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Abstract
Control charts, the most popular tool of statistical process control, appeared in the
literature to ensure that an industrial process is operating only with natural variability,
i.e., under statistical control. In the last decades, control charts have been also widely
used to assess the quality of non-industrial processes, such as medicine and public
health. Mainly in the last two decades, a modification of standard and advanced con-
trol charts appeared in the bibliography to improve the monitoring mainly of medical
processes. This is the risk-adjusted control charts which take into consideration the
varying health conditions of the patients. These charts are used to monitor certain
medical processes such as surgeries, mortality, and doctors’ experience. In this paper,
we have tried to present all the risk-adjusted control charts presented in the litera-
ture appropriately categorized. The risk-adjusted charts have been grouped into three
categories: control charts for continuous variables, control charts for attributes (non-
continuous variables), time-weighted control charts. The application of risk-adjusted
control charts in practical medical processes is also discussed. This review paper
highlights the value of the risk-adjusted control charts.
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1 Introduction

Control charts (CCs) are a tool of statistical process control (SPC) mainly used to
monitor whether industrial processes operate under statistical control. A control chart
is a graphical representation of an appropriate function of the sample values of a
variable measuring the quality of the final product versus the sample number or time.
The main components of a control chart are the central line and two other lines—the
lower control limit and the upper control limit. If the depicted points are between the
control limits, the process is declared to be under statistical control.

The use of CCs involves two phases: I and II (see, e.g., Montgomery [56]). In
phase I, the researcher collects a set of process data and analyzes them retrospectively,
constructing trial control limits in order to determine if the process has been in control
over the period of time duringwhich the data were collected. In phase II, the researcher
uses the CC in order to monitor the process by comparing the sample statistic for each
successive sample as it is drawn from the process to the control limits.

A typical CC consists of a center line (CL) and two control limits: the upper and
the lower control limits (UCL and LCL, respectively). The CL represents where this
characteristic under study should fall if there are no unusual sources of variability
present. The two control limits are determined, usually, from some simple statistical
considerations [56]. An example of a typical CC, taken from Sasikumar and Devi [68],
is presented in Fig. 1. The CL represents the average HemoglobinA1C (HbA1C) level
of Type 2 diabetic patients. The average HbA1C level for the first period is above the
UCL (this is usually depicted a star), which means that the process is out of control.

In the last decades, SPC techniques, and mainly the control charts, have been
widely used to monitor non-industrial processes [14,15]. In this context, in the last
two decades, several researchers applied and modified control charts for monitoring
medical processes (see among others Woodall [87]; Thor et al. [83]; Woodall et al.
[88]; Bersimis et al. [16]). In industrial processes the observations are usually homo-
geneous in nature. However, in medicine patients can vary greatly with respect to
their health and this may affect the outcome. To more effectively assess and monitor
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Fig. 1 An example of a typical control chart
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the performance of medical processes (such as surgeries), the risks that each patient
encounter should be taken into account. Thus, a new class of modified typical con-
trol charts appeared in the bibliography, under the name “risk-adjusted” methods in
order to take into account the different risks and characteristics of the patients. In
other words, risk adjustment (RA) is a statistical technique for reducing the effects of
confounding factors that a patient may bring to a health care encounter [36].

Hendryx et al. [39] developed and tested risk-adjustment outcome models in pub-
licly funded mental health outpatient programs. Such models improve quality by
enabling the straightforward and fair comparison of outcomes across agencies. No
mention to control charts was made in this paper. Benneyan and Borgman [13] briefly
discussed risk-adjusted sequential probability ratio tests and longitudinal surveillance
methods and noted the contribution of the risk-adjusted methods to the better monitor-
ing and assessment of health processes and outcomes. Murtaugh et al. [59] developed
risk-adjustment models (i.e., logistic regression models) to improve the effectiveness
of home health quality measures. However, they did not use control charts.

Winkel and Zhang [86] devoted the second part of their book, which deals with
statistical development of quality in medicine, on risk adjustment. Especially the sixth
section presents several risk-adjusted control charts. Grigg and Farewell [31] provided
an overview of risk-adjusted charts, with examples based on real data. The review
paper of Cook et al. [23] is a good introduction to the use of risk-adjustment methods
to track mortality rates. The book of Iezzoni [41] presents the basic principles and
concepts of risk adjustment for measuring healthcare outcomes. It also explains why
risk adjustment is a crucial instrument for measuring quality. Devoted to development
and use of RA SPC methods for monitoring and improvement of clinical outcomes
in Interventional Cardiology is the doctoral thesis of Smith [74]. Koetsier et al. [47]
conducted a simulation study to evaluate the performance of RA control charts to
monitor in-hospital mortality of intensive care unit patients.

Recently, Zeng [90] reviewed the main developments concerning the two basic
problems involved in RA: performance monitoring establishing risk-adjustment mod-
els, which includes identifying the appropriate performance measures to monitor and
associated patient risk factors, constructing statistical models that characterize the
dependency of the performance measures on the risk factors, and change detection
based on the established models, which includes estimating baseline parameters of the
risk-adjustment models and detecting deviations from them.

Steward and Rigdon [80] addressed the problem of RA monitoring as a change-
point problem with several possible change-point models. This Bayesian approach
generalizes previous RA charts in that they look for changes in any of the parameters.
However, they did not propose a new RA control chart. The aim of the present paper
is to present theory and applications of risk-adjusted control charts.

In this paper, we systematically reviewed the advances concerning the risk-adjusted
control charts presented in the literature. We categorized the papers included in the
review to RA variable control charts, RA control charts for attributes, time-weighted
RA control charts, multivariate RA control charts, and applications of RA control
charts. The above categorization was selected in order to follow the typical classi-
fication of data on quality characteristics as attributes or variables data (see, e.g.,
Montgomery [56]). When we refer to variables data we usually mean continuous
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Table 1 Number of published
papers

Category # of papers

RA CCs for variables 5

RA CCs for attributes 7

Time-weighted RA CCs 35

Multivariate RA CCs 1

Applications of RA CCs 23

Total 71

measurements, while when we refer to attributes data we usually mean discrete data.
Control charts for variables and attributes plot single data points over time while
time-weighted CCs use previous values.

The paper is organized as follows: Sect. 2 describes the literature search strategy.
Section 3 deals with risk-adjusted control charts for continuous variables, while Sect.
4 deals with risk-adjusted control charts for attributes (i.e., non-continuous variables).
Section 5 presents time-weighted risk-adjusted control charts. Sections 3–5 are divided
into two subsections: the first one presents the advances on RA CCs while the latter
presents a typical example. Section 6 is devoted to applications of risk-adjusted control
charts. The last section discusses several open problems on the field of risk-adjusted
process monitoring.

2 Search Strategy

In order to identify relevant papers, we searched the Google Scholar database using the
term “risk adjusted control charts” or combination of these terms like “risk-adjusted”
and “control charts”. 173 papers were retrieved. All three authors screened the titles
and abstracts of the results in order to assess their relevance. All the 173 papers passed
the screening procedure. Then we reviewed the full text of the papers to confirm that
all inclusion criteria were met. We also reviewed the references of eligible papers to
identify additional relevant articles.

Finally, 71 articles were included in this review paper (Table 1). The majority of
them (35 papers) are papers about time-weighted RA control charts, 7 papers regard
RA control charts for attributes, and 5 papers regard RA variable control charts. Only 1
paper deals with multivariate RA control charts, while 23 papers present applications
of RA control charts.

The inclusion criteria were (i) presentation of RA control charts, (ii) application of
RA control charts, and (iii) written in English.

The above categorization indicates the structure of the paper,with the difference that
the one and only paper about multivariate RA control charts will be incorporated in the
time-weighted RA control charts’ section, as it is actually an attempt of generalizing
a time-weighted RA control chart.
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3 Risk-Adjusted Control Charts for Variables

3.1 Theoretical Aspects

Alemi et al. [4], in the context of health care assessment, presented a methodology
for adjusting control charts for mortality rates to reflect patients’ severity of illness
during different time intervals. They demonstrated that risk-adjusting expected patient
outcomes can change the assessments of the relative quality of care offered by a health
care organization in different time periods. Denoting by ni the number of cases for a
time period, to risk-adjust control chart data the researcher has to follow four steps:

1. Determine the number of expected deaths after risk adjustment in each time period,∑ni
j=1 Pi j

2. Calculate the expected mortality rate for each time period, P̂i =
∑ni

j=1 Pi j
ni

3. Calculate the standard deviation of the expectedmortality rate for each time period,

Ŝi =
√∑ni

j=1(P̂i j (1−P̂i j ))

ni
4. Calculate the risk-adjusted upper and lower control limits for each time period,

as LCLi = P̂i − ta/2 Ŝi and UCLi = P̂i + ta/2 Ŝi , respectively, where ta/2 is the
a/2 critical value of the t distribution. These are called the expected upper control
limit and the expected lower control limit, respectively.

To predict outcomes for each patient, a regression model which includes all the patient
data is used. Since the model only uses severity of illness variables to predict the
number of patients not discharged alive in each of the time periods, this model in
effect produces a risk-adjusted estimate of the number of deaths that should have
occurred in each time period. Obviously, Pi j may be any rate or percentage of interest.

Alemi and Sullivan [3] presented a tutorial on risk-adjusted X̄ charts and their
applications to measurement of diabetes control. The nine steps for a risk-adjusted X̄
chart are presented in Table 2. The assumptions that should be hold are (i) continuous
observations, (ii) independent observations, (iii) more than five observations in each
time period, (iv) normal distributions, and (v) variances of observations over time are
equal. The average of observations for time period i , Ai is calculated as

Ai =
ni∑

j=1

Ai j

ni
,

where Ai j and ni are the j-th observation and the number of observations in the i-th
time period. Then, a scatter plot of averages against time periods can be constructed.
The expected (predicted) values Ei j are then calculated through a regression model.
The average of expected values for time period i , Ei , is calculated as

Ei =
ni∑

j=1

Ei j

ni
.

123



Statistics in Biosciences (2019) 11:630–658 635

Table 2 The nine steps for a
risk-adjusted X̄ chart

Step Description

1 check assumptions

2 determine the average of all
observations in each time period

3 create a plot of the averages over time

4 calculate and plot expected values
using a severity adjustment tool

5 calculate the expected average for
each time period

6 calculate the standard deviation of
the difference between observed
and expected values for each time
period

7 calculate and plot the control limits

8 interpret the findings

9 distribute the chart and the findings

Then, the standard deviation of the differences, Di j = Ai j − Ei j , is calculated as

Si =
√
√
√
√

ni∑

j=1

(Di j − Di )2

ni − 1
,

where Di is the average of the differences for the i-th time period. Then the con-
trol limits are set at two or three standard deviations away from the expected values
(depending on the degree of precision the researcher wants to achieve—the higher the
cost of making an erroneous conclusion, the tighter the limits should be), i.e.,

LCLi = Ei − ta/2 × Si and UCLi = Ei + ta/2 × Si .

The interpretation of the chart is as usual.
Hart et al. [37] discussed the use of 3-sigma X̄ and S control charts for continuous

data that are often skewed. The key feature of these charts is their application of
risk-adjusted data in addition to actual performance data. The resulting charts should
decrease the occurrence of both type I and type II errors as compared to the unadjusted
control charts.

Zhang et al. [92] developed a phase I risk-adjusted Shewhart control chart for
monitoring surgical performances. The risk-adjusted statistic used is shown to be a
likelihood-ratio test statistic. The procedure consists of 3 steps. At the first step, a
logistic regression model

log

(
z

1 − z

)

= a + bx

123



636 Statistics in Biosciences (2019) 11:630–658

is fitted using historical data of the form (xt , yt ), t = 1, 2, . . . , N from N patients
operated by m surgeons to estimate the true probability of death z of a patient who
undergoes a cardiac operation. The xt is the Parsonnet score, i.e., a score based on a
patient’s characteristics [63] and yt is the operation outcome of patient t (1 if the patient
dies within 30 days or 0 if the patient survives). The surgical outcome is determined
by two main factors: the surgeon who performs the operation and the condition of the
patient which is summarized by the Parsonnet score. This probability of death is based
on the average performance of the m surgeons. At Step 2,

Ẑ = eâ+b̂X

1 + eâ+b̂X

is used to calculate the predicted probabilities of death ẑt , t = 1, 2, . . . , N and the
risk-adjusted outcomeswt = yt − ẑt , t = 1, 2, . . . , N . At the third step, a lower-sided
Shewhart chart using the negative wt ’s and an upper-sided Shewhart chart using pos-
itive wt ’s is set up to identify points that are beyond the chart limits. Any of these
points will be removed if an assignable cause can be found. The chart limits are then
recalculated using the reduced dataset to identify points that are beyond the chart
limits. This process is repeated until no more points can be removed.

The lower control limit can then be set at

LCL ≈ αL-th sample quantile of {wt |wt ≤ 0, for t = 1, 2, . . . , N },

while the upper control limit can then be set at

UCL ≈ (1 − αU)-th sample quantile of {wt |wt > 0, for t = 1, 2, . . . , N },

where αL = max
{
0.00135, kL

# of wt<0

}
and αU = max

{
0.00135, kU

# of wt>0

}
. The

value 0.00135 comes from the traditional 3-sigma Shewhart control charts. Using
the maximum of the two numbers is to ensure that the checking rate is not less than
0.135%. Both control limits can be obtained by using the bootstrap method.

Asadayyoobi and Niaki [6] proposed a general Phase I accelerated failure time
(AFT)-based RA control chart for monitoring continuous surgical outcomes based on
a likelihood-ratio test derived from a change-point model. Assuming that Ti is the
random variable denoting the failure time of the i-th subject, and xi1, . . . , xip are the
values of covariates for the same subject, the AFT model is

log Ti = β0 + β1xi1 + β2xi2 + · · · + βpxip + σεi ,

where εi is the random disturbance term. Define ψ(sl) as the parameter vector of the
risk-adjustment model for observations s+1 to l. Suppose an assignable cause occurs
at an unknown time τ , which leads to the change of the parameter vector from the
in-control vector ψ (0l) = βT

0 = (γ T
01, γ

T
02, . . . , γ

T
0K , βT

0 )T to the out-of-control vector
ψ (τ l) = βT

1 = (γ T
11, γ

T
12, . . . , γ

T
1K , βT

1 )T. If all the data follow an identical distribution,
i.e., ψ(0l) = ψ(τm) for all τ = u, u + 1, . . . ,m − u, then the process is in-control,
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Fig. 2 The RA CC for monitoring the HbA1C level

where u (u > the number of coefficients) is the minimum required sample size to
estimate the parameters of the RA model. The value of u is chosen so that at least one
outcome with value 0 and one outcome with value 1 exist among the sampled data
from 1 to u and also fromm − u+ 1 tom. Then, the aim is to evaluate the hypotheses

H0 : ψ (0τ) = ψ (τm) − H1 : ψ (0τ) �= ψ (τm), τ = u, u + 1, . . . ,m − u.

ψ (0τ) or βT
0 is the parameter vector of the RA model for observations 1 to τ (before

the change) and ψ (τm) or βT
1 corresponds to the parameter vector after the change.

This monitoring procedure is more sensitive in detecting increases in mortality rate
than a procedure that only uses binary outcomes.

3.2 Example

In this subsection, we present the application of a RA x̄ control chart for monitoring
HemoglobinA1C (HbA1C) level of Type 2 diabetic patients [68]. The HbA1C level
were collected from 8 patients for 10 times. To construct the CC, we need the number
of cases in each time period, the actual HbA1C level for individual cases, the average
HbA1C level for specific time periods, and the expected HbA1C level for individual
cases. Following the procedure of Alemi and Sullivan [3], we take the CC of Fig. 2,
fromwhich we conclude that after patient-mix adjustment the process is characterized
as in-control.

4 Risk-Adjusted Control Charts for Attributes

4.1 Theoretical Aspects

Alemi and Oliver [2] presented a step by step tutorial on the construction of a RA p-
chart, inwhich both the observed and the expected rates are plotted. They demonstrated
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the use of the RA version of the chart to data regarding falls in nursing homes. To
calculate the expected rate of falls, the formula

Ei = 1

N

Ni∑

i=1

Ei j ,

where Ei j is the expected fall rate of case j in time period i , is used. The expected
fall rate can be calculated using the expected probability of falls for each patient.

Hart et al. [36] presented a new class of control charts for monitoring and improv-
ing health care performance. These charts combine observed rates with the rates
obtained from a risk adjustment process using multivariate logistic regression mod-
els. These control charts are either additive or multiplicative models depending on
how the observed and risk-adjusted data are combined. Through the comparison of
each patient’s demographic and clinical history with a large reference population, the
risk-adjustment process estimates the a priori probability of occurrence of some event
for each patient. Month i will have ni of these estimates, with their sum being the
expected number of occurrences for the month Ei . Because of the averaging meth-
ods of risk adjustment, the month-to-month variation of the monthly Ei values tends
to be much lower than that of the observed Oi values; the expected monthly counts
are not binomially distributed. To avoid any possible confusion between the distribu-
tional properties of the observed monthly mortality count and the monthly expected
mortality count, the monthly expected mortality rate (not proportion) is referred as
Ei/ni = rEi (where rEi is the expected rate). Additive models work with the dif-
ference rDi = pOi − rEi . Because the difference in rates alone can be misleading
because its significance should be assessed in relation to the size of expected rate,
a multiplicative model should be considered. The multiplicative method the authors
considered was based on the indirect standardization approach. Ai is the “adjusted
observed occurrence count” indirectly standardized to the overall expected rate, rE .
The Ai values are the counts that would have occurred if the same standard risks were
observed each month and are assumed to be binomially distributed. The risk-adjusted
mortality proportion each month is therefore

pAi =
Oi

(
rĒ
rEi

)

ni
.

Because the variation in rEi is small, as noted previously, the quotients
rĒ
rEi

will be

close to unity and the variations of the pAi values will be close to those of pOi . The
authors then compared six control charts—a p chart on observed proportions, a run
chart on expected rates, a p chart on risk-adjusted proportions with no standard given
(the centerline is calculated from the data), a p chart on risk-adjusted proportions with
standard given (the centerline is calculated from the “standard” value), a special “rate
difference” chart on risk-adjusted differences with no standard given, and a special
“rate difference” chart on risk-adjusted rate differences with standard given. A p chart
is a chart that monitors the process fraction non-conforming p, while a run chart plots
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Table 3 The steps for a
risk-adjusted negative binomial
charts

Step Description

1 Before the monitoring phase starts, take the following
preliminary steps

1a Select a desired ARL∗ = 1/α and a degree of change θ

during out of control that should be optimally
protected against

1b Apply the rule of thumb
r̃opt = [α(2.6θ + 2) + 0.01(4θ − 3)]−1 to obtain r
(typically truncate at 5 in practice)

1c Find λ such that P(Zλ) ≥ rα, where Zλ is Poisson, or
simply use its approximation λ̃ = αr (1 + ζr ) with
ζr = αr

r+1 + 0.5α2r
3r+5

(r+1)2(r+2)

1d Wait till m failures have occurred

1e From this Phase I sample, evaluate the fraction of
failures p j for each of the categories j = 1, . . . , k

2 Now wait till Y1, the moment at which the r -th failure
occurs

3 Obtain the corresponding numbers g j from category j

(i.e.,
∑k

j=1 g j = Y1)

4 Give a signal if
∑k

j=1 g j p̂ j ≤ λ; otherwise go back to
Step 2, leading to Y2, Y3, . . .

∗ ARL = Average Run Length, i.e., the expected
number of subgroups until a control chart first signals

the data values versus time [56]. They concluded that only the p chart on risk-adjusted
proportions with no standard given can be used to assess whether the risk-adjusted
mortality rate is stable over time, while the p chart on risk-adjusted proportions with
no standard given can be used to assess whether the risk-adjusted results fail to meet
expectations.

Albers [1], in the context of health care monitoring, presented the way that infor-
mation about category membership can be used to adjust the basic negative binomial
charts to the actual risk incurred. The steps to apply the RA control chart are presented
in Table 3.

Zeng and Zhou [91] proposed a Bayesian approach for risk-adjusted monitoring of
health care outcomes in the case where historical data are not available. The detection
of change was formulated as a model-selection problem and solved using a popular
Bayesian tool for variable selection, the Bayes factor. The steps to apply the Bayesian
approach are presented in Table 4.With this procedure, the changes in a care provider’s
performance is detected promptly as the information on the performance is updated
as each patient outcome becomes available.

Paynabar et al. [65] presented a general Phase I risk-adjusted control chart for
monitoring binary surgical outcomes based on a likelihood-ratio test derived from a
change-point model. Different from the existing methods, this paper further shows
that the binary surgical outcomes depend on not only the patient conditions described
by the Parsonnet scores but also on other categorical operational covariates, such
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Table 4 The steps for the
Bayesian approach of Zeng and
Zhou [91]

Step Description

Step 1 Specify priors for the change point K and the parameter
of the logistic regression model β

The prior of K follows a discrete
uniform(1, 2, . . . ,m − 1,m) distribution

When prior information, related historical data or
domain expert knowledge, is available, a conditional
means prior of β will be specified following the CMP
procedure proposed by Bedrick et al. [25]. When there
is no prior information, a truncated flat prior will be
specified by common sense

Step 2 Conduct change detection: as each new data point
(xm , ym ),m ≥ 2, is obtained, BFm is calculated
through the procedure presented in Section 3.3 and
compared with a preset threshold η. If BFm > η, M1
will be selected, indicating that a change, either a
performance improvement or deterioration, has
occurred, and then the change point will be estimated.
Otherwise, M0 will be selected, meaning that there
has been no change till now

as different surgeons. The inclusion of the categorical surgeon covariate in the risk-
adjustment model effectively models the heterogeneity of the surgical outcome data
and the risk-adjusted chart provides better detection power.

Mohammadian et al. [55] proposed a RA geometric control chart for monitoring the
number of patients survived at least 30 days after a surgery. In this chart, the patient’s
risk is modeled using a logistic regression. The new scheme is proposed to be used in
Phase I where a likelihood-ratio test derived from a change-point model is employed.
Compared to the chart with a binary random variable, the RA geometric control chart
is more effective as far as power is concerned.

Recently, Bersimis et al. [16] presented a new method for the monitoring doctors’
performance and the assessment of their competence usingmore than one performance
outcome variable. Although their method does not take patients’ heterogeneity into
account, they outlined its risk-adjusted version, fitting a logistic regression model in
the Phase I analysis.

4.2 Example

In this subsection, we present the application of a RA control chart for monitoring
falls in nursing homes. Following the steps of Alemi and Oliver [2] (i.e., calculation of
observed rates, of expected rates, of expected deviation, and of control limits), we take
the CC of Fig. 3, from which we conclude that after taking into account the fall risk
factors (e.g., ability to ambulate, presence of chronic medical conditions, number of
medications, mental status, history of falls), the process is characterized as in-control
as none of the expected fall rates are outside the control limits.
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Fig. 3 The RA CC for monitoring the fall rate

5 Time-Weighted Risk-Adjusted Control Charts

5.1 Theoretical Aspects

Time-weighted control charts use information fromboth current and past observations.
Themain time-weighted control charts are the cumulative sum (CUSUM) control chart
and the Exponentially Weighted Moving Average (EWMA) control chart.

Lovegrove et al. [50] modified the CUSUM chart to weight death and survival by
each patient’s risk status and to provide a display of surgical performance over time.
This chart was called variable life-adjusted (VLAD) chart and shows the difference
between expected and actual cumulative mortality. This chart is just a descriptive
technique and can be applied to any area of clinical practice. Lovegrove et al. [51]
described an alternative approach which takes account of an individual cardiac sur-
geon’s case mix by explicitly incorporating the inherent risk faced by patients due to
a combination of factors relating to their age and the degree of disease they have.

Poloniecki et al. [66] proposed cumulative plots for the expected mortality counts
minus the observed counts (E–O chart, i.e., a VLAD-type chart) that could be applied,
for example, to physicians or hospitals, while Steiner et al. [79] described a new
CUSUM procedure that adjusts for each patient’s pre-operative risk of surgical failure
through the use of likelihood-based scoringmethod.The authors proposed twopossible
log-likelihood-ratio scores, i.e.,

Wt =

⎧
⎪⎨

⎪⎩

log
[

(1−pt+R0 pt )RA
(1−pt+RA pt )R0

]
, if yt = 1

log
[
1−pt+R0 pt
1−pt+RA pt

]
, if yt = 0,

where pt is the estimated risk, R0 and RA are the odds ratios under the null and the
alternative hypotheses, respectively.

Grigg et al. [33] discussed the use of charts derived from the sequential prob-
ability ratio test (SPRT): the CUSUM chart, RSPRT (resetting SPRT), and FIR
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(fast initial response) CUSUM. They described the theoretical development of the
methods and explored some considerations including the approximation of aver-
age run lengths (ARLs), the importance of detecting improvements in a process, as
well as detecting deterioration and estimation of the process parameter following a
signal.

Sismanidis et al. [73] explored the properties of the cumulative RA mortality
(CRAM) chart, including the number of deaths before a doubling of the death rate is
detected. Grigg and Farewell [32] proposed the RA version of the Sets method [18]
for monitoring adverse medical outcomes and presented the graphical representation
of it, called the Grass plot. For the risk-adjusted Sets method, the authors imposed
three restrictions: (i) the weights added to the size of a set at each observation need
to be equivalent for successes and failures, (ii) the weight for average risk patients
equals to one, and (iii) a weight is added on each observation such that, if subsequent
observations were all of the same risk type, it fixes the expectation of the in-control
size of set to be equal to that if all subsequent observations were of average risk type
and weight one was added at each stage.

Sherlaw-Johnson [71] proposed to apply the control limits from CUSUM charts
onto the VLAD, enhancing in this way the role of VLAD as an effective monitoring
tool.

Biswas and Kalbfleisch [17] outlined a RA-CUSUM procedure based on the Cox
model for a failure time outcome. This work seems to be the first to use survival
analysis models formonitoring [27]. The Cox regressionmodel based on themeasured
covariates Zi is

α(xi ) = λ0 exp{ZT
i β},

where α(xi ) is a national average failure rate for an individual with covariate Zi . The
authors presented both the continuous and the discrete version of the method.

Sego et al. [70] proposed a RA survival time CUSUM chart, called RAST CUSUM
for monitoring a continuous, time-to-event variable that may be right censored.
Risk adjustment is accomplished using accelerated failure time regression models
to account for the heterogeneity among patients. The predicted density and survival
functions from the accelerated failure time model are then used to construct a like-
lihood ratio for the scores in the chart. This chart detects more efficient a sudden
increase in the odds of mortality than the Steiner et al. [79]’s chart.

Gandy et al. [27] investigated how time-to-eventmodelsmay be used formonitoring
purposes. They considered monitoring using CUSUMs based on the partial likelihood
ratio between an out-of-control state and an in-control state. They also considered
both proportional and non-proportional alternatives, as well as a head start. Against
proportional alternatives, they presented an analyticmethod of computing the expected
number of observed events before stopping or the probability of stopping before a given
observed number of events.

Steiner and Jones [78] proposed an updating EWMA (uEWMA) control chart to
monitor risk-adjusted survival times. The uEWMA is defined as

Et = γ sit + γ (1 − γ )si−1,t + γ (1 − γ )2si−2,t + γ (1 − γ )3si−3,t + . . .
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where sit is the score for patient i (i denotes the order of surgery) at time t . At time
t , for patient i , the available information are (xit , δi t , ui ), where xit is the minimum
of the current time since time zero, the time to death and the follow-up time (or time
at occurrence of a competing risk) each minus the time of surgery, δi t is an index
function (it equals to 1 if patient i dies by time t and to 0 otherwise), and ui is a vector
of covariates. The values of the covariates are determined only at the time of surgery
(they are not updated as time goes on). If t is the current time, ai is the time of surgery,
ci is the time of a competing risk (or follow-up time), and di is the time of a death,
then xit = min{t, ci , di )} − ai . For patient i there are three possibilities for (xit , δi t ).
These are (i) death, i.e., (xit , 1), where xit = di − ai is the time between surgery and
death, (ii) success, i.e., (xit , 0), where xit = ci −ai is the time between surgery and the
follow-up time (or some competing risk), and at risk, i.e., (xit , 0), where xit = t − ai
is the time between surgery and the current time. The patient scores, sit , are based on
(xit , δi t , ui ); hence, as xit and possibly δi t change for case (iii) as time passes, so will
(some of) the scores. A patient in case (iii) can become case (i) or (ii) or remain in
case (iii) with a larger xit . Note that once a patient is in case (i) or (ii) xit and δi t (and
thus the patient score) stay the same. The patient scores also depend on the selected
survival time distribution.

Gombay et al. [29] proposed four sequential curtailed and risk-adjusted charts by
using score statistics. They performed Monte Carlo simulations to explore the merits
of each of these methods in terms of ARLs as well as in terms of type I probabilities.
They also compared the proposed methods to the RA-CUSUM chart. They illustrated
the methodologies by using data on monitoring performance of seven surgeons from
a cardiac surgery center in the UK. The proposed charts have different early stopping
(signaling a change) and error probability characteristics.

Assareh et al. [9] modeled change-point detection for a clinical process with
dichotomous outcomes (i.e., death and survival) through Bayesian hierarchical mod-
els. Then, they investigated the performance of the new estimators in conjunction with
the risk-adjusted CUSUM and EWMA control charts monitoring mortality rates. This
is also the topic of a chapter written by the same authors [10].

Assareh et al. [8] considered estimation of the time when a linear trend disturbance
has occurred in an in-control clinical dichotomous process in the presence of variable
patientmix.Tomodel the process and changepoint, they formulated a linear trend in the
odds ratio of a Bernoulli process using hierarchical models in a Bayesian framework.
The performance of the Bayesian estimator is investigated through simulations and the
result shows that precise estimates can be obtained when they are used in conjunction
with the risk-adjusted CUSUM and EWMA control charts for different magnitude and
direction of change scenarios.

Jones and Steiner [42] studied the effect of estimation error on risk-adjusted binary
CUSUMperformance using actual and simulated data on patients undergoing coronary
artery bypass surgery and assessed for mortality up to 30 days post-surgery. The effect
of estimation error was indicated by the variability of the “true” average run lengths
(ARLs) obtained using repeated sampling of the observed data under various realistic
scenarios.

Assareh and Mengersen [7] presented change-point Bayesian estimation methods
for the case of survival times. They first applied hierarchical models to formulate
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the change point and then captured the effect of risk factors prior to the surgery
using a Weibull accelerated failure time regression model and used Markov Chain
Monte Carlo to obtain posterior distributions of the change point parameters including
location and magnitude of changes and also corresponding probabilistic intervals and
inferences. The result shows that precise estimates can be obtained when they are
used in conjunction with the risk-adjusted survival time CUSUM control charts for
different magnitude scenarios.

Assareh et al. [11] developed change-point estimation methods through Bayesian
hierarchicalmodels for a clinical dichotomous process in the presence of casemix. The
performance of the Bayesian estimator was investigated through simulations and the
result showed that precise estimates can be obtained when they are used in conjunction
with the risk-adjusted CUSUM and EWMA control charts.

Richards et al. [67] proposed Poisson regression instead of the logistic regression
model used with Bernoulli data for the risk-adjusted monitoring of non-homogeneous
Poisson processes.

Tang et al. [81] developed the risk-adjusted CUSUM chart based on more than
two outcomes (e.g., death, return to operating room, postoperative stroke, mediastini-
tis, postoperative atrial fibrillation, and full recovery) with the aim to better monitor
surgical performance. The chart is obtained by plotting

Cn = max(0,Cn−1 + Wn),

where

Wn = log
f A(Sn,Yn)

f0(Sn,Yn)
.

The statisticWn is risk-adjusted by taking Sn , i.e., the patient’s risk score (a real number
measuring the mortality risk of a patient undergoing a cardiac surgery), into account.
f0 and fA are the joint density of (S,Y ) under the null and the alternative hypothesis,
respectively. Y represents the outcome of a cardiac surgery, usually assessed after 30
days. To estimate the probabilities of surgical outcomes, they used a proportional odds
logistic regression model.

Aminnayeri and Sogandi [5] proposed a self-starting scheme based on a paramet-
ric bootstrap method and dynamic probability control limits for the RA Bernoulli
CUSUM control charts. This method is appropriate whenever the nominal value of
the process parameter is unknown. Furthermore, it remedies the case where a fixed
control limit for the RA Bernoulli chart gives rise to a variable in-control average run
length performance for patient populations with dissimilar risk score distributions in
monitoring clinical and surgical performance.

Ghasemi et al. [28] applied a Bayesian estimation method to find the time and
the size of a change in patients’ post-surgery death or survival outcome. It should be
noted that the Bayesian estimator is better than the maximum likelihood estimator
when the magnitude of the change is small. The process is monitored in Phase I using
risk-adjusted log-likelihood-ratio test chart, in which the logistic regression model
is applied to take into account pre-operation individual risks. Markov Chain Monte
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Carlo method was applied to obtain the posterior distribution of the change-point
model including time and size of the change in the Bayesian framework and also to
obtain the corresponding credible intervals.

Zhang et al. [95] investigated the effect of estimation error on the performance
of risk-adjusted survival time CUSUM scheme in continuous time with the cardiac
surgery data. The impact was studied with the use of the median run lengths (medRLs)
and the standard deviation of medRLs for different sample sizes, specified in-control
median run length, adverse event rate, and patient variability. To account for patient
heterogeneity, they used an accelerated failure time (AFT) regressionmodel to estimate
the survival time distribution for each patient. The statistic of the risk-adjusted survival
time CUSUM chart is

S(t) = R(t) − min
s≤t

R(S),

where R(t) is log-likelihood-ratio test statistic for in-control versus out-of-control.
Simulation results showed that the performance of the risk-adjusted survival time
CUSUM chart is greatly influenced and this should be taken into account by practi-
tioners when they design the control chart.

Oliveira et al. [62] extended the risk-adjusted survival time cumulative sum (RAST
CUSUM) control chart to monitor a time-to-event outcome, possibly right censored,
by considering a regression model in which the covariates affect the cure fraction.
The CUSUM scores are obtained for Weibull and log-logistic promotion time model
to monitor a scale parameter for non-immune individuals. This chart is known as the
RACUF CUSUM (risk-adjusted with cure fraction CUSUM). The RACUF CUSUM
is better than the RAST CUSUM when monitoring data with cure rate, while it is
equivalent to monitoring data without a cure rate.

Keefe et al. [43] proposed a spatially RA Bernoulli CUSUM chart for concurrent
observations to monitor foreclosure rates. This is a modification of the RA Bernoulli
CUSUM chart developed by Steiner et al. [79], in the sense that

Wt = log

[∏nt
i=1 p

yti
1ti (1 − p1ti )1−yti

∏nt
i=1 p

yti
0ti (1 − p0ti )1−yti

]

=
nt∑

i=1

[

yti log

(
p1ti
p0ti

)

+ (1 − yti ) log

(
1 − p1ti
1 − p0ti

)]

,

where nt is the number of observations at time t , yti equals 1 for an event and 0
otherwise for the i-th observation at time t (i = 1, 2, . . . , nt ), and p0ti and p1ti are the
predicted probabilities under R0 and R1 for the i-th observation at time t , respectively,
using

p0ti = R0 pti
1 − pti R0 pti

and p1ti = R1 pti
1 − pti R1 pti

.

The spatially method detects out-of-control behavior of a process earlier than the RA
Bernoulli CUSUM.
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Sparks [76] developed an adaptive EWMA control chart that can be used as either a
p chart for monitoring significant departures from in-control non-homogenous prob-
abilities of failure or success or a risk-adjusted control chart for success or failure of
an event. The adaptive EWMA p chart uses the Adaptive Upper EWMA (AUE) and
Adaptive Lower EWMA (ALE) statistics

AUEt = max

(
pt

hu(α, pt , AT S0)
,

αyt
hu(α, pt , AT S0)

+ (1 − α)AUEt−1

)

,

and

ALEt = min

(
pt

hl(α, pt , AT S0)
,

αyt
hl(α, pt , AT S0)

+ (1 − α)ALEt−1

)

,

where pt is the non-homogeneous in-control p value, while hu(α, pt , AT S0) and
hl(α, pt , AT S0) are positive values that are selected to give an in-control average
time to a false signal (ATS) of AT S0, for flagging shifts on the high and low side,
respectively. The two-sided adaptive EWMA p control chart flags a change in likeli-
hood when either AUEt > 1 or ALEt < 1, where these threshold values are modified
using simulations but are close to 1. If the future shift is known approximately, then
we can select the exponential weights to detect this shift sooner than other EWMA
plans.

Zhang and Woodall [93] examined the effect of estimation error on the in-control
performance of the risk-adjusted Bernoulli CUSUM chart with dynamic probabil-
ity control limits (DPCLs) while the same authors applied the DPCLs developed for
the upper risk-adjusted Bernoulli CUSUM charts to the lower and two-sided charts
and examine their in-control performance [94]. The in-control performance of the
lower risk-adjusted Bernoulli CUSUM charts with DPCLs can be controlled for dif-
ferent patient populations, because DPCLs are determined for each specific sequence
of patients. Moreover, upper and lower risk-adjusted Bernoulli CUSUM charts with
DPCLs can be run side by side simultaneously to obtain desired in-control performance
for the two-sided chart for any particular sequence of patients.

Because there is a significant effect of varying risk distributions on the in-control
performance of the RA-CUSUM chart based onmultiresponses when constant control
limits are applied, Zhang et al. [96] applied dynamic probability control limits to it.
The RA-CUSUM chart for multiresponses with dynamic probability control limits is
more practical and should be applied to effectively monitor surgical performance by
healthcare practitioners.

Yue et al. [89] proposed a new risk-adjusted exponentiallyweightedmoving average
VLAD, called RAEV. The RAEV chart is designed to detect shifts in the odds ratios
of patients’ surgical risk, and the quantity plotted is

Zn = λ(Yn − pn) + (1 − λ)Zn−1, 0 < λ ≤ 1,

where Yn is the outcome of the n-th patient (this equals to 1 if the patient dies and to
0 otherwise), pn is the corresponding risk of the n-th patient, and λ is a smoothing
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parameter. The Shewhart control chart is a special case of RAEV chart for λ = 1.
When λ is almost equal to 1, the weight of historical data is small, while the weight
is large for other values of λ. The upper control limit is defined to allow the detection
of deteriorating performance. Similarly, the lower control limit is defined to allow the
detection of improving performance. Summarizing, the RAEV chart does not need an
alternative hypothesis, and moreover it has better performance when small shifts and
small smoothing parameter values are used.

Hussein et al. [40] explored the performance of risk-adjusted CUSUM charts when
the assumptions of independence and model correctness are not met. They found
out that if autocorrelations are present in the binary series being monitored and such
autocorrelations are ignored, the average run lengths of the charts can deviate greatly
from their design values. However, the impact of model misspecification on the run
lengths is not severe.

Khosravi et al. [44], extending the work of Paynabar et al. [65], presented a gen-
eral Phase I risk-adjusted control chart for monitoring more than two ordinal surgical
outcomes. The adjustment is done through the proportional odds logistic regression
models, which is a generalization of the logistic model that accommodates an ordered
categorical response. Instead of modeling the probability of a response to be in a
particular category, the proportional odds logistic regression model is based on the
cumulative probability that the response does not exceed a selected category. Simula-
tion results showed that this chart has high detection probability.

Liu et al. [49] proposed an EWMA control chart for monitoring simultaneously
both the location and scale parameters in a surgical outcome model. The test statistic,
which is a weighted score function, is derived from the likelihood function and the
EWMA procedure for detecting the heterogeneity of data within the same sample.
This chart is more efficient than the risk-adjusted CUSUM chart, in detecting the
heterogeneity of surgical outcomes.

Tighkhorshid et al. [84] proposed a self-starting RA AFT-based control chart
for monitoring the survival time of patients. More specifically, the authors monitor
patients’ survival times through an EWMA control chart, which is based on the resid-
ual values of the AFT regression model. On the control chart, the value

Zi = min{λ × ZNi + (1 − λ) × Zi−1, 0},

is depicted. ZNi is the inverse normal distribution value of the cumulative probability
distribution of the standardized residual value for patient i , while λ is the smooth-
ing parameter. Simulation results revealed that if we consider the therapist groups
and simultaneously increase the number of in-control observations, the ability of the
control chart to detect shifts in the process increases.

Recently, Grigg [30] proposed a Bayesian RA control chart for monitoring survival
outcomes—the STRAND Chart (Survival Time, Risk-Adjusted, N-Division Chart).
The STRAND Chart is divided into N strands, each strand relating to a benchmark
patient’s survival information at ti days following treatment, i = 1, 2, . . . , N . The
chart gives a signal when the credible interval about any strand excludes a target
value, for example, the estimated failure rate from the pilot data.
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Finally, Knoth et al. [46] showed that a misspecified model can affect directly
the in-control false alarm rate and indirectly the out-of-control ARL performances.
The effect is more severe when the patient mix includes more high-risk patients. To
identify a better model for the estimation of the probability of death of a patient from
an operation, the authors proposed the Box-Cox transformation.

At this point we would like to present an attempt of generalization of the Steiner et
al. [79]’s method for monitoring multi-attribute processes. More specifically, Shojaei
and Niaki [72] extended the RA-CUSUM scheme to monitor multi-attribute medical
processes for entities having different levels of risk, using a vector of weights for each
patient (wt ) instead of one weight. The elements of wt are

wt,i =

⎧
⎪⎨

⎪⎩

log
[
K (1−pt,i+pt,i R0i )

(1−pt,i+pt,i RAi )

]
, yt = 0

log
[
K (1−pt,i+pt,i R0i )RAi

(1−pt,i+pt,i RAi )R0i

]
, yt = 1

for i = 1, 2, . . . , n and t = 1, 2, . . . , k. In the new chart, called RA-MCUSUM, the
quantity

yt =
{
s′tΣ−1st

}1/2
,

is depicted, where

st = st−1 + wt

and Σ is the covariance matrix of the random vector wt . The initial vector s0 is a
vector with all elements equal to 0. If yt is greater than a threshold h, then the medical
process is declared to be out of control. The authors used simulation to estimate Σ

and h. The constant parameter K appearing in wt,i is needed to prevent from negative
weights. This is the first attempt to present a multivariate RA control chart.

5.2 Example

In this subsection, we present the application of a VLAD control chart for monitoring
a cardiac surgeon’s performance. This example has been described by Steiner et al.
[79]. To construct the chart we estimated the risk model coefficients, for each pair of
Parsonnet score and operation outcome, and then we computed the difference between
expected and observed outcomes. The risk model was estimated using the first two
years (Phase I), while the next five years (Phase II) was used for monitoring the
surgeon’s performance. The resulting VLAD is presented in Fig. 4. It is evident that
although the surgeon’s performance was rising, at the beginning, from a point on (after
about 250 patients) it began to deteriorate. This means for that for some reason (or
reasons) the surgeon’s performance has been getting worse. It reached a lower level,
and then, after corrective actions, it began to rise again.
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Fig. 4 The RA CC for monitoring a surgeon’s performance

6 Applications of Risk-Adjusted Control Charts

Several authors have applied RA control charts to monitor health processes especially
after 2000. Table 5 presents the applications of RA control charts presented in the
literature.

Gustafson [35] compared the performance of 5 unadjusted and 11 risk-adjusted
control charts for infection control. The control charts were applied to data between
1996 and 1998 from 51 hospitals. The analysis flagged 128 suspicious points, and
participating infection control professionals investigated and categorized each flag as
a “real problem” or “background variation”. This gold standard was used to compare
the performance of the control charts.

The first attempt for continuous monitoring of local changes in risk-adjusted mor-
tality performance in intensive care units was made by Cook et al. [22]. The authors
applied an RA p chart and a two-sided RA-CUSUM chart to monitor intensive care
unit outcomes. They concluded that RA outcome monitoring can be used as a method
of quality management.

Spiegelhalter et al. [77] investigated the use of the RA sequential probability ratio
test inmonitoring the cumulative occurrence of adverse outcomes after cardiac surgery.
Their retrospective analysis of three longitudinal datasets showed that the RA sequen-
tial probability ratio test can be applied in various contexts and is useful for detection
of specific instances of past divergent performance.

Cockings et al. [21] discussed process monitoring in intensive care with the use of
cumulative expected minus observed mortality (E − O) and RA p charts. The use of
these charts allows the rapid detection of changes in RA outcome of intensive care
patients.

Hart et al. [38] used Shewhart X̄ and s charts with RA variables data to compare
length-of-stay data from several healthcare organizations. The comparisonsweremade
both before and after risk adjustment, in order to assess the impact of risk adjustment.
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Table 5 Applications of RA control charts

Method Reference Application

RA p chart, RA-CUSUM Cook et al. [22] Monitoring intensive care unit
outcomes

RA sequential probability
ratio test

Spiegelhalter et al. [77] Monitoring adverse outcomes

E − O chart, RA p chart Cockings et al. [21] Monitoring intensive care unit
outcomes

Shewhart X̄ and s charts Hart et al. [38] Comparison of several healthcare
organizations

RA-CUSUM Novick et al. [61] Analysis of surgery outcomes

RA p chart Marshall and Mohammed [52] Monitoring mortality rates

RA sequential probability
ratio test

Matheny et al. [54] Monitoring mortality rates

RA sequential control charts Baghurst et al. [12] Monitoring pediatric intensive care
performance

CUSUM, CRAM, VLAD and
cumulative excess mortality
charts

Coory et al. [24] Monitoring the quality of hospital
care

RA model Sousa et al. [75] Monitoring adverse cardiac and
cerebrovascular events

RA-CUSUM Chen et al. [19] Monitoring out-of-hospital cardiac
arrest patient mortality

RA control charts Morris et al. [58] Monitoring postoperative mortality

RA XmR chart Fry et al. [26] Measuring the quality in surgical care

RA-CUSUM Chiu et al. [20] Monitoring the medical information
in shoulder surgery study

RA-EWMA Moran et al. [57] Monitoring mortality

Simple control charts Norton et al. [60] Monitoring risk-adjusted quality
indicators

Shewhart-type control charts Maruthappu et al. [53] Monitoring surgical procedures

RA-CUSUM Kim et al. [45] Analysis of the learning curve for
single-incision laparoscopic
anterior resection for sigmoid
colon cancer

RA X̄ control chart Sasikumar and Devi [68] Monitoring HemoglobinA1C level of
Type 2 diabetic patients

VLAD control chart Patella et al. [64] Prediction of morbidity

RA-CUSUM Tomassini et al. [85] Evaluation of single-surgeon learning
curve

RA-CUSUM Schrem et al. [69] Monitoring clinical practice

Novick et al. [61] compared RA and non-RA-CUSUM charts by analyzing coro-
nary artery bypass surgery outcomes. They concluded that RA-CUSUM provides
incremental advantages over non-RAmethods by not signaling a decrement in perfor-
mance when pre-operative patient risk is high.
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Marshall andMohammed [52] investigated agreement between the identification of
special cause variation in risk-adjusted and observed hospital-specific mortality rates
after coronary artery bypass grafting in New York hospitals. The p-chart was used to
identify special cause variation.

Matheny et al. [54] evaluated RA sequential probability ratio test control charts
for the detection of significant discrepancies between institution or individual inter-
ventional cardiologist postprocedural mortality rates and national or local event rate
expectations. Eight thousand nine hundred forty-two percutaneous coronary inter-
ventional procedures were performed by 27 operators between 2002 and 2006. This
method was able to determine that the institution was not performing outside risk-
adjusted expectations.

Baghurst et al. [12] applied RA sequential control charts (the VLAD chart, the
CRAM chart, and the RA-CUSUM) using the Paediatric Index of Mortality version
2 for monitoring pediatric intensive care performance in Australia and New Zealand.
They concluded that major advantage of such control charts is that they allow unit
performance to be monitored continuously over time, rather than intermittently, with
the aim of rapidly detecting a change in performance as soon as possible after it occurs.

Coory et al. [24] used several RA and expected-minus-observed plots (CUSUM,
CRAM, VLAD, and cumulative excess mortality charts) to monitor quality of hospital
care with administrative data. Such control charts allow early detection of runs of
good or bad outcomes that can help hospitals identify areas for more in-depth self-
monitoring and learning.

Sousa et al. [75] developed a RA model for major adverse cardiac and cere-
brovascular events following percutaneous coronary intervention, using data from
the Portuguese National Registry of Interventional Cardiology, and highlighted its use
for the evaluation of the quality of care in interventional cardiology. This model allows
the identification and evaluation of patient risk factors that are associated with poor
outcomes or adverse events.

Chen et al. [19] presented the application ofRA-CUSUM-type charts formonitoring
out-of-hospital cardiac arrest (OHCA) patient mortality. First, they used a logistic
regression analysis to create a RA model. Then, a RA-CUSUM chart, a RA resetting
sequential probability ratio test chart, and a CRAM with prediction limits chart were
used to detect excess deaths of the OHCA patients rescued by the emergency medical
service system.

The retrospective cross-sectional population-based study of data extracted from the
National Cancer Data Repository of Morris et al. [58] used RA control charts to assess
the variation in RA 30-day postoperative mortality for patients with colorectal cancer
between hospital trusts within the English NHS. The use of RA control charts revealed
that one trust had consistently significantly better outcomes and three had significantly
worse outcomes than the population mean.

As a method to measure quality in surgical care, Fry et al. [26] proposed the use of
control charts.More specifically, they created an averagemoving range (XmR) control
chart for risk-adjusted postoperative length of stay (RApoLOS) for patients discharged
alive after elective colectomy.At the sameyear, Lawson et al. [48] investigatedwhether
p-charts using surgical site infection (SSI) rates predict changes in outlier status for
risk-adjusted SSI rates.
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Chiu et al. [20] applied a RA-CUSUM control chart to monitor the medical infor-
mation in shoulder surgery study. The risk adjustment was done through the logistic
and the Cox models. A simulation analysis showed that the Cox model can quickly
find the patient’s abnormal conditions.

Moran et al. [57] used the RA-EWMA control chart to study mortality using the
Australian andNewZealand IntensiveCare Society adult patient database. Risk adjust-
ment was undertaken through a random coefficient logistic regression model, which
generated the expected mortality series.

Norton et al. [60] used simple control charts to plot risk-adjusted quality indicators,
i.e., the prevalence of residents with a stage 2–4 pressure ulcer, the prevalence of
residents with pain, and the prevalence of residents receiving an antipsychotic with no
diagnosis of psychosis. The control charts were used as a method to improve quality
performance management in nursing homes.

Maruthappu et al. [53] extended the risk-adjusted approach in the sense that they
proposed that control charts for monitoring surgical procedures should not only be
adjusted for patient risk but also for surgeon experience. The comparison of patient-
risk-adjusted and fully adjusted (i.e., both patient risk and surgeon experience) control
charts showed that adjustment for surgeon’s experience, along with patient risk, is a
method of accurate monitoring individual operative efficiency.

Kim et al. [45] applied moving average, CUSUM and RA-CUSUM methods to
analyze the learning curve (i.e., the process where surgeons develop their skills) for
single-incision laparoscopic anterior resection (SILAR) for sigmoid colon cancer. For
risk-adjusted CUSUM, surgical failure was defined as conversion to open surgery
or conventional laparoscopic surgery, morbidity within 30 days after surgery, < 12
harvested lymph nodes, or local recurrence. The logistic regression model was used
to calculate the RA-CUSUM.

Sasikumar and Devi [68] applied the RA x̄ control chart for monitoring
HemoglobinA1C (HbA1C) level of Type 2 diabetic patients and compared its perfor-
mance with that of the unadjusted x̄ control chart. They concluded that their method
is suitable for contexts where there is a variable mix of patients over time.

Patella et al. [64] implemented real-time internal monitoring using a risk-adjusted
model specific for video-assisted thoracoscopic surgery (VATS) lobectomy.Todevelop
the risk-adjusted model to predict morbidity, they exploited logistic regression and
bootstrap resampling analyses. Then, the VLAD control chart was used.

Tomassini et al. [85] evaluated the single-surgeon learning curve (i.e., improvement
in surgical performance over time) in laparoscopic liver surgery over an 11-year period
through RA-CUSUM.

Finally, Schrem et al. [69] investigated the use of retrospective two one-sided
CUSUM charts in combination with multivariable regression analysis in liver trans-
plantation for transplant center benchmarking. They concluded that the use of these
charts would allow targeted improvements of transplant program management as
timely as possible.
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7 Discussion and Directions for Further Research

The utility of RA control charts in medicine is highlighted in the statement of Groves
et al. [34] that as SPC methods continue to evolve, use of key techniques such as
RA control charts should be integrated into the healthcare professionals’ education.
Benneyan and Borgman [13] noted that incorporating RA methods into control charts
can contribute to the better monitoring and assessment of health processes. The RA
charts achieve higher sensitivity and specificity in comparison with typical control
charts [36]. However, attention should be paid to the model used as the simple binary
logistic regression model or similar models are not valid [46].

In this paper, we systematically reviewed the advances regarding the RA control
charts presented in the literature. To this end, we followed a three groups catego-
rization: control charts for continuous variables, control charts for attributes (i.e.,
non-continuous variables), and time-weighted control charts. A section was devoted
to present applications of RA control charts in medical processes. Most of the papers
refer to Phase II analysis (i.e., online monitoring of a process), while only the papers
of Albers [1], Paynabar et al. [65], Zhang et al. [92], Asadayyoobi and Niaki [6],
Mohammadian et al. [55], Ghasemi et al. [28], and Khosravi et al. [44] make clear
reference to Phase I analysis (i.e., assessment of process stability).

The main application field of RA control charts is monitoring the quality of sur-
gical processes and hospital care. Monitoring mortality and intensive care outcomes
and performance, analysis of surgeons’ learning curve, infection control, comparison
length-of-stay, monitoring doctors’ experience, and monitoring biochemical indexes
are other popular applications.

RA control charts is a fertile ground for research. For example, although several
authors have dealt with multivariate CUSUM charts and multivariate EWMA charts,
little or no work has been done to multivariate RA time-weighted risk-adjusted control
charts. Thus, a topic for further research would be the multivariate extensions of the
time-weighted risk-adjusted charts. The central idea is tomonitor simultaneouslymore
than one survival times. For example, one may be interested in monitoring both the
time of wound healing and the time the patient feels pain after a serious open heart
surgery.

Until to now, RA control charts have been used to monitor the quality performance
of medical processes, taking into account only the heterogeneity (i.e., the different
characteristics) of patients. However, other factors such as the heterogeneity of physi-
cians (e.g., age, experience, studies), and/or health organizations (e.g size, location),
may affect the outcome, and thus should been taken into account.

Risk adjustment is not only restricted to control charts. It can be used in any
case where the probability of having a disease is a function of numerous risk fac-
tors (e.g., demographic, social). For example, Taseli and Benneyan [82] presented the
risk-adjusted version of partial scan statistics in order to catch the situation that sub-
jects inside the region under study have different probability of having, for example,
a disease.

In conclusion, risk adjustment is a flexible, interesting, and useful tool for moni-
toring and, in general, studying medical processes.
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Appendix

Table 6 lists all the acronyms appearing in the manuscript.

Table 6 Definition of acronyms appearing on the text

Acronym # Definition

SPC Statistical process control

RA Risk-adjustment or risk-adjusted

CC Control chart

LCL Lower control limit

UCL Upper control limit

AFT Accelerated failure time

ARL Average run length

CUSUM Cumulative sum

EWMA Exponentially weighted moving average

VLAD Variable life adjusted

SPRT Sequential probability ratio test

RSPRT Resetting SPRT

FIR Fast initial response

CRAM Cumulative risk-adjusted mortality

RAST CUSUM Risk-adjusted survival time cumulative sum

uEWMA Updating exponentially weighted moving average

RACUF Risk-adjusted with cure fraction

ATS Average time to a false signal

DPCL Dynamic probability control limits

AUE Adaptive upper EWMA

ALE Adaptive upper EWMA

RAEV Risk-adjusted exponentially weighted moving average
variable life adjusted

MCUSUM Multivariate cumulative sum

OHCA Out-of-hospital cardiac arrest

SILAR Single-incision laparoscopic anterior

HbA1c HemoglobinA1c

VATS Video-assisted thoracoscopic surgery
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