The Jackson Laboratory Leading The Search For Tomorrow's Cures

The Jackson Laboratory

- **Research:** Genetics and biology of human disease
- Resources: JAX[®] Mice, JAX[®] Services, bioinformatics databases
- Education: World-class courses, conferences, and training programs

Human Health Advances

George Snell, PhD & Nobel Prize Recipient

• Discoveries of immune system function formed the foundation for **tissue and organ transplantation**

Leroy Stevens, PhD

 Laid the foundation for modern embryonic stem cell research

Elizabeth Russell, PhD

• Pioneered the use of **bone marrow transplants**

JAX[®] Mice: The <u>Gold Standard</u> for Biomedical Research

- Over 3,200 mouse models and growing
- Most well-characterized strains available
- Over 2.1 million mice shipped annually to 16,000 investigators in 60 countries
- Referenced ~100 new publications each week
- Unsurpassed animal health and genetic quality
- Over 75-years experience in mouse breeding and research

JAX[®] Services

- Facilities in Bar Harbor, ME and Sacramento, CA
- On site breeding & colony management
- Revolutionary cryopreservation & recovery
- Phenotyping & efficacy testing
- Genetic research services
- Surgical & preconditioning services

Making Sense of Mouse Nomenclature

Genetic Background Effects and the Importance of Genetic Stability

What's in a Name?

B6.129P2-Apoa1tm1Unc/J

C57BL/6-Tg(APOA1)1Rub/J

Unique identifiers for....

Background strains Relevant gene/allele Technology used Lab founder line Research group Lab maintaining colony

Nomenclature Rules and Resources

International Mouse Nomenclature Committee

Mouse Genome Informatics (MGI) Nomenclature Committee

Nomenclature help: nomen@informatics.jax.org

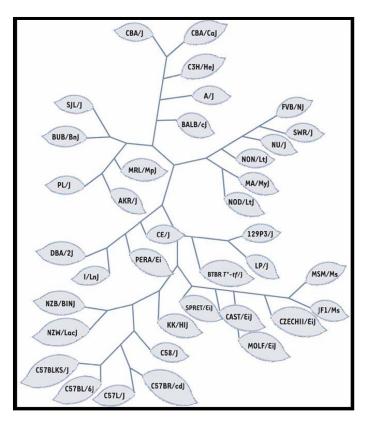
Resources

JAX[®] Mice and Services: http://jaxmice.jax.org/info/nomenclature Tutorial: http://jaxmice.jax.org/nomenclature.html Mouse Genome Informatics rules and guidelines: http://www.informatics.jax.org/mgihome/nomen/

Mouse Nomenclature Basics

Mouse Gene - *Italics,* first letter capitalized Adenomatosis polyposis coli = *Apc* Leptin receptor = *Lepr*

Mouse Allele - *Italics,* superscripted First letter capitalized if dominant - *Apc^{Min}* First letter lower case if recessive - *Lepr^{db}*


- Inbreds
- Hybrids
- GEMM[™] Strains
 Spontaneous, Transgenic, Targeted and Congenics

Inbred Strains

- Strain maintained by sibling (sister x brother) mating for 20 or more consecutive generations
- Most genetically and phenotypically uniform mouse resource
- Well Characterized
- Unique phenotypes
- Widely used as models of human disease

Inbred lineage diagram based on by Petkov PM, et al., Genomics, Volume 83, Issue 5, May 2004, Pages 902-911

Unique Characteristics of Inbred Strains

C3H/HeJ - severe retinal degeneration AKR/J - high leukemia incidence SJL/J - highly aggressive males

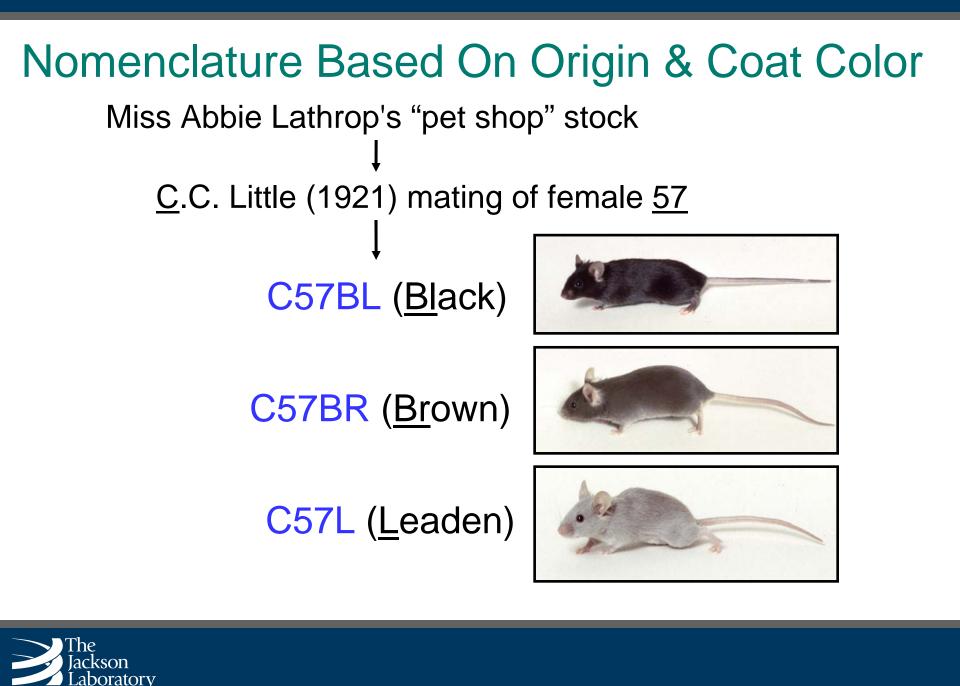
DBA/2J

- Audiogenic seizure susceptibility
- Develop hereditary glaucoma
- Low susceptibility to diet-induced atherosclerosis
- Extreme intolerance to and avoidance of alcohol & morphine

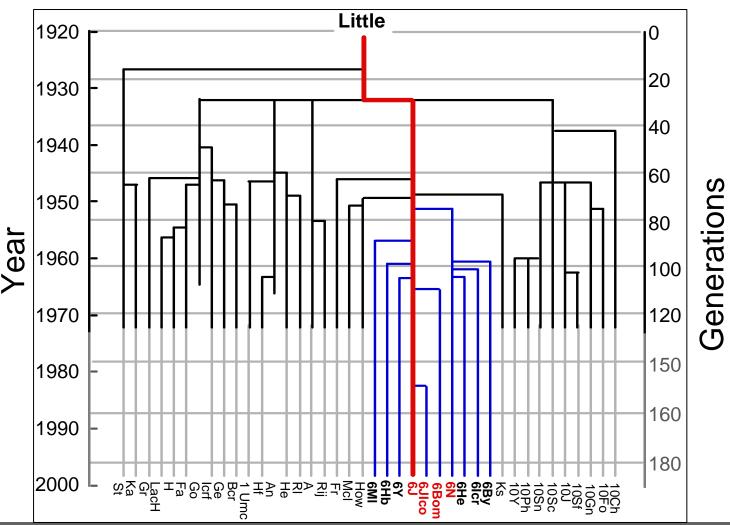
C57BL/6J

- Audiogenic seizure resistance
- Microphthalmia common
- High susceptibility to dietinduced atherosclerosis
- Preference for alcohol and morphine

Inbred Nomenclature Based on Phenotype NOD <u>Nonobese Diabetic</u>


DW <u>Dw</u>arf

NU Nude



Substrains of C57BL

Institute for Laboratory Animal Research (ILAR) Lab Codes http://dels.nas.edu/ilar_n/ilarhome/labcode

Adapted from: Handbook on Genetically Standardized JAX Mice, Fifth Edition, The Jackson Laboratory, 1997 & Bailey 1982

Substrain Nomenclature

Substrains: Branch of an inbred strain known or suspected to be genetically different from the parent colony.

Considered a substrain when....

1) Maintained separately from the parent colony for more than 20 generations

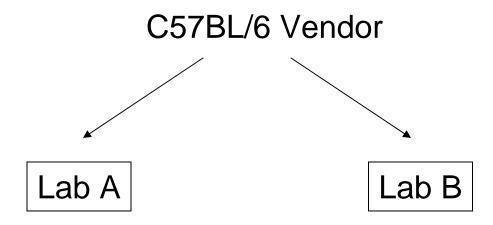
2) Genetic differences from the parent colony are discovered

Nnt deficient

C57BL/6J

Parent strain

Substrain Line #


Lab Maintaining Strain

Wild-type Nnt

Substrain Development

24 Generations Sibling Matings 14 Generations Sibling Matings

38 Generations apart!

Resources for Inbred Strain Selection

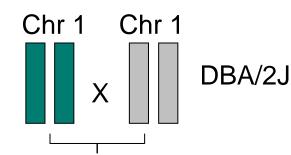
JAX® Mice Strain Data Sheets http://jaxmice.jax.org/query/

The Mouse Phenome Database http://www.jax.org/phenome

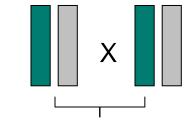
Michael Festing's Database of Inbred Mice & Rats http://www.informatics.jax.org/external/festing/search_form.cgi

PubMed literature searches http://www.pubmed.gov

Online Books at MGI (Genetics, Origin, Anatomy, Coat Color) http://www.informatics.jax.org/mgihome/resources/online_books.shtml



- Inbreds
- Hybrids
- GEMM[™] Strains Spontaneous, Transgenic, Targeted, and Congenics



Hybrids -F1 and F2

C57BL/6J

Hybrid Vigor! Tissue transplant hosts from parent strains

F1 -uniform genotype/phenotype

F2 –random distribution of alleles, excellent control for mutant strains on a mixed background

Chr 1 from three F2 siblings

Mouse Strain Nomenclature Standard Abbreviations

- 129P3/J = 129P
- 129S1/SvImJ = 129S
- A/HeJ = AHe
- A/J = A
- AKR/J = AK
- BALB/cByJ = CBy
- BALB/cJ = C
- C57BL = B

aboratorv

- C57BL/6J = B6
- C57BL/6JEi = B6Ei
- C57BL/10 = B10
- C57BR/cdJ = BR

- C57L = L
- CBA/CaGnLe = CBACa
- CBA/J = CBA
- C3H/HeJ = C3
- C3HeB/FeJ = C3Fe
- DBA/1J = D1
- DBA/2J = D2
- NZB/BINJ = NZB
- NZW/LacJ = NZW
- RIIIS/J = R3
- SJL/J = SJL or J
- SWR/J = SW

http://jaxmice.jax.org/info/hybrid_nomenclature

Hybrid Nomenclature

C57BL/6J x DBA/2J ↓ B6D2F1/J x B6D2F1/J ↓ B6D2F2/J

- Inbreds
- Hybrids
- **GEMM**TM Strains

Spontaneous, Transgenic, Targeted and Congenics

GEMM[™] Strains

Evaluate single gene function(s) in normal & diseased pathways

Spontaneous Mutation

Random, altered gene function

Targeted Mutation (tm) ("Knockout")

Targeted DNA construct, loss-of-function

Transgenic (Tg)

(Randomly) inserted DNA construct, "overexpression"

Congenic – Mutation or transgene placed on a pure inbred background

Spontaneous Mutant Strain Nomenclature

129P3/J-Leprdb-3J/J

Background Strain

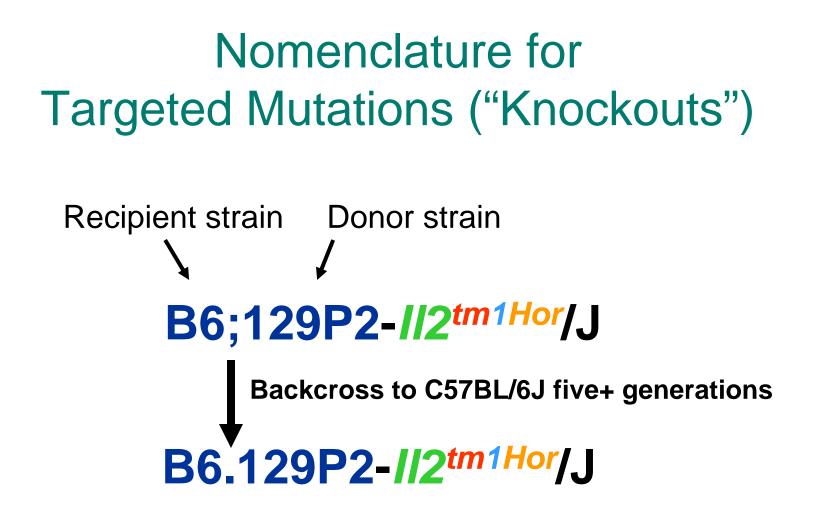
Gene Affected

Type II Diabetes

Obesity, Hyperglycemia, Hyperinsulinemia, Insulin Resistance, Hyperphagia.

Diabetes severity highly dependent on genetic background: C57BLKS/J, C57BL/6J, 129P3/J

Allele Designation


Lab Maintaining Strain

Nomenclature for Targeted Mutations ("Knockouts") B6;129P2-//2^{tm1Hor}/J **Background (mixed) Targeted gene Targeted mutation** Line number Lab registration code Lab maintaining strain

129 Nomenclature at http://jaxmice.jax.org/info/bulletin/bulletin01.html

Genetic Background Effects Interleukin 2 targeted mutation ("Knockout")

Strain	Mortality	Colitis	Anemia
B6;129P2- <i>II2^{tm1Hor}</i> (original publication)	4-9 wks	Progressive	Yes
B6.129P2- <i>II2^{tm1Hor}/</i> J	pre & post wean loss, 10-25 weeks	Progressive Heath status dependent	Yes
C.129P2(B6)- <i>II2^{tm1Hor}/J</i>	3-5 wks	None	Yes

Schorle, et al., Nature 352:621-62, 1991

Environmental Effects

Housing Conditions- Interleukin 10 Knockout

Conventional

Severe inflammatory bowel (colitis), rectal prolapse, poor breeding

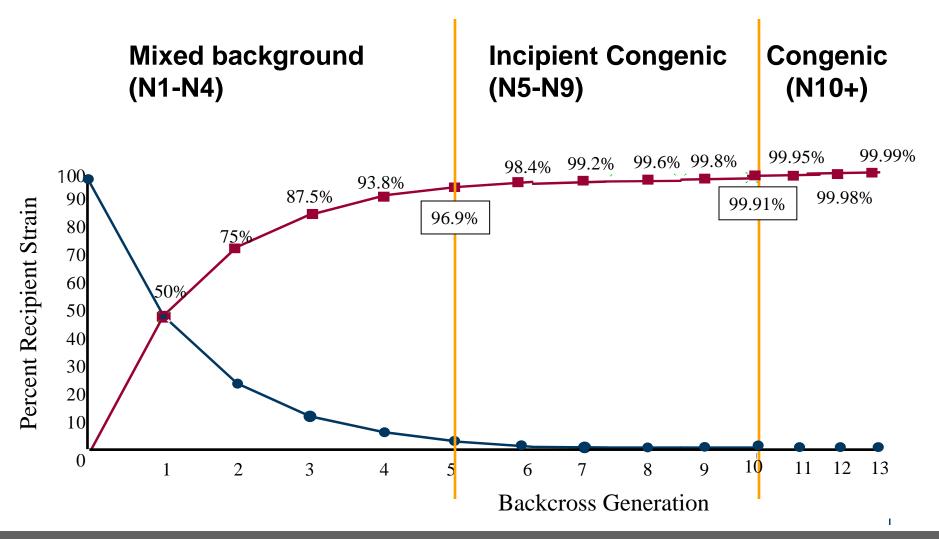
• Germ Free or Specific pathogen free (SPF) No abnormal symptoms, normal breeding

Drug treatment

 Anti parasitic drugs such as ivermectin can alter strain behavior Davis et al., Lab Animal Sci 49:288-296, 1999

Experimental design- obese strains

• Over handling obese mice causes stress related weight loss


Congenic Strains

☆ Genetic uniformity reduces phenotypic variability

- Transfer mutation or transgene onto inbred background
- Repeated backcrosses of a donor (mutant) strain to an inbred (recipient) strain
- Maintain as homozygotes and use inbred control
- Create multiple strains on different inbred backgrounds
- Allows examination of modifier genes
- N10 generation time takes 2 to 3 years or use speed congenics (1 to 1.5 years)

Nomenclature for Transgenics

C57BL/6-Tg(ACTB-EGFP)131Osb/J

Background Strain

Transgenic

Promoter

Gene expressed

Founder line number

Lab registration code

Lab Maintaining Strain

Nomenclature for Transgenics B6.Cg-Tg(BCL2)22Wehi/J

Background Strain

Transgenic

Gene expressed

Founder line number

Lab registration code

Lab Maintaining Strain

Original: STOCK Tg(BCL2)22Wehi

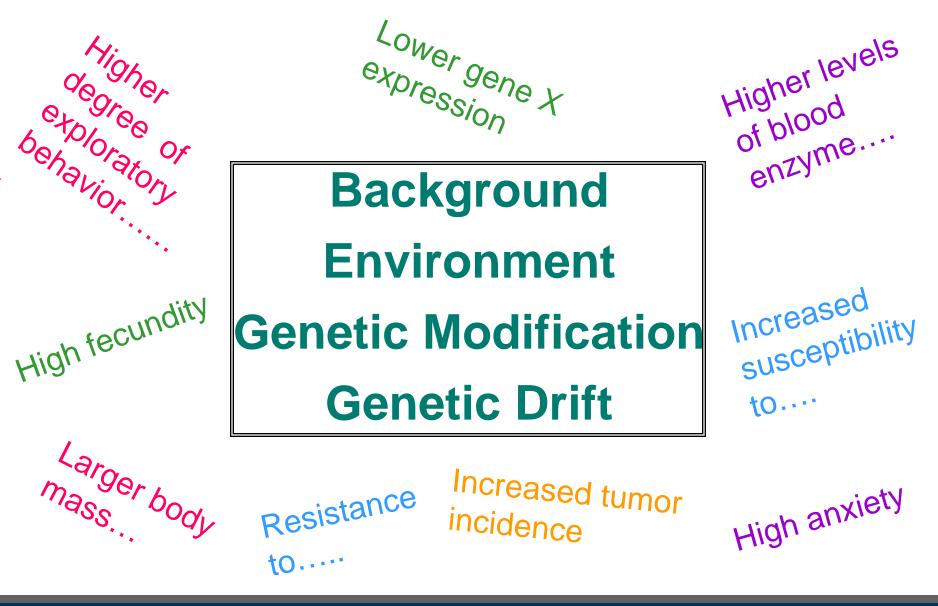
Genetic Modification Effect B-cell Leukemia/Lymphoma 2 Induced Mutations

Transgenic Overexpression

Promoter: E mu *lgh*, immunoglobulin heavy chain B6.Cg-Tg(BCL2) 22 Wehi/J B-cell lineage B6.Cg-Tg(BCL2) 25 Wehi/J T-cell lineage B6.Cg-Tg(BCL2) 36 Wehi/J B & T-cell lineages

C57BL/6 Publications

Total 18,075 PubMed publications using C57BL/6 mice


Substrain	# of Citations*
C57BL/6J	7,660
C57BL/6N	586
C57BL/6JIco	19

	Robert A. Taft. Mutiel David
	The Jackson Laboration
REVIEWS	Robert A. Taft. Muriel Davisson and Michael V. Wiles
	biology biology
	The mouse as a model for human biology: a resource guide for complex trait analysis
	Suide for
	Luanne L. Peters, Raymond F. Beverly J. Palgen and Called VSIS
	erative
anal	Il sequencing and comparative yes of the mouse genome sequence of the second se
anal	seguring concerner Security Concerner Characteristics of a lot of designer deriftending be contend of the based generate and a lot deriftending be contend of the
anal	

Complete nomenclature benefits everyone!

* Based upon an Oct 2007 survey of all PubMed citations without any limits (time, field, language, etc.)

The Dynamic Genome

Genetic Drift

Fundamental tendency of any allele to vary randomly in frequency over time due to statistical variation alone. Small populations are subject to more drift than large ones because departure from the norm (ie mutation) in one individual causes a disproportionately greater deviation from the norm.

Natural selection

Tendency of beneficial alleles to become more common, and detrimental ones less common, over time.

Genetic Instability...Friend or Foe?

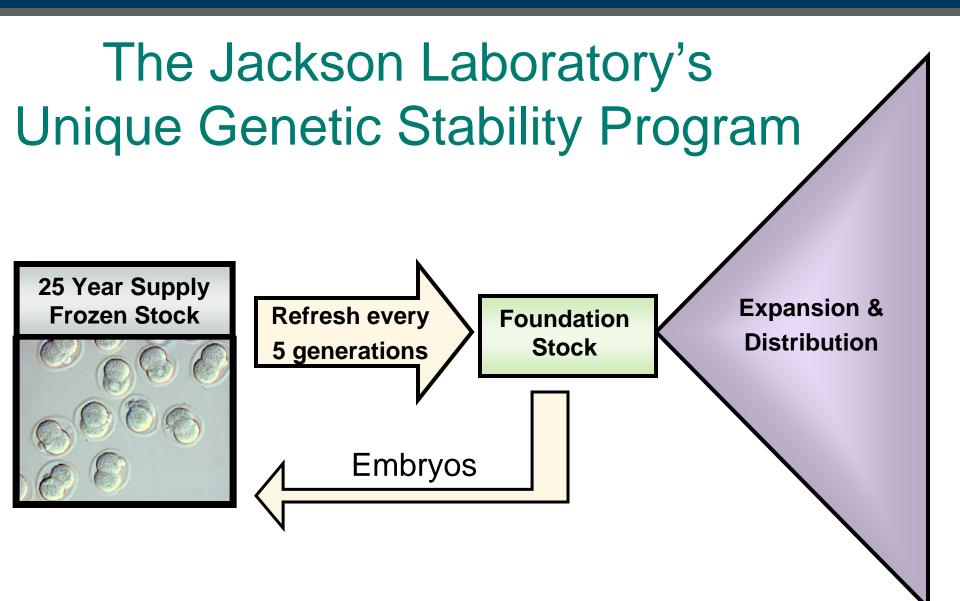
Aggravated Grad Student

Data Diversity

Species Diversity

2. Geospiza fortis

4. Certhidea olivacea


1. Geospiza magnirostris

Geospiza parvula

Minimizing Genetic Instability

- Maintain detailed colony records
- Watch for phenotypic changes in controls
- Test breeder stocks for genetic purity
- Avoid selection pressure
- Cryopreserve unique models!
- Replace breeders frequently (F5-10 generations)
- NOTE: C3H/HeJ ≠ C3H/HeNTac ≠ C3H/HeNCrIBR

Take me home.....

- Know your nomenclature
- Use complete nomenclature in your publications
- Research your strain background
- Consider analyzing mutations on multiple backgrounds
- Consider that genetic drift can alter phenotype
- Adhere to strict colony management practices
- Replace breeders from trusted vendor regularly!

The Jackson Laboratory

Nomenclature experts: nomen@informatics.jax.org

Need help? micetech@jax.org

