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Απαγορεύεται η αναπαραγωγή ή η μετάφραση όλου ή οποιουδήποτε τμήματος του 

βιβλίου και με οποιοδήποτε τρόπο χωρίς την γραπτή άδεια του συγγραφέα. 
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Η αριθμητική επίλυση των χρονικά μεταβαλλόμενων πεδίων καταλήγει σε μια 

κανονική διαφορική εξίσωση μετά την διακριτοποίηση των χωρικών παραγώγων.  

Για παράδειγμα, η κυματική εξίσωση μετά την χωρική της διακριτοποίηση με πίσω-

διαφόριση  καταλήγει στην ακόλουθη κανονική διαφορική εξίσωση : 

 

1i iu udu
c

dt x

−−
= −


 

Η εξίσωση αυτή ονομάζεται ημι-διακριτή (“semi-discrete”) εξίσωση. 

Η γενική μορφή μιας κανονικής διαφορικής εξίσωσης είναι : 

                                                          ( ),
t

u f u t=  

όπου ο χρόνος ( )t  είναι η μόνη ανεξάρτητη μεταβλητή. Οι κύριες κατηγορίες 

τέτοιων εξισώσεων είναι : 

i. γραμμικές , εάν η συνάρτηση   ( ) ( ) ( )1 2
,f u t f t u f t= +   

ii. αυτόνομες , εάν ( )f f u=  

iii. ολοκληρωτικές , εάν  ( )f f t=  

 

Επίσης, διακρίνονται σε πρωτοβάθμιες όταν περιέχουν μόνο πρώτης τάξης χρονική 

παράγωγο, δευτεροβάθμιες, κ.ο.κ . 

 

Η επίλυση τους είναι πρόβλημα αρχικών τιμών, εφόσον απαιτείται η λύση στην 

αρχή του χρόνου ( )0t = . 

 

Υπάρχουν πολλές κατηγορίες μεθόδων για την επίλυση μιας κανονικής διαφορικής 

εξίσωσης. Οι κυριότερες είναι : 

 

i. οι γραμμικές πολλαπλών βημάτων ("linear multi-step") 

ii. οι μέθοδοι Runge - Kutta   
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4.1   Οι γραμμικές μέθοδοι πολλαπλών βημάτων ("Linear Μulti-step") 

 

Θεωρούμε την γενική μορφή της κανονικής διαφορικής εξίσωσης  ( ),
t

u f u t= . 

Στον διακριτό χρόνο η εξίσωση γράφεται ως : 

 ( ),
n n n n

tu f u t f=    (4.1) 

όπου ο δείκτης  n  δηλώνει τιμές της λύσης  ( )u   και της συνάρτησης  ( )f  στον 

χρόνο t n t=  . 

 

Παρατηρούμε ότι η τιμή της συνάρτησης 
nf  δίνει την κλίση της μεταβολής της 

λύσης ( )u  στον χρόνο, όπως απεικονίζεται στο Σχήμα 4.1(α).   

 

Μια προσέγγιση της λύσης 
1nu +
 είναι : 

 
1 nn n n n

tu u t u u t f+ = +   = +     (4.2) 

Είναι στην ουσία, η εμπρός διαφόριση της χρονικής παραγώγου ( )tu . Η μέθοδος 

αυτή ονομάζεται μέθοδος  Euler και απεικονίζεται στο Σχήμα 4.1(α). 

 

Μια άλλη προσέγγιση είναι να χρησιμοποιηθεί η κλίση στην χρονική στιγμή ( )1n +  

ως εξής: 

 
1 1n n nu u t f+ += +     (4.3) 

Η μέθοδος αυτή ονομάζεται «προς τα πίσω μέθοδος Euler» (“backward Euler”) και 

απεικονίζεται στο Σχήμα 4.1(β). 

 

Η μέθοδος του τραπεζίου, η οποία απεικονίζεται στο Σχήμα 4.1(γ), χρησιμοποιεί 

την  μέση κλίση της καμπύλης της λύσης u(t) : 

 
1

1

2

n n
n n f f

u u t
+

+ +
= +     (4.4) 
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u

( )n nf f ++ 1 2

u

nf +1

nu

1nu +

t1nt +nt

nf

(α)

(β)

(γ)

1nt +nt t

1nt +nt t

1nu +

nu

1nu +

nu

u

  

Σχήμα 4.1   Μέθοδοι ενός βήματος: προσέγγιση της λύσης στην χρονική στιγμή  ( )1n +   

χρησιμοποιώντας (α) την κλίση της λύσης  
n

tu f= , (β) την κλίση της λύσης  

1n
tu f += , (γ)  την μέση κλίση. 
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Οι μέθοδοι που παρουσιάστηκαν παραπάνω προσδιορίζουν την λύση στη χρονική 

στιγμή ( )1n +  χρησιμοποιώντας την λύση μόνο σε μία προηγούμενη χρονική 

στιγμή ( )n , γι’ αυτό ονομάζονται μέθοδοι ενός βήματος ("one-step"). 

 

Εναλλακτικά, μπορούν να κατασκευαστούν και μέθοδοι δύο βημάτων ("two-step"), 

οι οποίες χρησιμοποιούν την λύση σε δύο προηγούμενες χρονικές στιγμές ( )n  και 

( )1n − . Ένα παράδειγμα είναι η μέθοδος ενδιάμεσου σημείου (“midpoint”): 

 1 1 2n n nu u t f+ −= +     (4.5) 

Η μέθοδος αυτή είναι στην ουσία, η κεντρική διαφόριση της χρονικής παραγώγου 

( )n
tu f  και απεικονίζεται στο Σχήμα 4.2.  

 

u

nf

1nu +

nu1nu −

nt 1nt +1nt − t
 

Σχήμα 4.2  Μέθοδος ενδιάμεσου σημείου: προσέγγιση της λύσης στην χρονική στιγμή  

( )1n +  χρησιμοποιώντας την τιμή της λύσης στη χρονική στιγμή ( )1n −  και 

την κλίση της στη χρονική στιγμή ( )n . 

 

Όσο αυξάνει ο αριθμός των προηγούμενων χρονικών στιγμών της λύσης που 

χρησιμοποιούνται για τον υπολογισμό της  
1nu +
, τόσο αυξάνει και η ακρίβεια στον 

χρόνο . Οι επόμενες δύο μέθοδοι παρατίθενται  ως παραδείγματα «πολυβηματικών» 

μεθόδων . 
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Η πρώτη ονομάζεται  Adams-Bashforth και είναι η εξής : 

 

 ( )1 1 2 355 59 37 9
24

n n n n n nt
u u f f f f+ − − −

= + − + −   (4.6) 

Η ανωτέρω χρησιμοποιεί τέσσερα βήματα και έχει σφάλμα ( )
5

O t . 

 

H δεύτερη ονομάζεται Adams-Moulton, η οποία χρησιμοποιεί τρία βήματα, και έχει 

επίσης σφάλμα τάξης ( )
5

O t : 

 ( )1 1 1 29 19 5
24

n n n n n nt
u u f f f f+ + − −

= + + − +   (4.7) 

Η γενική μορφή μεθόδου με αριθμό βημάτων ( )S  είναι η εξής: 

 1 1

0 0

S S
n j n j

j j

j j

a u t b f+ − + −

= =

=     (4.8) 

όπου οι ja , jb  είναι κατάλληλα υπολογισμένοι συντελεστές. Ο συντελεστής της  

1nu +
 είναι πάντα μη μηδενικός ( )0 0a   και συνήθως χρησιμοποιείται η τιμή 

0 1.a =  Επίσης, είναι 0Sa   ή  0Sb  . Έχουμε ρητό σχήμα όταν 0 0b = ,  και 

άρρητο όταν 0 0b  . 

 

 

4.1.1 Κατασκευή μεθόδου τάξης ακρίβειας P  

 

Η γενική εξίσωση της γραμμικής πολυβηματικής μεθόδου (4.8) αναδιατάσσεται 

στην παρακάτω μορφή: 

 1 1

0 0

0
S S

n j n j
j j

j j

a u t b f+ − + −

= =

− =     

Έστω ( )nu t  η αναλυτική λύση της κανονικής διαφορικής εξίσωσης και ( )t nu t  η 

αναλυτική τιμή της παραγώγου της στο χρόνο nt n t=  . Αν στην ανωτέρω εξίσωση 

αντικατασταθούν οι προσεγγίσεις 
nu  και 

nf  από τις αναλυτικές τιμές ( )nu t  και 
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( )t nu t  αντίστοιχα, τότε προκύπτει μη-μηδενικό άθροισμα των όρων, το οποίο 

ορίζεται ως το τοπικό σφάλμα αποκοπής (“local truncation error”) της μεθόδου στο 

χρονικό βήμα n : 

 ( ) ( )1 1

0 0

S S

n j n j j t n j

j j

L a u t t b u t+ − + −

= =

= −    (4.9) 

Επισημαίνεται ότι το nL  είναι το σφάλμα αποκοπής ως προς την λύση και όχι ως 

προς την διαφορική εξίσωση. 

Οι όροι της μορφής ( )1n ju t + −  και ( )1t n ju t + −  αναπτύσσονται κατά Taylor γύρω 

από τη χρονική στιγμή nt  ως εξής: 

 ( ) ( ) ( ) ( )
( )

( )
2 2

1

1
1 ...

2
n j n t n tt n

j t
u t u t j t u t u t+ −

− 
= + −   +  +   (4.10) 

     ( ) ( ) ( ) ( )
( )

( )
2 2

1

1
1 ...

2
t n j t n tt n ttt n

j t
u t u t j t u t u t+ −

− 
= + −   +  +   (4.11) 

Aντικαθιστώντας τις εξισώσεις (4.10) και (4.11) στην (4.9), προκύπτει η παρακάτω 

μορφή για το τοπικό σφάλμα αποκοπής: 

 ( ) ( ) ( )2
0 1 2 ...n n t n tt nL c u t c t u t c t u t=  +   +   +     (4.12) 

όπου mc  είναι συντελεστές που συσχετίζονται με τους ,j ja b   σύμφωνα με τις 

σχέσεις: 

          ( ) ( )

( ) ( )
( )

0 0 1

1 0 2 3 0 1

1

0 0

...

2  ... 1   ...

1 1
  ,  2

! 1 !

s

s s

m mS S

m j j

j j

c a a a

c a a a s a b b b

j j
c a b m

m m

−

= =

= + + +

=  − − − − −  − + + + 

− −
=  −  

−
 

  (4.13) 

Η γραμμική πολυβηματική μέθοδος έχει τάξη ακρίβειας P  αν για τους συντελεστές 

mc  ισχύει: 

    0 1 1... = 0   και   0P Pc c c c += = =    (4.14) 
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και το τοπικό σφάλμα αποκοπής ( )nL  μεθόδου τάξης ακρίβειας P  είναι: 

 ( )
1

1
1 1

...
P

P
n P nP

d u
L c t t

dt

+
+

+ +
=   +   (4.15) 

δηλαδή το nL  είναι τάξης ( )1PO t + .  

Επίσης, η μέθοδος είναι συνεπής εάν 1P  . 

Η ανωτέρω ανάλυση μπορεί να χρησιμοποιηθεί για την κατασκευή μεθόδου 

συγκεκριμένης τάξης ακρίβειας P . Επιλέγεται ο αριθμός βημάτων ( )S  της 

μεθόδου και οι συντελεστές ja  και jb  της εξίσωσης (4.8) μπορούν να 

προσδιοριστούν επιλύοντας το σύστημα 0 1 ... 0Pc c c= = = = , το οποίο αποτελείται 

από 1P+  εξισώσεις. 

Μπορεί επίσης να βρεθεί η μέγιστη τάξη ακρίβειας μιας μεθόδου με συγκεκριμένο 

πλήθος συντελεστών ja  και jb . Έστω ότι το πλήθος των ja  και jb  είναι 

αθροιστικά ίσο με q . Αν το σύστημα 0 1 1... 0qc c c −= = = = , που αποτελείται από 

q  εξισώσεις, έχει λύση ως προς τα ja  και jb , τότε η μέγιστη τάξη ακρίβειας είναι 

1q − . Ειδάλλως, εξετάζεται το σύστημα 1q −  εξισώσεων, 0 1 2... 0qc c c −= = = = , 

και αν έχει λύση, τότε η μέγιστη τάξη ακρίβειας είναι 2q − . Η διαδικασία 

συνεχίζεται μειώνοντας τις εξισώσεις του συστήματος μέχρι να βρεθεί λύση για τα 

ja  και jb  και η αντίστοιχη τάξη ακρίβειας. 

Tέλος, θα πρέπει να σημειωθεί πως εκτός από την ακρίβεια, ένας σημαντικός 

παράγοντας για την κατασκευή μιας γραμμικής πολυβηματικής μεθόδου είναι και η 

ευστάθεια. Η ευστάθεια και η ακρίβεια δεν είναι ανεξάρτητες μεταξύ τους. 

Σύμφωνα με το θεώρημα του Dahlquist, μια ευσταθής μέθοδος που χρησιμοποιεί S  

βήματα, μπορεί να έχει τάξη ακρίβειας το πολύ 2S + . 

 

 

 

 

 



________________________________________________________________________________ 

Βασική Υπολογιστική Ρευστομηχανική – Αεροδυναμική – 2023           Ι. Καλλιντέρης 

 

                                                                                                                                                            90 

 

Παράδειγμα 4.1 : Να δείξετε ότι η μέθοδος 

 ( ) 
1 1 14 5 4 2n n n n nu u u t f f+ − −= − + +  +    

η οποία είναι ρητή μέθοδος 2 βημάτων, έχει τάξη ακρίβειας 3P = . 

 

Λύση 

Στην εξίσωση της μεθόδου συλλέγουμε τους όρους του u   στο αριστερό μέλος και 

τους όρους του f  στο δεξί και προκύπτει: 

 ( )1 1 14 5 4 2n n n n nu u u t f f+ − −+ − =  +   (Π4.1.1) 

Συγκρίνοντας την εξίσωση (Π4.1.1) με την γενική εξίσωση της γραμμικής 

πολυβηματικής μεθόδου (4.8), βλέπουμε ότι η μέθοδος είναι 2 βημάτων ( )2S =  και 

ότι οι συντελεστές ja  και jb  έχουν τιμές: 

 
0 1 2

0 1 2

1 , 4 , 5

0 , 4 , 2

a a a

b b b

= = = −

= = =
  (Π4.1.2) 

Η τιμή 0 0b =  δείχνει ότι έχουμε ρητό σχήμα. 

Το τοπικό σφάλμα αποκοπής εκφράζεται στη μορφή της εξίσωσης (4.12). Για 

2S = , οι σχέσεις (4.13) για τους συντελεστές mc  λαμβάνουν την παρακάτω μορφή: 

 

0 0 1 2

1 0 2 0 1 2

2 0 2 0 2

3 0 2 0 2

4 0 2 0 2

 

1 1
 

2 2

1 1 1 1
 

6 6 2 2

1 1 1 1
 

24 24 6 6

c a a a

c a a b b b

c a a b b

c a a b b

c a a b b

= + +

= − − − −

= + − +

= − − −

= + − +

  (Π4.1.3) 
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Αντικαθιστώντας στην (Π4.1.3) τις τιμές των ja  και jb  από την (Π4.1.2) προκύπτει 

ότι: 

 0 1 2 3 4

1
0   και   0

6
c c c c c= = = = =     

Επομένως η μέθοδος έχει τάξη ακρίβειας 3P = .  

Σημειώνεται ότι oποιοσδήποτε άλλος συνδυασμός τιμών για τους συντελεστές ja  

και jb , με 0 0b = , οδηγεί σε μη μηδενική τιμή για κάποιον από τους συντελεστές 

0 1 2 3,  ,  ,  c c c c . Επομένως, η συγκεκριμένη μέθοδος είναι η πιο ακριβής ρητή 

γραμμική μέθοδος 2 βημάτων.  

 

 

4.1.2 Τοπικό και Ολικό Σφάλμα Αποκοπής 

 

Το σφάλμα αποκοπής για τις μεθόδους επίλυσης κανονικών διαφορικών εξισώσεων 

διακρίνεται σε τοπικό και ολικό.   

Το τοπικό σφάλμα αποκοπής (“local truncation error”) δημιουργείται κατά την 

εκτέλεση της μεθόδου για ένα χρονικό βήμα. Ορίστηκε μέσω της εξίσωσης (4.9) 

και εκφράστηκε ως συνάρτηση των χρονικών παραγώγων της συνάρτησης u  μέσω 

της εξίσωσης (4.12).  

Το ολικό σφάλμα αποκοπής (“global truncation error”) είναι το άθροισμα των 

τοπικών σφαλμάτων ( )nL  που «συσσωρεύονται» λόγω των υπολογισμών σε πολλά 

χρονικά βήματα. Για N  χρονικά βήματα, που αντιστοιχούν σε χρόνο T = N t , το 

ολικό σφάλμα αποκοπής είναι: 

 
1

0

N

N n

n

G L
−

=

=    (4.16) 

Για μέθοδο τάξης ακρίβειας P , η τάξη του τοπικού σφάλματος αποκοπής ( )nL  είναι 

( )1PO t + . Η τάξη του ολικού σφάλματος αποκοπής προκύπτει από την εξίσωση 

(4.16), ως εξής: 
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 ( ) ( ) ( ) ( )
 φορές

1 1 1 1  ...    

N

P P P P
N

T
G O t O t N O t O t

t

+ + + +=  + +  =   =   


   

 ( )  P
NG O t=     

Επομένως, για μέθοδο τάξης ακρίβειας P , το ολικό σφάλμα αποκοπής είναι τάξης 

( )PO t  . 

Η συνθήκη συνέπειας της μεθόδου ορίζει πως η εκτιμούμενη τιμή της συνάρτησης 

( )nu  θα πρέπει να τείνει στην αναλυτική τιμή ( )( )nu t  όσο το χρονικό βήμα τείνει 

στο μηδέν. Ισοδύναμα, για να ικανοποιείται η συνθήκη συνέπειας για την μέθοδο, 

θα πρέπει το ολικό σφάλμα αποκοπής να τείνει στο μηδέν όσο το χρονικό βήμα 

τείνει στο μηδέν: 

 
0

lim 0n
t

G
 →

=   (4.17) 

Δεδομένου ότι ( )  P
NG O t=  , για να ικανοποιείται η συνθήκη συνέπειας (4.17), 

θα πρέπει η τάξη ακρίβειας της μεθόδου να είναι τουλάχιστον ένα ( )1P  . 
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4.2 Οι μέθοδοι Runge-Kutta 

 

Οι μέθοδοι της προηγούμενης ενότητας χρησιμοποιούν πολλαπλές χρονικές στιγμές 

για να υπολογίσουν την 
1nu +
 με αυξημένη ακρίβεια. Προκειμένου να «ξεκινήσουν» 

απαιτείται αρχική λύση σε πολλαπλές χρονικές στιγμές ( )1,  2,  ...n n= = .  

Μια άλλη προσέγγιση είναι να επιτευχθεί ακρίβεια χρησιμοποιώντας χρονικές 

στιγμές που είναι ενδιάμεσες μεταξύ της ( )n  και ( )1n + . Αυτή την τεχνική 

χρησιμοποιούν οι μέθοδοι Runge-Kutta (RK) . Η κλίση ( )k  της μεταβολής της 

λύσης που χρησιμοποιείται για τον υπολογισμό της 
1nu +
 από την 

nu  υπολογίζεται 

μέσω της συνάρτησης tf u , σε πολλαπλά στάδια. Για παράδειγμα , η ακόλουθη 

μέθοδος χρησιμοποιεί δύο στάδια:     

 ( )1 ,n nk f u t=   (4.18) 

 2 1 ,
2 2

n nt t
k f u k t

  
= +  + 

 
  (4.19) 

Τελικά η λύση στην στιγμή ( )1n +  υπολογίζεται :  

 ( )
31

2
n nu u k t O t+ = +  +    (4.20) 

Το σφάλμα υπολογίζεται με ανάπτυγμα Taylor . 

Άλλη διαδεδομένη μέθοδος (RK) χρησιμοποιεί τέσσερα στάδια :  

( )1 ,n nk f u t=  

2 1 ,
2 2

n nt t
k f u k t

  
= +  + 

 
 

3 2 ,
2 2

n nt t
k f u k t

  
= +  + 

 
 

( )4 3 ,n nk f u k t t t= +  +   
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Η τελική προσέγγιση της λύσης είναι : 

 ( )
51 31 2 4

6 3 3 6

n n kk k k
u u t O t+  

= + + + +  +  
 

  (4.21) 

Παρατηρείται ότι η κλίση που χρησιμοποιείται για τον υπολογισμό της 1nu +  είναι 

ένας σταθμισμένος μέσος όρος των κλίσεων ( )rk  στα ενδιάμεσα στάδια 1, 2, 3 και 

4. Οι κλίσεις 2k  και 3k , που αντιστοιχούν στην μέση χρονική στιγμή 
2

n t
t


+ , 

έχουν μεγαλύτερο συντελεστή βάρους (1/3), σε σχέση με τις κλίσεις 1k  και 4k , που 

έχουν συντελεστή βάρους 1/6. Οι κλίσεις που υπολογίζονται κατά την εφαρμογή 

της μεθόδου RK τεσσάρων σταδίων απεικονίζονται στο Σχήμα 4.3. 

u

t
nt nt t+ 

k2

k3

k1

k4

kk k k 
+ + + 

 

31 2 4

6 3 3 6

2

n t
t


+

nu

1nu +

 

Σχήμα 4.3   Υπολογισμός της τιμής 
1nu +

 με τη μέθοδο Runge-Kutta τεσσάρων σταδίων. 

Απεικονίζονται όλες οι κλίσεις που υπολογίζονται κατά την εφαρμογή της 

μεθόδου.  

 

Η γενική μορφή μεθόδου Runge-Kutta που χρησιμοποιεί R  στάδια είναι η εξής: 

 ( )  
1 , ,n n n n

ru u t u t k+ = +     (4.22) 
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όπου rk  είναι οι κλίσεις που υπολογίζονται στα ενδιάμεσα στάδια και   είναι ο 

σταθμισμένος μέσος όρος των κλίσεων, δηλαδή: 

 ( )  

1

, ,
R

n n
r r r

r

u t k c k
=

=   (4.23) 

όπου οι rc  είναι συντελεστές. 

Οι κλίσεις των ενδιάμεσων σταδίων υπολογίζονται ως εξής: 

 

( )

      

1

1 1

, ,

1 1

,  

  ,     ,  για  2,3, ... ,

n n

r r
n n

r r i i r i

i i

k f u t

k f u t b k t t b r R
− −

= =

=

 
= +   +   =  

 
 

  (4.24) 

όπου οι ,r ib  είναι συντελεστές. 

Οι τιμές των rc  και ,r ib  υπολογίζονται χρησιμοποιώντας αναπτύγματα Taylor έτσι 

ώστε η μέθοδος να έχει τάξη ακρίβειας P . 

Γενικά, οι μέθοδοι Runge-Kutta  είναι αρκετά διαδεδομένες αφού επιτυγχάνεται 

μεγάλη ακρίβεια χωρίς να αυξηθεί η υπολογιστική κυψέλη στον χρόνο. Επίσης, οι 

μέθοδοι αυτές δεν έχουν το «πρόβλημα εκκίνησης» των υπολογισμών στα αρχικά 

χρονικά βήματα που έχουν οι πολυβηματικές μέθοδοι. 
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