Review of Selected Topics in Probability Probability Distributions

Christoforos Raptopoulos

Lecture 6

Bernoulli Distribution - Indicator Random Variable

X is an indicator random variable iff $X \in\{0,1\}$ and

$$
\begin{equation*}
\operatorname{Pr}(X=1)=p=1-\operatorname{Pr}(X=0) \tag{1}
\end{equation*}
$$

for some $p \in[0,1]$.

Bernoulli Distribution - Indicator Random Variable

X is an indicator random variable iff $X \in\{0,1\}$ and

$$
\begin{equation*}
\operatorname{Pr}(X=1)=p=1-\operatorname{Pr}(X=0) \tag{1}
\end{equation*}
$$

for some $p \in[0,1]$.
Note: Indicates the success of an experiment.

Bernoulli Distribution - Indicator Random Variable

X is an indicator random variable iff $X \in\{0,1\}$ and

$$
\begin{equation*}
\operatorname{Pr}(X=1)=p=1-\operatorname{Pr}(X=0) \tag{1}
\end{equation*}
$$

for some $p \in[0,1]$.
Note: Indicates the success of an experiment.
Parameters:

1. (Expectation) $\mathbb{E}[X]=p$.
2. (Variance) $\operatorname{Var}(X)=p(1-p)$.
3. (PGF) $\mathbb{E}\left[z^{X}\right]=1-p+p z$.
4. (MGF) $\mathbb{E}\left[e^{t X}\right]=1-p+p e^{t}$.

Binomial Distribution

X follows the Binomial distribution iff $X \in\{0,1, \ldots, n\}$ and

$$
\begin{equation*}
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \tag{2}
\end{equation*}
$$

for some $p \in[0,1]$ and integer $n>0$.

Binomial Distribution

X follows the Binomial distribution iff $X \in\{0,1, \ldots, n\}$ and

$$
\begin{equation*}
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \tag{2}
\end{equation*}
$$

for some $p \in[0,1]$ and integer $n>0$.
Note: Indicates the number of successes in n independent realizations of an experiment; hence $X=\sum_{i} X_{i}$, where X_{i} is Bernoulli.

Binomial Distribution

X follows the Binomial distribution iff $X \in\{0,1, \ldots, n\}$ and

$$
\begin{equation*}
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \tag{2}
\end{equation*}
$$

for some $p \in[0,1]$ and integer $n>0$.
Note: Indicates the number of successes in n independent realizations of an experiment; hence $X=\sum_{i} X_{i}$, where X_{i} is Bernoulli.

Parameters:

1. (Expectation) $\mathbb{E}[X]=n p$.
2. (Variance) $\operatorname{Var}(X)=n p(1-p)$.
3. (PGF) $\mathbb{E}\left[z^{X}\right]=(1-p+p z)^{n}$.
4. (MGF) $\mathbb{E}\left[e^{t X}\right]=\left(1-p+p e^{t}\right)^{n}$.

Geometric Distribution

X follows the Geometric distribution iff $X \in\{1,2, \ldots\}$ and

$$
\begin{equation*}
\operatorname{Pr}(X=k)=(1-p)^{k-1} p \tag{3}
\end{equation*}
$$ for some $p \in[0,1]$.

Geometric Distribution

X follows the Geometric distribution iff $X \in\{1,2, \ldots\}$ and

$$
\begin{equation*}
\operatorname{Pr}(X=k)=(1-p)^{k-1} p \tag{3}
\end{equation*}
$$

for some $p \in[0,1]$.
Note: Indicates the number of independent Bernoulli trials in order to get the first success.

Geometric Distribution

X follows the Geometric distribution iff $X \in\{1,2, \ldots\}$ and

$$
\begin{equation*}
\operatorname{Pr}(X=k)=(1-p)^{k-1} p \tag{3}
\end{equation*}
$$

for some $p \in[0,1]$.
Note: Indicates the number of independent Bernoulli trials in order to get the first success.

Parameters:

1. $($ Expectation $) \mathbb{E}[X]=\frac{1}{p}$.
2. (Variance) $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$.
3. (MGF) $\mathbb{E}\left[e^{t X}\right]=\frac{p e^{t}}{1-(1-p) e^{t}}$, for $t<-\ln (1-p)$.
4. (PGF) $\mathbb{E}\left[z^{X}\right]=$?

Poisson Distribution

X follows the Poisson distribution with parameter λ iff $X \in\{0,1, \ldots\}$ and

$$
\begin{equation*}
\operatorname{Pr}(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!} \tag{4}
\end{equation*}
$$

Poisson Distribution

X follows the Poisson distribution with parameter λ iff
$X \in\{0,1, \ldots\}$ and

$$
\begin{equation*}
\operatorname{Pr}(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!} \tag{4}
\end{equation*}
$$

Note: Expresses the probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate (λ) and independently of the time since the last event.

Poisson Distribution

X follows the Poisson distribution with parameter λ iff
$X \in\{0,1, \ldots\}$ and

$$
\begin{equation*}
\operatorname{Pr}(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!} \tag{4}
\end{equation*}
$$

Note: Expresses the probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate (λ) and independently of the time since the last event.

Parameters:

1. (Expectation) $\mathbb{E}[X]=\lambda$.
2. (Variance) $\operatorname{Var}(X)=\lambda$.
3. (PGF) $\mathbb{E}\left[z^{X}\right]=e^{\lambda(z-1)}$.

Convergence of Binomial to Poisson

Let $X \sim \mathcal{B}(n, p)$ and $Y \sim \operatorname{Poisson}(\lambda)$. Assume (a) $\lambda=n p$ is bounded and (a) $n \rightarrow \infty$. Then

$$
\mathbb{E}\left[z^{x}\right]=
$$

Convergence of Binomial to Poisson

Let $X \sim \mathcal{B}(n, p)$ and $Y \sim \operatorname{Poisson}(\lambda)$. Assume (a) $\lambda=n p$ is bounded and (a) $n \rightarrow \infty$. Then

$$
\begin{aligned}
\mathbb{E}\left[z^{X}\right] & =(1+p(z-1))^{n}=\left(1+\frac{\lambda(z-1)}{n}\right)^{n} \\
& =\left(\left(1+\frac{\lambda(z-1)}{n}\right)^{\frac{n}{\lambda(z-1)}}\right)^{\lambda(z-1)} \\
& \rightarrow e^{\lambda(z-1)}=\mathbb{E}\left[z^{Y}\right] .
\end{aligned}
$$

Convergence of Binomial to Poisson

Let $X \sim \mathcal{B}(n, p)$ and $Y \sim \operatorname{Poisson}(\lambda)$. Assume (a) $\lambda=n p$ is bounded and (a) $n \rightarrow \infty$. Then

$$
\begin{aligned}
\mathbb{E}\left[z^{X}\right] & =(1+p(z-1))^{n}=\left(1+\frac{\lambda(z-1)}{n}\right)^{n} \\
& =\left(\left(1+\frac{\lambda(z-1)}{n}\right)^{\frac{n}{\lambda(z-1)}}\right)^{\lambda(z-1)} \\
& \rightarrow e^{\lambda(z-1)}=\mathbb{E}\left[z^{Y}\right] .
\end{aligned}
$$

Theorem (Poisson Paradigm)
Consider n Bernoulli trials X_{i} with success probability $p_{i}, i=1, \ldots, n$. If p_{i} are "small" and the trials are either independent or "weakly dependent", then $Y=\sum_{i} X_{i}$ follows "approximately" the Poisson distribution with parameter $\sum_{i} p_{i}$.

Uniform Distribution (Continuous case)

X follows the Uniform distribution in $[a, b]$ iff $X \in[a, b]$ and

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text {,for } a<x<b \tag{5}\\ 0 & \text { elsewhere }\end{cases}
$$

Uniform Distribution (Continuous case)

X follows the Uniform distribution in $[a, b]$ iff $X \in[a, b]$ and

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text {,for } a<x<b \tag{5}\\ 0 & \text { elsewhere }\end{cases}
$$

Parameters:

1. (Expectation) $\mathbb{E}[X]=\frac{a+b}{2}$.
2. (Variance) $\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$.
3. (MGF) $\mathbb{E}\left[e^{t X}\right]=\frac{e^{t b}-e^{t a}}{t(b-a)}$.

Exponential Distribution

X follows the Exponential distribution with parameter λ iff $X \in[0, \infty)$ and

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & , \text { for } x \geq 0 \tag{6}\\ 0 & , \text { for } x \leq 0\end{cases}
$$

Exponential Distribution

X follows the Exponential distribution with parameter λ iff $X \in[0, \infty)$ and

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & , \text { for } x \geq 0 \tag{6}\\ 0 & , \text { for } x \leq 0\end{cases}
$$

Note: Expresses interarrival times (more on this in Poisson process lecture). Also has the memoryless property (Homework!).

Exponential Distribution

X follows the Exponential distribution with parameter λ iff $X \in[0, \infty)$ and

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & , \text { for } x \geq 0 \tag{6}\\ 0 & , \text { for } x \leq 0\end{cases}
$$

Note: Expresses interarrival times (more on this in Poisson process lecture). Also has the memoryless property (Homework!).

Parameters:

1. (Expectation) $\mathbb{E}[X]=\frac{1}{\lambda}$.
2. (Variance) $\operatorname{Var}(X)=\frac{1}{\lambda^{2}}$.
3. (MGF) $\mathbb{E}\left[e^{t X}\right]=\frac{\lambda}{\lambda-t}$.

Normal (or Gaussian) Distribution

X follows the Normal distribution with mean value μ and typical deviation σ iff $X \in(-\infty, \infty)$ and

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{7}
\end{equation*}
$$

Normal (or Gaussian) Distribution

X follows the Normal distribution with mean value μ and typical deviation σ iff $X \in(-\infty, \infty)$ and

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{7}
\end{equation*}
$$

Note 1: The value of the interval in the computation of $\operatorname{Pr}(X \leq a)$ is computed numerically.

Normal (or Gaussian) Distribution

X follows the Normal distribution with mean value μ and typical deviation σ iff $X \in(-\infty, \infty)$ and

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{7}
\end{equation*}
$$

Note 1: The value of the interval in the computation of $\operatorname{Pr}(X \leq a)$ is computed numerically.

Note 2: If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma}$

Normal (or Gaussian) Distribution

X follows the Normal distribution with mean value μ and typical deviation σ iff $X \in(-\infty, \infty)$ and

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{7}
\end{equation*}
$$

Note 1: The value of the interval in the computation of $\operatorname{Pr}(X \leq a)$ is computed numerically.

Note 2: If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$;

Normal (or Gaussian) Distribution

X follows the Normal distribution with mean value μ and typical deviation σ iff $X \in(-\infty, \infty)$ and

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{7}
\end{equation*}
$$

Note 1: The value of the interval in the computation of $\operatorname{Pr}(X \leq a)$ is computed numerically.

Note 2: If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1) ; Z$ is called standard normal random variable.

Normal (or Gaussian) Distribution

X follows the Normal distribution with mean value μ and typical deviation σ iff $X \in(-\infty, \infty)$ and

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{7}
\end{equation*}
$$

Note 1: The value of the interval in the computation of $\operatorname{Pr}(X \leq a)$ is computed numerically.

Note 2: If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1) ; Z$ is called standard normal random variable.

Parameters:

1. (Expectation) $\mathbb{E}[X]=\mu$.
2. (Variance) $\operatorname{Var}(X)=\sigma^{2}$.
3. (MGF) $\mathbb{E}\left[e^{t X}\right]=e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}$.

The Central Limit Theorem

Theorem (Central Limit Theorem)
Let X_{1}, X_{2}, \ldots be a sequence of independent random variables with $\mathbb{E}\left[X_{i}\right]=\mu_{i}$ and $\operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}$. Under "mild conditions", for any $\alpha \in \mathbb{R}$,

$$
\begin{equation*}
\operatorname{Pr}\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right)}{\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}} \leq \alpha\right) \rightarrow \int_{-\infty}^{\alpha} \frac{1}{\sqrt{2 \pi}} e^{-x^{2}} d x \tag{8}
\end{equation*}
$$

i.e. as $n \rightarrow \infty, \sum_{i=1}^{n} X_{i}$ is distributed according to $\mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$.

Another well known Limit Theorem

Theorem (Strong law of large numbers)
Let X_{1}, X_{2}, \ldots be a sequence of independent, identically distributed random variables $\mathbb{E}\left[X_{i}\right]=\mu$, for all i. Then, with probability 1 , as $n \rightarrow \infty$

$$
\begin{equation*}
\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \rightarrow \mu \tag{9}
\end{equation*}
$$

Further reading

S. Ross. A first course in probability:

Chapter 4, "Random Variables"
Chapter 5, "Continuous Random Variables"
Chapter 8, "Limit Theorems"

