# Review of Selected Topics in Counting

Christoforos Raptopoulos

Lecture 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → の Q @

▶ By using recurrence, induction etc ...provided a function of the size of smaller subsets of *S* is given.

Example: For t = 0, 1, ..., let  $S_t$  be the number of individuals in a population at time t. Let also  $S_0 = 2$  and  $S_{t+1} = S_t + t$ , for all  $t \ge 0$ . How much is  $S_n$ ?

▶ By using recurrence, induction etc ...provided a function of the size of smaller subsets of *S* is given.

Example: For t = 0, 1, ..., let  $S_t$  be the number of individuals in a population at time t. Let also  $S_0 = 2$  and  $S_{t+1} = S_t + t$ , for all  $t \ge 0$ . How much is  $S_n$ ? Answer:  $S_n = 2 + \frac{n(n-1)}{2}$ .

By using recurrence, induction etc ...provided a function of the size of smaller subsets of S is given.

Example: For t = 0, 1, ..., let  $S_t$  be the number of individuals in a population at time t. Let also  $S_0 = 2$  and  $S_{t+1} = S_t + t$ , for all  $t \ge 0$ . How much is  $S_n$ ? Answer:  $S_n = 2 + \frac{n(n-1)}{2}$ .

By giving a bijection of S to a set S', whose cardinality is known (simple but powerful!).

Example: Let A be a set of size n. By relating  $S = 2^A$  to the set of binary strings of length n, we can see that  $|S| = 2^n$ .

By using recurrence, induction etc ...provided a function of the size of smaller subsets of S is given.

Example: For t = 0, 1, ..., let  $S_t$  be the number of individuals in a population at time t. Let also  $S_0 = 2$  and  $S_{t+1} = S_t + t$ , for all  $t \ge 0$ . How much is  $S_n$ ? Answer:  $S_n = 2 + \frac{n(n-1)}{2}$ .

By giving a bijection of S to a set S', whose cardinality is known (simple but powerful!).

Example: Let A be a set of size n. By relating  $S = 2^A$  to the set of binary strings of length n, we can see that  $|S| = 2^n$ .

 But there is more...! - General Counting Rules: (a) The Sum Rule, (b) The Product Rule and (c) The Division Rule

# Union of Sets

Theorem (The Sum Rule) If  $A_1, \ldots, A_n$  are disjoint, then

$$|A_1\cup\cdots\cup A_n|=|A_1|+\cdots+|A_n|. \tag{1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

### Union of Sets

Theorem (The Sum Rule) If  $A_1, \ldots, A_n$  are disjoint, then

$$|A_1\cup\cdots\cup A_n|=|A_1|+\cdots+|A_n|. \tag{1}$$

If the sets are not disjoint - Inclusion-Exclusion Principle

Example: Let A the set of people in this class with cyan hair and B those with purple skin. Then  $|A \cup B| = |A| + |B| - |A \cap B|$ .

For 3 sets A, B, C, not necessarily disjoint, we have  $|A \cup B \cup C| =$ ?

For 3 sets A, B, C, not necessarily disjoint, we have  $|A \cup B \cup C| =$ ? (a) |A| + |B| + |C|(b)  $|A| + |B| + |C| - 2|A \cap B| - 2|B \cap C| - 2|B \cap C| + 3|A \cap B \cap C|$ (c)  $|A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$ (d)  $|A| + |B| + |C| - |A \cap B| - |B \cap C| - |B \cap C| + 2|A \cap B \cap C|$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For 3 sets A, B, C, not necessarily disjoint, we have  $|A \cup B \cup C| = ?$ (a) |A| + |B| + |C|(b)  $|A| + |B| + |C| - 2|A \cap B| - 2|B \cap C| - 2|B \cap C| + 3|A \cap B \cap C|$ (c)  $|A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$ (d)  $|A| + |B| + |C| - |A \cap B| - |B \cap C| - |B \cap C| + 2|A \cap B \cap C|$ Answer: (c)

Union of Sets - General (ugly) Case Theorem (The Inclusion-Exclusion Principle) Let A<sub>1</sub>,..., A<sub>n</sub> not necessarily disjoint, then

$$\begin{array}{lll} A_1 \cup \dots \cup A_n | & = & \displaystyle \sum_{1 \leq i \leq n} |A_i| \\ & & \displaystyle - \sum_{1 \leq i < j \leq n} |A_i \cap A_j| \\ & & \displaystyle + \sum_{1 \leq i < j < k \leq n} |A_i \cap A_j \cap A_k| \\ & & \vdots \\ & & \displaystyle (-1)^{n+1} |A_1 \cap A_2 \cap \dots \cap A_n| \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Union of Sets - General (ugly) Case Theorem (The Inclusion-Exclusion Principle) Let A<sub>1</sub>,..., A<sub>n</sub> not necessarily disjoint, then

$$|A_{1} \cup \cdots \cup A_{n}| = \sum_{1 \leq i \leq n} |A_{i}|$$

$$- \sum_{1 \leq i < j \leq n} |A_{i} \cap A_{j}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$\vdots$$

$$(-1)^{n+1} |A_{1} \cap A_{2} \cap \cdots \cap A_{n}|$$

$$= \sum_{l=1}^{n} (-1)^{l+1} \left( \sum_{S \subseteq [n], |S|=l} \left| \bigcap_{i \in S} A_{i} \right| \right) \quad (2)$$

#### Products of Sets

▶ Product of two sets  $A \times B \stackrel{def}{=} \{(a, b) | a \in A, b \in B\}$ .

Example: Let  $A = \{x, y, z\}$  and  $B = \{1, 2\}$ , then  $A \times B = \{(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)\}.$ 

Theorem (The Product Rule) For sets  $A_1, A_2, \ldots, A_n$ ,

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1| \cdot |A_2| \cdot \cdots \cdot |A_n|.$$
(3)

Proof. By induction.

Let us look at a DNA sequence as a string of the letters A, C, T and G. How many different *n*-length DNA sequences can we have?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let us look at a DNA sequence as a string of the letters A, C, T and G. How many different *n*-length DNA sequences can we have?

Let us look at a DNA sequence as a string of the letters A, C, T and G. How many different *n*-length DNA sequences can we have?

Answer: (a); using a combination of the Sum and Product Rules.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 → りへぐ

▶ Permutations: The number of ways we can sort n items in a line is n! = n · (n − 1) · · · 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ Permutations: The number of ways we can sort n items in a line is n! = n · (n − 1) · · · 1
- ▶ *r*-Permutations: The number of ways we present *r* out of *n* items in a sorted order is  $\frac{n!}{(n-r)!}$  (special case of the Division Rule next slide)

- ▶ Permutations: The number of ways we can sort n items in a line is n! = n · (n − 1) · · · 1
- ▶ *r*-Permutations: The number of ways we present *r* out of *n* items in a sorted order is  $\frac{n!}{(n-r)!}$  (special case of the Division Rule next slide)
- r-Permutations with Repetition: The number of ways we present r out of n items in a sorted order when repetitions are allowed is n<sup>r</sup>

## The Division Rule

# Theorem (The Division Rule) Let A, B be sets. If there is a k-to-1 function $f : A \rightarrow B$ , then $|A| = k \cdot |B|$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

# Theorem (The Division Rule) Let A, B be sets. If there is a k-to-1 function $f : A \rightarrow B$ , then $|A| = k \cdot |B|$ .

Example 1: How many ways are there to make a necklace with n different marbles? Answer: (n - 1)!

Theorem (The Division Rule) Let A, B be sets. If there is a k-to-1 function  $f : A \rightarrow B$ , then  $|A| = k \cdot |B|$ .

Example 1: How many ways are there to make a necklace with n different marbles? Answer: (n - 1)!

Example 2: (*r*-Combinations of a Set) How many subsets of size *r* does an *n*-element set have? Answer:  $\binom{n}{r} = \frac{n!}{(n-r)! \cdot r!}$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

▶ *r*-Combinations with Repetition: The number of ways to select a subset of size *r* out of *n* items when repetitions are allowed is  $\binom{n+r-1}{r}$ .

r-Combinations with Repetition: The number of ways to select a subset of size r out of n items when repetitions are allowed is (<sup>n+r-1</sup>).
 Proof. Establish a bijection between r-combinations with repetition and the set of strings of r ones and n − 1 zeros.

*r*-Combinations with Repetition: The number of ways to select a subset of size *r* out of *n* items when repetitions are allowed is <sup>(n+r-1)</sup>/<sub>r</sub>.

 *Proof.* Establish a bijection between *r*-combinations with repetition and the set of strings of *r* ones and *n*-1 zeros.

Example: Assuming the order of letters A, C, T and G in a DNA sequence does not matter, how many different 3-length sequences can we have? Answer:  $\binom{4+3-1}{3} = 20$  (compare this to  $4^3 = 64$  when the order does matter).

*r*-Combinations with Repetition: The number of ways to select a subset of size *r* out of *n* items when repetitions are allowed is <sup>n+r-1</sup>/<sub>r</sub>).

 *Proof.* Establish a bijection between *r*-combinations with repetition and the set of strings of *r* ones and *n*-1 zeros.

Example: Assuming the order of letters A, C, T and G in a DNA sequence does not matter, how many different 3-length sequences can we have? Answer:  $\binom{4+3-1}{3} = 20$  (compare this to  $4^3 = 64$  when the order does matter).

# Quiz - Permutations with Limited Repetition

The number of ways to arrange in a line three items X, Y and Z such that item X is repeated 3 times, item Y is repeated 5 times and item Z is repeated 7 times is

# Quiz - Permutations with Limited Repetition

The number of ways to arrange in a line three items X, Y and Z such that item X is repeated 3 times, item Y is repeated 5 times and item Z is repeated 7 times is

(a)  $3^{15}$ (b)  $\frac{15!}{3!5!7!}$ (c)  $\frac{3!5!7!}{3}$ (d)  $\frac{3!5!7!}{15!}$ 

# Quiz - Permutations with Limited Repetition

The number of ways to arrange in a line three items X, Y and Z such that item X is repeated 3 times, item Y is repeated 5 times and item Z is repeated 7 times is

(a) 
$$3^{15}$$
  
(b)  $\frac{15!}{3!5!7!}$   
(c)  $\frac{3!5!7!}{3}$   
(d)  $\frac{3!5!7!}{15!}$ 

Answer: (b); use the Division Rule.

▶ Permutations with Limited Repetition: The number of ways to arrange in a line *n* items such that item *i* is repeated exactly  $r_i$  times is  $\frac{(r_1+\dots+r_n)!}{r_1!\cdots r_n!} = \binom{r_1+\dots+r_n}{r_1,\dots,r_n}$ 

▶ Permutations with Limited Repetition: The number of ways to arrange in a line *n* items such that item *i* is repeated exactly  $r_i$  times is  $\frac{(r_1+\dots+r_n)!}{r_1!\cdots r_n!} = \binom{r_1+\dots+r_n}{r_1,\dots,r_n}$ 

Example: The Multinomial Theorem.

$$(x_1+x_2+\cdots+x_n)^r = \sum_{r_1+r_2+\cdots+r_n=r} {r \choose r_1, r_2, \ldots, r_n} x_1^{r_1} \cdot x_2^{r_2} \cdots x_n^{r_n}$$

e.g.  $\sum_{i=0}^{r} \binom{r}{i} = 2^{r}$ .

▶ Permutations with Limited Repetition: The number of ways to arrange in a line *n* items such that item *i* is repeated exactly  $r_i$  times is  $\frac{(r_1+\dots+r_n)!}{r_1!\cdots r_n!} = \binom{r_1+\dots+r_n}{r_1,\dots,r_n}$ 

Example: The Multinomial Theorem.

$$(x_1+x_2+\cdots+x_n)^r = \sum_{r_1+r_2+\cdots+r_n=r} {r \choose r_1, r_2, \ldots, r_n} x_1^{r_1} \cdot x_2^{r_2} \cdots x_n^{r_n}$$

e.g. 
$$\sum_{i=0}^{r} \binom{r}{i} = 2^{r}$$
.

FAQ: Are there more ways to count objects?

▶ Permutations with Limited Repetition: The number of ways to arrange in a line *n* items such that item *i* is repeated exactly  $r_i$  times is  $\frac{(r_1+\dots+r_n)!}{r_1!\cdots r_n!} = \binom{r_1+\dots+r_n}{r_1,\dots,r_n}$ 

Example: The Multinomial Theorem.

$$(x_1+x_2+\cdots+x_n)^r = \sum_{r_1+r_2+\cdots+r_n=r} {r \choose r_1, r_2, \ldots, r_n} x_1^{r_1} \cdot x_2^{r_2} \cdots x_n^{r_n}$$

e.g. 
$$\sum_{i=0}^{r} \binom{r}{i} = 2^{r}$$
.

FAQ: Are there more ways to count objects? Yes...but...

# Further reading

#### C. Liu: Elements of Discrete Mathematics.

