers, in: Proceedings of the 5th symposium on Operating
Systems Design and Implementation, OSDI'02, ACM, New York, NY, USA, 2002,
pp. 329-343.

[91] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, Roy H.
Campbell, Consistent and durable data structures for non-volatile byte-
addressable memory, in: Gregory R. Ganger, John Wilkes (Eds.), FAST, USENIX,
2011, pp. 61-75.

[92] Ymir Vigfusson, Hussam Abu-Libdeh, Mahesh Balakrishnan, Ken Birman,
Robert Burgess, Gregory Chockler, Haoyuan Li, Yoav Tock, Dr. multicast: Rx for
data center communication scalability, in: Proceedings of the 5th European
conference on Computer systems, EuroSys’10, ACM, New York, NY, USA, 2010,
pp. 349-362.

[93] Haris Volos, Andres Jaan Tack, Michael M. Swift, Mnemosyne: lightweight
persistent memory, in: Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operating Systems,
16th ASPLOS’11, ACM Press, Newport Beach, CA, USA, 2011, pp. 91-104.

[94] March 2012. http://www.wallstreetdaily.com/2012/03/21/forever-growth-
trends-and-five-stocks-set-to-profit/.

[95] A. Weiss, Computing in the clouds, Computing 16 (2007).

[96] Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, Yuan Xie,
Hybrid cache architecture with disparate memory technologies, in: Proc.
36th International Symposium on Computer Architecture, 36th ISCA’09, ACM
SIGARCH, Austin, TX, 20009.

[97] Apache yarn, http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/
hadoop-yarn-site/YARN.html.

[98] http://www.youtube.com/yt/press/statistics.html.

Karthik Kambatla is a Software Engineer in the Schedul-
ing team at Cloudera Inc and is currently pursuing his PhD
in the Department of Computer Science at Purdue Univer-
sity. Karthik’s interests lie in distributed execution engines
and his research focuses on improving their performance
and applicability. He is a committer on the Apache Hadoop
project.

Giorgos Kollias received the BSc in Physics in 2000 and the
MSc in Computational Science in 2002 from the University
of Athens, Greece, and the PhD in Computer Science from
the University of Patras, Greece, in 2009. He then moved
to Purdue University, USA and worked as a Postdoctoral
Researcher in the Computer Science Department and the
Center for Science of Information till 2013. Currently
he works in IBM T.J. Watson Research Center, USA. His
research interests include dynamical systems, Problem
Solving Environments, graph analysis, randomized linear
algebra and parallel computing.

https://cwiki.apache.org/BOOKKEEPER/hedwig.html
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref46
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref47
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref48
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref49
http://hortonworks.com/blog/executive-video-series-the-hortonworks-vision-for-apache-hadoop
http://hortonworks.com/blog/executive-video-series-the-hortonworks-vision-for-apache-hadoop
http://hortonworks.com/blog/executive-video-series-the-hortonworks-vision-for-apache-hadoop
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref51
http://www-03.ibm.com/press/us/en/pressrelease/37095.wss
http://www-03.ibm.com/press/us/en/pressrelease/37095.wss
http://www-03.ibm.com/press/us/en/pressrelease/37095.wss
http://www-03.ibm.com/press/us/en/pressrelease/37095.wss
http://www-03.ibm.com/press/us/en/pressrelease/37095.wss
http://www-03.ibm.com/press/us/en/pressrelease/37095.wss
http://www-03.ibm.com/press/us/en/pressrelease/37095.wss
http://www-03.ibm.com/press/us/en/pressrelease/37095.wss
http://www-03.ibm.com/press/us/en/pressrelease/37095.wss
http://www-03.ibm.com/press/us/en/pressrelease/37095.wss
http://www.itrs.net/
http://www.itrs.net/
http://www.itrs.net/
http://www.itrs.net/
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref55
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref57
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref59
http://public.web.cern.ch/public/en/LHC/Computing-en.html
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref61
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref62
http://www.information-management.com/issues/21_5/big-data-is-scaling-bi-and-analytics-10021093-1.html
http://www.information-management.com/issues/21_5/big-data-is-scaling-bi-and-analytics-10021093-1.html
http://www.information-management.com/issues/21_5/big-data-is-scaling-bi-and-analytics-10021093-1.html
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref65
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref66
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref67
http://www.parc.com/event/936/innovation-at-google.html
http://www.parc.com/event/936/innovation-at-google.html
http://www.parc.com/event/936/innovation-at-google.html
http://www.parc.com/event/936/innovation-at-google.html
http://www.parc.com/event/936/innovation-at-google.html
http://www.parc.com/event/936/innovation-at-google.html
http://www.parc.com/event/936/innovation-at-google.html
http://www.parc.com/event/936/innovation-at-google.html
https://github.com/xslogic/phoebus
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref71
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref73
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref74
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref75
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref77
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref78
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref79
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref80
http://incubator.apache.org/s4
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref82
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref83
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref84
https://github.com/nathanmarz/storm
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref86
http://www.statisticbrain.com/twitter-statistics/
http://iee.ucsb.edu/Data_Center_Report
http://iee.ucsb.edu/Data_Center_Report
http://iee.ucsb.edu/Data_Center_Report
http://iee.ucsb.edu/Data_Center_Report
http://iee.ucsb.edu/Data_Center_Report
http://iee.ucsb.edu/Data_Center_Report
http://iee.ucsb.edu/Data_Center_Report
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref89
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref90
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref91
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref92
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref93
http://www.wallstreetdaily.com/2012/03/21/forever-growth-trends-and-five-stocks-set-to-profit/
http://www.wallstreetdaily.com/2012/03/21/forever-growth-trends-and-five-stocks-set-to-profit/
http://www.wallstreetdaily.com/2012/03/21/forever-growth-trends-and-five-stocks-set-to-profit/
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref95
http://refhub.elsevier.com/S0743-7315(14)00005-7/sbref96
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://www.youtube.com/yt/press/statistics.html

K. Kambatla et al. / J. Parallel Distrib. Comput. 74 (2014) 2561-2573 2573

Vipin Kumar is currently William Norris Professor and
Head of the Computer Science and Engineering Depart-
ment at the University of Minnesota. Kumar’s current re-
search interests include data mining, high-performance
computing, and their applications in Climate/Ecosystems
and Biomedical domains. He has authored over 300 re-
search articles and has coedited or coauthored 11 books
including widely used text books “Introduction to Par-
allel Computing” and “Introduction to Data Mining”. His
research has resulted in the development of the con-
cept of isoefficiency metric for evaluating the scalabil-
ity of parallel algorithms, as well as highly efficient parallel algorithms and soft-
ware for sparse matrix factorization (PSPASES) and graph partitioning (METIS,
ParMetis, hMetis). Kumar is a Fellow of the ACM, IEEE and AAAS. He re-
ceived the Distinguished Alumnus Award from the Indian Institute of Tech-
nology (IIT) Roorkee (2013), the Distinguished Alumnus Award from the Com-
puter Science Department, University of Maryland College Park (2009), and
IEEE Computer Society’s Technical Achievement Award (2005). Kumar's founda-
tional research in data mining and its applications to scientific data was hon-

ored by the ACM SIGKDD 2012 Innovation Award, which is the highest award
for technical excellence in the field of Knowledge Discovery and Data Mining
(KDD).

Ananth Grama is the Director of the Computational Sci-
ence and Engineering program and Professor of Com-
puter Science at Purdue University. He also serves as the
Associate Director of the Center for Science of Informa-
tion. Ananth received his B. Engg from Indian Institute of
Technology, Roorkee (1989), his M.S. from Wayne State
University (1990), and Ph.D. from the University of Min-
nesota (1996). His research interests lie in parallel and
distributed systems, numerical methods, large-scale data
analysis, and their applications. Ananth is a recipient of the
National Science Foundation CAREER award (1998), Uni-
versity Faculty Scholar Award (2002-07), and is a Fellow of the American Associa-
tion for the Advancement of Sciences (2013).

	Trends in big data analytics
	Introduction
	Scale and scope of data analytics
	Design considerations

	Hardware platforms for data analytics
	Memory/storage
	Processing landscape for data analytics
	Network resources for data analytics
	Energy considerations in big-data analytics

	Virtualization technologies
	Software stack for analytics applications
	Storage systems
	Effects of CAP theorem
	Resource utilization

	Data processing considerations
	Data-parallel models
	Data-dependent parallelism

	Integration of different models

	Application scope of emerging big data analytics
	Health and human welfare
	Nature and natural processes
	Government and the public sector
	Commerce, business, and economic systems
	Social networking and the internet
	Computational and experimental processes

	Conclusion
	References

