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Importance of Electrical Properties:

Transfer-distribution of electric power,

Conductors and insulators

Electrical Properties of Materials:

The materials’ response to an applied electric field.
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Electrical Properties of Materials

Conductivity

Dielectric behaviour

Piezoelectricity
Ferroelectricity

Metals
(conductors)

Semi-conductors

Dielectrics
(insulators)
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Dielectric Materials (Dielectrics) and 
Insulators 

Dielectric material: is a substance whose basic
electrical property is the ability to be polarized and in
which an electrostatic field can exist, E0.

Insulator or electrical insulating material: a
dielectric material used to prevent the leakage of
electric charges in electrical engineering devices.

Active dielectrics: are dielectric materials having the
ability to vary their polarization and to be polarized in
the absence of an electric field.
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Dipoles and Polarization  

The simplest unit of polarization is a dipole: a distribution of
equal positive and negative charges with their centers being

apart a small distance.

Dipole moment

Polarization is the total dipole moment (M) per unit volume (V). 
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When a dielectric material is
inserted within an electric field,
positive charges are forced to the
direction of the field while negative
too the opposite. Thus the
material takes the “form” of a
dipole, with zero net charge and
equal positive and negative
charges at its two edge surfaces.
The occurring effect is called
polarization, and is 100%
removed after cutting off the
applied field
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Dielectrics are classified in two categories:

(α) polar dielectrics, the molecules of these
materials exhibit permanent dipole moment, since
the centres of the distribution of positive and
negative charges do not coincide, example the
water.

(β) non-polar dielectrics, the molecules of these
materials do not exhibit permanent dipole moment,
since the centers of the distribution of positive and
negative charges coincide, example CO2, CH4.
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Polar dielectrics 

Non-polar dielectrics 
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Polar Molecule 
(H2O) 
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Non-Polar Molecule 
(CO2) 
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Effect of an  electric field on a unpolar                        
atom or molecule: 

In an atom or molecule the electron cloud is deformed
with respect to the nucleus, which causes an
induced polarization; this response is fast (psec),
because the electrons are light-weight
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Effect of an  electric field on (ionic) charges: 

Charges (electronic and ionic) are displaced in the direction
of the applied field. The latter gives rise to a resultant
polarization of the sample as a whole.
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Effect of an  electric field on an electric dipole : 

An electric field tries to orient a dipole with moment ; but the
thermal fluctuations of the surrounding heat bath counteract
this effect; as result orientational polarization takes place, its
time constant is characteristic for the molecular moiety under
study and may vary between 10-12s – 1000s and longer.
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Interfacial polarization is observed in heterogeneous
systems (materials) due to the accumulation of
unbounded charges at the interfaces of the material’s
phases.

Interfacial Polarization (space charge)
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• The electric displacement D is related, only, to the free

charges at the plates of the capacitor.

• Polarization P is related, only, to the polarization charges

(induced).

 The intensity (strength) of the electric field Ε is related
to all existing charges (free and induced).

ED 0

EP )1(0  
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The interaction of electromagnetic radiation and matter is of
fundamental importance in basic and applied science. This
interaction is referred as “spectroscopy” and reflects how
vibrations, rotational and electronic transitions of atoms,
molecules or whole materials are related to the IR and
UV/visible absorption or emission spectra.

The whole discussion is referred to frequencies higher than
3x1011 Hz. However, the arising question is “what is
happening at the remaining, 10-6 – 1011 Hz, frequency
spectrum?”

The answer can be given by studying electrical polarization
and conductivity.

Dielectric and Electrical Relaxations of 
Materials
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What molecular processes take place in the 
spectral range from (almost) THz to mHz            

and below?

1. Induced polarization

2. Orientational polarization

3. Charge transport

4. Polarization at interfaces
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Dielectric relaxations are observed in many materials,
such as glasses, polymers, ceramics, liquid crystals,
composite materials, and disordered materials.

But what is a relaxation process?

Relaxation is the return of a perturbed system into
equilibrium. Each relaxation process can be characterized by
a relaxation time τ.

What can be derived from studying a system
exhibiting relaxation processes?

Relaxation time, activation energy, the influence of variable,
such as pressure and temperature, upon the specific
process.
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S is the applied stimulus, R the
response function and G the decay
function after removing the applied
stimulus.
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Macroscopic Approach – Debye Equations 
of Dispersion
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Peter Josephus Wilhelmus Debye, formed the basic
dielectric relaxation theory.

Peter Josephus Wilhelmus Debye (1884 - 1966). He was awarded
the Nobel Prize of Chemistry 1936 "for his contributions to our
knowledge of molecular structure through his investigations on
dipole moments and on the diffraction of X-rays and electrons in
gases".
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The orientation of permanent dipoles is a relative slower
process, compared to atomic/ionic and electronic
polarization.

Only after a sufficient interval of time, from the application
of the electric field, the system will equilibrate and the
polarization of the material will attain its maximum value,
which corresponds the maximum value of dielectric
permittivity (dielectric constant).

• Static value of dielectric permittivity

εs when t   , f  0 (maximum value of polarization)

• Dielectric permittivity at very high (optical)
frequencies

ε  when t  0 , f   (minimum value of polarization)
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Suppose that a time depending electric field Ε(t) is applied
on a dielectric:

tieEtE 
0)( 

)(
d

d
)(

d

d
00 tE

t

E(t)
tD

t

D(t)
s  

)(

0)(   tieDtD

ti

ti

tE

tD s





 


 

1

)(

)(

)(

0

Then the electric displacement will be:

After substituting in the differential equation we have:
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using the relation:

the Debye’s equation of dispersion is derived:
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Electrical Properties of Dielectrics                        
(Polymers and Polymer Matrix Composites)

• Dielectric behaviour (variation of dielectric permittivity
and loss with frequency and temperature)

• Conductivity or Resistivity

• Dielectric Strength (maximum applied voltage or time –
at constant voltage- before breakdown)
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Polymers differ form simple crystalline solids and ordinary
liquids, since the length scale of their molecules is much
larger than the atomic dimensions.

The structure of a polymer is a long chain where one or more
“chemical units” are repeated.

The majority of the skeletal bonds allow rotations, leading
thus to an incredible high number of possible configurations
in space.
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Polymers and polymer matrix composites are basically
electrical insulators, since their concentration of free charge
carriers is very low.

Under this point of view their electrical properties are primarily
refer to dielectric relaxation phenomena occurring under
the influence of ac field.

Revealed relaxation processes are related to dipolar orientation
effects of permanent or induced dipoles and in some cases
to space charge migration.

Amorphous and semi-crystalline polymers exhibit electrical
relaxations associated with glass/rubber transition, segmental
mobility of polar groups, interfacial effects and crystallization
processes.
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The electrical behaviour of these systems can be
experimentally investigated by means of Dielectric
Spectroscopy (DS) and dc conductivity measurements.

The obtained (DS) data can be analysed in different
formalisms:

• in terms of dielectric permittivity

• in terms of a.c. conductivity

• in terms of electric modulus

Experimental Techniques and Data Analysis
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Broadband Dielectric Spectroscopy (BDS) is a powerful tool
for the investigation of molecular mobility, phase changes,
conductivity mechanisms and interfacial effects in polymers
and complex systems

Dielectric Spectroscopy

),( fF   ),( fF  

),( fFM  ),( fFM 



Experimental Set Up                          
Three Terminal Guarded Test Cell

(ASTM D150-98 re-approved 2004) 

Low potential

Insulator

Guard 
electrode

Dielectric 
specimen

Low potential 
electrode

Insulator

High potential

High potential 
electrode

Shielding 
Alpha-N Analyser                  

10-6 – 107 Hz
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Low potential 
electrode

High potential 
electrode

Guard electrode

Top electrode-
Low potential

Bottom electrode-
High potential

Gap between top 
and guard electrode

Measuring of stray capacitances should be avoided
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where l is the thickness of the specimen

ASTM D150
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BDS 
1200

Two Electrodes Test Cells

http://www.novocontrol.de/photos/korbch.jpg
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Complex Dielectric Permittivity 

When a dielectric is subjected to an external ac electrical field
its response depends on a number of parameters, including:

• the amplitude and the frequency of the field

• temperature

• molecular structure of the material

  i








tan

The Electric Modulus Formalism

Complex modulus, electric modulus or inverse complex
permittivity, M* is defined by the following equation
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The real part of *() is given by:

where, 0 = 8.85 x 10-12 Fm-1 is the permittivity of free
space and  = 2f the angular frequency.

  

0000 )()()( jjjj

Alternating current conductivity sums all dissipative effects
including an actual ohmic conductivity, caused by migrating
charge carriers on isolated or adjacent conductive sites or
clusters, as well as a frequency dielectric dispersion
(A. von Hippel, Dielectrics and Waves, Arttech, Boston, 1995).

The ac conductivity of all samples has been calculated from
the dielectric loss according to the relation:

AC  Conductivity 

  0ac
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Debye

Dielectric Permittivity 

Electric Modulus 

G. M. Tsangaris, G. C. Psarras, N. Kouloumbi,          

Journal of Materials Science, 33(8), 2027-2037, 1998. 
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G. M. Tsangaris, G. C. Psarras, N. Kouloumbi,                 

Journal of Materials Science, 33(8), 2027-2037, 1998. 
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Dielectric Permittivity 

Electric Modulus 

G. M. Tsangaris, G. C. Psarras, N. Kouloumbi,          

Journal of Materials Science, 33(8), 2027-2037, 1998. 



Havriliak-Negami
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 (oC) Ms M M (s)  EA (eV)

80 0.004 0.242 1.45 x 10-3 0.828
0.978

90 0.004 0.247 4.58 x 10-4 0.831

100 0.005 0.250 1.75 x 10-4 0.835

120 0.004 0.260 5.32 x 10-5 0.867

G. C. Psarras, E. Manolakaki, G. M. Tsangaris,
Composites Part Α, 34(12), 1187-1198 2003. 
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(a) 10 and (b) 50 phr in Fe content. () 80oC, (+) 100oC,
(O) 120oC. Dashed lines are produced by the random
free-energy barrier model, the used values of dc
conductivity were measured and found to be (a) 1.7x10-8,
8.5x10-8 and 2.2x10-7 (-m)-1 and (b) 2.4x10-8, 1.1x10-7

and 2.3x10-7 (-m)-1 respectively to each of the examined
temperatures.

AC Conductivity versus logf
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G. C. Psarras, E. Manolakaki, 
G. M. Tsangaris,
Composites Part Α, 34(12), 
1187-1198, 2003. 



Broadband Dielectric Spectrum
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Polymers and polymer matrix composites are basically
electrical insulators, since their concentration of free charge
carriers is very low.

Under this point of view their electrical properties are primarily
refer to dielectric relaxation phenomena occurring under
the influence of ac field.

Revealed relaxation processes are related to dipolar orientation
effects of permanent or induced dipoles and in some cases
to space charge migration.

Amorphous and semi-crystalline polymers exhibit electrical
relaxations associated with glass/rubber transition, segmental
mobility of polar groups, interfacial effects and crystallization
processes.
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Typically, the dielectric loss peaks of a polymer are labeled
with the small letters of the Greek alphabet, starting with -
for the process, which is recorded at the higher temperature
at constant frequency scan.
Usually, -mode is related to glass/rubber transition of
the amorphous part of the polymer and the occurring
rearrangement of large parts of the polymer chains.
 and -mode are broader, less intensive and attributed to
local motions or re-orientations of polar side groups
and small segments of the polymer chain, respectively.

f = constant 
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Polymer Matrix Composites

• the permittivities and conductivities of their constituents

• the volume fraction of the filler

• the size and shape of the inclusions

• the adhesion between the hosted medium and the matrix

• the method of processing

• possible interactions between the conductive and the non
conductive phase

Polymer Matrix Composites are basically insulators and their
electrical performance is directly related to:
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Polymer Matrix Particulate Composites

Particulate reinforcement is present even from the earliest
days of the commercial uses of polymers.

Originally, they were mainly seen as cheap diluents, hence
the name filler.

However, their ability to beneficially modify many
properties, of the resulting composite system, was soon
realized and in our days are used for many purposes.
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The main reasons for using particulate fillers are:

• Cost reduction

• Improved processing

• Density control

• Optical effects, such as translucency

• Thermal conductivity

• Control of thermal expansion

• Electrical properties

• Magnetic properties

• Flame retardancy

• Improved mechanical properties, notably hardness, stiffness,
abrasion and tear resistance.

Of course, there is no unique filler providing all these benefits.
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Variation of (a) real part of permittivity and (b) loss
tangent, with temperature and frequency for unfilled
Hydrogenated Acrylonitrile Butadiene Rubber (HNBR).
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G. C. Psarras, G. A. Sofos, A. Vradis, D. L. Anastassopoulos, 
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European Polymer Journal, 54, 190-199, 2014. 
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Variation of (a) real part of permittivity and (b) loss
tangent, with temperature and frequency for filled
Hydrogenated Acrylonitrile Butadiene Rubber (HNBR)with
10 phr MWCNTs.

G. C. Psarras, G. A. Sofos, A. Vradis, D. L. Anastassopoulos, 
S. N. Georga, C. A. Krontiras, J. Karger-Kocsis,
European Polymer Journal, 54, 190-199, 2014. 



Dielectric Relaxations in Polymer 
Nanocomposites

Imaginary part of electric modulus vs frequency and temperature,
for a polyurethane/alumina nanocomposite. The concentration of

alumina nanoparticles is 10phr and their mean diameter is 25nm.

Relaxation phenomena in elastomeric nanocomposites, 
G. C. Psarras and K. G. Gatos, p. 89-118, in “Recent advances in 
elastomeric nanocomposites”, edited by V. Mittal, J. K. Kim and K. Pal,  
Springer-Verlag, Berlin-Heidelberg, 2011.



Variation of glass transition temperature of PMMA/alumina
nanocomposites, as determined by DMTA and DSC, as a function
of the alumina nanoparticles content.

Conductivity and dielectric characterization of polymer nanocomposites, 
G. C. Psarras, p. 31-69, in “Polymer nanocomposites: Physical properties 
and applications”, ed. by S. C. Tjong and Y.-M. Mai, Woodhead Publishing 
Limited, Cambridge, 2010. 



Electric modulus loss index versus frequency for the -mode of
pure PVA and PVA/magnetic iron oxide, PVA/zinc oxide
nanocomposites. Concentration of both nanofillers is 10wt%.

Conductivity and dielectric characterization of polymer nanocomposites, 
G. C. Psarras, p. 31-69, in “Polymer nanocomposites: Physical properties 
and applications”, ed. by S. C. Tjong and Y.-M. Mai, Woodhead Publishing 
Limited, Cambridge, 2010. 



Imaginary part of electric modulus as a function of temperature
for the -mode of an unfilled epoxy resin and for the

corresponding epoxy/BaTiO3 particulate nanocomposite at f=1Hz.

Conductivity and dielectric characterization of polymer nanocomposites, 
G. C. Psarras, p. 31-69, in “Polymer nanocomposites: Physical properties 
and applications”, ed. by S. C. Tjong and Y.-M. Mai, Woodhead Publishing 
Limited, Cambridge, 2010. 



Poly(ethylene oxide)/MWCNT Nanocomposites

Variation of modulus loss index with frequency, at various
temperatures, for the PEO/(0.25wt%) modified-MWCNT
nanocomposite. Inset depicts Cole-Cole plots at various

temperatures.
Conductivity and dielectric characterization of polymer nanocomposites, 
G. C. Psarras, p. 31-69, in “Polymer nanocomposites: Physical properties 
and applications”, ed. by S. C. Tjong and Y.-M. Mai, Woodhead Publishing 
Limited, Cambridge, 2010. 



Antikythera Mechanism

The Antikythera mechanism is an ancient analog
computer designed to predict astronomical positions
and eclipses. It was recovered in 1900–01 from the
Antikythera wreck, a shipwreck of the Greek island
of Antikythera. The computer's construction has
been attributed to the Greeks and dated to the early
1st century BC. Technological artifacts approaching
its complexity and workmanship did not appear
again until 14th century, when mechanical
astronomical clocks began to be built in Western
Europe.



The impact of nanostructured materials is very high due
to their potential applications (thermo-mechanical
resistance, flame resistance, electrical properties etc.)

Rubber/ Layered Silicates nanocomposites are attracting
increased scientific and technological attention, due to
the high reinforcing efficiency of the LS, even at very
low loading.

Rubber/Layered Silicates Nanocomposites
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Polymer matrix/LS nanocomposites exhibit three different
configurations:

(a) microphase separated composites, where polymer matrix and
layered silicates remain immiscible,

(b) intercalated structures, where polymer molecules are inserted
between the silicate layers, and

(c) exfoliated structures, where individual silicate layers are
dispersed in the polymer matrix
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Morphology - XRD
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XRD spectra of the layered silicate (LS) reinforced latex
nanocomposites of various compositions, S. Varghese et al JAPS, 92,
543-551, 2004.

Peak position (2/o) Interlayer distance 
(nm)

LS 7.25 / 8.04 / 9.31 0.95 / 1.10 / 1.22

NR + 10phr LS 6.75 / 7.43 1.19 / 1.31

PUR/NR + 10phr LS 4.23 / 6.75 1.31 / 2.09

PUR + 10phr LS 5.11 / 7.19 1.23 / 1.73
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TEM images at two magnifications for the PUR + 10 phr LS 
nanocomposite.

Morphology - TEM
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TEM images at two magnifications for the PUR/NR + 10 phr LS 
nanocomposite. Note: the vulcanised more or less spherical 

NR particles are well resolved.

Morphology - TEM
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PUR
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Express Polymer Letters, 1(12), 837-845, 2007. 
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γ-mode

BaTiO3/ZnO/Epoxy: tan vs f 
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BaTiO3/ZnO/Epoxy: AC Conductivity
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Energy Density: GNP Composites 
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A. C. Patsidis, K. Kalaitzidou, G. C. Psarras,
Journal of Thermal Analysis and Calorimetry,
116, 41-49, 2014.  
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Conclusions

Dielectric spectroscopy can provide useful information with
respect to:

• Relaxation phenomena,

• Interfacial effects,

• Molecular mobility,

• Conductivity mechanisms,

• Phase changes, in polymers and polymer matrix composites.

The electric modulus formalism offers some advantages in
interpreting relaxation processes, since difficulties like electrode
polarization and space charge injection phenomena can be
resolved or even ignored.

Dielectric data should be interpreted in all three (or four)
formalisms.
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