Review of Selected Topics in Probability Probability Distributions

Christoforos Raptopoulos

Lecture 6

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bernoulli Distribution - Indicator Random Variable

X is an indicator random variable iff $X \in \{0,1\}$ and

$$\Pr(X = 1) = p = 1 - \Pr(X = 0)$$
(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

for some $p \in [0, 1]$.

Bernoulli Distribution - Indicator Random Variable

X is an indicator random variable iff $X \in \{0, 1\}$ and

$$\Pr(X = 1) = p = 1 - \Pr(X = 0)$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for some $p \in [0, 1]$.

Note: Indicates the success of an experiment.

Bernoulli Distribution - Indicator Random Variable

X is an indicator random variable iff $X \in \{0,1\}$ and

$$\Pr(X = 1) = p = 1 - \Pr(X = 0)$$
(1)

for some $p \in [0, 1]$.

Note: Indicates the success of an experiment.

- 1. (Expectation) $\mathbb{E}[X] = p$.
- 2. (Variance) Var(X) = p(1-p).
- 3. (PGF) $\mathbb{E}[z^X] = 1 p + pz$.
- 4. (MGF) $\mathbb{E}[e^{tX}] = 1 p + pe^{t}$.

Binomial Distribution

X follows the Binomial distribution iff $X \in \{0, 1, ..., n\}$ and

$$\Pr(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
(2)

for some $p \in [0, 1]$ and integer n > 0.

Binomial Distribution

X follows the Binomial distribution iff $X \in \{0, 1, ..., n\}$ and

$$\Pr(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
(2)

for some $p \in [0, 1]$ and integer n > 0.

Note: Indicates the number of successes in *n* independent realizations of an experiment; hence $X = \sum_{i} X_{i}$, where X_{i} is Bernoulli.

Binomial Distribution

X follows the Binomial distribution iff $X \in \{0, 1, ..., n\}$ and

$$\Pr(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
(2)

(日) (同) (三) (三) (三) (○) (○)

for some $p \in [0, 1]$ and integer n > 0.

Note: Indicates the number of successes in *n* independent realizations of an experiment; hence $X = \sum_{i} X_{i}$, where X_{i} is Bernoulli.

- 1. (Expectation) $\mathbb{E}[X] = np$.
- 2. (Variance) Var(X) = np(1-p).
- 3. (PGF) $\mathbb{E}[z^X] = (1 p + pz)^n$.
- 4. (MGF) $\mathbb{E}[e^{tX}] = (1 p + pe^t)^n$.

Geometric Distribution

X follows the Geometric distribution iff $X \in \{1, 2, ...\}$ and

$$\Pr(X = k) = (1 - p)^{k - 1}p$$
(3)

for some $p \in [0, 1]$.

Geometric Distribution

X follows the Geometric distribution iff $X \in \{1, 2, \ldots\}$ and

$$\Pr(X = k) = (1 - p)^{k - 1} p \tag{3}$$

for some $p \in [0, 1]$.

Note: Indicates the number of independent Bernoulli trials in order to get the first success.

Geometric Distribution

X follows the Geometric distribution iff $X \in \{1, 2, \ldots\}$ and

$$\Pr(X = k) = (1 - p)^{k - 1}p$$
(3)

for some $p \in [0, 1]$.

Note: Indicates the number of independent Bernoulli trials in order to get the first success.

- 1. (Expectation) $\mathbb{E}[X] = \frac{1}{p}$.
- 2. (Variance) $Var(X) = \frac{1-p}{p^2}$.
- 3. (MGF) $\mathbb{E}[e^{tX}] = \frac{pe^t}{1-(1-p)e^t}$, for $t < -\ln(1-p)$.
- 4. (PGF) $\mathbb{E}[z^X] = ?$

Poisson Distribution

X follows the Poisson distribution with parameter λ iff $X \in \{0, 1, \ldots\}$ and

$$\Pr(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}.$$
 (4)

(ロ)、(型)、(E)、(E)、 E) の(の)

Poisson Distribution

X follows the Poisson distribution with parameter λ iff $X \in \{0, 1, \ldots\}$ and

$$\Pr(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}.$$
(4)

Note: Expresses the probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate (λ) and independently of the time since the last event.

Poisson Distribution

X follows the Poisson distribution with parameter λ iff $X \in \{0, 1, \ldots\}$ and

$$\Pr(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}.$$
(4)

(日) (同) (三) (三) (三) (○) (○)

Note: Expresses the probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate (λ) and independently of the time since the last event.

- 1. (Expectation) $\mathbb{E}[X] = \lambda$.
- 2. (Variance) $Var(X) = \lambda$.
- 3. (PGF) $\mathbb{E}[z^X] = e^{\lambda(z-1)}$.

Convergence of Binomial to Poisson

Let $X \sim \mathcal{B}(n, p)$ and $Y \sim Poisson(\lambda)$. Assume (a) $\lambda = np$ is bounded and (a) $n \to \infty$. Then

$\mathbb{E}[z^X] =$

Convergence of Binomial to Poisson

Let $X \sim \mathcal{B}(n, p)$ and $Y \sim Poisson(\lambda)$. Assume (a) $\lambda = np$ is bounded and (a) $n \to \infty$. Then

$$\mathbb{E}[z^X] = (1+p(z-1))^n = \left(1+\frac{\lambda(z-1)}{n}\right)^n$$
$$= \left(\left(1+\frac{\lambda(z-1)}{n}\right)^{\frac{n}{\lambda(z-1)}}\right)^{\lambda(z-1)}$$
$$\to e^{\lambda(z-1)} = \mathbb{E}[z^Y].$$

Convergence of Binomial to Poisson

Let $X \sim \mathcal{B}(n, p)$ and $Y \sim Poisson(\lambda)$. Assume (a) $\lambda = np$ is bounded and (a) $n \to \infty$. Then

$$\mathbb{E}[z^{X}] = (1+p(z-1))^{n} = \left(1+\frac{\lambda(z-1)}{n}\right)^{n}$$
$$= \left(\left(1+\frac{\lambda(z-1)}{n}\right)^{\frac{n}{\lambda(z-1)}}\right)^{\lambda(z-1)}$$
$$\to e^{\lambda(z-1)} = \mathbb{E}[z^{Y}].$$

Theorem (Poisson Paradigm)

Consider n Bernoulli trials X_i with success probability $p_i, i = 1, ..., n$. If p_i are "small" and the trials are either independent or "weakly dependent", then $Y = \sum_i X_i$ follows "approximately" the Poisson distribution with parameter $\sum_i p_i$. ・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

Uniform Distribution (Continuous case)

X follows the Uniform distribution in [a, b] iff $X \in [a, b]$ and

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{,for } a < x < b \\ 0 & \text{elsewhere.} \end{cases}$$
(5)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Uniform Distribution (Continuous case)

X follows the Uniform distribution in [a, b] iff $X \in [a, b]$ and

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{,for } a < x < b \\ 0 & \text{elsewhere.} \end{cases}$$
(5)

- 1. (Expectation) $\mathbb{E}[X] = \frac{a+b}{2}$.
- 2. (Variance) $Var(X) = \frac{(b-a)^2}{12}$.
- 3. (MGF) $\mathbb{E}[e^{tX}] = \frac{e^{tb}-e^{ta}}{t(b-a)}$.

Exponential Distribution

X follows the Exponential distribution with parameter λ iff $X \in [0,\infty)$ and

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{,for } x \ge 0\\ 0 & \text{,for } x \le 0. \end{cases}$$
(6)

(ロ)、(型)、(E)、(E)、 E) の(の)

Exponential Distribution

X follows the Exponential distribution with parameter λ iff $X \in [0,\infty)$ and

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{,for } x \ge 0\\ 0 & \text{,for } x \le 0. \end{cases}$$
(6)

Note: Expresses interarrival times (more on this in Poisson process lecture). Also has the memoryless property (Homework!).

Exponential Distribution

X follows the Exponential distribution with parameter λ iff $X \in [0, \infty)$ and

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{,for } x \ge 0\\ 0 & \text{,for } x \le 0. \end{cases}$$
(6)

Note: Expresses interarrival times (more on this in Poisson process lecture). Also has the memoryless property (Homework!).

- 1. (Expectation) $\mathbb{E}[X] = \frac{1}{\lambda}$.
- 2. (Variance) $Var(X) = \frac{1}{\lambda^2}$.
- 3. (MGF) $\mathbb{E}[e^{tX}] = \frac{\lambda}{\lambda t}$.

X follows the Normal distribution with mean value μ and typical deviation σ iff $X \in (-\infty, \infty)$ and

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
 (7)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

X follows the Normal distribution with mean value μ and typical deviation σ iff $X \in (-\infty, \infty)$ and

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
 (7)

(日) (日) (日) (日) (日) (日) (日) (日)

Note 1: The value of the interval in the computation of $Pr(X \le a)$ is computed numerically.

X follows the Normal distribution with mean value μ and typical deviation σ iff $X \in (-\infty, \infty)$ and

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
 (7)

Note 1: The value of the interval in the computation of $Pr(X \le a)$ is computed numerically.

Note 2: If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z = \frac{X - \mu}{\sigma}$

X follows the Normal distribution with mean value μ and typical deviation σ iff $X \in (-\infty, \infty)$ and

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
 (7)

(日) (日) (日) (日) (日) (日) (日) (日)

Note 1: The value of the interval in the computation of $Pr(X \le a)$ is computed numerically.

Note 2: If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$;

X follows the Normal distribution with mean value μ and typical deviation σ iff $X \in (-\infty, \infty)$ and

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
 (7)

Note 1: The value of the interval in the computation of $Pr(X \le a)$ is computed numerically.

Note 2: If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$; Z is called standard normal random variable.

X follows the Normal distribution with mean value μ and typical deviation σ iff $X \in (-\infty, \infty)$ and

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
 (7)

Note 1: The value of the interval in the computation of $Pr(X \le a)$ is computed numerically.

Note 2: If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$; Z is called standard normal random variable.

- 1. (Expectation) $\mathbb{E}[X] = \mu$.
- 2. (Variance) $Var(X) = \sigma^2$.
- 3. (MGF) $\mathbb{E}[e^{tX}] = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$.

The Central Limit Theorem

Theorem (Central Limit Theorem)

Let $X_1, X_2, ...$ be a sequence of independent random variables with $\mathbb{E}[X_i] = \mu_i$ and $Var(X_i) = \sigma_i^2$. Under "mild conditions", for any $\alpha \in \mathbb{R}$,

$$\Pr\left(\frac{\sum_{i=1}^{n}(X_{i}-\mu_{i})}{\sqrt{\sum_{i=1}^{n}\sigma_{i}^{2}}} \leq \alpha\right) \rightarrow \int_{-\infty}^{\alpha} \frac{1}{\sqrt{2\pi}} e^{-x^{2}} dx.$$
(8)

i.e. as $n \to \infty$, $\sum_{i=1}^{n} X_i$ is distributed according to $\mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$.

Another well known Limit Theorem

Theorem (Strong law of large numbers) Let $X_1, X_2, ...$ be a sequence of independent, identically distributed random variables $\mathbb{E}[X_i] = \mu$, for all *i*. Then, with probability 1, as $n \to \infty$

$$\frac{X_1 + X_2 + \dots + X_n}{n} \to \mu. \tag{9}$$

Further reading

- S. Ross. A first course in probability:
- Chapter 4, "Random Variables"
- Chapter 5, "Continuous Random Variables"

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Chapter 8, "Limit Theorems"