
________________________________________________________________________________ 

Βασική Υπολογιστική Ρευστομηχανική – Αεροδυναμική – 2023       Ι. Καλλιντέρης 

 

                                          52 

_______________________________________________________________________ 

3 Αριθμητική Επίλυση Ελλειπτικών Εξισώσεων – 

Χρήση Επαναληπτικών Μεθόδων                  
_________________________________________________________________________ 

 

Περιεχόμενα 

 

3 Αριθμητική Επίλυση Ελλειπτικών Εξισώσεων – Χρήση Επαναληπτικών 

Μεθόδων ............................................................................................................. 52 

3.1 Διακριτοποίηση της Εξίσωσης Laplace ...................................................... 53 

3.2 Επίλυση του Συστήματος της Διακριτοποιημένης Εξίσωσης Laplace με 

χρήση Επαναληπτικών Μεθόδων ................................................................ 56 

3.3 Η Θεωρία των Επαναληπτικών Μεθόδων ................................................... 60 

3.3.1 Συστηματική Προσέγγιση .................................................................. 60 

3.3.2 Κριτήρια Σύγκλισης των Επαναληπτικών Μεθόδων ........................ 63 

3.3.3 Η Σύγκλιση των Επαναληπτικών Μεθόδων Jacobi, Gauss-Seidel και 

SOR .................................................................................................... 65 

3.3.4 Η Διαγώνια Υπεροχή ......................................................................... 70 

3.3.5 Σύνδεση μεταξύ Διαδικασιών Επαναλήψεων και Βηματισμού στο 

Χρόνο (“time marching”) .................................................................. 73 

3.3.6 Ημι-πεπλεγμένες Επαναληπτικές Μέθοδοι – Η Τεχνική ADI .......... 75 

Παράρτημα – Αλγόριθμος “Thomas” για Άμεση Επίλυση Τριδιαγώνιων 

Συστημάτων ........................................................................................................ 79 

Βιβλιογραφία ...................................................................................................... 81 

 

 

Απαγορεύεται η αναπαραγωγή ή η μετάφραση όλου ή οποιουδήποτε τμήματος του 

βιβλίου και με οποιοδήποτε τρόπο χωρίς την γραπτή άδεια του συγγραφέα. 



________________________________________________________________________________ 

Βασική Υπολογιστική Ρευστομηχανική – Αεροδυναμική – 2023       Ι. Καλλιντέρης 

 

                                          53 

Οι εξισώσεις ροής για χρονικά αμετάβλητα πεδία είναι ελλειπτικού τύπου. Τα 

σχετικά αριθμητικά σχήματα συνήθως απαιτούν την επίλυση ενός συστήματος 

αλγεβρικών εξισώσεων. Ένα τυπικό μοντέλο είναι η εξίσωση Laplace  : 

 0xx yyu u+ =   (3.1) 

Η εξίσωση αυτή συναντάται σε πολλές εφαρμογές όπως είναι η μετάδοση 

θερμότητας και η ροή δυναμικού. Εκφράζει προβλήματα ισορροπίας και απαιτούνται 

οριακές συνθήκες σε όλο το σύνορο. Η λύση σε ένα σημείο επηρεάζεται από όλα τα  

σημεία του πεδίου.   

 

3.1   Διακριτοποίηση της Εξίσωσης Laplace  

 

Η κεντρική διαφόριση είναι η συνήθης διακριτοποίηση της εξίσωσης Laplace : 

 

 
( ) ( )

1, , 1, , 1 , , 1

2 2

2 2
0

i j i j i j i j i j i ju u u u u u

x y

+ − + −− + − +
+ =

 
  (3.2) 

             

To Σχήμα 3.1 απεικονίζει την υπολογιστική κυψέλη για το σημείο ( ),i j  του 

αριθμητικού πλέγματος .  

i,j

i,j+1

i,j-1

i+1,ji-1,j

 

Σχήμα 3.1  Το τυπικό αριθμητικό πλέγμα με κέντρο τον κόμβο ( ),i j . Με το σύμβολο  

( ● ) απεικονίζονται οι άμεσοι γείτονες , ενώ με ( ○ ) συμβολίζονται οι 

διαγώνιοι γείτονες .  
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Για την διακριτοποίηση της εξίσωσης Laplace (3.2), χρησιμοποιήθηκαν πέντε  

σημεία πάνω στην υπολογιστική κυψέλη, δηλαδή μόνο οι άμεσοι γείτονες που 

φαίνονται στο Σχήμα 3.1. 

 

Το σφάλμα αποκοπής  της ανωτέρω κεντρικής διαφόρισης είναι : 

 
( ) ( )

2 2

...
12 12

xx yy xxxx yyyy

x y
u u u u

 
+ = − − +   (3.3) 

Η χρησιμοποίηση και των διαγώνιων γειτόνων, δηλαδή των σημείων ( )1 , 1i j+ + ,

( )1 , 1i j+ − , ( )1 , 1i j− − , ( )1 , 1i j− +  οδηγεί σε αριθμητικό σχήμα καλύτερης 

ακρίβειας (έκτης τάξης)  σε ομοιόμορφο αριθμητικό πλέγμα , όπου x y h =   .  

 

Συγκεκριμένα, η έκφραση πεπερασμένων διαφορών είναι : 

 

 ( )1 2 6

2

4 20

6

ij
xx yy

u
u u O h

h

 +  −
+ = +   (3.4) 

όπου τα αθροίσματα 1
 , 2

  αφορούν τους άμεσους και διαγώνιους γειτονικούς 

κόμβους και δίνονται από τις σχέσεις : 
 

                                     1 1, 1, , 1 , 1i j i j i j i j
u u u u
+ − + −

 = + + +   (3.5) 

 2 1, 1 1, 1 1, 1 1, 1i j i j i j i j
u u u u
+ + + − − − − +

 = + + +   (3.6) 

 

Από την διακριτοποιημένη εξίσωση  Laplace  (3.2), το σύστημα των εξισώσεων που 

προκύπτει και απαιτεί επίλυση έχει την μορφή : 

 1, 1, , , 1 , 14 0i j i j i j i j i ju u u u u+ − + −+ − + + =   (3.7) 

όπου, χάριν απλότητας, θεωρήθηκε ότι Δx = Δyh . 

 

Οι δείκτες i   και  j   λαμβάνουν τιμές : 

2,..., 1i NI= −
 

2,..., 1j NJ= −  

όπου NI  και NJ  είναι ο συνολικός αριθμός των σημείων του πλέγματος στην x και  

y-διεύθυνση, αντίστοιχα . Στα συνοριακά σημεία όπου είναι 1i =  ή i NI=  ή 1j =  ή 

j NJ=  χρησιμοποιούνται οι οριακές συνθήκες. 
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Το σύστημα που προκύπτει από την εξίσωση (3.7) ,  μπορεί να γραφεί στην μορφή : 

A x b =  

όπου x
 
είναι τα διανύσματα των αγνώστων ij

u   και b  μηδενικό διάνυσμα. Και τα 

δύο διανύσματα είναι διαστάσεων 1N  , όπου N NI NJ=   είναι ο συνολικός 

αριθμός των αγνώστων.  Ο πίνακας  A  είναι  τριδιαγώνιος διαστάσεων  N N . 

 

Το σύστημα λαμβάνει την εξής γενική μορφή : 

1,1

2,1

,1

1,

2,

,

0

  

    

  

NI

NJ

NJ

NI NJ

u

u

T I O
u

I T I

u

uO I T

u

 
 
 
 
 
  

=

 
 
 

   
   
   
   
   
   
    
   
   
   
   
   
   
   
    

 
 
  



  

(3.8)

 

 

Ο πίνακας του συστήματος είναι αραιός και έχει μη μηδενικά στοιχεία κοντά στη 

διαγώνιο. Μπορεί να θεωρηθεί ως τριδιαγώνιος ομαδοποιώντας τα μη μηδενικά 

στοιχεία στους «υποπίνακες» T  και I  (“block tridiagonal matrix”). 

 

Ο  «υποπίνακας»  T   είναι τριδιαγώνιος και εκφράζεται ως : 

 

                                     

4 1 0 0 0

1 4 1 0 0

  0 1 4 1 0

0 0 1 4 1

0 0 0 1 4

T

− 
 

−
 
 = −
 

− 
 − 
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Ο  «υποπίνακας»  I  είναι ο μοναδιαίος πίνακας : 

 

                                      

1 0 0 0 0

0 1 0 0 0

  0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

I

 
 
 
 =
 
 
  

  

 

Να σημειωθεί ότι οι παραπάνω πίνακες είναι μεγέθους 5 5 , διότι στην 

διακριτοποίηση της εξίσωσης Laplace χρησιμοποιήθηκαν πέντε σημεία (άμεσοι 

γείτονες) της υπολογιστικής κυψέλης. Αντίστοιχα, αν χρησιμοποιούνταν και οι 

διαγώνιοι γείτονες, δηλαδή συνολικά εννέα σημεία πάνω στην υπολογιστική κυψέλη, 

τότε οι πίνακες T , I  θα ήταν διαστάσεων 9 9 .   

 

3.2 Επίλυση του Συστήματος της Διακριτοποιημένης Εξίσωσης Laplace με 

χρήση Επαναληπτικών Μεθόδων  

 

 

Δύο είναι οι γενικές μέθοδοι επίλυσης συστημάτων εξισώσεων της μορφής A x b =  

.  

Οι μέθοδοι οι οποίες αντιστρέφουν τον πίνακα του συστήματος A : 

1
Ax b

−
= 

 
ονομάζονται  απευθείας  μέθοδοι . Σε αυτές συμπεριλαμβάνεται ο κανόνας  του  

Cramer. Ο αριθμός των αριθμητικών πράξεων είναι της τάξης του ( )1 !N + , όπου N  

είναι ο αριθμός των αγνώστων. Είναι δηλαδή απαγορευτικά ακριβή αυτή η μέθοδος 

για τα συστήματα μεγέθους N NI NJ=   που μας ενδιαφέρουν .  

 

Μια αρκετά διαδεδομένη μέθοδος είναι αυτή της απαλοιφής Gauss. Ο πίνακας του 

συστήματος A  μετατρέπεται σε τριγωνικό πίνακα, και έτσι το σύστημα επιλύεται με 

λιγότερες πράξεις. Ο αριθμός εδώ των πράξεων είναι της τάξης του  
3N .  Στην 

περίπτωση που το σύστημα είναι τριδιαγώνιο, η μέθοδος επίλυσης του Gauss έχει 

αριθμό πράξεων της τάξης του N .  
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Οι απευθείας μέθοδοι επιλύουν το σύστημα αναλυτικά. Όμως, ο σχετικά μεγάλος 

αριθμός αριθμητικών πράξεων στον υπολογιστή προκαλεί σημαντικό σφάλμα λόγω 

στρογγυλοποίησης ("round-off error") των αριθμών. 

Οι επαναληπτικές  μέθοδοι λύνουν το σύστημα προσεγγιστικά το οποίο είναι το κύριό 

τους σφάλμα, και όχι το σφάλμα στρογγυλοποίησης από το οποίο «υποφέρουν» οι 

απευθείας μέθοδοι. 

  

Για απλότητα, θα δείξουμε τις επαναληπτικές μεθόδους χρησιμοποιώντας ένα 

σύστημα μεγέθους 2 2  με  αγνώστους  1
x  και  2

x  . 

 

    11 1 12 2 1a x a x b+ =  

 

 21 1 22 2 2a x a x b+ =  

 

Εκφράζουμε το ανωτέρω σύστημα ως προς τους αγνώστους, ως εξής : 

( )1 1 12 2
11

1
x b a x

a
= −  

( )2 2 21 1
22

1
x b a x

a
= −  

 

Η επαναληπτική διαδικασία ξεκινά δίνοντας μια αρχική εκτίμηση της λύσης : 

( )1
1

x , 
( )1

2
x  

 

και προχωρώντας ως εξής : 

( ) ( )( )2 1
1 121 2

11

1
x b a x

a
= −

 

( ) ( )( )2 1
2 212 1

22

1
x b a x

a
= −  

 

Η εκτίμηση των αγνώστων κατά την επανάληψη  ( )1k +  είναι :   

 
( ) ( )( )1
1 1 12 2

11

1k k
x b a x

a

+
= −   (3.9) 
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( ) ( )( )1
2 2 21 1

22

1k k
x b a x

a

+
= −   (3.10) 

Η μέθοδος θεωρείται ότι συγκλίνει όταν η μεταβολή των τιμών των αγνώστων σε μια 

επανάληψη πέφτει κάτω από προκαθορισμένο όριο ( ) . Συνήθως χρησιμοποιείται η 

μέγιστη μεταβολή για τους αγνώστους ix  : 

 
( ) ( )1

max
k k

i i ix x 
+

−    (3.11) 

Υπάρχει δηλαδή το σφάλμα σύγκλισης στις επαναληπτικές μεθόδους. 

Η ανωτέρω επαναληπτική μέθοδος ονομάζεται μέθοδος Jacobi. Η γενική της μορφή 

για την περίπτωση N  αγνώστων γράφεται ως εξής : 

 

 
( ) ( ) ( )

1
1

1 1

1 i N
k k k

i i ij j ij j
ii j j i

x b a x a x
a

−
+

= = +

 
 = − −
  

    (3.12) 

 όπου 1,2,...,i N= . 

 

Παρατηρώντας την ανωτέρω επαναληπτική διαδικασία, σημειώνουμε ότι οι τιμές 

των αγνώστων j
x

 
για 1j =  έως 1i −  είναι ήδη υπολογισμένες όταν φτάνει η 

διαδικασία στον υπολογισμό του αγνώστου i
x . Η μέθοδος Gauss-Seidel 

χρησιμοποιεί τις υπολογισμένες αυτές τιμές ως εξής : 

 
( ) ( ) ( )

1
1 1

1 1

1 i N
k k k

i i ij j ij j
ii j j i

x b a x a x
a

−
+ +

= = +

 
 = − −
  

    (3.13) 

όπου  1,2,...,i N= .  

Γενικά, η επαναληπτική διαδικασία Gauss-Seidel συγκλίνει σε λιγότερες 

επαναλήψεις από ότι η μέθοδος Jacobi. Είναι όμως, πιο «ευαίσθητη» σε απόκλιση σε 

περιπτώσεις όπου η αρχική εκτίμηση 
( )1
ix είναι κακή.  

Η μεταβολή της εκτιμούμενης τιμής των αγνώστων σε μια επανάληψη 

Gauss – Seidel είναι:  

 
( ) ( ) ( ) ( ) ( )

1
1 1

1 1

1 i N
k k k k k

i i i ij j ii i ij j
ii j j i

x x b a x a x a x
a

−
+ +

= = +

 
 − = − − −
  

    (3.14) 
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Η μεταβολή αυτή μπορεί να αυξηθεί ή μειωθεί πολλαπλασιάζοντάς την με σταθερό 

συντελεστή ( )  ο οποίος είναι μεγαλύτερος ή μικρότερος της μονάδος, αντίστοιχα. 

Ορίζεται έτσι η ακόλουθη επαναληπτική διαδικασία η οποία ονομάζεται Successive 

Over-Relaxation (SOR) στην περίπτωση που 1  : 

 
( ) ( ) ( ) ( )( )1 1k k k k

i i i ix x x x
+ +

= + −   

η οποία μπορεί να γραφτεί και ως: 

  

 
( ) ( ) ( ) ( )1 1

  1
k k k

i i ix x x 
+ +

= + −   (3.15) 

όπου ο όρος 
( )1k

ix
+

 είναι η τιμή του αγνώστου που υπολογίζει η επανάληψη 

Gauss – Seidel. 

Το παρακάτω Σχήμα 3.2  αναπαριστά σύγκλιση των τριών μεθόδων .  

 

0

-1

-2

-4

-3

Jacobi

Gauss-SeidelSOR

Αριθμός Επαναλήψεων

( ) ( )1
log max

k k
i i ix x

+ 
−  

 

Σχήμα 3.2 Αναπαράσταση σύγκλισης των τριών επαναληπτικών μεθόδων. Ο κατακόρυφος 

άξονας είναι σε λογαριθμική κλίμακα .    
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3.3 Η Θεωρία των Επαναληπτικών Μεθόδων 
 

Σε αυτήν την ενότητα παρουσιάζεται η συστηματική προσέγγιση για την κατασκευή 

επαναληπτικών μεθόδων με σκοπό την επίλυση συστημάτων εξισώσεων. Γίνεται 

ανάλυση του σφάλματος των επαναληπτικών μεθόδων και παρατίθενται κριτήρια 

σύγκλισης τα οποία εφαρμόζονται για τις μεθόδους Jacobi, Gauss-Seidel και SOR. 

Ακόμη, παρουσιάζεται η σχέση μεταξύ των επαναληπτικών μεθόδων και των 

αριθμητικών σχημάτων με βηματισμό στο χρόνο (“time marching”). Τέλος, γίνεται 

αναφορά σε τεχνικές οι οποίες βελτιώνουν την σύγκλιση, όπως οι Ημι-πεπλεγμένες 

Επαναληπτικές Μέθοδοι. 

 

 

3.3.1 Συστηματική Προσέγγιση 

 

Έστω το γραμμικό σύστημα με γενική μορφή: 

 x b  =   (3.16) 

όπου   είναι τετραγωνικός πίνακας διαστάσεων N N , x  είναι το διάνυσμα των 

αγνώστων διαστάσεων 1N   και b  είναι διάνυσμα γνωστών συντελεστών 

διαστάσεων 1N  . Βασικές παραδοχές για τον πίνακα   είναι ότι έχει μη μηδενικά 

διαγώνια στοιχεία ( )0iia   και ότι η ορίζουσα του είναι μη-μηδενική  ( )0  . 

Ο πίνακας   μπορεί να εκφραστεί σαν άθροισμα ενός διαγώνιου πίνακα D , ενός 

κάτω-τριγωνικού πίνακα L  και ενός άνω-τριγωνικού πίνακα  U  , σύμφωνα με την 

εξίσωση: 

 D L U= + +   (3.17) 

Ένα παράδειγμα εφαρμογής της εξίσωσης (3.17) για έναν πίνακα   διαστάσεων 

2 2  είναι το εξής: 

 
11 12 11 12

21 22 22 21

0 0 0 0

0 0 0 0

a a a a

a a a a

       
= + +       

      
   

Αντικαθιστώντας την εξίσωση (3.17) στην (3.16) προκύπτει η παρακάτω 

εναλλακτική μορφή του συστήματος: 
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 ( )D x L U x b = − +  +   (3.18) 

Η εξίσωση (3.18) αποτελεί τη βάση για τον ορισμό επαναληπτικών μεθόδων για τον 

προσδιορισμό του διανύσματος των αγνώστων ( )x .  

Η πρώτη επαναληπτική μέθοδος προκύπτει θεωρώντας πως η εκτίμηση του 

διανύσματος των αγνώστων ( )x  στο αριστερό μέλος της (3.18) αντιστοιχεί στην 

επανάληψη 1k + , ενώ αυτή στο δεξί μέλος αντιστοιχεί στην επανάληψη k : 

 ( )
( 1) ( )k k

D x L U x b
+

 = − +  +   

Η ανωτέρω εξίσωση μπορεί να επιλυθεί ως προς 
( 1)k

x
+

 πολλαπλασιάζοντας και τα 

δύο μέλη με τον πίνακα 
1

D
−

, που είναι ο αντίστροφος πίνακας (“inverse matrix”) του 

D : 

 ( )
( 1) ( )1 1

   
k k

x D L U x D b
+ − −

= −  +  +    (3.19) 

Η μέθοδος της εξίσωσης (3.19) είναι η επαναληπτική μέθοδος Jacobi. Ο πίνακας 

 ( )1
JG D L U

−
= −  +   (3.20) 

λέγεται Πίνακας Επαναλήψεων Jacobi (“Jacobi iteration matrix”) και 

μετασχηματίζει το διάνυσμα  
( )k

x  έτσι ώστε να προκύψει το διάνυσμα των αγνώστων 

στην επόμενη επανάληψη ( )( 1)k
x

+
.  Η ανάπτυξη των πινάκων της εξίσωσης (3.19) 

σε μορφή που περιέχει τα στοιχεία τους ( )ija  οδηγεί στην εξίσωση (3.12). 

Μια εναλλακτική προσέγγιση είναι να θεωρηθεί στην εξίσωση (3.18) ότι το γινόμενο 

L x−    αντιστοιχεί στην επανάληψη 1k + , ενώ το γινόμενο U x−   αντιστοιχεί στην 

επανάληψη k . Η επαναληπτική μέθοδος που προκύπτει τότε έχει τη μορφή: 

 
( 1) ( 1) ( )k k k

D x L x U x b
+ +

 = −  −  +    (3.21) 

Συλλέγοντας όλους τους όρους του 
( 1)k

x
+

 στο αριστερό μέλος και επιλύοντας ως 

προς 
( 1)k

x
+

 προκύπτει: 

 ( ) ( )
( 1) ( )1 1

  
k k

x D L U x D L b
+ − −

= − +   + +    (3.22) 
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Η μέθοδος της εξίσωσης (3.22) είναι η επαναληπτική μέθοδος Gauss-Seidel και ο 

πίνακας 

 ( )
1

G SG D L U
−

− = − +    (3.23) 

είναι ο Πίνακας Επαναλήψεων Gauss-Seidel. Η ανάπτυξη των πινάκων της εξίσωσης 

(3.22) οδηγεί στην εξίσωση (3.13). 

Πολλαπλασιάζοντας και τα δύο μέλη της εξίσωσης (3.21) με τον αντίστροφο πίνακα 

1
D
−

 και αφαιρώντας και από τα δύο μέλη το 
( )k

x  , λαμβάνουμε μια έκφραση για την 

μεταβολή της εκτιμούμενης τιμής των αγνώστων σε μια επανάληψη Gauss-Seidel: 

 ( )( 1) ( ) ( 1) ( ) ( )1k k k k k
x x D L x U x b x

+ +−
− =  −  −  + −      

Πολλαπλασιάζοντας την μεταβολή αυτή με έναν σταθερό συντελεστή  , ορίζεται η 

επαναληπτική μέθοδος που λέγεται “Successive Over-Relaxation” (SOR) στην 

περίπτωση που 1  : 

 ( ) ( 1) ( ) ( 1) ( ) ( )1k k k k k
x x D L x U x b x

+ +−
− =  −  −  + −        

Η ανωτέρω εξίσωση αναδιατάσσεται, διαχωρίζοντας τους όρους των 
( 1)k

x
+

 και 
( )k

x

στα δύο μέλη και εισάγοντας τον μοναδιαίο πίνακα I : 

( 1) ( 1) ( ) ( ) ( )1 1 1

( 1) ( 1) ( ) ( ) ( )1 1 1

k k k k k

k k k k k

x D L x x D U x x D b

I x D L x I x D U x I x D b

   

   

+ +− − −

+ +− − −

+   = −   − +  

 +   =  −   −  + 

       

    

   

 

Ομαδοποιώντας τους όρους των 
( 1)k

x
+

 και 
( )k

x προκύπτει η παρακάτω μορφή: 

 

( ) ( ) ( 1) ( )1 1 1
1

k k
I D L x I D U x D b   

+− − −
+   = − −   +           

 

και επιλύοντας ως προς 
( 1)k

x
+

 προκύπτει η τελική έκφραση για την μέθοδο SOR: 

 

 

( ) ( ) 

( )

1( 1) ( )1 1

1
1 1

1        

  

k k
x I  D L I  D U x

            I  D L  D b 

  

 

−+ − −

−
− −

= +   − −  

+ +  

  (3.24) 
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Από την εξίσωση (3.24)  προκύπτει πως ο Πίνακας Επαναλήψεων της μεθόδου SOR 

εξαρτάται από τον συντελεστή   και δίνεται από την παρακάτω σχέση: 

 ( ) ( ) ( ) 
1

1 1
1SORG I D L I D U   

−
− −

= +   − −          (3.25)  

Η γενική μορφή των ανωτέρω επαναληπτικών μεθόδων είναι: 

 
( 1) ( )k k

x G x c
+

=  +    (3.26) 

Ο πίνακας G  είναι ο Πίνακας Επαναλήψεων (“Iteration Matrix”) της μεθόδου. Οι 

διαστάσεις του είναι N N , όπου N  ο συνολικός αριθμός αγνώστων του 

συστήματος. Οι εξισώσεις (3.19), (3.22) και (3.24) των μεθόδων Jacobi, 

Gauss-Seidel και SOR αντίστοιχα, έχουν την μορφή της εξίσωσης (3.26). 

Την ανωτέρω σχέση πρέπει να ικανοποιεί και η αναλυτική λύση του συστήματος x . 

Είναι δηλαδή: 

 x G x c=  +   (3.27) 

 

3.3.2 Κριτήρια Σύγκλισης των Επαναληπτικών Μεθόδων 

 

Η ανάλυση του σφάλματος των επαναληπτικών μεθόδων οδηγεί σε κριτήρια 

σύγκλισης τα οποία ισχύουν για καθεμιά από τις μεθόδους Jacobi, Gauss-Seidel και 

SOR.  

Το σφάλμα της επαναληπτικής μεθόδου ορίζεται για τις επαναλήψεις k  και 1k +  ως: 

 

( ) ( )

( 1) ( 1)

k k

k k

x x

x x

e

e
+ +

= −

= −

  (3.28) 

όπου x  είναι η αναλυτική λύση του συστήματος. 

Αφαιρώντας την εξίσωση (3.26) από την (3.27) και αντικαθιστώντας τις εξισώσεις 

(3.28) προκύπτει σχέση που συνδέει τα σφάλματα κατά τις επαναλήψεις k  και 1:k +  
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 ( )( 1) ( ) ( )k k k
x x G x G x G x x

+
− =  −  =  −      

 
( 1) ( )k k

Ge e
+

=    (3.29) 

Δηλαδή, το σφάλμα της επαναληπτικής μεθόδου ( )( )k
e  μεταβάλλεται σε κάθε 

επανάληψη με βάση με τον Πίνακα Επαναλήψεων ( )G .  

Το σφάλμα κατά την επανάληψη k  συσχετίζεται με το σφάλμα της αρχικής 

εκτίμησης των αγνώστων ( )(0)
e , εφαρμόζοντας την εξίσωση (3.29) k  φορές: 

 
( ) ( 1) ( 2) (0)

 φορές

 ...    
k k k

k

G e G G G Ge e e
− −

=  =   =        

 
( ) (0)k k

Ge e=    (3.30) 

Με βάση την εξίσωση (3.30) μπορεί να κατασκευαστεί κριτήριο σύγκλισης για την 

επαναληπτική μέθοδο. Για να συγκλίνει η μέθοδος θα πρέπει η εκτιμούμενη τιμή των 

αγνώστων ( )( )k
x  να τείνει στην πραγματική τιμή ( )x  μετά από μεγάλο αριθμό 

επαναλήψεων ( )k : 

   

( ) ( )
lim   0    lim   0

k k

k k
x x e

→ →
− =  =   (3.31) 

όπου ο συμβολισμός     υποδεικνύει το μέτρο ενός διανύσματος ή πίνακα. 

Αντικαθιστώντας στην ανωτέρω την εξίσωση (3.30), και δεδομένου ότι το σφάλμα 

(0)
e  είναι μη μηδενικό, προκύπτει η γενική μορφή του κριτήριου σύγκλισης της 

επαναληπτικής μεθόδου: 

  lim   0
k

k
G

→
=   (3.32) 

Η εξίσωση (3.32) δείχνει πως το κριτήριο σύγκλισης βασίζεται στον πίνακα G . 

Αποδεικνύεται ότι το κριτήριο σύγκλισης μπορεί να λάβει την παρακάτω 

απλοποιημένη μορφή αν χρησιμοποιηθούν οι ιδιοτιμές ( )s  του Πίνακα 

Επαναλήψεων ( )G : 

 lim 0
k

k
s

→
=   (3.33) 
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το οποίο τελικά ισοδυναμεί με την παρακάτω ανισότητα:  

 1  ,   1,2,...,s s N  =   (3.34) 

Η εξίσωση (3.34) αποτελεί κριτήριο σύγκλισης της επαναληπτικής μεθόδου. Για να 

συγκλίνει η μέθοδος θα πρέπει όλες οι ιδιοτιμές του Πίνακα Επαναλήψεων ( )G  να 

είναι κατ’ απόλυτη τιμή μικρότερες από τη μονάδα. 

Υπενθυμίζεται ότι εφόσον o πίνακας G  είναι διαστάσεων N N , τότε έχει N 

ιδιοτιμές οι οποίες είναι λύσεις της παρακάτω εξίσωσης: 

    0sG I− =   (3.35) 

όπου I  ο μοναδιαίος πίνακας.  

 

 

3.3.3 Η Σύγκλιση των Επαναληπτικών Μεθόδων Jacobi, Gauss-Seidel και SOR  

 

Το κριτήριο σύγκλισης της εξίσωσης (3.34) θα εφαρμοστεί για την μελέτη σύγκλισης 

των επαναληπτικών μεθόδων Jacobi, Gauss-Seidel και SOR. Απαιτείται επομένως να 

βρεθούν οι ιδιοτιμές του Πίνακα Επαναλήψεων ( )G  για καθεμιά από τις μεθόδους. 

Ο Πίνακας των Επαναλήψεων Jacobi (σχέση (3.20)) είναι:  

 ( )1
JG D L U

−
= −  +    

Οι ιδιοτιμές του είναι οι λύσεις της εξίσωσης (3.35) : 

 ( )1
     0sD L U I−

 + + =    

Εκφράζοντας τον μοναδιαίο πίνακα ως 
1

I D D
−

=   η ανωτέρω εξίσωση γίνεται: 

 ( ) ( )    
1 1 1

  0       0  s sD L U D D D L U D − − −
 + +  =   + + =     

   
1

    0sD D L U−
 + + =   (3.36) 

Όμως ο πίνακας D  είναι διαγώνιος, και το ίδιο ισχύει και για τον αντίστροφό του  

1
D
−

 . Για τους διαγώνιους πίνακες η ορίζουσα ισούται με το γινόμενο των στοιχείων 
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της διαγωνίου ( )11 22 ... NNa a a  . Δεδομένου ότι για όλα τα διαγώνια στοιχεία ισχύει 

ότι 0iia   , οι ορίζουσες των πινάκων D  και 
1

D
−

 είναι μη μηδενικές. Επομένως η 

εξίσωση (3.36) γίνεται: 

   0s D L U + + =   (3.37) 

η οποία είναι η εξίσωση των ιδιοτιμών για τη μέθοδο Jacobi. 

Παρακάτω παρουσιάζεται μια αριθμητική εφαρμογή εύρεσης ιδιοτιμών του Πίνακα 

Επαναλήψεων της μεθόδου Jacobi. Έστω ότι ο πίνακας   του συστήματος έχει τιμή: 

 

4 1 0

1 4 1

0 1 4

D L U

− 
 

 = − = + +
 
 − 

   

όπου  

4 0 0

0 4 0

0 0 4

D

− 
 

= −
 
 − 

  ,  

0 0 0

1 0 0

0 1 0

L

 
 

=
 
  

  και  

0 1 0

0 0 1

0 0 0

U

 
 

=
 
  

 . 

Τότε, η εξίσωση (3.37) γίνεται: 

 

4 1 0

  1 4 1 0

0 1 4

s

s s

s

D L U



 



−

+ + = − =

−

   

Υπολογίζοντας την ανωτέρω ορίζουσα λαμβάνουμε την παρακάτω εξίσωση: 

 ( )28 8 1 0s s − − =    

της οποίας οι λύσεις είναι: 

 1 2 3  
1 1

0   και      και   
2 2 2 2

  = = + = −    

Και οι τρεις ιδιοτιμές είναι μικρότερες από τη μονάδα κατ’ απόλυτη τιμή, επομένως 

ικανοποιείται το κριτήριο σύγκλισης (3.34). Άρα, για το συγκεκριμένο σύστημα, η 

μέθοδος Jacobi θα συγκλίνει. 

Η διαδικασία για την μελέτη σύγκλισης της μεθόδου Gauss-Seidel είναι ανάλογη με 

αυτή που έγινε για τη μέθοδο Jacobi. H εξίσωση (3.23) δίνει τον Πίνακα 

Επαναλήψεων της μεθόδου Gauss-Seidel:   
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 ( )
1

G SG D L U
−

− = − +     

Οι ιδιοτιμές του είναι λύσεις της εξίσωσης (3.35). Ακολουθώντας παρόμοια 

διαδικασία με αυτήν που οδήγησε στην εξίσωση (3.37), έχουμε: 

   0s sD L U + + =   (3.38) 

Ομοίως, για τη μέθοδο SOR η εξίσωση των ιδιοτιμών του Πίνακα Επαναλήψεων ( )G  

είναι: 

 ( ) 1  0s sD L U   + − + + =   (3.39) 

Αν στην εξίσωση (3.39) της μεθόδου SOR αντικατασταθεί η τιμή 1 = , τότε αυτή 

ταυτίζεται με την (3.38). Αυτό επαληθεύει το γεγονός ότι για 1 =  οι μέθοδοι SOR 

και Gauss-Seidel ταυτίζονται. 

Ένα σημαντικό θέμα που αφορά τη μέθοδο SOR είναι η εύρεση της βέλτιστης τιμής 

του συντελεστή   για την ταχύτερη δυνατή σύγκλιση της μεθόδου. Το πρόβλημα 

αυτό σχετίζεται με τις ιδιοτιμές του Πίνακα Επαναλήψεων της μεθόδου SOR. Η 

βέλτιστη τιμή του συντελεστή ( )opt  δίνεται από απλοποιημένη εξίσωση, στην 

περίπτωση που ο πίνακας   του συστήματος είναι της μορφής: 

 

1 1

1 2 2

2

1 1

1

  

N N

N N

T D

D T D

D

T D

D T

− −

−

 
 
 
 
  =
 
 
 
 
 

   

όπου οι πίνακες iT  είναι τριδιαγώνιοι και οι πίνακες iD  είναι διαγώνιοι. Η ανωτέρω 

μορφή πίνακα αναφέρεται ως “block tridiagonal matrix” και προέκυψε και στην 

περίπτωση της διακριτοποίησης της εξίσωσης Laplace με κεντρική διαφόριση (βλ. 

εξίσωση (3.8) ). Όταν ο πίνακας    είναι αυτής της μορφής, η βέλτιστη τιμή του 

συντελεστή ( )opt  δίνεται από την εξίσωση: 

 ( )    

 

 

max
1opt SORs G = +   (3.40) 
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όπου ( )    

 max
SORs G  είναι η μέγιστη απόλυτη ιδιοτιμή του Πίνακα Επαναλήψεων 

της μεθόδου SOR. Η σύγκλιση απαιτεί η μέγιστη απόλυτη ιδιοτιμή να είναι 

μικρότερη της μονάδας, συνεπώς προκύπτει ότι 2opt  . 

H μέγιστη απόλυτη ιδιοτιμή του πίνακα της SOR συνδέεται με αυτήν του πίνακα της 

μεθόδου Jacobi  ( )    

 max
Js G , η οποία μπορεί να υπολογιστεί πιο εύκολα. Έτσι 

προκύπτει η παρακάτω εναλλακτική εξίσωση για τον opt : 

 

( )    

 

 

  

2

max

2

1 1

opt

Js G





=

+ −

  (3.41) 

Παρατηρούμε ότι η βέλτιστη τιμή του   είναι μικρότερη του 2. 

Μια ειδική περίπτωση υπολογισμού του opt  είναι για την επίλυση της εξίσωσης 

Poisson ( )xx yyu u c+ =  σε ορθογωνικό χωρίο με πλευρές μήκους ( )1NI h−   και 

( )1NJ h−  , όπου NI  και NJ  ο αριθμός των σημείων του πλέγματος στις 

διευθύνσεις x  και y  αντίστοιχα και h  το διάστημα μεταξύ των γειτονικών κόμβων 

του αριθμητικού πλέγματος. Σε αυτή την περίπτωση η μέγιστη απόλυτη ιδιοτιμή του 

Πίνακα Επαναλήψεων Jacobi δίνεται από την σχέση: 

 ( )    

 max

1
 cos cos

2
Js G

NI NJ

 


 
= + 

 
  (3.42) 

Από την (3.42) φαίνεται πως για μεγάλες τιμές των NI  και NJ , δηλαδή για πυκνό 

πλέγμα, η μέγιστη απόλυτη ιδιοτιμή τείνει στη μονάδα, το οποίο υποδεικνύει ότι η 

σύγκλιση της μεθόδου Jacobi είναι πολύ αργή. Για ( )    

 max
1Js G → , προκύπτουν  

2opt →  και ( )    

 max
1SORs G → , από τις εξισώσεις (3.41) και (3.40) αντίστοιχα. 

Δηλαδή, ομοίως με τη μέθοδο Jacobi, η σύγκλιση της SOR είναι πολύ αργή, και ο 

συντελεστής   θα πρέπει να αυξηθεί μέχρι το ανώτατο όριο του για να 

βελτιστοποιηθεί η σύγκλιση. 
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Παράδειγμα 3.1: Σύγκλιση των μεθόδων Jacobi και Gauss-Seidel 

Να μελετηθεί η σύγκλιση των μεθόδων Jacobi και Gauss-Seidel για την επίλυση 

του παρακάτω συστήματος: 

 

1 2 3

1 2 3

1 2 3

  2 4 1

1
 3
8

 4 7

x x x

x x x

x x x

+ + =



+ + =

 − + + =

   

Λύση 

Το σύστημα εκφράζεται στη μορφή της γενικής σχέσης x b  =  και ο πίνακας   

έχει τιμή: 

 

1 2 4

1
1 1

8

1 4 1

D L U

 
 
  = = + +
 
 − 

   

Η εξίσωση των ιδιοτιμών της μεθόδου Jacobi (3.37) λαμβάνει την παρακάτω 

μορφή: 

 

2 4

1
  1 0

8

1 4

s

s s

s

D L U



 



+ + = =

−

   

και αναπτύσσοντας την ορίζουσα προκύπτει ότι: 

 

1 1
1 1

2 4 0  8 8
4

1 1 4

s

s

s
s

s










− + = 

− −

   

 ( )2 31
4 2 1 4 4 0    0

8 8 4

s s
s s ss

 
  

   
− − + +  + =  − =  

  
   

Η τελευταία εξίσωση έχει λύσεις: 

   1 2 3

1 1
0  ,    ,  

2 2
  = = + = −    



________________________________________________________________________________ 

Βασική Υπολογιστική Ρευστομηχανική – Αεροδυναμική – 2023       Ι. Καλλιντέρης 

 

                                          70 

που είναι όλες μικρότερες από τη μονάδα κατ’ απόλυτη τιμή, επομένως ικανοποιείται 

το κριτήριο σύγκλισης (3.34). Άρα, η μέθοδος Jacobi θα συγκλίνει για το 

συγκεκριμένο σύστημα. 

Για την μέθοδο Gauss-Seidel, η εξίσωση των ιδιοτιμών (3.38) λαμβάνει την 

παρακάτω μορφή: 

 

2 4

1
  1 0

8

4

s

s s s s

s s s

D L U



   

  

+ + = =

−

   

Αναπτύσσοντας την ορίζουσα προκύπτει ότι: 

 

1 1
1 1

2 4 0  8 8
4

4s

s s s s
s

s s
s s s

   


 
  

− + = 

− −

   

 ( )
2

2 2 2 3 21 7
4 2 4 4 0    2 0

8 8 4

s
s s s s s s s s s


        

   
− − + +  + =  + − =       

   

Λύνοντας την τελευταία εξίσωση, λαμβάνουμε τις ιδιοτιμές του Πίνακα 

Επαναλήψεων για τη μέθοδο Gauss-Seidel: 

 1 2 30  ,  0.788  ,  2.538  = = = −    

Για την τρίτη ιδιοτιμή ισχύει ότι  3 1  , επομένως δεν ικανοποιείται το κριτήριο 

σύγκλισης (3.34). Άρα η μέθοδος Gauss-Seidel για το συγκεκριμένο σύστημα θα 

αποκλίνει. 

 

 

3.3.4 Η Διαγώνια Υπεροχή 

 

H διαγώνια υπεροχή είναι μια ιδιότητα ενός γραμμικού συστήματος ( )N N  η οποία 

συνδέεται με την σύγκλιση των επαναληπτικών μεθόδων που εφαρμόζονται για την 

επίλυσή του. Έστω το σύστημα με τη γενική μορφή της εξίσωσης (3.16). Έστω ότι 

iia  είναι τα διαγώνια στοιχεία του πίνακα  , ενώ τα ija  για j i  είναι τα στοιχεία 
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εκτός διαγωνίου. Ο πίνακας   έχει διαγώνια υπεροχή αν ισχύει η παρακάτω 

συνθήκη:  

 
1

   για κάθε 1,2,...,  
N

ii ij

j
j i

a a i N

=


 =   (3.43) 

Η εξίσωση (3.43) εκφράζει ότι σε κάθε σειρά i  του πίνακα του συστήματος, το 

διαγώνιο στοιχείο θα πρέπει να είναι κατ’ απόλυτη τιμή μεγαλύτερο ή ίσο από το 

άθροισμα των απόλυτων τιμών των στοιχείων που είναι εκτός της διαγωνίου. 

Αποδεικνύεται ότι αν ο πίνακας του συστήματος ( )  έχει μη μηδενική ορίζουσα 

( )0   τότε η διαγώνια υπεροχή του   είναι ικανή συνθήκη για την σύγκλιση των 

μεθόδων Jacobi και Gauss-Seidel για την επίλυση του συστήματος. Επίσης, η ύπαρξη 

διαγώνιας υπεροχής βελτιώνει την σύγκλιση και της μεθόδου SOR. 

Παρακάτω θα παρουσιαστεί μια απλοποιημένη απόδειξη της σύγκλισης της μεθόδου 

Jacobi αν ο πίνακας   έχει διαγώνια υπεροχή.  

Η σειρά i  της γενικής μορφής του συστήματος (3.16) έχει τη μορφή: 

 1 1 2 2 ... ...   ,  για κάθε 1,2,...,N Ni i ii i i ia x a x a x a x b i N+ + + + + = =   (3.44) 

Η εξίσωση (3.44) μπορεί να μετασχηματιστεί στην μορφή: 

, 1 , 11 2
1 2 1 1... ...   N

N
i i i ii i i i

i i i
ii ii ii ii ii ii

a aa a a b
x x x x x x

a a a a a a

− +
− += − − − − − − − +   

  

1

 +   ,  για κάθε 1,2,...,
N

iji
i j

ii iij
j i

ab
x x i N

a a
=


= − =   (3.45) 

Η εξίσωση (3.12) της μεθόδου Jacobi μπορεί να γραφεί στη μορφή: 

  
( 1) ( )

1

 +   ,  για κάθε 1,2,...,
N

ijk ki
i j

ii iij
j i

ab
x x i N

a a

+

=


= − =   (3.46) 

όπου 
( ) ( ) ( )
1 2 ,  , ... ,

k k k
N

x x x  είναι οι εκτιμούμενες τιμές των αγνώστων.  

Αφαιρώντας την εξίσωση (3.46) από την (3.45) προκύπτει εξίσωση που συνδέει τα 

σφάλματα της επαναληπτικής μεθόδου στις επαναλήψεις k  και 1k +  : 
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 ( ) 
( 1) ( )

1

   
N

ijk k
i ji j

iij
j i

a
x x x x

a

+

=


− = − −     

  
( 1) ( )

1

  ,  για κάθε 1,2,...,
N

ijk k
i j

iij
j i

a
i N

a
e e+

=


= − =   (3.47) 

Για λόγους απλότητας, θα θεωρηθεί πως όλα τα σφάλματα 
( )k
je  είναι ίσα μεταξύ τους 

και ίσα με το σφάλμα 
( )k
ie . Τότε η εξίσωση (3.47) γίνεται: 

   

( 1)
( 1) ( )

( )
1 1

      ,  για κάθε 1,2,...,
kN N

ij ijk k i
i i k

ii iij ji
j i j i

a a
i N

a a

e
e e

e

+
+

= =
 

= −  = − =    (3.48) 

Προκειμένου να συγκλίνει η επαναληπτική μέθοδος θα πρέπει η απόλυτη τιμή του 

σφάλματος να μην μεγαλώνει μετά από κάθε επανάληψη, δηλαδή θα πρέπει 

( 1)

( )
1

k
i

k
i

e

e

+

 . Με βάση την (3.48) η συνθήκη αυτή ικανοποιείται αν: 

 
1

1 ,  για κάθε 1,2,...,
N

ij

iij
j i

a
i N

a
=


 =    

Συνδυάζοντας την ανωτέρω ανισότητα με την ιδιότητα των απόλυτων τιμών 

1 1

N N
ij ij

ii iij j
j i j i

a a

a a
= =
 

  , προκύπτει ότι για να συγκλίνει η μέθοδος Jacobi, αρκεί να ισχύει 

ότι: 

 
1 1

1    ,  για κάθε 1,2,...,
N N

ij
ii ij

iij j
j i j i

a
a a i N

a
= =
 

   =     

Η ανωτέρω ανισότητα είναι η συνθήκη της διαγώνιας υπεροχής (3.43).  

Ως παράδειγμα θα παρουσιαστεί η διακριτοποίηση της εξίσωσης Laplace με κεντρική 

διαφόριση για x y h =   , η οποία οδηγεί σε πίνακα συστήματος με διαγώνια 

υπεροχή. Με βάση την εξίσωση (3.8), μια σειρά του πίνακα, που απαρτίζεται από 
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τους υποπίνακες  ,  , I D I  έχει τα μη μηδενικά στοιχεία  1  1 4  1  1 − . Το στοιχείο 

4−  είναι το διαγώνιο ( )4iia = −  ενώ τα τέσσερα μη διαγώνια στοιχεία είναι 1ija = . 

Προκύπτει λοιπόν ότι 

1

 
N

ii ij

j
j i

a a
=


= , που επαληθεύει την συνθήκη διαγώνιας 

υπεροχής.  

 

Αξίζει να σημειωθεί ότι η χρήση εμπρόσθιας 1i i
x

u u
u

x

+ − 
= 

 
 ή οπίσθιας διαφόρισης 

1i i
x

u u
u

x

−− 
= 

 
 για την διακριτοποίηση παραγώγων πρώτης τάξης ενισχύει την 

διαγώνια υπεροχή σε σχέση με την κεντρική διαφόριση 1 1

2

i i
x

u u
u

x

+ −− 
= 

 
. Ο λόγος 

είναι ότι οι συντελεστές των όρων iu  στις εξισώσεις των αριθμητικών σχημάτων 

βρίσκονται στη διαγώνιο του πίνακα του συστήματος που προκύπτει, ενώ οι 

συντελεστές των όρων 1iu +   και 1iu −  είναι εκτός διαγωνίου. Γι’ αυτό πολλές φορές 

η χρήση μη-συμμετρικής διαφοράς αντί της κεντρικής διαφοράς βελτιώνει την 

σύγκλιση των επαναληπτικών μεθόδων που χρησιμοποιούνται. Επίσης, είδαμε ότι η 

ασύμμετρη διαφορά δίνει πιο ευσταθή αριθμητικά σχήματα για εξισώσεις που 

περιλαμβάνουν όρους μεταφοράς. 

 

 

3.3.5 Σύνδεση μεταξύ Διαδικασιών Επαναλήψεων και Βηματισμού στο 

Χρόνο (“time marching”) 

 

Οι μέθοδοι βηματισμού στο χρόνο (“time marching”), που εφαρμόζονται για την 

επίλυση εξισώσεων με χρονικές παραγώγους, συνδέονται με τις επαναληπτικές 

μεθόδους.  

Έστω η παρακάτω διαφορική εξίσωση, η οποία στο δεξί μέλος περιέχει τους όρους 

της εξίσωσης Laplace, αλλά στο αριστερό περιέχει επιπλέον και χρονική παράγωγο: 

 t xx yy
u u u= +   (3.49) 
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Η εξίσωση (3.49) μπορεί να διακριτοποιηθεί με το ρητό σχήμα FTCS, 

χρησιμοποιώντας ομοιόμορφο πλέγμα στο χώρο ( )x y h =  = : 

 

1
, , 1, , 1, , 1 , , 1

2 2

2 2n n n n n n n n
i j i j i j i j i j i j i j i j

u u u u u u u u

t h h

+
+ − + −

− − + − +
= +


  (3.50) 

όπου ο δείκτης n  δηλώνει τιμές της λύσης u  στο χρόνο t n t=   και ο δείκτης 1n+  

δηλώνει τιμές στο χρόνο ( )1t n t= +  . 

Μπορεί να αποδειχθεί ότι το αριθμητικό σχήμα της εξίσωσης (3.50) είναι ευσταθές 

για 

2

4

h
t  . Αν το χρονικό βήμα που χρησιμοποιηθεί είναι 

2

4

h
t = , τότε η (3.50) 

γίνεται: 

 ( )1
, 1, 1, , 1 , 1

1

4

n n n n n
i j i j i j i j i j

u u u u u+
+ − + −

= + + +   (3.51) 

Έστω τώρα η εξίσωση Laplace (3.1), η οποία ομοίως διακριτοποιείται με κεντρική 

διαφόριση και ομοιόμορφο πλέγμα ( )x y h =  = . Προκύπτει το σύστημα της 

εξίσωσης (3.7). Εφαρμόζοντας την μέθοδο Jacobi (εξίσωση (3.12)) για την επίλυση 

του συστήματος, προκύπτει η παρακάτω εξίσωση: 

 
( ) ( ) ( ) ( ) ( )( )1
, 1, 1, , 1 , 1

1
   

4

k k k k k
i j i j i j i j i j

u u u u u
+

+ − + −
= + + +   (3.52) 

Παρατηρείται πως η εξίσωση (3.52) που προέκυψε από την επαναληπτική μέθοδο 

Jacobi είναι ίδια με την εξίσωση (3.51) που προέκυψε εφαρμόζοντας αριθμητικό 

σχήμα με βηματισμό στο χρόνο. Οι μέθοδοι που χρησιμοποιούνται για την επίλυση 

παραβολικών εξισώσεων με χρονικές παραγώγους, μπορούν να χρησιμοποιηθούν και 

για ελλειπτικές εξισώσεις, όπως είναι η εξίσωση Laplace. 

Στο  Σχήμα 3.3 απεικονίζεται ο τρόπος με τον οποίο οι μέθοδοι βηματισμού στο 

χρόνο και οι επαναληπτικές μέθοδοι συγκλίνουν στην τελική λύση. Οι μέθοδοι 

βηματισμού στο χρόνο (Σχήμα 3.3(α)) «παράγουν» την λύση με ακρίβεια σε κάθε 

χρονική στιγμή (“time accurate solution”), εφόσον οι αρχικές συνθήκες έχουν τεθεί 

σύμφωνα με τη φυσική του προβλήματος και το χρονικό βήμα είναι αρκετά μικρό. 

Μετά από κάποιο χρόνο επέρχεται η μόνιμη κατάσταση (“steady state”), για 

πρόβλημα που έχει λύση σταθερή στο χρόνο. Οι επαναληπτικές μέθοδοι (Σχήμα 

3.3(β)) συγκλίνουν στην ίδια λύση μόνιμης κατάστασης μετά από κάποιο αριθμό 

επαναλήψεων. Ωστόσο, οι λύσεις των προηγούμενων επαναλήψεων δεν έχουν 

φυσική σημασία. 
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Χρόνος Αριθμός 

επαναλήψεων
( )k

iju

Μόνιμη κατάσταση

iju

Μόνιμη κατάσταση

 

Σχήμα 3.3  Αναπαράσταση της σύγκλισης (α) των μεθόδων βηματισμού στο χρόνο και (β) 

των επαναληπτικών μεθόδων.   

 

 

3.3.6 Ημι-πεπλεγμένες Επαναληπτικές Μέθοδοι – Η Τεχνική ADI 

 

Στις μεθόδους που μελετήθηκαν μέχρι τώρα, ο κάθε άγνωστος υπολογιζόταν   

ξεχωριστά μέσω της απευθείας επίλυσης μιας μόνο εξίσωσης. Ένα παράδειγμα είναι 

η εξίσωση (3.52) της μεθόδου Jacobi για την εξίσωση Laplace, η οποία επιλύεται 

απευθείας ως προς τον μοναδικό άγνωστο 
( )1
,
k

i j
u

+
.  

Στις ημι-πεπλεγμένες επαναληπτικές μεθόδους (“semi-implicit-iterative” ή “block-

iterative” methods) υπάρχουν ομάδες αγνώστων οι οποίοι υπολογίζονται 

ταυτόχρονα, μέσω της επίλυσης συστήματος εξισώσεων. Η τεχνική αυτή, παρά το 

αυξημένο κόστος υπολογισμών σε κάθε επανάληψη, μπορεί να μειώσει σημαντικά 

τον αριθμό επαναλήψεων. 

Οι ημι-πεπλεγμένες μέθοδοι θα παρουσιαστούν μέσω του παραδείγματος της 

εξίσωσης Laplace, η οποία δακριτοποιείται με κεντρική διαφόριση (εξίσωση (3.7) ). 

Εφαρμόζουμε την μέθοδο Gauss-Seidel, επιλύοντας ταυτόχρονα ως προς τους 

αγνώστους των τριών εμπλεκόμενων σημείων της  j - γραμμής 
( )1
,
k

i j
u

+
, 

( )1
1,

k
i j

u
+

− , και 

( )1
1,

k
i j

u
+

+ :  

 
( ) ( ) ( ) ( ) ( )( )1 1 1 1
, 1, 1, , 1 , 1

1
   

4

k k k k k
i j i j i j i j i j

u u u u u
+ + + +

+ − + −
= + + +   (3.53) 
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Η τιμή του 
( )1
, 1
k

i j
u

+
−  έχει ήδη υπολογιστεί όταν η διαδικασία φτάσει στον υπολογισμό 

του αγνώστου 
( )1
,
k

i j
u

+
. Συλλέγοντας τις άγνωστες μεταβλητές στο αριστερό μέλος και 

τις γνωστές στο δεξί προκύπτει η παρακάτω μορφή: 

 
( ) ( ) ( ) ( ) ( )( )1 1 1 1

1, , 1, , 1 , 1

1 1 1
   

4 4 4

k k k k k
i j i j i j i j i j

u u u u u
+ + + +

− + + −
− + − = +   (3.54) 

Η εξίσωση (3.54) εφαρμόζεται για τους κόμβους 2,3,..., 1i NI= −  μιας γραμμής του 

πλέγματος ( )j . Το σύνολο των εξισώσεων που προκύπτουν αποτελεί τριδιαγώνιο 

σύστημα το οποίο πρέπει να επιλυθεί σε κάθε επανάληψη για την εύρεση των 

αγνώστων 
( )1
,
k

i j
u

+
 της γραμμής j . Για την επίλυση του συστήματος μπορεί να 

χρησιμοποιηθεί ο αλγόριθμος “Thomas”, ο οποίος παρατίθεται στο Παράρτημα. Η 

επίλυση του τριδιαγώνιου συστήματος πρέπει να γίνει για κάθε γραμμή j  του 

πλέγματος, όπως απεικονίζεται στο Σχήμα 3.4. Με ανάλογο τρόπο, μπορεί να 

κατασκευαστεί αλγόριθμος που να «σαρώνει» τις στήλες του υπολογιστικού 

πλέγματος, αντί για τις γραμμές. Οι άγνωστοι στο τριδιαγώνιο σύστημα θα είναι για 

κάθε i  - στήλη του πλέγματος. 

 

,i j −1

,i j

,i j +1

,i j+1,i j−1

«Σάρωση» γραμμών 

πλέγματος

Αλγόριθμος «Thomas» 

για τριδιαγώνιο 

σύστημα

Άγνωστοι

Γνωστοί

 

Σχήμα 3.4 Αναπαράσταση του αλγορίθμου των ημι-πεπλεγμένων επαναληπτικών μεθόδων. 

Οι άγνωστοι σε κάθε γραμμή του πλέγματος ( )j  υπολογίζονται μέσω της 

επίλυσης τριδιαγώνιου συστήματος. 

 

Μια ενδιαφέρουσα παρατήρηση είναι πως το τριδιαγώνιο σύστημα των εξισώσεων 

(3.54) έχει πίνακα με διαγώνια υπεροχή. Ο συντελεστής του όρου 
( )1
,
k

i j
u

+
 είναι το 

διαγώνιο στοιχείο του πίνακα και είναι ίσος με τη μονάδα, δηλαδή μεγαλύτερος κατ’ 
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απόλυτη τιμή από το άθροισμα των απόλυτων τιμών των άλλων δύο συντελεστών 

( )1 1 1
4 4 2
+ = .  

Σε αυτό το σημείο μπορεί να κατασκευαστεί η ημι-πεπλεγμένη μέθοδος LSOR (“SOR 

by lines”), πολλαπλασιάζοντας με συντελεστή   την διόρθωση στην λύση μεταξύ 

δύο διαδοχικών επαναλήψεων Gauss – Seidel : 

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

     
1 1 1 1

, , , , , , ,
    1

k k k k k k k
i j i j i j i j i j i j i j

u u u u u u u  
+ + + +

= + −  = − +    

Ο όρος 
( )

 
1

,
k

i j
u

+
 είναι η τιμή του αγνώστου που υπολογίζει η επανάληψη Gauss-Seidel. 

Αντικαθιστώντας τον όρο 
( )

 
1

,
k

i j
u

+
 από την σχέση (3.53), προκύπτει η εξίσωση της 

μεθόδου LSOR για την επίλυση της εξίσωσης Laplace: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )( )  

1 1 1 1
, , 1, 1, , 1 , 1

1   
4

k k k k k k
i j i j i j i j i j i j

u u u u u u



+ + + +

+ − + −
= − + + + +   (3.55) 

Συλλέγοντας τις άγνωστες μεταβλητές στο αριστερό μέλος και τις γνωστές στο δεξί, 

προκύπτει η μορφή του τριδιαγώνιου συστήματος που πρέπει να επιλυθεί σε μια 

επανάληψη της μεθόδου LSOR: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )( )  

1 1 1 1
1, , 1, , , 1 , 1

1  
4 4 4

k k k k k k
i j i j i j i j i j i j

u u u u u u
  


+ + + +

− + + −
− + − = − + +   (3.56) 

Η ύπαρξη διαγώνιας υπεροχής στο σύστημα (3.56) εξαρτάται από την τιμή του 

συντελεστή  . Για να έχει ο πίνακας του συστήματος διαγώνια υπεροχή θα πρέπει 

να ισχύει ότι : 

 1     2
4 4

 
 +      

Οι ημι-πεπλεγμένες μέθοδοι Gauss-Seidel και LSOR (εξισώσεις (3.53) και (3.55)) 

συγκλίνουν πιο γρήγορα από τις αντίστοιχες μεθόδους Gauss-Seidel και SOR, στις 

οποίες ο κάθε άγνωστος υπολογίζεται ξεχωριστά. Ο λόγος είναι ότι στις ημι-

πεπλεγμένες μεθόδους, είναι μεγαλύτερη η επίδραση των συνοριακών συνθηκών σε 

κάθε επανάληψη ( )k . Για παράδειγμα, στην μέθοδο LSOR όλοι οι άγνωστοι μιας 

γραμμής ( )j  επιλύονται ταυτόχρονα, άρα οι συνθήκες στους συνοριακούς κόμβους 

της γραμμής ( )1,  i i NI= =  επηρεάζουν όλους τους αγνώστους στην πρώτη 
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επανάληψη. Αντίθετα, στην μέθοδο SOR οι συνθήκες στους συνοριακούς κόμβους 

επηρεάζουν στην πρώτη επανάληψη μόνο τους γειτονικούς κόμβους αυτών. 

Η μέθοδος LSOR «σαρώνει» ή τις γραμμές ή τις στήλες του υπολογιστικού 

πλέγματος. Η σύγκλιση του αλγορίθμου μπορεί να βελτιωθεί αν «σαρώνονται» και 

οι γραμμές και οι στήλες σε κάθε επανάληψη. Τότε προκύπτει η τεχνική ADI 

(“Alternate Direction Implicit”). Στην τεχνική ADI, εφαρμόζεται η μέθοδος  LSOR 

(εξ. (3.55)) με δύο βήματα σε κάθε επανάληψη ( )k . 

Κατά το πρώτο βήμα «σαρώνονται» οι γραμμές: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )( )  

1 2 1 2 1 2 1 2
, , 1, 1, , 1 , 1

1   
4

k k k k k k
i j i j i j i j i j i j

u u u u u u



+ + + +

+ − + −
= − + + + +   (3.57) 

και κατά το δεύτερο βήμα «σαρώνονται» οι στήλες: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )( )  

1 1 2 1 2 1 1 1
, , 1, 1, , 1 , 1

1   
4

k k k k k k
i j i j i j i j i j i j

u u u u u u



+ + + + + +

+ − + −
= − + + + +   (3.58) 

Για καθένα από τα δύο βήματα επιλύεται τριδιαγώνιο σύστημα. Για να υπάρχει 

διαγώνια υπεροχή, θα πρέπει και πάλι να είναι 2  .  
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Παράρτημα – Αλγόριθμος “Thomas” για Άμεση Επίλυση Τριδιαγώνιων 

Συστημάτων 

 

Τα άρρητα αριθμητικά σχήματα που εφαρμόζονται σε εξισώσεις με χρονικές 

παραγώγους οδηγούν στην επίλυση τριδιαγώνιου συστήματος. Επίσης, τριδιαγώνιο 

σύστημα προκύπτει και κατά την εφαρμογή των ημι-πεπλεγμένων επαναληπτικών 

μεθόδων για την επίλυση ελλειπτικών εξισώσεων. Τα τριδιαγώνια συστήματα 

επιλύονται με βάση την μέθοδο απαλοιφής του Gauss. 

Παρακάτω παρουσιάζεται ένα παράδειγμα τριδιαγώνιου συστήματος τεσσάρων 

εξισώσεων: 

 

11 12 1 1

21 22 23 2 2

32 33 34 3 3

43 44 4 4

0 0

0
    

0

0 0

x b

x b

x b

x b

 

  

  

 

     
     
     

 =     
     
     

    

  (3.59) 

Κατά το πρώτο στάδιο της μεθόδου Gauss, που είναι η "προς τα εμπρός απαλοιφή", 

το προς επίλυση τριδιαγώνιο σύστημα μετατρέπεται σε άνω-τριγωνικό. Για να συμβεί 

αυτό, απαλείφεται ο συντελεστής 
 , 1i i

a
−

 από κάθε γραμμή i  του πίνακα του 

αριστερού μέλους του συστήματος. Από τους υπόλοιπους συντελεστές του πίνακα, 

οι μόνοι που τροποποιούνται κατά την απαλοιφή είναι οι διαγώνιοι ( ), i i
a . Επίσης 

τροποποιούνται και οι συντελεστές του διανύσματος στο δεξί μέλος του συστήματος 

( )ib . Ενδεικτικά παρατίθεται η τροποποιημένη, άνω-τριγωνική μορφή του 

συστήματος της εξίσωσης (3.59) μετά την "προς τα εμπρός απαλοιφή": 

 

11 12 1 1

22 23 2 2

3 333 34

4 444

0 0

0 0
    

0 0

0 0 0

x b

x b

x b

x b

 

 

 



      
     

      
 =     

     
     

    

  (3.60) 

Οι τροποποιημένοι συντελεστές 
 ,i i

a  και 
i

b  δίνονται από τις παρακάτω σχέσεις: 

 
 

 
   

 

  
, 1

, , 1,
1, 1

  ,  για τιμές  2, ... ,
i i

i i i i i i
i i

a
a a a i N

a

−

−
− −

 = −  =


  (3.61) 
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, 1

1
1, 1

   ,  για τιμές  2, ... ,
i i

i i i
i i

a
b b b i N

a

−

−
− −

 = −  =


  (3.62) 

όπου N  το πλήθος των αγνώστων του συστήματος. Σημειώνεται ότι 
11 11

a a =  και 

1 1
'b b= . 

Κατά το δεύτερο στάδιο της μεθόδου Gauss, που είναι η "προς τα πίσω 

αντικατάσταση", γίνεται η εύρεση των αγνώστων ( )ix  του συστήματος, οι οποίοι 

δίνονται από τις εξισώσεις: 

 

 

 
  

 

,

, 1 1
 

  ,  για τιμές  1, 2, ... , 1

N
N

N N

i i i i

i
i, i

b
x

a

b a x
x i N N

a

+ +


=



 − 
= = − −



  (3.63) 

Ο παραπάνω αλγόριθμος για την άμεση επίλυση τριδιαγώνιων συστημάτων καλείται 

"Αλγόριθμος Thomas". Χρησιμοποιείται ευρέως στην επίλυση μερικών διαφορικών 

εξισώσεων και συνήθων διαφορικών εξισώσεων, σε περιπτώσεις όπου για την 

διακριτοποίηση του χώρου χρησιμοποιείται αριθμητικό σχήμα με υπολογιστική 

κυψέλη τριών σημείων (π.χ. κεντρική διαφόριση). 
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