Review of Selected Topics in Counting

Christoforos Raptopoulos

Lecture 1

How can we count elements in a finite set S ?

How can we count elements in a finite set S ?

- By using recurrence, induction etc ...provided a function of the size of smaller subsets of S is given.

Example: For $t=0,1, \ldots$, let S_{t} be the number of individuals in a population at time t. Let also $S_{0}=2$ and $S_{t+1}=S_{t}+t$, for all $t \geq 0$. How much is S_{n} ?

How can we count elements in a finite set S ?

- By using recurrence, induction etc ...provided a function of the size of smaller subsets of S is given.

Example: For $t=0,1, \ldots$, let S_{t} be the number of individuals in a population at time t. Let also $S_{0}=2$ and $S_{t+1}=S_{t}+t$, for all $t \geq 0$. How much is S_{n} ? Answer: $S_{n}=2+\frac{n(n-1)}{2}$.

How can we count elements in a finite set S ?

- By using recurrence, induction etc ...provided a function of the size of smaller subsets of S is given.

Example: For $t=0,1, \ldots$, let S_{t} be the number of individuals in a population at time t. Let also $S_{0}=2$ and $S_{t+1}=S_{t}+t$, for all $t \geq 0$. How much is S_{n} ? Answer: $S_{n}=2+\frac{n(n-1)}{2}$.

- By giving a bijection of S to a set S^{\prime}, whose cardinality is known (simple but powerful!).

Example: Let A be a set of size n. By relating $S=2^{A}$ to the set of binary strings of length n, we can see that $|S|=2^{n}$.

How can we count elements in a finite set S ?

- By using recurrence, induction etc ...provided a function of the size of smaller subsets of S is given.

Example: For $t=0,1, \ldots$, let S_{t} be the number of individuals in a population at time t. Let also $S_{0}=2$ and $S_{t+1}=S_{t}+t$, for all $t \geq 0$. How much is S_{n} ? Answer: $S_{n}=2+\frac{n(n-1)}{2}$.

- By giving a bijection of S to a set S^{\prime}, whose cardinality is known (simple but powerful!).

Example: Let A be a set of size n. By relating $S=2^{A}$ to the set of binary strings of length n, we can see that $|S|=2^{n}$.

- But there is more...! - General Counting Rules: (a) The Sum Rule, (b) The Product Rule and (c) The Division Rule

Union of Sets

Theorem (The Sum Rule)
If A_{1}, \ldots, A_{n} are disjoint, then

$$
\begin{equation*}
\left|A_{1} \cup \cdots \cup A_{n}\right|=\left|A_{1}\right|+\cdots+\left|A_{n}\right| . \tag{1}
\end{equation*}
$$

Union of Sets

Theorem (The Sum Rule)
If A_{1}, \ldots, A_{n} are disjoint, then

$$
\begin{equation*}
\left|A_{1} \cup \cdots \cup A_{n}\right|=\left|A_{1}\right|+\cdots+\left|A_{n}\right| . \tag{1}
\end{equation*}
$$

If the sets are not disjoint - Inclusion-Exclusion Principle
Example: Let A the set of people in this class with cyan hair and B those with purple skin. Then $|A \cup B|=|A|+|B|-|A \cap B|$.

Quiz

For 3 sets A, B, C, not necessarily disjoint, we have $|A \cup B \cup C|=$?

Quiz

For 3 sets A, B, C, not necessarily disjoint, we have $|A \cup B \cup C|=$?
(a) $|A|+|B|+|C|$
(b) $|A|+|B|+|C|-2|A \cap B|-2|B \cap C|-2|B \cap C|+3|A \cap B \cap C|$
(c) $|A|+|B|+|C|-|A \cap B|-|B \cap C|-|A \cap C|+|A \cap B \cap C|$
(d) $|A|+|B|+|C|-|A \cap B|-|B \cap C|-|B \cap C|+2|A \cap B \cap C|$

Quiz

For 3 sets A, B, C, not necessarily disjoint, we have $|A \cup B \cup C|=$?
(a) $|A|+|B|+|C|$
(b) $|A|+|B|+|C|-2|A \cap B|-2|B \cap C|-2|B \cap C|+3|A \cap B \cap C|$
(c) $|A|+|B|+|C|-|A \cap B|-|B \cap C|-|A \cap C|+|A \cap B \cap C|$
(d) $|A|+|B|+|C|-|A \cap B|-|B \cap C|-|B \cap C|+2|A \cap B \cap C|$

Answer: (c)

Union of Sets - General (ugly) Case

Theorem (The Inclusion-Exclusion Principle)
Let A_{1}, \ldots, A_{n} not necessarily disjoint, then

$$
\begin{aligned}
\left|A_{1} \cup \cdots \cup A_{n}\right|= & \sum_{1 \leq i \leq n}\left|A_{i}\right| \\
& -\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right| \\
& \vdots \\
& (-1)^{n+1}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right|
\end{aligned}
$$

Union of Sets - General (ugly) Case

Theorem (The Inclusion-Exclusion Principle)
Let A_{1}, \ldots, A_{n} not necessarily disjoint, then

$$
\begin{align*}
\left|A_{1} \cup \cdots \cup A_{n}\right|= & \sum_{1 \leq i \leq n}\left|A_{i}\right| \\
& -\sum_{1 \leq i<i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right| \\
& \vdots \\
& (-1)^{n+1}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right| \\
= & \sum_{l=1}^{n}(-1)^{1+1}\left(\sum_{S \subseteq[n]|,|S|=1}\left|\bigcap_{i \in S} A_{i}\right|\right) \tag{2}
\end{align*}
$$

Products of Sets

- Product of two sets $A \times B \stackrel{\text { def }}{=}\{(a, b) \mid a \in A, b \in B\}$.

Example: Let $A=\{x, y, z\}$ and $B=\{1,2\}$, then $A \times B=\{(x, 1),(x, 2),(y, 1),(y, 2),(z, 1),(z, 2)\}$.

Theorem (The Product Rule)
For sets $A_{1}, A_{2}, \ldots, A_{n}$,

$$
\begin{equation*}
\left|A_{1} \times A_{2} \times \cdots \times A_{n}\right|=\left|A_{1}\right| \cdot\left|A_{2}\right| \cdots \cdots\left|A_{n}\right| . \tag{3}
\end{equation*}
$$

Proof. By induction.

Quiz

Let us look at a DNA sequence as a string of the letters A, C, T and G. How many different n-length DNA sequences can we have?

Quiz

Let us look at a DNA sequence as a string of the letters A, C, T and G. How many different n-length DNA sequences can we have?
(a) 4^{n}
(b) 2^{n+4}
(c) $4 n$
(c) none of the above

Quiz

Let us look at a DNA sequence as a string of the letters A, C, T and G. How many different n-length DNA sequences can we have?
(a) 4^{n}
(b) 2^{n+4}
(c) $4 n$
(c) none of the above

Answer: (a); using a combination of the Sum and Product Rules.

Refined Ways for Counting

Refined Ways for Counting

- Permutations: The number of ways we can sort n items in a line is $n!=n \cdot(n-1) \cdots 1$

Refined Ways for Counting

- Permutations: The number of ways we can sort n items in a line is $n!=n \cdot(n-1) \cdots 1$
- r-Permutations: The number of ways we present r out of n items in a sorted order is $\frac{n!}{(n-r)!}$ (special case of the Division Rule - next slide)

Refined Ways for Counting

- Permutations: The number of ways we can sort n items in a line is $n!=n \cdot(n-1) \cdots 1$
- r-Permutations: The number of ways we present r out of n items in a sorted order is $\frac{n!}{(n-r)!}$ (special case of the Division Rule - next slide)
- r-Permutations with Repetition: The number of ways we present r out of n items in a sorted order when repetitions are allowed is n^{r}

The Division Rule

Theorem (The Division Rule)
Let A, B be sets. If there is a k-to- 1 function $f: A \rightarrow B$, then $|A|=k \cdot|B|$.

The Division Rule

Theorem (The Division Rule)
Let A, B be sets. If there is a k-to- 1 function $f: A \rightarrow B$, then $|A|=k \cdot|B|$.

Example 1: How many ways are there to make a necklace with n different marbles? Answer: $(n-1)$!

The Division Rule

Theorem (The Division Rule)
Let A, B be sets. If there is a k-to- 1 function $f: A \rightarrow B$, then $|A|=k \cdot|B|$.

Example 1: How many ways are there to make a necklace with n different marbles? Answer: $(n-1)$!

Example 2: (r-Combinations of a Set) How many subsets of size r does an n-element set have? Answer: $\binom{n}{r}=\frac{n!}{(n-r)!\cdot r!}$.

More Refined Ways for Counting

More Refined Ways for Counting

- r-Combinations with Repetition: The number of ways to select a subset of size r out of n items when repetitions are allowed is $\binom{n+r-1}{r}$.

More Refined Ways for Counting

- r-Combinations with Repetition: The number of ways to select a subset of size r out of n items when repetitions are allowed is $\binom{n+r-1}{r}$.
Proof. Establish a bijection between r-combinations with repetition and the set of strings of r ones and $n-1$ zeros.

More Refined Ways for Counting

- r-Combinations with Repetition: The number of ways to select a subset of size r out of n items when repetitions are allowed is $\binom{n+r-1}{r}$.
Proof. Establish a bijection between r-combinations with repetition and the set of strings of r ones and $n-1$ zeros. \square

Example: Assuming the order of letters A, C, T and G in a DNA sequence does not matter, how many different 3-length sequences can we have? Answer: $\binom{4+3-1}{3}=20$ (compare this to $4^{3}=64$ when the order does matter).

More Refined Ways for Counting

- r-Combinations with Repetition: The number of ways to select a subset of size r out of n items when repetitions are allowed is $\binom{n+r-1}{r}$.
Proof. Establish a bijection between r-combinations with repetition and the set of strings of r ones and $n-1$ zeros. \square

Example: Assuming the order of letters A, C, T and G in a DNA sequence does not matter, how many different 3-length sequences can we have? Answer: $\binom{4+3-1}{3}=20$ (compare this to $4^{3}=64$ when the order does matter).

- r-Combinations with Repetition, with at least one of each item: This number is equal to $\binom{r-1}{n-1}$.

Quiz - Permutations with Limited Repetition

The number of ways to arrange in a line three items X, Y and Z such that item X is repeated 3 times, item Y is repeated 5 times and item Z is repeated 7 times is

Quiz - Permutations with Limited Repetition

The number of ways to arrange in a line three items X, Y and Z such that item X is repeated 3 times, item Y is repeated 5 times and item Z is repeated 7 times is
(a) 3^{15}
(b) $\frac{15!}{3!5!7!}$
(c) $\frac{3.517!}{3}$
(d) $\frac{3!5!7!}{15!}$

Quiz - Permutations with Limited Repetition

The number of ways to arrange in a line three items X, Y and Z such that item X is repeated 3 times, item Y is repeated 5 times and item Z is repeated 7 times is
(a) 3^{15}
(b) $\frac{15!}{3!5!7!}$
(c) $\frac{3.517!}{3}$
(d) $\frac{3!517!}{15!}$

Answer: (b); use the Division Rule.

More Refined Ways for Counting (cntd.)

- Permutations with Limited Repetition: The number of ways to arrange in a line n items such that item i is repeated exactly r_{i} times is $\frac{\left(r_{1}+\cdots+r_{n}\right)!}{r_{1}!\cdots r_{n}!}=\binom{r_{1}+\cdots+r_{n}}{r_{1}, \ldots, r_{n}}$

More Refined Ways for Counting (cntd.)

- Permutations with Limited Repetition: The number of ways to arrange in a line n items such that item i is repeated exactly r_{i} times is $\frac{\left(r_{1}+\cdots+r_{n}\right)!}{r_{1}!\cdots r_{n}!}=\binom{r_{1}+\cdots+r_{n}}{r_{1}, \ldots, r_{n}}$

Example: The Multinomial Theorem.

$$
\begin{aligned}
& \left(x_{1}+x_{2}+\cdots+x_{n}\right)^{r}=\sum_{r_{1}+r_{2}+\cdots+r_{n}=r}\binom{r}{r_{1}, r_{2}, \ldots, r_{n}} x_{1}^{r_{1}} \cdot x_{2}^{r_{2}} \cdots x_{n}^{r_{n}} \\
& \text { e.g. } \sum_{i=0}^{r}\binom{r}{i}=2^{r} .
\end{aligned}
$$

More Refined Ways for Counting (cntd.)

- Permutations with Limited Repetition: The number of ways to arrange in a line n items such that item i is repeated exactly r_{i} times is $\frac{\left(r_{1}+\cdots+r_{n}\right)!}{r_{1}!\cdots r_{n}!}=\binom{r_{1}+\cdots+r_{n}}{r_{1}, \ldots, r_{n}}$

Example: The Multinomial Theorem.
$\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{r}=\sum_{r_{1}+r_{2}+\cdots+r_{n}=r}\binom{r}{r_{1}, r_{2}, \ldots, r_{n}} x_{1}^{r_{1}} \cdot x_{2}^{r_{2}} \cdots x_{n}^{r_{n}}$
e.g. $\sum_{i=0}^{r}\binom{r}{i}=2^{r}$.

FAQ: Are there more ways to count objects?

More Refined Ways for Counting (cntd.)

- Permutations with Limited Repetition: The number of ways to arrange in a line n items such that item i is repeated exactly r_{i} times is $\frac{\left(r_{1}+\cdots+r_{n}\right)!}{r_{1}!\cdots r_{n}!}=\binom{r_{1}+\cdots+r_{n}}{r_{1}, \ldots, r_{n}}$

Example: The Multinomial Theorem.
$\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{r}=\sum_{r_{1}+r_{2}+\cdots+r_{n}=r}\binom{r}{r_{1}, r_{2}, \ldots, r_{n}} x_{1}^{r_{1}} \cdot x_{2}^{r_{2}} \cdots x_{n}^{r_{n}}$
e.g. $\sum_{i=0}^{r}\binom{r}{i}=2^{r}$.

FAQ: Are there more ways to count objects? Yes...but...

Further reading

C. Liu: Elements of Discrete Mathematics.

